
Chapter 42

Diffraction distraction

(N. Whelan)

D
iffraction effects characteristic to scattering off wedges are incorporated

into the periodic orbit theory.

42.1 Quantum eavesdropping

As noted in chapter 41, the classical mechanics of the helium atom is undefined

at the instant of a triple collision. This is a common phenomenon - there is often

some singularity or discontinuity in the classical mechanics of physical systems.

This discontinuity can even be helpful in classifying the dynamics. The points in

phase space which have a past or future at the discontinuity form manifolds which

divide the phase space and provide the symbolic dynamics. The general rule is that

quantum mechanics smoothes over these discontinuities in a process we interpret

as diffraction. We solve the local diffraction problem quantum mechanically and

then incorporate this into our global solution. By doing so, we reconfirm the

central leitmotif of this treatise: think locally - act globally.

While being a well-motivated physical example, the helium atom is somewhat

involved. In fact, so involved that we do not have a clue how to do it. In its

place we illustrate the concept of diffractive effects with a pinball game. There

are various classes of discontinuities which a billiard can have. There may be a

grazing condition such that some trajectories hit a smooth surface while others

are unaffected - this leads to the creeping described in chapter 39. There may be a

vertex such that trajectories to one side bounce differently from those to the other

side. There may be a point scatterer or a magnetic flux line such that we do not

know how to continue classical mechanics through the discontinuities. In what

follows, we specialize the discussion to the second example - that of vertices or

wedges. To further simplify the discussion, we consider the special case of a half

line which can be thought of as a wedge of angle zero.
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Figure 42.1: Scattering of a plane wave off a half line.

III

α

I

II

We start by solving the problem of the scattering of a plane wave off a half

line (see figure 42.1). This is the local problem whose solution we will use to

construct a global solution of more complicated geometries. We define the vertex

to be the origin and launch a plane wave at it from an angle α. What is the total

field? This is a problem solved by Sommerfeld in 1896 and our discussion closely

follows his.

The total field consists of three parts - the incident field, the reflected field

and the diffractive field. Ignoring the third of these for the moment, we see that

the space is divided into three regions. In region I there is both an incident and a

reflected wave. In region II there is only an incident field. In region III there is

nothing so we call this the shadowed region. However, because of diffraction the

field does enter this region. This accounts for why you can overhear a conversation

if you are on the opposite side of a thick wall but with a door a few meters away.

Traditionally such effects have been ignored in semiclassical calculations because

they are relatively weak. However, they can be significant.

To solve this problem Sommerfeld worked by analogy with the full line case,

so let us briefly consider that much simpler problem. There we know that the

problem can be solved by images. An incident wave of amplitude A is of the form

v(r, ψ) = Ae−ikr cosψ (42.1)

where ψ = φ − α and φ is the angular coordinate. The total field is then given by

the method of images as

vtot = v(r, φ − α) − v(r, φ + α), (42.2)

where the negative sign ensures that the boundary condition of zero field on the

line is satisfied.

Sommerfeld then argued that v(r, ψ) can also be given a complex integral rep-

resentation

v(r, ψ) = A

∫

C

dβ f (β, ψ)e−ikr cos β. (42.3)

This is certainly correct if the function f (β, ψ) has a pole of residue 1/2πi at β =

−ψ and if the contour C encloses that pole. One choice is

f (β, ψ) =
1

2π

eiβ

eiβ − e−iψ
. (42.4)
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Figure 42.2: The contour in the complex β plane.

The pole is at β = −ψ (marked by × in the figure)

and the integrand approaches zero in the shaded

regions as the magnitude of the imaginary part of

β approaches infinity.
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(We choose the pole to be at β = −ψ rather than β = ψ for reasons discussed later.)

One valid choice for the contour is shown in figure 42.2. This encloses the pole

and vanishes as |Im β| → ∞ (as denoted by the shading). The sections D1 and D2

are congruent because they are displaced by 2π. However, they are traversed in

an opposite sense and cancel, so our contour consists of just the sections C1 and

C2. The motivation for expressing the solution in this complicated manner should

become clear soon.

What have we done? We extended the space under consideration by a factor

of two and then constructed a solution by assuming that there is also a source in

the unphysical space. We superimpose the solutions from the two sources and at

the end only consider the solution in the physical space to be meaningful. Fur-

thermore, we expressed the solution as a contour integral which reflects the 2π

periodicity of the problem. The half line scattering problem follows by analogy.

Whereas for the full line the field is periodic in 2π, for the half line it is peri-

odic in 4π. This can be seen by the fact that the field can be expanded in a series

of the form {sin(φ/2), sin(φ), sin(3φ/2), · · · }. As above, we extend the space by

thinking of it as two sheeted. The physical sheet is as shown in figure 42.1 and the

unphysical sheet is congruent to it. The sheets are glued together along the half

line so that a curve in the physical space which intersects the half line is continued

in the unphysical space and vice-versa. The boundary conditions are that the total

field is zero on both faces of the half line (which are physically distinct boundary

conditions) and that as r → ∞ the field is composed solely of plane waves and

outgoing circular waves of the form g(φ) exp(ikr)/
√

kr. This last condition is a

result of Huygens’ principle.

We assume that the complete solution is also given by the method of images

as

vtot = u(r, φ − α) − u(r, φ + α). (42.5)

where u(r, ψ) is a 4π-periodic function to be determined. The second term is
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Figure 42.3: The contour used to evaluate the

diffractive field after the contribution of possible

poles has been explicitly evaluated. The curve F

is traversed twice in opposite directions and has no

net contribution.
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2

E

E

F

−2π 0

interpreted as an incident field from the unphysical space and the negative sign

guarantees that the solution vanishes on both faces of the half line. Sommerfeld

then made the ansatz that u is as given in equation (42.3) with the same contour

C1 + C2 but with the 4π periodicity accounted for by replacing equation (42.4)

with

f (β, ψ) =
1

4π

eiβ/2

eiβ/2 − e−iψ/2
. (42.6)

(We divide by 4π rather than 2π so that the residue is properly normalized.) The

integral (42.3) can be thought of as a linear superposition of an infinity of plane

waves each of which satisfies the Helmholtz equation (∇2
+ k2)v = 0, and so their

combination also satisfies the Helmholtz equation. We will see that the diffracted

field is an outgoing circular wave; this being a result of choosing the pole at β =

−ψ rather than β = ψ in equation (42.4). Therefore, this ansatz is a solution of

the equation and satisfies all boundary conditions and therefore constitutes a valid

solution. By uniqueness this is the only solution.

In order to further understand this solution, it is useful to massage the contour.

Depending on φ there may or may not be a pole between β = −π and β = π. In

region I, both functions u(r, φ ± α) have poles which correspond to the incident

and reflected waves. In region II, only u(r, φ − α) has a pole corresponding to the

incident wave. In region III there are no poles because of the shadow. Once we

have accounted for the geometrical waves (i.e., the poles), we extract the diffracted

waves by saddle point analysis at β = ±π. We do this by deforming the contours

C so that they go through the saddles as shown in figure 42.2.

Contour C1 becomes E2 + F while contour C2 becomes E1 − F where the

minus sign indicates that it is traversed in a negative sense. As a result, F has no

net contribution and the contour consists of just E1 and E2.

As a result of these machinations, the curves E are simply the curves D of

figure 42.2 but with a reversed sense. Since the integrand is no longer 2π periodic,

the contributions from these curves no longer cancel. We evaluate both stationary
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phase integrals to obtain

u(r, ψ) ≈ −A
eiπ/4

√
8π

sec(ψ/2)
eikr

√
kr

(42.7)

so that the total diffracted field is

vdiff = −A
eiπ/4

√
8π

(

sec

(

φ − α
2

)

− sec

(

φ + α

2

))

eikr

√
kr
. (42.8)

Note that this expression breaks down when φ ± α = π. These angles correspond

to the borders among the three regions of figure 42.1 and must be handled more

carefully - we can not do a stationary phase integral in the vicinity of a pole.

However, the integral representation (42.3) and (42.6) is uniformly valid. exercise 42.1

We now turn to the simple task of translating this result into the language of

semiclassical Green’s functions. Instead of an incident plane wave, we assume a

source at point x′ and then compute the resulting field at the receiver position x.

If x is in region I, there is both a direct term, and a reflected term, if x is in region

II there is only a direct term and if x is in region III there is neither. In any event

these contributions to the semiclassical Green’s function are known since the free

space Green’s function between two points x2 and x1 is

Gf(x2, x1, k) = −
i

4
H

(+)

0
(kd) ≈ −

1
√

8πkd
exp{i(kd + π/4)}, (42.9)

where d is the distance between the points. For a reflection, we need to multiply

by −1 and the distance is the length of the path via the reflection point. Most

interesting for us, there is also a diffractive contribution to the Green’s function.

In equation (42.8), we recognize that the coefficient A is simply the intensity at the

origin if there were no scatterer. This is therefore replaced by the Green’s function

to go from the source to the vertex which we label xV . Furthermore, we recognize

that exp(ikr)/
√

kr is, within a proportionality constant, the semiclassical Green’s

function to go from the vertex to the receiver.

Collecting these facts, we say

Gdiff(x, x′, k) = Gf(x, xV , k)d(θ, θ′)Gf(xV , x′, k), (42.10)

where, by comparison with equations (42.8) and (42.9), we have

d(θ, θ′) = sec

(

θ − θ′

2

)

− sec

(

θ + θ′

2

)

. (42.11)

Here θ′ is the angle to the source as measured from the vertex and θ is the angle to

the receiver. They were denoted as α and φ previously. Note that there is a sym-

metry between the source and receiver as we expect for a time-reversal invariant

process. Also the diffraction coefficient d does not depend on which face of the

half line we use to measure the angles. As we will see, a very important property

of Gdiff is that it is a simple multiplicative combination of other semiclassical

Green’s functions. exercise 42.2
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We now recover our classical perspective by realizing that we can still think of

classical trajectories. In calculating the quantum Green’s function, we sum over

the contributions of various paths. These include the classical trajectories which

connect the points and also paths which connect the points via the vertex. These

have different weights as given by equations (42.9) and (42.10) but the concept of

summing over classical paths is preserved.

For completeness, we remark that there is an exact integral representation for

the Green’s function in the presence of a wedge of arbitrary opening angle [42.15].

It can be written as

G(x, x′, k) = g(r, r′, k, θ′ − θ) − g(r, r′, k, θ′ + θ) (42.12)

where (r, θ) and (r′, θ′) are the polar coordinates of the points x and x′ as measured

from the vertex and the angles are measured from either face of the wedge. The

function g is given by

g(r, r′, k, ψ) =
i

8πν

∫

C1+C2

dβ
H+

0
(k

√

r2 + r′2 − 2rr′ cos β)

1 − exp
(

i
β+ψ

ν

) (42.13)

where ν = γ/π and γ is the opening angle of the wedge. (ie γ = 2π in the case of

the half plane). The contour C1 +C2 is the same as shown in figure 42.2.

The poles of this integral give contributions which can be identified with the

geometric paths connecting x and x′. The saddle points at β = ±π give contribu-

tions which can be identified with the diffractive path connecting x and x′. The

saddle point analysis allows us to identify the diffraction constant as

d(θ, θ′) = −
4 sin π

ν

ν

sin θ
ν

sin θ′

ν
(

cos π
ν
− cos θ+θ′

ν

) (

cos π
ν
− cos θ−θ′

ν

) , (42.14)

which reduces to (42.11) when ν = 2. Note that the diffraction coefficient vanishes

identically if ν = 1/n where n is any integer. This corresponds to wedge angles

of γ = π/n (eg. n=1 corresponds to a full line and n=2 corresponds to a right

angle). This demonstration is limited by the fact that it came from a leading

order asymptotic expansion but the result is quite general. For such wedge angles,

we can use the method of images (we will require 2n − 1 images in addition to

the actual source point) to obtain the Green’s function and there is no diffractive

contribution to any order. Classically this corresponds to the fact that for such

angles, there is no discontinuity in the dynamics. Trajectories going into the vertex

can be continued out of them unambiguously. This meshes with the discussion in

the introduction where we argued that diffractive effects are intimately linked with

classical discontinuities.

The integral representation is also useful because it allows us to consider ge-

ometries such that the angles are near the optical boundaries or the wedge angle

is close to π/n. For these geometries the saddle point analysis leading to (42.14)

is invalid due to the existence of a nearby pole. In that event, we require a more

sophisticated asymptotic analysis of the full integral representation.
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Figure 42.4: The billiard considered here. The dy-

namics consists of free motion followed by specular

reflections off the faces. The top vertex induces diffrac-

tion while the bottom one is a right angle and induces

two specular geometric reflections. ������������
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Figure 42.5: The dashed line shows a simple periodic

diffractive orbit γ. Between the vertex V and a point P

close to the orbit there are two geometric legs labeled

±. The origin of the coordinate system is chosen to be

at R.
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42.2 An application

Although we introduced diffraction as a correction to the purely classical effects;

it is instructive to consider a system which can be quantized solely in terms of

periodic diffractive orbits. Consider the geometry shown in figure 42.4 The clas-

sical mechanics consists of free motion followed by specular reflections off faces.

The upper vertex is a source of diffraction while the lower one is a right angle and

induces no diffraction. This is an open system, there are no bound states - only

scattering resonances. However, we can still test the effectiveness of the theory

in predicting them. Formally, scattering resonances are the poles of the scattering

S matrix and by an identity of Balian and Bloch are also poles of the quantum

Green’s function. We demonstrate this fact in chapter 39 for 2-dimensional scat-

terers. The poles have complex wavenumber k, as for the 3-disk problem.

Let us first consider how diffractive orbits arise in evaluating the trace of G

which we call g(k). Specifying the trace means that we must consider all paths

which close on themselves in the configuration space while stationary phase ar-

guments for large wavenumber k extract those which are periodic - just as for

classical trajectories. In general, g(k) is given by the sum over all diffractive and

geometric orbits. The contribution of the simple diffractive orbit labeled γ shown

in figure 42.5 to g(k) is determined as follows.

We consider a point P just a little off the path and determine the semiclassical

Green’s function to return to P via the vertex using (42.9) and (42.10). To leading

order in y the lengths of the two geometric paths connecting P and V are d± =
(L±x)+y2/(L±x)2/2 so that the phase factor ik(d++d−) equals 2ikL+iky2/(L2−x2).

The trace integral involves integrating over all points P and is

gγ(k) ≈ −2dγ
ei(2kL+π/2)

8πk

∫ L

0

dx
√

L2 − x2

∫ ∞

−∞
dye

(

iky2 L

L2−x2

)

. (42.15)
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We introduced an overall negative sign to account for the reflection at the hard wall

and multiplied by 2 to account for the two traversal senses, VRPV and VPRV . In

the spirit of stationary phase integrals, we have neglected the y dependence ev-

erywhere except in the exponential. The diffraction constant dγ is the one corre-

sponding to the diffractive periodic orbit. To evaluate the y integral, we use the

identity

∫ ∞

−∞
dξeiaξ2

= eiπ/4

√

π

a
, (42.16)

and thus obtain a factor which precisely cancels the x dependence in the x integral.

This leads to the rather simple result

gγ ≈ −
ilγ

2k















dγ
√

8πklγ















ei(klγ+π/4) (42.17)

where lγ = 2L is the length of the periodic diffractive orbit. A more sophisticated

analysis of the trace integral has been done [42.6] using the integral representation

(42.13). It is valid in the vicinity of an optical boundary and also for wedges with

opening angles close to π/n.

Consider a periodic diffractive orbit with nγ reflections off straight hard walls

and µγ diffractions each with a diffraction constant dγ, j. The total length of the

orbit Lγ =
∑

lγ, j is the sum of the various diffractive legs and lγ is the length of

the corresponding prime orbit. For such an orbit, (42.17) generalizes to

gγ(k) = −
ilγ

2k



















µγ
∏

j=1

dγ, j
√

8πklγ, j



















exp {i(kLγ + nγπ − 3µγπ/4)}. (42.18)

Each diffraction introduces a factor of 1/
√

k and multi-diffractive orbits are thereby exercise 42.3

suppressed.

If the orbit γ is prime then Lγ = lγ. If γ is the r’th repeat of a prime orbit β we

have Lγ = rlβ, nγ = rpβ and µγ = rσβ, where lβ, pβ and σβ all refer to the prime

orbit. We can then write

gγ = gβ,r = −
ilβ

2k
tr
β (42.19)

where

tβ =



















σβ
∏

j=1

dβ, j
√

8πklβ, j



















exp {i(klβ + pβπ − 3σβπ/4)}. (42.20)

It then makes sense to organize the sum over diffractive orbits as a sum over the

prime diffractive orbits and a sum over the repetitions

gdiff(k) =
∑

β

∞
∑

r=1

gβ,r = −
i

2k

∑

β

lβ
tβ

1 − tβ
. (42.21)
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Figure 42.6: The two-node transition graph with all

the diffractive processes connecting the nodes.
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We cast this as a logarithmic derivative (22.6) by noting that
dtβ
dk
= ilβtβ −

σβtβ/2k and recognizing that the first term dominates in the semiclassical limit. It

follows that

gdiff(k) ≈
1

2k

d

dk



















ln
∏

β

(1 − tβ)



















. (42.22)

In the case that there are only diffractive periodic orbits - as in the geometry of

figure 42.4 - the poles of g(k) are the zeros of a dynamical zeta function

1/ζ(k) =
∏

β

(1 − tβ). (42.23)

For geometric orbits, this function would be evaluated with a cycle expansion as

discussed in chapter 23. However, here we can use the multiplicative nature of the

weights tβ to find a closed form representation of the function using a transition

graph, as in chapter 17. This multiplicative property of the weights follows from

the fact that the diffractive Green’s function (42.10) is multiplicative in segment

semiclassical Green’s functions, unlike the geometric case.

There is a reflection symmetry in the problem which means that all resonances

can be classified as even or odd. Because of this, the dynamical zeta function

factorizes as 1/ζ = 1/ζ+ζ− (as explained in example 25.9) and we determine 1/ζ+
and 1/ζ− separately using the ideas of symmetry decomposition of chapter 25.

In the transition graph shown in figure 42.6, we enumerate all processes. We

start by identifying the fundamental domain as just the right half of figure 42.4.

There are two nodes which we call A and B. To get to another node from B, we

can diffract (always via the vertex) in one of three directions. We can diffract back

to B which we denote as process 1. We can diffract to B’s image point B′ and then

follow this by a reflection. This process we denote as 2̄ where the bar indicates

that it involves a reflection. Third, we can diffract to node A. Starting at A we can

also diffract to a node in three ways. We can diffract to B which we denote as 4.

We can diffract to B′ followed by a reflection which we denote as 4̄. Finally, we

can diffract back to A which we denote as process 5. Each of these processes has

its own weight which we can determine from the earlier discussion. First though,

we construct the dynamical zeta functions.

The dynamical zeta functions are determined by enumerating all closed loops

which do not intersect themselves in figure 42.6. We do it first for 1/ζ+ because

that is simpler. In that case, the processes with bars are treated on an equal footing

as the others. Appealing back to sect. 25.5 we find

1/ζ+ = 1 − t1 − t2̄ − t5 − t3t4 − t3t4̄ + t5t1 + t5t2̄ ,

= 1 − (t1 + t2̄ + t5) − 2t3t4 + t5(t1 + t2̄) (42.24)
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where we have used the fact that t4 = t4̄ by symmetry. The last term has a positive

sign because it involves the product of shorter closed loops. To calculate 1/ζ−,

we note that the processes with bars have a relative negative sign due to the group

theoretic weight. Furthermore, process 5 is a boundary orbit (see sect. 25.4.3) and

only affects the even resonances - the terms involving t5 are absent from 1/ζ−. The

result is

1/ζ− = 1 − t1 + t2̄ − t3t4 + t3t4̄ ,

= 1 − (t1 − t2̄). (42.25)

Note that these expressions have a finite number of terms and are not in the form exercise 42.4

of a curvature expansion, as for the 3-disk problem.

It now just remains to fix the weights. We use equation (42.20) but note that

each weight involves just one diffraction constant. It is then convenient to define

the quantities

u2
A =

exp{i(2kL + 2π)}
√

16πkL
u2

B =
exp{i(2kH + π)}
√

16πkH
. (42.26)

The lengths L and H = L/
√

2 are defined in figure 42.4; we set L = 1 throughout.

Bouncing inside the right angle at A corresponds to two specular reflections so that

p = 2. We therefore explicitly include the factor exp (i2π) in (42.26) although it is

trivially equal to one. Similarly, there is one specular reflection at point B giving

p = 1 and therefore a factor of exp (iπ). We have defined uA and uB because,

together with some diffraction constants, they can be used to construct all of the

weights. Altogether we define four diffraction coefficients: dAB is the constant

corresponding to diffracting from B to A and is found from (42.11) with θ′ = 3π/4

and θ = π and equals 2 sec (π/8) ≈ 2.165. With analogous notation, we have dAA

and dBB = dB′B which equal 2 and 1+
√

2 respectively. di j = d ji due to the Green’s

function symmetry between source and receiver referred to earlier. Finally, there

is the diffractive phase factor s = exp (−i3π/4) each time there is a diffraction.

The weights are then as follows:

t1 = sdBBu2
B t2̄ = sdB′Bu2

B t3 = t4 = t4̄ = sdABuAuB

t5 = sdAAu2
A. (42.27)

Each weight involves two u’s and one d. The u’s represent the contribution to

the weight from the paths connecting the nodes to the vertex and the d gives the

diffraction constant connecting the two paths.

The equality of dBB and dB′B implies that t1 = t2̄. From (42.25) this means that

there are no odd resonances because 1 can never equal 0. For the even resonances

equation (42.24) is an implicit equation for k which has zeros shown in figure 42.7.

For comparison we also show the result from an exact quantum calculation.

The agreement is very good right down to the ground state - as is so often the
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Figure 42.7: The even resonances of the wedge scat-

terer of figure 42.4 plotted in the complex k−plane,

with L = 1. The exact resonances are represented

as circles and their semiclassical approximations as

crosses.
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case with semiclassical calculations. In addition we can use our dynamical zeta

function to find arbitrarily high resonances and the results actually improve in that

limit. In the same limit, the exact numerical solution becomes more difficult to

find so the dynamical zeta function approximation is particularly useful in that

case. exercise 42.5

In general a system will consist of both geometric and diffractive orbits. In

that case, the full dynamical zeta function is the product of the geometric zeta

function and the diffractive one. The diffractive weights are typically smaller

by order O(1/
√

k) but for small k they can be numerically competitive so that

there is a significant diffractive effect on the low-lying spectrum. It might be

expected that higher in the spectrum, the effect of diffraction is weaker due to

the decreasing weights. However, it should be pointed out that an analysis of the

situation for creeping diffraction [42.7] concluded that the diffraction is actually

more important higher in the spectrum due to the fact that an ever greater fraction

of the orbits need to be corrected for diffractive effects. The equivalent analysis

has not been done for edge diffraction but a similar conclusion can probably be

expected.

To conclude this chapter, we return to the opening paragraph and discuss the

possibility of doing such an analysis for helium. The important point which al-

lowed us to successfully analyze the geometry of figure 42.4 is that when a trajec-

tory is near the vertex, we can extract its diffraction constant without reference to

the other facets of the problem. We say, therefore, that this is a “local” analysis

for the purposes of which we have “turned off” the other aspects of the prob-

lem, namely sides AB and AB′. By analogy, for helium, we would look for some

simpler description of the problem which applies near the three body collision.

However, there is nothing to “turn off.” The local problem is just as difficult as

the global one since they are precisely the same problem, just related by scaling.

Therefore, it is not at all clear that such an analysis is possible for helium.

Résumé

In this chapter we have discovered new types of periodic orbits contributing to the

semiclassical traces and determinants. Unlike the periodic orbits we had seen so

far, these are not true classical orbits. They are generated by singularities of the

scattering potential. In these singular points the classical dynamics has no unique

definition, and the classical orbits hitting the singularities can be continued in

many different directions. While the classical mechanics does not know which
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way to go, quantum mechanics solves the dilemma by allowing us to continue in

all possible directions. The likelihoods of different paths are given by the quan-

tum mechanical weights called diffraction constants. The total contribution to a

trace from such orbit is given by the product of transmission amplitudes between

singularities and diffraction constants of singularities. The weights of diffractive

periodic orbits are at least of order 1/
√

k weaker than the weights associated with

classically realizable orbits, and their contribution at large energies is therefore

negligible. Nevertheless, they can strongly influence the low lying resonances

or energy levels. In some systems, such as the N disk scattering the diffraction

effects do not only perturb semiclassical resonances, but can also create new low

energy resonances. Therefore it is always important to include the contributions of

diffractive periodic orbits when semiclassical methods are applied at low energies.

Commentary

Remark 42.1 Classical discontinuities. Various classes of discontinuities for billiard

and potential problems discussed in the literature:

• a grazing condition such that some trajectories hit a smooth surface while others

are unaffected, refs. [42.1, 42.2, 42.3, 42.7]

• a vertex such that trajectories to one side bounce differently from those to the other

side, refs. [42.2, 42.4, 42.5, 42.8, 42.9].

• a point scatterer [42.10, 42.11] or a magnetic flux line [42.12, 42.13] such that we

do not know how to continue classical mechanics through the discontinuities.

Remark 42.2 Geometrical theory of diffraction. In the above discussion we borrowed

heavily from the ideas of Keller who was interested in extending the geometrical ray

picture of optics to cases where there is a discontinuity. He maintained that we could

hang onto that ray-tracing picture by allowing rays to strike the vertex and then leave at

any angle with amplitude (42.8). Both he and Sommerfeld were thinking of optics and not

quantum mechanics and they did not phrase the results in terms of semiclassical Green’s

functions but the essential idea is the same.

Remark 42.3 Generalizations Consider the effect of replacing our half line by a wedge

of angle γ1 and the right angle by an arbitrary angle γ2. If γ2 > γ1 and γ2 ≥ π/2 this is an

open problem whose solution is given by equations (42.24) and (42.25) (there will then

be odd resonances) but with modified weights reflecting the changed geometry [42.8].

(For γ2 < π/2, more diffractive periodic orbits appear and the dynamical zeta functions

are more complicated but can be calculated with the same machinery.) When γ2 = γ1,

the problem in fact has bound states [42.21, 42.22]. This last case has been of interest in

studying electron transport in mesoscopic devices and in microwave waveguides. How-

ever we can not use our formalism as it stands because the diffractive periodic orbits for

this geometry lie right on the border between illuminated and shadowed regions so that

equation (42.7) is invalid. Even the more uniform derivation of [42.6] fails for that par-

ticular geometry, the problem being that the diffractive orbit actually lives on the edge of

a family of geometric orbits and this makes the analysis still more difficult.
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Remark 42.4 Diffractive Green’s functions. The result (42.17) is proportional to

the length of the orbit times the semiclassical Green’s function (42.9) to go from the

vertex back to itself along the classical path. The multi-diffractive formula (42.18) is

proportional to the total length of the orbit times the product of the semiclassical Green’s

functions to go from one vertex to the next along classical paths. This result generalizes

to any system — either a pinball or a potential — which contains point singularities such

that we can define a diffraction constant as above. The contribution to the trace of the

semiclassical Green’s function coming from a diffractive orbit which hits the singularities

is proportional to the total length (or period) of the orbit times the product of semiclassical

Green’s functions in going from one singularity to the next. This result first appeared in

reference [42.2] and a derivation can be found in reference [42.9]. A similar structure also

exists for creeping [42.2].

Remark 42.5 Diffractive orbits for hydrogenic atoms. An analysis in terms of diffrac-

tive orbits has been made in a different atomic physics system, the response of hydrogenic

atoms to strong magnetic fields [42.23]. In these systems, a single electron is highly ex-

cited and takes long traversals far from the nucleus. Upon returning to a hydrogen nucleus,

it is re-ejected with the reversed momentum as discussed in chapter 41. However, if the

atom is not hydrogen but sodium or some other atom with one valence electron, the re-

turning electron feels the charge distribution of the core electrons and not just the charge

of the nucleus. This so-called quantum defect induces scattering in addition to the clas-

sical re-ejection present in the hydrogen atom. (In this case the local analysis consists of

neglecting the magnetic field when the trajectory is near the nucleus.) This is formally

similar to the vertex which causes both specular reflection and diffraction. There is then

additional structure in the Fourier transform of the quantum spectrum corresponding to

the induced diffractive orbits, and this has been observed experimentally [42.24].

Exercises

42.1. Stationary phase integral. Evaluate the two station-

ary phase integrals corresponding to contours E1 and E2

of figure 42.3 and thereby verify (42.7).

(N. Whelan)

42.2. Scattering from a small disk Imagine that instead

of a wedge, we have a disk whose radius a is much

smaller than the typical wavelengths we are considering.

In that limit, solve the quantum scattering problem - find

the scattered wave which result from an incident plane

wave. You can do this by the method of partial waves -

the analogous three dimensional problem is discussed in

most quantum textbooks. You should find that only the

m = 0 partial wave contributes for small a. Following

the discussion above, show that the diffraction constant

is

d =
2π

log
(

2
ka

)

− γe + i π
2

(42.28)

where γe = 0.577 · · · is Euler’s constant. Note that in

this limit d depends weakly on k but not on the scatter-

ing angle.

(N. Whelan)

42.3. Several diffractive legs. Derive equation (42.18). The

calculation involves considering slight variations of the

diffractive orbit as in the simple case discussed above.

Here it is more complicated because there are more

diffractive arcs - however you should convince yourself
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that a slight variation of the diffractive orbit only affects

one leg at a time.

(N. Whelan)

42.4. Unsymmetrized dynamical zeta function. As-

sume you know nothing about symmetry decomposi-

tion. Construct the 3-node transition graph for fig-

ure 42.1 by considering A, B and B′ to be physically

distinct. Write down the corresponding dynamical zeta

function and check explicitly that for B = B′ it factor-

izes into the product of the even and odd dynamical zeta

functions. Why is there no term t2̄ in the full dynamical

zeta function?

(N. Whelan)

42.5. Three point scatterers.

Consider the limiting case of the three disk game of pin-

ball of figure 1.1 where the disks are very much smaller

than their spacing R. Use the results of exercise 42.2 to

construct the desymmetrized dynamical zeta functions,

as in sect. 25.6. You should find 1/ζA1
= 1 − 2t where

t = dei(kR−3π/4)/
√

8πkR. Compare this formula with that

from chapter 14. By assuming that the real part of k

is much greater than the imaginary part show that the

positions of the resonances are knR = αn − iβn where

αn = 2πn + 3π/4, βn = log
(√

2παn/d
)

and n is a non-

negative integer. (See also reference [42.11].)

(N. Whelan)
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