
Chapter 38

Semiclassical quantization

(G. Vattay, G. Tanner and P. Cvitanović)

W
e derive here the Gutzwiller trace formula and the semiclassical zeta func-

tion, the central results of the semiclassical quantization of classically

chaotic systems. In chapter 39 we will rederive these formulas for the

case of scattering in open systems. Quintessential wave mechanics effects such as

creeping, diffraction and tunneling will be taken up in chapter 42.

38.1 Trace formula

Our next task is to evaluate the Green’s function trace (35.15) in the semiclassical

approximation. The trace

tr Gsc(E) =

∫

dDq Gsc(q, q, E) = tr G0(E) +
∑

j

∫

dDq G j(q, q, E)

receives contributions from “long” classical trajectories labeled by j which start

and end in q after finite time, and the “zero length” trajectories whose lengths

approach zero as q′ → q.

First, we work out the contributions coming from the finite time returning

classical orbits, i.e., trajectories that originate and end at a given configuration

point q. As we are identifying q with q′, taking of a trace involves (still another!)

stationary phase condition in the q′ → q limit,

∂S j(q, q
′, E)

∂qi

∣

∣

∣

∣

∣

∣

q′=q

+
∂S j(q, q

′, E)

∂q′
i

∣

∣

∣

∣

∣

∣

q′=q

= 0 ,

meaning that the initial and final momenta (37.40) of contributing trajectories

should coincide

pi(q, q, E) − p′i (q, q, E) = 0 , q ∈ jth periodic orbit , (38.1)
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CHAPTER 38. SEMICLASSICAL QUANTIZATION 696

Figure 38.1: A returning trajectory in the configura-

tion space. The orbit is periodic in the full phase space

only if the initial and the final momenta of a returning

trajectory coincide as well.

Figure 38.2: A romanticized sketch of S p(E) =

S (q, q, E) =
∮

p(q, E)dq landscape orbit. Unstable

periodic orbits traverse isolated ridges and saddles of

the mountainous landscape of the action S (q‖, q⊥, E).

Along a periodic orbit S p(E) is constant; in the trans-

verse directions it generically changes quadratically.

so the trace receives contributions only from those long classical trajectories which

are periodic in the full phase space.

For a periodic orbit the natural coordinate system is the intrinsic one, with q‖
axis pointing in the q̇ direction along the orbit, and q⊥, the rest of the coordinates

transverse to q̇. The jth periodic orbit contribution to the trace of the semiclassical

Green’s function in the intrinsic coordinates is

tr G j(E) =
1

i~(2π~)(d−1)/2

∮

j

dq‖

q̇

∫

j

dd−1q⊥|det D
j
⊥|

1/2e
i
~

S j−
iπ
2

m j ,

where the integration in q‖ goes from 0 to L j, the geometric length of small tube

around the orbit in the configuration space. As always, in the stationary phase ap-

proximation we worry only about the fast variations in the phase S j(q‖, q⊥, E),

and assume that the density varies smoothly and is well approximated by its

value D
j
⊥(q‖, 0, E) on the classical trajectory, q⊥ = 0 . The topological index

m j(q‖, q⊥, E) is an integer which does not depend on the initial point q‖ and not

change in the infinitesimal neighborhood of an isolated periodic orbit, so we set

m j(E) = m j(q‖, q⊥, E).

The transverse integration is again carried out by the stationary phase method,

with the phase stationary on the periodic orbit, q⊥ = 0. The result of the transverse

integration can depend only on the parallel coordinate

tr G j(E) =
1

i~

∮

dq‖

q̇

∣

∣

∣

∣

∣

∣

∣

det D⊥ j(q‖, 0, E)

det D′
⊥ j

(q‖, 0, E)

∣

∣

∣

∣

∣

∣

∣

1/2

e
i
~

S j−
iπ
2

m j ,

where the new determinant in the denominator, det D′
⊥ j
=

det















∂2S (q, q′, E)

∂q⊥i∂q⊥ j

+
∂2S (q, q′, E)

∂q′
⊥i
∂q⊥ j

+
∂2S (q, q′, E)

∂q⊥i∂q
′
⊥ j

+
∂2S (q, q′, E)

∂q′
⊥i
∂q′
⊥ j















,

is the determinant of the second derivative matrix coming from the stationary

phase integral in transverse directions.
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CHAPTER 38. SEMICLASSICAL QUANTIZATION 697

The ratio det D⊥ j/det D′
⊥ j

is here to enforce the periodic boundary condition

for the semiclassical Green’s function evaluated on a periodic orbit. It can be given

a meaning in terms of the monodromy matrix of the periodic orbit by following

observations

det D⊥ =

∥

∥

∥

∥

∥

∥

∂p′⊥

∂q⊥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∂(q′⊥, p
′
⊥)

∂(q⊥, q
′
⊥)

∥

∥

∥

∥

∥

∥

det D′⊥ =

∥

∥

∥

∥

∥

∥

∂p⊥

∂q⊥
−
∂p′⊥

∂q⊥
+
∂p⊥

∂q′⊥
−
∂p′⊥

∂q′⊥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∂(p⊥ − p′⊥, q⊥ − q′⊥),

∂(q⊥, q
′
⊥)

∥

∥

∥

∥

∥

∥

.

Defining the 2(D − 1)-dimensional transverse vector x⊥ = (q⊥, p⊥) in the full

phase space we can express the ratio

det D′⊥

det D⊥
=

∥

∥

∥

∥

∥

∥

∂(p⊥ − p′⊥, q⊥ − q′⊥)

∂(q′⊥, p
′
⊥)

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∂(x⊥ − x′⊥)

∂x′⊥

∥

∥

∥

∥

∥

∥

= det (M − 1) , (38.2)

in terms of the monodromy matrix M for a surface of section transverse to the

orbit within the constant energy E = H(q, p) shell.

The classical periodic orbit action S j(E) =
∮

p(q‖, E)dq‖ is an integral around

a loop defined by the periodic orbit, and does not depend on the starting point q‖
along the orbit, see figure 38.2. The eigenvalues of the monodromy matrix are

also independent of where M j is evaluated along the orbit, so det (1−M j) can also

be taken out of the q‖ integral

tr G j(E) =
1

i~

∑

j

1

|det (1 − M j)|1/2
er( i

~
S j−

iπ
2

m j)

∮

dq‖

q̇‖
.

Here we have assumed that M j has no marginal eigenvalues. The determinant

of the monodromy matrix, the action S p(E) =
∮

p(q‖, E)dq‖ and the topological

index are all classical invariants of the periodic orbit. The integral in the parallel

direction we now do exactly.

First, we take into account the fact that any repeat of a periodic orbit is also a

periodic orbit. The action and the topological index are additive along the trajec-

tory, so for rth repeat they simply get multiplied by r. The monodromy matrix of

the rth repeat of a prime cycle p is (by the chain rule for derivatives) Mr
p, where

Mp is the prime cycle monodromy matrix. Let us denote the time period of the

prime cycle p, the single, shortest traversal of a periodic orbit by Tp. The remain-

ing integral can be carried out by change of variables dt = dq‖/q̇(t)

∫ Lp

0

dq‖

q̇(t)
=

∫ Tp

0

dt = Tp .

Note that the spatial integral corresponds to a single traversal. If you do not see

why this is so, rethink the derivation of the classical trace formula (21.19) - that
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CHAPTER 38. SEMICLASSICAL QUANTIZATION 698

derivation takes only three pages of text. Regrettably, in the quantum case we do

not know of an honest derivation that takes less than 30 pages. The final result,

the Gutzwiller trace formula

tr Gsc(E) = tr G0(E) +
1

i~

∑

p

Tp

∞
∑

r=1

1

|det (1 − Mr
p)|1/2

er( i
~

S p−
iπ
2

mp) , (38.3)

an expression for the trace of the semiclassical Green’s function in terms of peri-

odic orbits, is beautiful in its simplicity and elegance.

The topological index mp(E) counts the number of changes of sign of the ma-

trix of second derivatives evaluated along the prime periodic orbit p. By now we

have gone through so many stationary phase approximations that you have surely

lost track of what the total mp(E) actually is. The rule is this: The topological

index of a closed curve in a 2D phase space is the sum of the number of times

the partial derivatives
∂pi

∂qi
for each dual pair (qi, pi), i = 1, 2, . . . ,D (no sum on i)

change their signs as one goes once around the curve.

38.1.1 Average density of states

We still have to evaluate tr G0(E), the contribution coming from the infinitesimal

trajectories. The real part of tr G0(E) is infinite in the q′ → q limit, so it makes

no sense to write it down explicitly here. However, the imaginary part is finite,

and plays an important role in the density of states formula, which we derive next.

The semiclassical contribution to the density of states (35.15) is given by

the imaginary part of the Gutzwiller trace formula (38.3) multiplied with −1/π.

The contribution coming from the zero length trajectories is the imaginary part of

(37.48) for q′ → q integrated over the configuration space

d0(E) = −
1

π

∫

dDq Im G0(q, q, E),

The resulting formula has a pretty interpretation; it estimates the number of

quantum states that can be accommodated up to the energy E by counting the

available quantum cells in the phase space. This number is given by the Weyl rule

, as the ratio of the phase space volume bounded by energy E divided by hD, the

volume of a quantum cell,

Nsc(E) =
1

hD

∫

dD pdDqΘ(E − H(q, p)) . (38.4)

where Θ(x) is the Heaviside function (35.20). Nsc(E) is an estimate of the spectral

staircase (35.19), so its derivative yields the average density of states

d0(E) =
d

dE
Nsc(E) =

1

hD

∫

dD pdDq δ(E − H(q, p)) , (38.5)

precisely the semiclassical result (38.6). For Hamiltonians of type p2/2m +

V(q), the energy shell volume in (38.5) is a sphere of radius
√

2m(E − V(q)). The
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CHAPTER 38. SEMICLASSICAL QUANTIZATION 699

surface of a d-dimensional sphere of radius r is πd/2rd−1/Γ(d/2), so the average exercise 38.2

density of states is given by

d0(E) =
2m

~D2dπD2Γ(D/2)

∫

V(q)<E

dDq [2m(E − V(q))]D/2−1 , (38.6)

and

Nsc(E) =
1

hD

πD/2

Γ(1 + D/2)

∫

V(q)<E

dDq [2m(E − V(q))]D/2 . (38.7)

Physically this means that at a fixed energy the phase space can support Nsc(E)

distinct eigenfunctions; anything finer than the quantum cell hD cannot be re-

solved, so the quantum phase space is effectively finite dimensional. The average

density of states is of a particularly simple form in one spatial dimension exercise 38.3

d0(E) =
T (E)

2π~
, (38.8)

where T (E) is the period of the periodic orbit of fixed energy E. In two spatial

dimensions the average density of states is

d0(E) =
mA(E)

2π~2
, (38.9)

whereA(E) is the classically allowed area of configuration space for which V(q) <

E. exercise 38.4

The semiclassical density of states is a sum of the average density of states and

the oscillation of the density of states around the average, dsc(E) = d0(E)+dosc(E),

where

dosc(E) =
1

π~

∑

p

Tp

∞
∑

r=1

cos(rS p(E)/~ − rmpπ/2)

|det (1 − Mr
p)|1/2

(38.10)

follows from the trace formula (38.3).

38.1.2 Regularization of the trace

The real part of the q′ → q zero length Green’s function (37.48) is ultraviolet

divergent in dimensions d > 1, and so is its formal trace (35.15). The short

distance behavior of the real part of the Green’s function can be extracted from

the real part of (37.48) by using the Bessel function expansion for small z

Yν(z) ≈















− 1
π
Γ(ν)

(

z
2

)−ν
for ν , 0

2
π
(ln(z/2) + γ) for ν = 0

,

where γ = 0.577... is the Euler constant. The real part of the Green’s function for

short distance is dominated by the singular part

Gsing(|q − q′|, E) =























− m

2~2π
d
2

Γ((d − 2)/2) 1
|q−q′ |d−2 for d , 2

m
2π~2 (ln(2m(E − V)|q − q′|/2~) + γ) for d = 2

.
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CHAPTER 38. SEMICLASSICAL QUANTIZATION 700

The regularized Green’s function

Greg(q, q′, E) = G(q, q′, E) −Gsing(|q − q′|, E)

is obtained by subtracting the q′ → q ultraviolet divergence. For the regularized

Green’s function the Gutzwiller trace formula is

tr Greg(E) = −iπd0(E) +
1

i~

∑

p

Tp

∞
∑

r=1

er( i
~

S p(E)− iπ
2 mp(E))

|det (1 − Mr
p)|1/2

. (38.11)

Now you stand where Gutzwiller stood in 1990. You hold the trace formula in

your hands. You have no clue how good is the ~ → 0 approximation, how to

take care of the sum over an infinity of periodic orbits, and whether the formula

converges at all.

38.2 Semiclassical spectral determinant

The problem with trace formulas is that they diverge where we need them, at

the individual energy eigenvalues. What to do? Much of the quantum chaos

literature responds to the challenge of wrestling the trace formulas by replacing

the delta functions in the density of states (35.16) by Gaussians. But there is no

need to do this - we can compute the eigenenergies without any further ado by

remembering that the smart way to determine the eigenvalues of linear operators

is by determining zeros of their spectral determinants.

A sensible way to compute energy levels is to construct the spectral determin-

ant whose zeroes yield the eigenenergies, det (Ĥ − E)sc = 0. A first guess might

be that the spectral determinant is the Hadamard product of form

det (Ĥ − E) =
∏

n

(E − En),

but this product is not well defined, since for fixed E we multiply larger and larger

numbers (E − En). This problem is dealt with by regularization, discussed below

in appendix 38.1.2. Here we offer an impressionistic sketch of regularization.

The logarithmic derivative of det (Ĥ − E) is the (formal) trace of the Green’s

function

−
d

dE
ln det (Ĥ − E) =

∑

n

1

E − En

= tr G(E).

This quantity, not surprisingly, is divergent again. The relation, however, opens a

way to derive a convergent version of det (Ĥ − E)sc, by replacing the trace with

the regularized trace

−
d

dE
ln det (Ĥ − E)sc = tr Greg(E).

The regularized trace still has 1/(E −En) poles at the semiclassical eigenenergies,

poles which can be generated only if det (Ĥ − E)sc has a zero at E = En, see

figure 38.3. By integrating and exponentiating we obtain
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CHAPTER 38. SEMICLASSICAL QUANTIZATION 701

Figure 38.3: A sketch of how spectral determinants

convert poles into zeros: The trace shows 1/(E − En)

type singularities at the eigenenergies while the spec-

tral determinant goes smoothly through zeroes.

det (Ĥ − E)sc = exp

(

−

∫ E

dE′ tr Greg(E′)

)

Now we can use (38.11) and integrate the terms coming from periodic orbits,

using the relation (37.17) between the action and the period of a periodic orbit,

dS p(E) = Tp(E)dE, and the relation (35.19) between the density of states and the

spectral staircase, dNsc(E) = d0(E)dE. We obtain the semiclassical zeta function

det (Ĥ − E)sc = eiπNsc(E) exp

















−
∑

p

∞
∑

r=1

1

r

eir(S p/~−mpπ/2)

|det (1 − Mr
p)|1/2

















. (38.12)

We already know from the study of classical evolution operator spectra of chap- chapter 23

ter 22 that this can be evaluated by means of cycle expansions. The beauty of this

formula is that everything on the right side – the cycle action S p, the topological

index mp and monodromy matrix Mp determinant – is intrinsic, coordinate-choice

independent property of the cycle p.

38.3 One-dof systems

It has been a long trek, a stationary phase upon stationary phase. Let us check

whether the result makes sense even in the simplest case, for quantum mechanics

in one spatial dimension.

In one dimension the average density of states follows from the 1-dof form of

the oscillating density (38.10) and of the average density (38.8)

d(E) =
Tp(E)

2π~
+

∑

r

Tp(E)

π~
cos(rS p(E)/~ − rmp(E)π/2). (38.13)

The classical particle oscillates in a single potential well with period Tp(E). There

is no monodromy matrix to evaluate, as in one dimension there is only the parallel

coordinate, and no transverse directions. The r repetition sum in (38.13) can be

rewritten by using the Fourier series expansion of a delta spike train

∞
∑

n=−∞

δ(x − n) =

∞
∑

k=−∞

ei2πkx = 1 +

∞
∑

k=1

2 cos(2πkx).

We obtain

d(E) =
Tp(E)

2π~

∑

n

δ(S p(E)/2π~ − mp(E)/4 − n). (38.14)
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This expression can be simplified by using the relation (37.17) between Tp and

S p, and the identity (19.7) δ(x − x∗) = | f ′(x)|δ( f (x)), where x∗ is the only zero of

the function f (x∗) = 0 in the interval under consideration. We obtain

d(E) =
∑

n

δ(E − En),

where the energies En are the zeroes of the arguments of delta functions in (38.14)

S p(En)/2π~ = n − mp(E)/4 ,

where mp(E) = mp = 2 for smooth potential at both turning points, and mp(E) =

mp = 4 for two billiard (infinite potential) walls. These are precisely the Bohr-

Sommerfeld quantized energies En, defined by the condition

∮

p(q, En)dq = h

(

n −
mp

4

)

. (38.15)

In this way the trace formula recovers the well known 1-dof quantization rule.

In one dimension, the average of states can be expressed from the quantization

condition. At E = En the exact number of states is n, while the average number

of states is n − 1/2 since the staircase function N(E) has a unit jump in this point

Nsc(E) = n − 1/2 = S p(E)/2π~ − mp(E)/4 − 1/2. (38.16)

The 1-dof spectral determinant follows from (38.12) by dropping the mon-

odromy matrix part and using (38.16)

det (Ĥ − E)sc = exp

(

−
i

2~
S p +

iπ

2
mp

)

exp















−
∑

r

1

r
e

i
~

rS p−
iπ
2

rmp















. (38.17)

Summation yields a logarithm by
∑

r tr/r = − ln(1 − t) and we get

det (Ĥ − E)sc = e−
i

2~
S p+

imp

4
+ iπ

2 (1 − e
i
~

S p−i
mp

2 )

= 2 sin
(

S p(E)/~ − mp(E)/4
)

.

So in one dimension, where there is only one periodic orbit for a given energy E,

nothing is gained by going from the trace formula to the spectral determinant. The

spectral determinant is a real function for real energies, and its zeros are again the

Bohr-Sommerfeld quantized eigenenergies (38.15).

38.4 Two-dof systems

For flows in two configuration dimensions the monodromy matrix Mp has two

eigenvalues Λp and 1/Λp, as explained in sect. 8.3. Isolated periodic orbits can

be elliptic or hyperbolic. Here we discuss only the hyperbolic case, when the

eigenvalues are real and their absolute value is not equal to one. The determinant
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appearing in the trace formulas can be written in terms of the expanding eigen-

value as

|det (1 − Mr
p)|1/2 = |Λr

p|
1/2

(

1 − 1/Λr
p

)

,

and its inverse can be expanded as a geometric series

1

|det (1 − Mr
p)|1/2

=

∞
∑

k=0

1

|Λr
p|

1/2Λkr
p

.

With the 2-dof expression for the average density of states (38.9) the spectral

determinant becomes

det (Ĥ − E)sc = e
i mAE

2~2 exp

















−
∑

p

∞
∑

r=1

∞
∑

k=0

eir(S p/~−mpπ/2)

r|Λr
p|

1/2Λkr
p

















= e
i mAE

2~2

∏

p

∞
∏

k=0















1 −
e

i
~

S p−
iπ
2

mp

|Λp|
1/2Λk

p















. (38.18)

Résumé

Spectral determinants and dynamical zeta functions arise both in classical and

quantum mechanics because in both the dynamical evolution can be described by

the action of linear evolution operators on infinite-dimensional vector spaces. In

quantum mechanics the periodic orbit theory arose from studies of semi-conductors,

and the unstable periodic orbits have been measured in experiments [?] on the very

paradigm of Bohr’s atom, the hydrogen atom, this time in strong external fields.

In practice, most “quantum chaos” calculations take the stationary phase ap-

proximation to quantum mechanics (the Gutzwiller trace formula, possibly im-

proved by including tunneling periodic trajectories, diffraction corrections, etc.)

as the point of departure. Once the stationary phase approximation is made, what

follows is classical in the sense that all quantities used in periodic orbit calcu-

lations - actions, stabilities, geometrical phases - are classical quantities. The

problem is then to understand and control the convergence of classical periodic

orbit formulas.

While various periodic orbit formulas are formally equivalent, practice shows

that some are preferable to others. Three classes of periodic orbit formulas are

frequently used:

Trace formulas. The trace of the semiclassical Green’s function

tr Gsc(E) =

∫

dq Gsc(q, q, E)

is given by a sum over the periodic orbits (38.11). While easiest to derive, in cal-

culations the trace formulas are inconvenient for anything other than the leading
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CHAPTER 38. SEMICLASSICAL QUANTIZATION 704

eigenvalue estimates, as they tend to be divergent in the region of physical interest.

In classical dynamics trace formulas hide under a variety of appellations such as

the f −α or multifractal formalism; in quantum mechanics they are known as the

Gutzwiller trace formulas.

Zeros of Ruelle or dynamical zeta functions

1/ζ(s) =
∏

p

(1 − tp), tp =
1

|Λp|
1/2

e
i
~

S p−iπmp/2

yield, in combination with cycle expansions, the semiclassical estimates of quan-

tum resonances. For hyperbolic systems the dynamical zeta functions have good

convergence and are a useful tool for determination of classical and quantum me-

chanical averages.

Spectral determinants, Selberg-type zeta functions, Fredholm determinants,

functional determinants are the natural objects for spectral calculations, with con-

vergence better than for dynamical zeta functions, but with less transparent cycle

expansions. The 2-dof semiclassical spectral determinant (38.18)

det (Ĥ − E)sc = eiπNsc(E)
∏

p

∞
∏

k=0













1 −
eiS p/~−iπmp/2

|Λp|
1/2Λk

p













is a typical example. Most periodic orbit calculations are based on cycle expan-

sions of such determinants.

As we have assumed repeatedly during the derivation of the trace formula that

the periodic orbits are isolated, and do not form families (as is the case for inte-

grable systems or in KAM tori of systems with mixed phase space), the formulas

discussed so far are valid only for hyperbolic and elliptic periodic orbits.

For deterministic dynamical flows and number theory, spectral determinants

and zeta functions are exact. The quantum-mechanical ones, derived by the Gutzwiller

approach, are at best only the stationary phase approximations to the exact quan-

tum spectral determinants, and for quantum mechanics an important conceptual

problem arises already at the level of derivation of the semiclassical formulas; how

accurate are they, and can the periodic orbit theory be systematically improved?

Commentary

Remark 38.1 Gutzwiller quantization of classically chaotic systems. The derivation

given here and in sects. 37.3 and 38.1 follows closely the excellent exposition [A1.13] by

Martin Gutzwiller, the inventor of the trace formula. The derivation presented here is self

contained, but refs. [34.3, 38.1] might also be of help to the student.

Remark 38.2 Zeta functions. For “zeta function” nomenclature, see remark 22.4 on

page 407.

traceSemicl - 2mar2004 ChaosBook.org version15.9, Jun 24 2017



EXERCISES 705

Exercises

38.1. Monodromy matrix from second variations of the ac-

tion. Show that

D⊥ j/D
′
⊥ j = (1 − M) (38.19)

38.2. Volume of d-dimensional sphere. Show that the

volume of a d-dimensional sphere of radius r equals

πd/2rd/Γ(1 + d/2). Show that Γ(1 + d/2) = Γ(d/2)d/2.

38.3. Average density of states in 1 dimension. Show that

in one dimension the average density of states is given

by (38.8)

d̄(E) =
T (E)

2π~
,

where T (E) is the time period of the 1-dimensional mo-

tion and show that

N̄(E) =
S (E)

2π~
, (38.20)

where S (E) =
∮

p(q, E) dq is the action of the orbit.

38.4. Average density of states in 2 dimensions. Show that

in 2 dimensions the average density of states is given by

(38.9)

d̄(E) =
mA(E)

2π~2
,

whereA(E) is the classically allowed area of configura-

tion space for which U(q) < E.
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