
Chapter 23

Cycle expansions

Recycle... It’s the Law!

—Poster, New York City Department of Sanitation

W
hen we set out on this journey, we had promised to teach you something

profound that your professor does not know. Well, this chapter is the

chapter. If your professor knows cycle formulas for dynamical aver-

ages, please send us her name, and we’ll feature it in ChaosBook. They look

like cumulants, but when you start to take them apart you realize how brilliant

they are - your professor would not guess their form even if he wrote 1000 and 7

Physical Review Letters about it. Takes 20 some chapters of hard study to start to

understand them, and who has time for that?

The Euler product representations of spectral determinants (22.8) and dyn-

amical zeta functions (22.11) are really only a shorthand notation - the zeros of

the individual factors are not the zeros of the zeta function, and the convergence

of these objects is far from obvious. Now we shall give meaning to dynamical

zeta functions and spectral determinants by expanding them as cycle expansions,

which are series representations ordered by increasing topological cycle length,

with products in (22.8), (22.11) expanded as sums over pseudo-cycles, products

of weights tp of contributing cycles. The zeros of correctly truncated cycle expan-

sions yield the desired leading eigenvalues of evolution operators, and the expec-

tation values of observables are given by the cycle averaging formulas obtained

from the partial derivatives of dynamical zeta functions (or spectral determinants).

For reasons of pedagogy in what follows everything is first explained in terms

of dynamical zeta functions: they aid us in developing ‘shadowing’ intuition about

the geometrical meaning of cycle expansions. For actual calculations, we recom-

mend the spectral determinant cycle expansions of sects. 23.2.2 and 23.5.2. While

the shadowing is less transparent, and the weights calculation is an iterative nu-

merical algorithm, these expansions use full analytic information about the flow,

and can have better convergence properties than the dynamical zeta functions. For

example, as we shall show in chapter 28, even when a spectral determinant (22.5)
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is entire and calculations are super-exponentially convergent, cycle expansion of

the corresponding dynamical zeta function (22.28) has a finite radius of conver-

gence and captures only the leading eigenvalue, at exponentially convergent rate.

23.1 Pseudo-cycles and shadowing

How are periodic orbit formulas such as (22.11) evaluated? We start by comput-

ing the lengths and Floquet multipliers of the shortest cycles. This always requires

numerical work, such as searches for periodic solutions via Newton’s method; we chapter 16

shall assume for the purpose of this discussion that the numerics is under con-

trol, and that all short cycles up to a given (topological) length have been found.

Examples of the data required for application of periodic orbit formulas are the

lists of cycles given in exercise 7.2 and table 33.3. Sadly, it is not enough to set

a computer to blindly troll for invariant solutions, and blithely feed those into the

formulas that will be given here. The reason that this chapter is numbered 23 and

not 6, is that understanding the geometry of the non–wandering set is a prereq-

uisite to good estimation of dynamical averages: one has to identify cycles that

belong to a given ergodic component (whose symbolic dynamics and shadowing

is organized by its transition graph), and discard the isolated cycles and equilib-

ria that do not take part in the asymptotic dynamics. It is important not to miss

any short cycles, as the calculation is as accurate as the shortest cycle dropped -

including cycles longer than the shortest omitted does not improve the accuracy

(more precisely, the calculation improves, but so little as not to be worth while).

Given a set of periodic orbits, we can compute their weights tp and expand the

dynamical zeta function (22.11) as a formal power series,

1/ζ =
∏

p

(1 − tp) = 1 −
∑′

{p1 p2...pk}

(−1)k+1tp1
tp2
. . . tpk

(23.1)

where the prime on the sum indicates that the sum is over all distinct non-repeating

combinations of prime cycles. As we shall frequently use such sums, let us denote

by tπ = (−1)k+1tp1
tp2
. . . tpk

an element of the set of all distinct products of the

prime cycle weights tp, and label each such pseudo-cycle by

π = p1 + p2 + · · · + pk (23.2)

The formal power series (23.1) is now compactly written as

1/ζ = 1 −
∑′

π

tπ . (23.3)

For k > 1, the signed products tπ are weights of pseudo-cycles; they are sequences

of shorter cycles that shadow a cycle with the symbol sequence p1 p2 . . . pk along

the segments p1, p2, . . . , pk, as in figure 1.12. The symbol
∑′ denotes the re-

stricted sum, for which any given prime cycle p contributes at most once to a

given pseudo-cycle weight tπ.
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The pseudo-cycle weight, i.e., the product of weights (22.9) of prime cycles

comprising the pseudo-cycle,

tπ = (−1)k+1 1

|Λπ|
eβAπ−sTπ znπ , (23.4)

depends on the pseudo-cycle integrated observable Aπ, the period Tπ, the stability

Λπ, remark 5.1

Λπ = Λp1
Λp2
· · ·Λpk

, Tπ = Tp1
+ . . . + Tpk

Aπ = Ap1
+ . . . + Apk

, nπ = np1
+ . . . + npk

, (23.5)

and, when available, the topological length nπ.

23.1.1 Curvature expansions

The simplest example is the pseudo-cycle sum for a system described by a com-

plete binary symbolic dynamics. In this case the Euler product (22.11) is given

by

1/ζ = (1 − t0)(1 − t1)(1 − t01)(1 − t001)(1 − t011) (23.6)

× (1 − t0001)(1 − t0011)(1 − t0111)(1 − t00001)(1 − t00011)

× (1 − t00101)(1 − t00111)(1 − t01011)(1 − t01111) . . .

(see table 18.1), and the first few terms of the expansion (23.3) ordered by increas-

ing total pseudo-cycle length are:

1/ζ = 1 − t0 − t1 − t01 − t001 − t011 − t0001 − t0011 − t0111 − . . .

+ t0+1 + t0+01 + t01+1 + t0+001 + t0+011 + t001+1 + t011+1

− t0+01+1 − . . . (23.7)

We refer to such series representation of a dynamical zeta function or a spectral

determinant, expanded as a sum over pseudo-cycles, and ordered by increasing

cycle length and instability, as a cycle expansion.

The next step is the key step: regroup the terms into the dominant fundamental

contributions t f and the decreasing curvature corrections ĉn, each ĉn split into

prime cycles p of length np=n grouped together with pseudo-cycles whose full

itineraries build up the itinerary of p. For the binary case this regrouping is given

by

1/ζ = 1 − t0 − t1 − [(t01 − t0+1)] − [(t001 − t0+01) + (t011 − t01+1)]

−[(t0001 − t0+001) + (t0111 − t011+1)

+(t0011 − t001+1 − t0+011 + t0+01+1)] − . . .

= 1 −
∑

f

t f −
∑

n

ĉn . (23.8)
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All terms in this expansion up to length np = 6 are given in table 23.1. We refer to

such regrouped series as curvature expansions, because the shadowed combina-

tions [· · · ] vanish identically for piecewise-linear maps with nice partitions, such

as the ‘full tent map’ of figure 19.3.

This separation into ‘fundamental’ and ‘curvature’ parts of cycle expansions

is possible only for dynamical systems whose symbolic dynamics has finite gram-

mar. The fundamental cycles t0, t1 have no shorter approximations; they are the

“building blocks” of the dynamics in the sense that all longer orbits can be approx-

imately pieced together from them. The fundamental part of a cycle expansion is

given by the sum of the products of all non-intersecting loops of the associated

transition graph, discussed in chapter 17. The terms grouped in brackets [· · · ] are section 18.3

section 23.6the curvature corrections; the terms grouped in parentheses (· · · ) are combinations

of longer cycles and corresponding sequences of “shadowing” pseudo-cycles, as

in figure 1.12. If all orbits are weighted equally (tp = znp ), such combinations

cancel exactly, and the dynamical zeta function reduces to the topological poly-

nomial (18.17). If the flow is continuous and smooth, orbits of similar symbolic

dynamics will traverse the same neighborhoods and will have similar weights, and

the weights in such combinations will almost cancel. The utility of cycle expan-

sions of dynamical zeta functions and spectral determinants, in contrast to naive

averages over periodic orbits such as the trace formulas discussed in sect. 27.4,

lies precisely in this organization into nearly canceling combinations: cycle ex-

pansions are dominated by short cycles, with longer cycles giving exponentially

decaying corrections.

More often than not, good symbolic dynamics for a given flow is either not

available, or its grammar is not finite, or the convergence of cycle expansions

is affected by non-hyperbolic regions of state space. In those cases truncations

such as the stability cutoff of sect. 23.7 and sect. 29.3.4 might be helpful. The

idea is to truncate the cycle expansion by including only the pseudo-cycles such

that |Λp1
· · ·Λpk

| ≤ Λmax, with the cutoff Λmax equal to or greater than the most

unstable Λp in the data set.

In what follows, we shall introduce two cycle averaging formulas, one based

on dynamical zeta functions and the other on spectral determinants. (Frequently

used, but inferior ‘level sums’ shall be discussed in sect. 27.4.)

23.2 Construction of cycle expansions

Due to the lack of factorization of the determinant in the denominator of the full

pseudo-cycle weight in (21.19),

det
(

1 − Mp1 p2

)

, det
(

1 − Mp1

)

det
(

1 − Mp2

)

,

the cycle expansions for the spectral determinant (22.8) are somewhat less trans-

parent than is the case for the dynamical zeta functions, so we postpone their

evaluation to sect. 23.2.2. Sect. 23.2.1 is a pedagogical warmup. In actual calcu-

lations, implementing the spectral determinant cycle expansions of sect. 23.2.2 is
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Table 23.1: The binary curvature expansion (23.8) up to length 6, listed in such a way that

the sum of terms along the pth horizontal line is the curvature ĉp associated with a prime

cycle p, or a combination of prime cycles such as the t100101 + t100110 pair.

- t0
- t1
- t10 + t1t0
- t100 + t10+0
- t101 + t10+1
- t1000 + t100+0
- t1001 + t100+1 + t110+0 - t1+10+0
- t1011 + t101+1
- t10000 + t1000+0
- t10001 + t1001+0 + t1000+1 - t0+100+1
- t10010 + t100+10
- t10101 + t101+10
- t10011 + t1011+0 + t1001+1 - t0+101+1
- t10111 + t1011+1
- t100000 + t10000+0
- t100001 + t10001+0 + t10000+1 - t0+1000+1
- t100010 + t10010+0 + t1000+10 - t0+100+10
- t100011 + t10011+0 + t10001+1 - t0+1001+1
- t100101 - t100110 + t10010+1 + t10110+0

+ t10+1001 + t100+101 - t0+10+101 - t1+10+100
- t101110 + t10110+1 + t1011+10 - t1+101+10
- t100111 + t10011+1 + t10111+0 - t0+1011+1
- t101111 + t10111+1

recommended. Correct objects are spectral determinants, and as using the correct

object costs exactly the same as using the approximations, why settle for less?

23.2.1 Evaluation of dynamical zeta functions

Cycle expansions of dynamical zeta functions are evaluated numerically by first

computing the weights tp = tp(β, s) of all prime cycles p of topological length

np ≤ N, for given fixed β and s. Denote by the subscript (i) the ith prime cycle

computed, ordered by the topological length n(i) ≤ n(i+1). The dynamical zeta

function 1/ζN truncated to np ≤ N cycles is computed recursively, by multiplying

1/ζ(i) = 1/ζ(i−1)[1 − t(i)z
n(i)] , (23.9)

and truncating the expansion at each step to a finite polynomial in zn, n ≤ N. The

result is the Nth order polynomial approximation

1/ζN = 1 −

N
∑

n=1

cnzn . (23.10)

In other words, a cycle expansion is a Taylor expansion in the dummy variable z,

where each term in the sum is raised to the topological cycle length. If both the

number of cycles and their individual weights grow not faster than exponentially

with the cycle length, and we multiply the weight of each cycle p by a factor znp ,

the cycle expansion converges for sufficiently small |z|. If the symbolic dynamics

grammar is finite, the truncation cuttof N has to be larger than the length of longest

cycle in the transition graph (18.13), for the salubrious effect of shadowing cance-

lations to kick in. If that is the case, further increases in N yield the exponentially

decreasing corrections ĉn in (23.8).
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If the dynamics is given by an iterated mapping, the leading zero of (23.10)

as a function of z yields the leading eigenvalue of the appropriate evolution oper-

ator. For continuous time flows, z is a dummy variable that we set to z = 1, and

the leading eigenvalue of the evolution operator is given by the leading zero of

1/ζ(s, β(s)) as function of s.

23.2.2 Evaluation of traces and spectral determinants

We commence the cycle expansion evaluation of a spectral determinant by com-

puting the trace formula (21.9) or (21.19). The weight of prime cycle p repeated

r times is

tp(z, β, r) =
erβAp zr np

∣

∣

∣

∣

det
(

1 − Mr
p

)

∣

∣

∣

∣

(discrete time) (23.11)

tp(s, β, r) =
er(βAp−sTp)

∣

∣

∣

∣

det
(

1 − Mr
p

)

∣

∣

∣

∣

(continuous time) . (23.12)

For discrete time, the trace formula (21.9) truncated to all prime cycles p and their

repeats r such that npr ≤ N,

tr
zL

1 − zL

∣

∣

∣

∣

∣

N

=

N
∑

n=1

Cnzn , Cn = trLn , (23.13)

is computed as a polynomial in z by adding a cycle at the time:

tr
zL

1 − zL

∣

∣

∣

∣

∣

(i)
= tr

zL

1 − zL

∣

∣

∣

∣

∣

(i−1)
+ n(i)

n(i)r≤N
∑

r=1

t(i)(z, β, r) .

For continuous time, we assume that the method of Poincaré sections assigns each

cycle a topological length np. Than the trace formula (21.19) is also organized as

a polynomial

tr
1

s −A

∣

∣

∣

∣

∣

N

=

N
∑

n=1

Cnzn , (23.14)

computed as:

tr
1

s −A

∣

∣

∣

∣

∣

(i)
= tr

1

s −A

∣

∣

∣

∣

∣

(i−1)
+ T(i)

n(i)r≤N
∑

r=1

t(i)(s, β, r) znpr

The periodic orbit data set (23.5) consists of the list of the cycle periods Tp, the

cycle Floquet multipliers Λp,1,Λp,2, . . . ,Λp,d, and the cycle averages of the ob-

servable Ap for all prime cycles p such that np ≤ N. The coefficient of znpr is then

evaluated numerically for the given parameter values (β, s). Always compute the

leading eigenvalue of the evolution operator first, i.e., the escape rate γ = −s0, in
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order to use it in calculation of averages of sect. 23.5 as a weight eγT(i) in (23.13).

Now that we have an expansion for the trace formula (21.8) as a power series, we

compute the Nth order approximation to the spectral determinant (22.3),

det (1 − zL)|N = 1 −

N
∑

n=1

Qnzn , Qn = nth cumulant , (23.15)

as follows. The logarithmic derivative relation (22.4) yields

(

tr
zL

1 − zL

)

det (1 − zL) = −z
d

dz
det (1 − zL)

(C1z +C2z2 + · · · )(1 − Q1z − Q2z2 − · · · ) = Q1z + 2Q2z2 + 3Q3z3 · · ·

so the nth order term of the spectral determinant cycle (or in this case, the cumu-

lant) expansion is given recursively by the convolution trace formula expansion

coefficients

Qn =
1

n
(Cn −Cn−1Q1 − · · ·C1Qn−1) , Q1 = C1 . (23.16)

Given the trace formula (23.13) truncated to zN , we now also have the spectral

determinant truncated to zN .

The same program can also be reused to compute the dynamical zeta function

cycle expansion (23.10), by replacing
∏

(

1 − Λr
(i), j

)

in (23.13) by the product of section 22.3

expanding eigenvalues Λ(i) =
∏

eΛ(i),e.

A few points concerning different cycle averaging formulas:

• The dynamical zeta functions is an approximation to spectral determinant

that yields only the leading eigenvalue of the evolution operator. The cycle

weights depend only on the product of expanding |Λi| Floquet multipliers,

so signs do no matter. For hyperbolic flows they converge exponentially

with increasing cycle lengths.

• spectral determinants weights in (22.3) contain 1/|1 − Λi| factors, so for

them signs of Floquet multipliers Λi do matter. With finite grammar the

leading eigenvalue converges super-exponentially in cycle length.

Note that while the dynamical zeta functions weights use only the expand-

ing Floquet multipliers |Λe|, for spectral determinants the weights are of

form |1−Λr
j
|, both expanding and contracting directions contribute, and the

signs of multipliers do matter. That’s why ChaosBook everywhere tracks

multipliers Λ j, rather than Floquet exponents λ j. λ’s belong to equilibria,

periodic orbits require multipliers. That’s the way cookie crumbles. For

very high-dimensional flows (such as unstable periodic solutions of Navier-

Stokes equations), usually only a subset of the most unstable / least con-

tracting Floquet multipliers is known. As long as the contracting Floquet

multipliers omitted from the weights in (23.13) are sufficiently strongly con-

tracting, the errors introduced by replacement |1 − Λr
j
| → 1 for such eigen-

values should be negligible.
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Table 23.2: The 3-disk repeller escape rates computed from cycle expansions of the spec-

tral determinant (22.5) and the dynamical zeta function (22.11), as functions of the max-

imal cycle length N. The disk-disk center separation to disk radius ratio is R:a, and the

det(s − A) is an estimate of the classical escape rate computed from the spectral det-

erminant cycle expansion in the fundamental domain. For larger disk-disk separations,

the dynamics is more uniform, as illustrated by the faster convergence. Convergence of

spectral determinant det(s−A) is super-exponential, see chapter 28. For comparison, the

1/ζ(s) column lists estimates from the fundamental domain dynamical zeta function cycle

expansion (23.8), and the 1/ζ(s)3-disk column lists estimates from the full 3-disk cycle

expansion (25.54). The convergence of the fundamental domain dynamical zeta function

is significantly slower than the convergence of the corresponding spectral determinant,

and the full (unfactorized) 3-disk dynamical zeta function has still poorer convergence.

(P.E. Rosenqvist.)

R:a N . det(s −A) 1/ζ(s) 1/ζ(s)3-disk
1 0.39 0.407
2 0.4105 0.41028 0.435
3 0.410338 0.410336 0.4049

6 4 0.4103384074 0.4103383 0.40945
5 0.4103384077696 0.4103384 0.410367
6 0.410338407769346482 0.4103383 0.410338
7 0.4103384077693464892 0.4103396
8 0.410338407769346489338468
9 0.4103384077693464893384613074

10 0.4103384077693464893384613078192
1 0.41
2 0.72
3 0.675
4 0.67797

3 5 0.677921
6 0.6779227
7 0.6779226894
8 0.6779226896002
9 0.677922689599532

10 0.67792268959953606
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Figure 23.1: Example scans in the complex s

plane: contour plots of the logarithm of the ab-

solute values of (left) 1/ζ(s), (right) spectral deter-

minant det (s−A) for the 3-disk system, separation

R : a = 6. The A1 subspace is evaluated numeri-

cally. The eigenvalues of the evolution operator L

are given by the centers of elliptic neighborhoods

of the rapidly narrowing rings. While the dynam-

ical zeta function is analytic on the Im s ≥ −1 half-

plane, the spectral determinant is entire and reveals

further families of zeros. (P.E. Rosenqvist)

• The least enlightened are the ‘level sum’ cycle averaging formulas. There

is no point in using them, except that they have to be mentioned (here in

sect. 27.4), as there is voluminous literature that uses them.

• Other formulas published in physics literature are likely to be wrong.

If the set of computed periodic orbits is incomplete, and their Floquet mul-

tipliers inaccurate, distinctions between different cycle averaging formulas are

academic, as there are not sufficiently many cycles to start worrying about what

expansion converges faster.

23.3 Periodic orbit averaging

The first cycle expansion calculation should always be the determination of the

leading eigenvalue of the evolution operator, calculated as follows. After the

prime cycles and the pseudo-cycles have been grouped into subsets of equal topo-

logical length, the dummy variable can be set equal to z = 1. With z = 1, the

expansion (23.15) constitutes the cycle expansion (22.5) for the spectral deter-

minant det(s − A) . We vary s in cycle weights, and determine αth eigenvalue

sα (20.28) by finding s = sα for which (23.15) vanishes. As an example, the

convergence of a leading eigenvalue for a nice hyperbolic system is illustrated in

table 23.2 by the list of pinball escape rates γ = −s0 estimates computed from

truncations of (23.8) and (23.15) to different maximal cycle lengths. chapter 28

The pleasant surprise, to be explained in chapter 28, is that one can prove

that the coefficients in these cycle expansions decay exponentially or even faster,

because of the analyticity of det (s −A) or 1/ζ(s), for s values well beyond those

for which the corresponding trace formula (21.19) diverges.

example 23.2

p. 434

Our next task will be to compute long-time averages of observables. Three

situations arise, two of them equal in practice:
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(i) The system is bounded, and we have all cycles up to some cutoff: always

start by testing the cycle expansion sum rules of sect. 23.4.

(ii) The system is unbounded, and averages have to be computed over a repeller

whose natural measure is obtained by balancing local instability with the

global escape rate γ = −s0, as in sect. 20.4.

(iii) The system is bounded, but we only have a repelling set consisting of a sub-

set of unstable cycles embedded into the bounded strange attractor. Best one

can do is to treat this as an open system, case (iii). That assigns a stationary

natural measure to neighborhoods of the solutions used, the local instabili-

ties balanced by a weight that includes escape rate exp(γTp). Whether use

of this measure improves averages as one increases the stability cutoff de-

pends on whether the longer cycles explore qualitatively different regions

of state space not visited by the shorter (fundamental) cycles, or only revisit

already known regions (curvature corrections).

23.4 Flow conservation sum rules

If a dynamical system is bounded, so that all trajectories remain confined for all

times, the escape rate (27.8) vanishes γ = −s0 = 0, and the leading eigenvalue of

the Perron-Frobenius operator (19.10) (evolution operator with β = 0) is simply

exp(−tγ) = 1. Conservation of material flow thus implies that for bounded flows

cycle expansions of dynamical zeta functions and spectral determinants satisfy

exact flow conservation sum rules:

1/ζ(0, 0) = 1 +
∑′

π

(−1)k

|Λp1
· · ·Λpk

|
= 0

F(0, 0) = 1 −

∞
∑

n=1

Qn(0, 0) = 0 (23.17)

obtained by setting s = 0 in (23.18), (23.19) with cycle weights tp = e−sTp/|Λp| →

1/|Λp| . These sum rules depend neither on the cycle periods Tp nor on the observ-

able a(x) under investigation, but only on the cycle stabilities Λp,1, Λp,2, · · · , Λp,d.

Their significance is purely geometric; they are a measure of how well periodic

orbits tessellate state space, as in figure 1.11. Conservation of material flow pro-

vides a first and very useful test of the quality of finite cycle length truncations and

is something that you should always check when constructing a cycle expansion

for a bounded flow.
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Figure 23.2: The eigenvalue condition is satisfied on

the curve F = 0 on the (β, s) plane. The expectation

value of the observable (20.11) is given by the slope of

the curve.

s

β

__

βF(  ,s(  ))=0 curveβ

d
ds
β

23.5 Cycle formulas for dynamical averages

Want to learn some useful safety maneuvers? Or perhaps

you’d like to become a more able mechanic? Or have bike

safety questions answered? Or eat pizza? Then sign up for

Enlightened Cycling!

— Bike GT: Cycling around Georgia Tech

The eigenvalue conditions for the dynamical zeta function (23.3) and the spectral

determinant (23.15),

0 = 1 −
∑′

π

tπ , tπ = tπ(β, s(β)) (23.18)

0 = 1 −

∞
∑

n=1

Qn , Qn = Qn(β, s(β)) , (23.19)

are implicit equations for an eigenvalue s = s(β) of the form 0 = F(β, s(β)). The

eigenvalue s = s(β) as a function of β is sketched in figure 23.2; this condition

is satisfied on the curve F = 0. The cycle averaging formulas for the slope and

curvature of s(β) are obtained as in (20.11) by taking derivatives of the eigenvalue

condition. Evaluated along F = 0, by the chain rule the first derivative yields

0 =
d

dβ
F(β, s(β))

=
∂F

∂β
+

ds

dβ

∂F

∂s

∣

∣

∣

∣

∣

s=s(β)
=⇒

ds

dβ
= −
∂F

∂β

/ ∂F

∂s
, (23.20)

and the second derivative of F(β, s(β)) = 0 yields

d2s

dβ2
= −















∂2F

∂β2
+ 2

ds

dβ

∂2F

∂β∂s
+

(

ds

dβ

)2
∂2F

∂s2















/ ∂F

∂s
. (23.21)
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Denoting expectations as in (20.14) by

〈A〉F = −
∂F

∂β

∣

∣

∣

∣

∣

β,s=s(β)

, 〈T〉F =
∂F

∂s

∣

∣

∣

∣

∣

β,s=s(β)
,

〈A2〉F = −
∂2F

∂β2

∣

∣

∣

∣

∣

∣

β,s=s(β)

, 〈TA〉F =
∂2F

∂s∂β

∣

∣

∣

∣

∣

∣

β,s=s(β)

, (23.22)

the mean cycle expectation value of A, the mean cycle period, and second deriva-

tives of F computed for F(β, s(β)) = 0, we obtain the cycle averaging formulas

for the expectation of the observable (20.11) and for its (generalized) diffusion

constant (or, more generally, diffusion tensor):

〈a〉 =
〈A〉F

〈T〉F
(23.23)

∆ =
1

〈T〉F
〈(A − T 〈a〉)2〉F , (23.24)

and so forth for higher cumulants. These formulas are the central result of periodic section 20.2

orbit theory. We now show that for each choice of the function F(β, s) in (23.3)

and (23.15) (also the trace, or ‘level sum’ of (27.15)), the above quantities have

explicit cycle expansions.

23.5.1 Dynamical zeta function cycle averaging formulas

For the dynamical zeta function condition (23.18), the cycle averaging formulas

(23.20), (23.24) require one to evaluate derivatives of dynamical zeta functions at

a given eigenvalue. Substituting the cycle expansion (23.3) for the dynamical zeta

function we obtain

〈A〉ζ := −
∂

∂β

1

ζ
=

∑′
Aπtπ (23.25)

〈T〉ζ :=
∂

∂s

1

ζ
=

∑′
Tπtπ , 〈n〉ζ := −z

∂

∂z

1

ζ
=

∑′
nπtπ ,

where the subscript in 〈· · ·〉ζ stands for the dynamical zeta function average over

prime cycles, Aπ, Tπ, and nπ given by (23.4) are evaluated on pseudo-cycles (23.5),

and pseudo-cycle weights tπ = tπ(z, β, s(β)) are evaluated at the eigenvalue s(β).

In most applications β = 0, and s(β) of interest is typically the leading eigenvalue

s0 = s0(0) of the evolution generator A.

For bounded flows the leading eigenvalue (the escape rate) vanishes, s(0) = 0,

the exponent βAπ − sTπ in (23.4) vanishes, so the cycle expansions take a simple

form

〈A〉ζ =
∑′

π

(−1)k+1
Ap1
+ Ap2

· · · + Apk

|Λp1
· · ·Λpk

|
, (23.26)
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where analogous formulas hold for 〈T〉ζ , 〈n〉ζ .

example 23.3

p. 434

The cycle averaging formulas for the expectation of observable 〈a〉 follow by

substitution into (23.24). Assuming zero mean drift 〈a〉 = 0, the cycle expansion

(23.15) for the variance 〈(A − 〈A〉)2〉ζ is given by

〈A2〉ζ =
∑′

(−1)k+1

(

Ap1
+ Ap2

· · · + Apk

)2

|Λp1
· · ·Λpk

|
. (23.27)

23.5.2 Spectral determinant cycle expansions

The dynamical zeta function cycle expansions have a particularly simple structure,

with the shadowing apparent already by a term-by-term inspection of table 23.2.

For “nice” hyperbolic systems, shadowing ensures exponential convergence of the section 28.5

dynamical zeta function cycle expansions. This, however, is not the best achiev-

able convergence. As will be explained in chapter 28, for nice hyperbolic systems

the spectral determinant constructed from the same cycle database is entire, and

its cycle expansion converges faster than exponentially. The fastest convergence

is attained by the spectral determinant cycle expansion (23.19) and its deriva-

tives. In this case the ∂/∂s, ∂/∂β derivatives are computed recursively, by taking

derivatives of the spectral determinant cycle expansion contributions (23.13) and

(23.16).

The cycle averaging formulas are exact, and highly convergent for nice hy-

perbolic dynamical systems. An example of their utility is the cycle expansion

formula for the Lyapunov exponent of example 23.1. Further applications of cy-

cle expansions will be discussed in chapter 27.

23.5.3 Continuous vs. discrete mean return time

Sometimes it is convenient to compute an expectation value along a flow in con-

tinuous time, and sometimes it might be easier to compute it in discrete time, from

a Poincaré return map. Return times (3.1) might vary wildly, and it is not at all

clear that the continuous and discrete time averages are related in any simple way.

As we shall now show, the relationship turns out to be both elegantly simple, and

totally general. exercise 23.12

The mean cycle period 〈T〉F fixes the normalization of the unit of time; it can

be interpreted as the average near recurrence or the average first return time. For

example, if we have evaluated a billiard expectation value 〈a〉 = 〈A〉F/〈T〉F in

terms of continuous time, and would like to also have the corresponding average
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〈a〉dscr = 〈A〉F/〈n〉F measured in discrete time, given by the number of reflections

off billiard walls, the two averages are related by

〈a〉dscr = 〈a〉〈T〉F/〈n〉F , (23.28)

where 〈n〉F the average of the number of bounces np along the cycle p is given by

is (23.25).

Example 23.1 Cycle expansion formula for Lyapunov exponents: In sect. 20.5

we defined the Lyapunov exponent for a 1-dimensional map, relating it to the leading

eigenvalue of an evolution operator, and promised to evaluate it. Now we are finally in

position to deliver on our promise.

The cycle averaging formula (23.26) yields an exact explict expression for the

Lyapunov exponent in terms of prime cycles:

λ =
1

〈n〉ζ

∑′
(−1)k+1

log |Λp1
| + · · · + log |Λpk

|

|Λp1
· · ·Λpk

|
. (23.29)

For a repeller, the 1/|Λp| weights are replaced by (27.10), the normalized measure

weights exp(γnp)/|Λp|, where γ is the escape rate.

For 2-dimensional Hamiltonian flows such as our game of pinball (see exam-

ple 22.3), there is only one expanding eigenvalue and (23.29) applies as written.

However, in dimensions higher than one, a correct calculation of Lyapunov expo-

nents requires a bit of sophistication.

23.6 Cycle expansions for finite alphabets

A finite transition graph like the one given in figure 17.3 (d) is a compact encod-

ing of the transition matrix for a given subshift. It is a sparse matrix, and the

associated determinant (18.32) can be written by inspection: it is the sum of all

possible partitions of the graph into products of non-intersecting loops, with each

loop carrying a minus sign:

det (1 − T ) = 1 − t0 − t0011 − t0001 − t00011 + t0+0011 + t0011+0001 (23.30)

The simplest application of this determinant is the evaluation of the topological

entropy; if we set tp = znp , where np is the length of the p-cycle, the determinant

reduces to the topological polynomial (18.33).

The determinant (23.30) is exact for the finite graph figure 17.3 (e), as well

as for the associated finite-dimensional transfer operator of example 20.4. For

the associated (infinite dimensional) evolution operator, it is the beginning of the

cycle expansion of the corresponding dynamical zeta function:

1/ζ = 1 − t0 − t0011 − t0001 + t0001+0011

−(t00011 − t0+0011 + . . . curvatures) . . . (23.31)
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The cycles 0, 0001 and 0011 are the fundamental cycles introduced in (23.8); they

are not shadowed by any combinations of shorter cycles. All other cycles appear

together with their shadows (for example, the t00011 − t0+0011 combination, see

figure 1.12) and yield exponentially small corrections for hyperbolic systems. For

cycle counting purposes, both tab and the pseudo-cycle combination ta+b = tatb in

(23.3) have the same weight zna+nb , so all curvature combinations tab − ta+b vanish

exactly, and the topological polynomial (18.17) offers a quick way of checking

the fundamental part of a cycle expansion.

The splitting of cycles into the fundamental cycles and the curvature correc-

tions depends on balancing long cycles tab against their pseudo-trajectory shadows

tatb. If the ab cycle or either of the shadows a, b do not to exist, such curvature

cancelation is unbalanced.

The most important lesson of the pruning of the cycle expansions is that pro-

hibition of a finite subsequence imbalances the head of a cycle expansion and

increases the number of the fundamental cycles in (23.8). Hence the pruned ex-

pansions are expected to start converging only after all fundamental cycles have

been incorporated - in the last example, the cycles 1, 10, 10100, 1011100. With-

out cycle expansions, no such crisp and clear cut definition of the fundamental set

of scales is available.

Because topological zeta functions reduce to polynomials for finite grammars,

only a few fundamental cycles exist and long cycles can be grouped into curvature

combinations. For example, the fundamental cycles in exercise 11.1 are the three

2-cycles that bounce back and forth between two disks and the two 3-cycles that

visit every disk. Of all cycles, the 2-cycles have the smallest Floquet exponent,

and the 3-cycles the largest. It is only after these fundamental cycles have been

included that a cycle expansion is expected to start converging smoothly, i.e., only

for n larger than the lengths of the fundamental cycles are the curvatures ĉn (in

expansion (23.8)), a measure of the deviations between long orbits and their short

cycle approximations, expected to fall off rapidly with n.

23.7 Stability ordering of cycle expansions

There is never a second chance. Most often there is not

even the first chance.

—John Wilkins

(C.P. Dettmann and P. Cvitanović)

We have judiciously deployed the 3-disk pinball, with its simple grammar, to mo-

tivate the periodic orbit theory. Most dynamical systems of interest, however, have

infinite grammar, so at any order in z a cycle expansion may contain unmatched

terms that do not fit neatly into the almost canceling curvature corrections. Sim-

ilarly, for the intermittent systems that we shall discuss in sect. 29.3.4, curvature

corrections are not small in general, so again the cycle expansions may converge
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slowly. For such systems, schemes that collect the pseudocycle terms according

to some criterion other than the topology of the flow may converge faster than

expansions based on the topological length.

All chaotic systems exhibit some degree of shadowing, and a good truncation

criterion should do its best to respect the shadowing as much as possible. If a

long cycle is shadowed by two or more shorter cycles and the flow is smooth, the

periods and the Floquet exponents will be additive in sense that the period of the

longer cycle is approximately the sum of the shorter cycle periods. Similarly, as

stability is multiplicative, shadowing is approximately preserved by including all

terms with pseudo-cycle stability
∣

∣

∣Λp1
· · ·Λpk

∣

∣

∣ ≤ Λmax (23.32)

and ignoring any pseudo-cycles that are less stable.

Two such schemes for ordering cycle expansions that approximately respect

shadowing are truncations by the pseudocycle period and the stability ordering

that we shall discuss here. In these schemes, a dynamical zeta function or a spec-

tral determinant is expanded. One keeps all terms for which the period, action or

stability for a combination of cycles (pseudo-cycles) is less than a given cutoff.

Settings in which stability ordering may be preferable to ordering by topo-

logical cycle length are the cases of bad grammar, of intermittency, and of partial

cycle data sets.

23.7.1 Stability ordering for bad grammars

For generic flows it is often not clear what partition of state space generates the

“optimal” symbolic dynamics. Stability ordering does not require understanding

dynamics in such detail: if you can find the cycles, you can use stability-ordered

cycle expansions. Stability truncation is thus easier to implement for a generic

dynamical system than the curvature expansions (23.8) that rely on finite subshift

approximations to a given flow.

Cycles can be detected numerically by searching a long trajectory for near

recurrences. The long trajectory method for detecting cycles preferentially finds

the least unstable cycles, regardless of their topological length. Another practical

advantage of the method (in contrast to blind Newton method searches) is that it

preferentially finds cycles in a given connected ergodic component of state space,

ignoring isolated cycles or other ergodic regions elsewhere in state space.

Why should stability-ordered cycle expansions of a dynamical zeta function

converge better than the crude trace formula (27.9), to be discussed in sect. 27.2?

The argument has essentially already been laid out in sect. 18.6: in truncations

that respect shadowing, most of the pseudo-cycles appear in shadowing combi-

nations and nearly cancel, while only the relatively small subset affected by the

increasingly long pruning rules is not shadowed. The error is typically of the order

of 1/Λ, which is smaller by a factor ehT than the trace formula (27.9) error, where

h is the entropy and T is the typical cycle length for cycles of stability Λ.
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23.7.2 Smoothing

If most, but not all long cycles in a stability truncation are shadowed by

shorter cycles, we say that the shadowing is partial. The breaking of exact shad-

owing cancellations deserves further comment. Any partial shadowing that may

be present can be (partially) restored by smoothing the stability-ordered cycle ex-

pansions by replacing the 1/Λweight for each term with the pseudo-cycle stability

Λ = Λp1
· · ·Λpk

by f (Λ)/Λ. Here, f (Λ) decreases monotonically from f (0) = 1

to f (Λmax) = 0. The lack of smoothing means we have a step function.

A typical “shadowing error” induced by the cutoff is due to two pseudo-cycles

of stability Λ separated by ∆Λ; the contributions of these pseudo-cycles are of

opposite sign. Ignoring possible weighting factors, the magnitude of the resulting

term is of order 1/Λ − 1/(Λ + ∆Λ) ≈ ∆Λ/Λ2. With smoothing, one obtains an

extra term of the form f ′(Λ)∆Λ/Λ, which we want to minimize. A reasonable

guess might be to keep f ′(Λ)/Λ constant and as small as possible, so that

f (Λ) = 1 −

(

Λ

Λmax

)2

The results of a stability-ordered expansion (23.32) should always be tested

for robustness by varying the cutoff Λmax. If this introduces significant variations,

smoothing is probably necessary.

Résumé

A cycle expansion is a series representation of a dynamical zeta function, trace

formula or a spectral determinant, with products in (22.11) expanded as sums

over pseudo-cycles, which are products of the prime cycle weights tp.

If a flow is hyperbolic and has the topology of the Smale horseshoe (a sub-

shift of finite type), dynamical zeta functions are holomorphic (have only poles

in the complex s plane), the spectral determinants are entire, and the spectrum of

the evolution operator is discrete. The situation is considerably more reassuring

than what practitioners of quantum chaos fear; there is no ‘abscissa of absolute

convergence’ and no ‘entropy barrier’, the exponential proliferation of cycles is

no problem, spectral determinants are entire and converge everywhere, and the

topology dictates the choice of cycles to be used in cycle expansion truncations.

In this case, the basic observation is that the motion in low-dimensional dy-

namical systems is organized around a few fundamental cycles, with the cycle

expansion of the Euler product

1/ζ = 1 −
∑

f

t f −
∑

n

ĉn,
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regrouped into dominant fundamental contributions t f and decreasing curvature

corrections ĉn. The fundamental cycles t f have no shorter approximations; they

are the ‘building blocks’ of the dynamics in the sense that all longer orbits can be

approximately pieced together from them. A typical curvature contribution to ĉn

is the difference of a long cycle {ab} and its shadowing approximation by shorter

cycles {a} and {b}, as in figure 1.12:

tab − tatb = tab(1 − tatb/tab)

Orbits that follow the same symbolic dynamics, such as {ab} and a ‘pseudo-cycle’

{a}{b}, lie close to each other, have similar weights, and for increasingly long

orbits the curvature corrections fall off rapidly. Indeed, for systems that satisfy the

‘axiom A’ requirements, such as the 3-disk billiard, curvature expansions converge

very well.

Once a set of the shortest cycles has been found, and the cycle periods, stabili-

ties, and integrated observable have been computed, the cycle averaging formulas

such as (23.25) for the dynamical zeta function

〈a〉 = 〈A〉ζ/〈T〉ζ , where for the zeta function expansions:

〈A〉ζ = −
∂

∂β

1

ζ
=

∑′
Aπtπ , 〈T〉ζ =

∂

∂s

1

ζ
=

∑′
Tπtπ

yield the expectation value of the observable a(x), i.e., the long time average over

the chaotic non–wandering set).

Commentary

Remark 23.1 Alternative Periodic Orbit Theories.

Extraordinary how potent cheap music is.

— Noel Coward

There are no ‘alternative periodic orbit theories’. There is only one ergodic theory, and

periodic orbits are one aspect of it, just like there is only one quantum mechanics, and

WKB is one way to gain insight into it. While the eigenfunctions of quantum evolution

operators are smooth Hilbert space states, the eigenfunctions of deterministic evolution

operators are highly singular, nowhere differentiable functions with support on fractal sets.

The deterministic eigenstates of high-dimensional ergodic flows thus cannot be computed

using the methods developed for quantum eigenstates, at least not without much further

thought. The ergodic, singular ‘natural measure’ is harder (and in high-dimensional state

space impossible) to construct numerically than its smooth quantum cousin, the ‘ground

state’, and periodic orbits seem to be the way to do it. Were ergodic theory easy, Chaos-

Book.org and Gaspard monograph [A1.65] would have been a much breezier reads.

In the vast and vastly uneven periodic orbit literature (should erroneous papers be

cited?) one sometimes encounters the ‘escape-time weighting’,

〈a〉 =

∑

p τpap
∑

p τp

, τp =
1

∑e
j λp, j

, (23.33)
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where the p sum goes over all known unstable periodic orbits, and sometimes also over

judiciously chosen subsets of unstable equilibria. Here

e
∑

j

λp, j =
1

Tp

lnΛp , Λp = |Λp,1Λp,2 · · ·Λp,e| , (23.34)

Tp is the period of of the prime periodic orbit p, Λp, j is the jth Floquet multiplier (4.7),

Λp is the product of the expanding multipliers |Λp, j| > 1 , j = 1, . . . , e, and λp, j’s are the

strictly positive Floquet exponents.

∑e λp,i is the local escape rate from single repelling cycle p, of dimension 1/[time],

so one may interpret its inverse τp as “an estimate of the mean time spent by the system

in vicinity of periodic orbit” p. τp is the mean Lyapunov time of cycle p, that is, the mean

time it takes for the density of neighboring trajectories in an arbitrarily small ball centered

around a point on the trajectory to decrease by factor 1/e.

The ‘escape-time weighting’ was introduced in a rapid communication thusly: “Less

unstable orbits must be weighted more heavily, so the attractor dimension is approximated

by ‘escape-time weighting’ (23.33).” That’s it: the ‘derivation’ in its entirety. Formula

(23.33) is then asserted to approximate the time average 〈a〉 of observable a(x) over the

chaotic attractor in terms of

ap =
1

Tp

∮ Tp

0

dτ a( f τ(x0)) , x0 ∈ p , (23.35)

averaged over each and every prime periodic orbit p found in any computer exploration

of a dynamical system’s state space.

The enchantment with the escape-time weighting approach lies its charming simplic-

ity. If one has a dynamical problem, and if one has a computer one has programmed

to search for periodic orbits, and if the computer brings back a set of unstable periodic

orbits, all one has to do is to put λp, j and ap into the formula (23.33), and it returns a

number - let’s say D = 9.0±0.1, where the error one estimates somehow - which one then

publishes.

The only drawback is that the ‘formula’ is wrong. (1) It comes from nowhere. (2)

τp has dimension of 1/[time], but a ‘weight’ should be a dimensionless number, the like-

lihood that an ergodic trajectory enters the neighborhood of the periodic orbit p. (3)
∑

p

is the sum over all unstable prime periodic orbits, regardless whether they belong to the

ergodic component under investigation or dwell isolated in the Moon orbit. (4) The guess

for the weight τp is clearly wrong, as any periodic orbit, no matter how long and unstable,

has the comparable weight
∑e λp,i, as long as its Lyapunovs (instability rate per unit time)

are comparable; the Lyapunov time has nothing to do with the period of the particular

cycle. For that there is a fix in the literature, with the Lyapunov time in (23.33) replaced

by

τp = Tp/

e
∑

λp,i . (23.36)

The fix is explained as follows: “it is reasonable also to suppose that orbits with longer

periods must be weighted more heavily as they are longer and should provide a greater

contribution to the total sum.” That’s it: the ‘derivation’ in its entirety. No less wrong.

The exact weight of the unstable prime periodic orbit p (for level sum (21.6)) was

given by Kadanoff and Tang [A1.32] in 1983. For the classical trace formula for flows

(21.19) it is

Tp e−Tp s

∣

∣

∣

∣
det

(

1 − Mp

)

∣

∣

∣

∣

eβAp , Ap = Tpap , (23.37)

recycle - 15apr2014 ChaosBook.org version15.9, Jun 24 2017

CHAPTER 23. CYCLE EXPANSIONS 432

where s is the evolution operator eigenvalue, and β is an auxiliary variable. It is de-

termined by the dimensionless Floquet multipliers (eigenvalues of the periodic orbit’s

monodromy matrix Mp) which grow/shrink exponentially with cycle period, not the Os-

eledec Lyapunov exponents or periodic orbit Floquet exponents which measure average

expansion/contraction rate per unit time.

The exact cycle averaging formulas for the expectation value of the observable a,

derived in chapters 19 to 22, have form

〈a〉 = 〈A〉F/〈T〉F , (23.38)

where the form of the periodic orbit sum 〈· · ·〉F depends on whether it is computed from

the trace formula (27.15), the dynamical zeta function (23.3), or the spectral determinant

(23.15). This sum is never of the form (23.33).

Often one cares only about the leading long-time behavior, and for long periodic or-

bits approximates the denominator of (23.37) by the product of the expanding multipliers

Λp of the monodromy matrix Mp,

e−Tp s

∣

∣

∣

∣

det
(

1 − Mp

)

∣

∣

∣

∣

→ tp =
e−Tp s

Λp

. (23.39)

This weight seems to have been first used in 1987 by Auerbach et al. [A1.31], who com-

puted an nth order estimate s(n) of the leading evolution operator eigenvalue s from the

sum of all periodic points j of period n

1 =
∑

j∈Fix f n

t j eβA(x j,n) , t j =
e−ns(n)

Λ j

, (23.40)

where n is discrete time, and periodic points are fixed points of the nth iterate f n . Even as

its was written, the heuristics of this paper was superseded by the exact cycle expansions,

first published in 1987 Cvitanović letter [A1.33].

Then there is in literature an ‘Alternative Periodic Orbit Theory’ so bold that one can

only call it The Heresy: the conjecture is that if one looks carefully enough, there exists

a single periodic orbit that captures all dynamical averages of a turbulent flow. This is so

wrong that one is at loss what to say: there is NO such single periodic orbit. Instead, there

is the well established theory that says how periodic orbits are to be used, and how many

are needed to capture the hyperbolic parts of the non–wandering set to a desired accuracy.

It is as elegant and systematic as Statistical Mechanics and Quantum Field Theory. Read

ChaosBook.org. But who reads books nowadays?

Of course, if one picks at random a very long periodic orbit, one will get estimates

as good as from an ergodic trajectory of comparable length, but then why make life

hard by insisting on exact recurrence? When one starts out, The Heresy is one of the

paths to enlightenment: Berry diplomatically writes “he found one orbit” in a pean to

Gutzwiller [A1.17]. Indeed, in Gutzwiller first paper (1969) on anisotropic Kepler sys-

tem, the one periodic orbit obtained by adiabatic deformation of a Kepler ellipse yielded

10% accuracy, which was great, as in those days it was generally believed that semiclas-

sics should be bad for the ground state. Two years later Gutzwiller invented periodic orbit

theory as a tool for physicists, applied it to the full anisotropic Kepler problem, and since

then there is no turning back. Similarly, Kawahara [30.10] computed the first Navier-

Stokes periodic orbit solution embedded in turbulence, and observed that it gave rather

accurate estimates of observables such as the dissipation rate.

The strangest thing about ‘Alternative Periodic Orbit Theories’ is that since introduc-

tion of zeta functions of Smale (1967), Gutzwiller (1969), Ruelle (1976) and their cycle
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expansions (1987) there is no need for them whatsoever. Why would one guess an approx-

imate periodic orbit weight when the exact weight is already known? It costs exactly the

same to compute the exact spectral determinant as it costs to compute a wrong formula,

both require the same periodic orbits, Floquet multipliers, periods, and cycle-averaged

observables ap. Go figure...

Remark 23.2 Pseudo-cycle expansions, cumulant expansions. Bowen’s introduc-

tion of shadowing ǫ-pseudo-orbits [A1.70] was a significant contribution to Smale’s the-

ory. The expression ‘pseudo-orbits’ seems to have been introduced in Parry and Pollicott’s

1983 paper [A1.49]. Following them, M. Berry [23.9] used the expression ’pseudo-orbits’

and quantum chaology. Cycle and curvature expansions of dynamical zeta functions and

spectral determinants in terms of pseudo-cycles were introduced in refs. [?, A1.30]. Some

literature [25.18] refers to pseudo-orbits as ‘composite orbits’, and to cycle expansions as

‘Dirichlet series’ (see also appendix A20.5 and remark A20.1). To statistical mechani- section 20.2

cians, curvature expansions are very reminiscent of cumulant expansions. Indeed, (23.16)

is the standard Plemelj-Smithies cumulant formula for the Fredholm determinant.A new

aspect, not reminiscent of statistical mechanics, is that in cycle expansions each Qn coef-

ficient is expressed as a sum over exponentially many cycles.

Going from Nn ≈ Nn periodic points of period n to Mn prime cycles reduces the

number of computations from Nn to Mn ≈ Nn−1/n. The use of discrete symmetries (chap-

ter 25) reduces the number of nth level terms by another factor. While reformulating the-

ory from trace (21.24) to cycle expansion (23.8) does not eliminate exponential growth in

the number of cycles, in practice only the shortest cycles are used, and the reduction in

computational labor for these cycles can be significant.

Remark 23.3 Shadowing cycle-by-cycle. A glance at the low order curvatures in

table 23.1 leads to the temptation to associate curvatures to individual cycles, such as

ĉ0001 = t0001 − t0+001. Such combinations tend to be numerically small (see, for example,

ref. [A1.27], table 1). However, splitting ĉn into individual cycle curvatures is not possible

in general [23.12]; the first example of such ambiguity in the binary cycle expansion is

given by the t100101, t100110 0 ↔ 1 symmetric pair of 6-cycles; the counterterm t001+011 in

table 23.1 is shared by these two cycles.

Remark 23.4 Escape rates. A lucid introduction to escape from repellers is given by

Kadanoff and Tang [A1.32]. For a review of transient chaos see refs. [27.12, 27.13]. The

ζ–function formulation is given by Ruelle [A1.22] and W. Parry and M. Pollicott [A1.49]

and discussed in ref. [A1.33]. Altmann and Tel [27.16] give a detailed study of escape

rates, with citations to more recent literature.

Remark 23.5 Stability ordering. The stability ordering was introduced by Dahlqvist

and Russberg [A1.46, A1.47] in a study of chaotic dynamics for the (x2y2)1/a poten-

tial. The presentation here runs along the lines of Dettmann and Morriss [A1.48] for

the Lorentz gas, which is hyperbolic but with highly pruned symbolic dynamics, and

Dettmann and Cvitanović [23.16] for a family of intermittent maps. In the applications

discussed in the above papers, stability ordering yields a considerable improvement over

topological length ordering. In quantum chaos applications, cycle expansion cancelations

are affected by the phases of pseudo-cycles (their actions), hence period or action order-

ing rather than stability is frequently employed.
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Remark 23.6 Desymmetrized cycle expansions. The 3-disk cycle expansions

(25.54) might be useful for cross-checking purposes, but, as we shall see in chapter 25,

they are not recommended for actual computations, as the factorized zeta functions yield

much better convergence.

23.8 Examples

Example 23.2 Newton algorithm for determining the evolution operator eigenval-

ues: Cycle expansions of spectral determinants can be used to compute

a set of leading eigenvalues of the evolution operator. A convenient way to search for

these is by plotting either the absolute magnitude ln |det (s−A)| or the phase of spectral

determinants and dynamical zeta functions as functions of the complex variable s. The

eye is guided to the zeros of spectral determinants and dynamical zeta functions by

means of complex s plane contour plots, with different intervals of the absolute value of

the function under investigation assigned different colors; zeros emerge as centers of

elliptic neighborhoods of rapidly changing colors. Detailed scans of the whole area of

the complex s plane under investigation and searches for the zeros of spectral deter-

minants, figure 23.1, reveal complicated patterns of resonances even for something as

simple as the 3-disk game of pinball. With a good starting guess (such as the location

of a zero suggested by the complex s scan of figure 23.1), a zero 1/ζ(s) = 0 can now

be determined by standard numerical methods, such as the iterative Newton algorithm

(7.3), with the mth Newton estimate given by

sm+1 = sm −

(

ζ(sm)
∂

∂s
ζ−1(sm)

)−1

= sm −
1/ζ(sm)

〈T〉ζ
. (23.41)

The denominator 〈T〉ζ is required for Newton iteration and is given by cycle expansion

(23.25). We need to evaluate it anyhow, as 〈T〉ζ is needed for the cycle averaging

formulas. click to return: p. ??

Example 23.3 Cycle expansion for the mean cycle period: For example, for the

complete binary symbolic dynamics the mean cycle period 〈T〉ζ is given by section 1.5.4

〈T〉ζ =
T0

|Λ0|
+

T1

|Λ1|
+

(

T01

|Λ01|
−

T0 + T1

|Λ0Λ1|

)

(23.42)

+

(

T001

|Λ001|
−

T01 + T0

|Λ01Λ0|

)

+

(

T011

|Λ011|
−

T01 + T1

|Λ01Λ1|

)

+ . . . .

Note that the cycle expansions for averages are grouped into the same shadowing com-

binations as the dynamical zeta function cycle expansion (23.8), with nearby pseudo-

cycles nearly canceling each other. click to return: p. ??
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Exercises

23.1. Cycle expansions. Write programs that implement

binary symbolic dynamics cycle expansions for (a) dyn-

amical zeta functions, (b) spectral determinants. Com-

bined with the cycles computed for a 2-branch repeller

or a 3-disk system they will be useful in the problems

below.

23.2. Escape rate for a 1-dimensional repeller. (continua-

tion of exercise 20.2 - easy, but long) Consider again

the quadratic map (20.48)

f (x) = Ax(1 − x)

on the unit interval. In order to be definitive, take ei-

ther A = 9/2 or A = 6. Describing the itinerary of any

trajectory by the binary alphabet {0, 1} (’0’ if the iterate

is in the first half of the interval and ’1’ if it is in the

second half), we have a repeller with a complete binary

symbolic dynamics.

(a) Sketch the graph of f and determine its two fixed

points 0 and 1, along with their stabilities.

(b) Sketch the two branches of f −1. Determine all

the prime cycles up to topological length 4 using

your calculator and backwards iteration of f (see

sect. 7.1.1).

(c) Determine the leading zero of the zeta function

(22.11) using the weights tp = znp/|Λp|, where Λp

is the stability of the p-cycle.

(d) Show that for A = 9/2 the escape rate of the re-

peller is 0.361509 . . . using the spectral determin-

antwith the same cycle weight. If you have taken

A = 6, show instead that the escape rate is in

0.83149298 . . .. Compare the coefficients of the

spectral determinant and the zeta function cycle

expansions. Which expansion converges faster?

(Per Rosenqvist)

23.3. Escape rate for the Ulam map. (Medium; repeat of

exercise 16.1) We will try to compute the escape rate for

the Ulam map (14.21)

f (x) = 4x(1 − x),

using the method of cycle expansions. The answer

should be zero, as nothing escapes.

(a) Compute a few of the stabilities for this map.

Show that Λ0 = 4, Λ1 = −2, Λ01 = −4, Λ001 = −8

and Λ011 = 8.

(b) Show that

Λǫ1...ǫn = ±2n

and determine a rule for the sign.

(c) (hard) Compute the dynamical zeta function for

this system

ζ−1 = 1 − t0 − t1 − (t01 − t0t1) − · · ·

Note that the convergence as a function of the

truncation cycle length is slow. Try to fix that by

treating the Λ0 = 4 cycle separately. (continued

as exercise 23.11)

23.4. Pinball escape rate, semi-analytical. Estimate the

3-disk pinball escape rate for R : a = 6 by substituting

analytical cycle stabilities and periods (see exercise 16.6

and exercise 16.7) into the appropriate binary cycle ex-

pansion. Compare your result with the numerical esti-

mate exercise 20.3.

23.5. Pinball escape rate, from numerical cycles. Com-

pute the escape rate for the 3-disk pinball with R : a = 6

by substituting the list of numerically computed cycle

stabilities of exercise 16.5 into the binary cycle expan-

sion.

23.6. Pinball resonances in the complex plane. Plot the

logarithm of the absolute value of the dynamical zeta

function and/or the spectral determinant cycle expansion

(23.5) as contour plots in the complex s plane. Do you

find zeros other than the one corresponding to the com-

plex one? Do you see evidence for a finite radius of

convergence for either cycle expansion?

23.7. Counting the 3-disk psudocycles. (continuation of

exercise 18.12) Show that the number of terms in the

3-disk pinball curvature expansion (25.53) is given by

∏

p

(

1 + tp

)

=
1 − 3z4 − 2z6

1 − 3z2 − 2z3

= 1 + 3z2 + 2z3 +
z4(6 + 12z + 2z2)

1 − 3z2 − 2z3

= 1 + 3z2 + 2z3 + 6z4 + 12z5

+20z6 + 48z7 + 84z8 + 184z9 + . . .

This means that, for example, c6 has a total of 20 terms,

in agreement with the explicit 3-disk cycle expansion

(25.54).
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23.8. 4–disk unfactorized dynamical zeta function cycle

expansions. For the symmetrically arranged 4-disk

pinball, the symmetry group is C4v, which is of order 8.

The degenerate cycles can have multiplicities 2, 4 or 8

(see table 18.3). Show that:

1/ζ = (1 − z2t12)4(1 − z2t13)2(1 − z3t123)8

(1 − z4t1213)8(1 − z4t1214)4(1 − z4t1234)2

(1 − z4t1243)4(1 − z5t12123)8(1 − z5t12124)8

(1 − z5t12134)8(1 − z5t12143)8

(1 − z5t12313)8(1 − z5t12413)8 · · · . (23.43)

Show that the cycle expansion is given by

1/ζ = 1 − z2(4 t12 + 2 t13) − 8z3 t123

−z4(8 t1213 + 4 t1214 + 2 t1234 + 4 t1243

−6 t2
12 − t2

13 − 8 t12t13)

−8z5(t12123 + t12124 + t12134 + t12143 + t12313

+t12413 − 4 t12t123 − 2 t13t123)

−4z6(2 S 8 + S 4 + t3
12 + 3 t2

12 t13 + t12t2
13

−8 t12t1213 − 4 t12t1214

−2 t12t1234 − 4 t12t1243

−4 t13t1213 − 2 t13t1214 − t13t1234

−2 t13t1243 − 7 t2
123) − · · ·

where in the coefficient of z6 ,the abbreviations S 8 and

S 4 stand for the sums over the weights of the 12 orbits

with multiplicity 8 and the 5 orbits with multiplicity 4,

respectively; the orbits are listed in table 18.5.

23.9. Escape rate for the Rössler flow. (continuation of

exercise 7.1) Try to compute the escape rate for the

Rössler flow (2.27) using the method of cycle expan-

sions. The answer should be zero, as nothing escapes.

Ideally you should already have computed the cycles

and have an approximate grammar, but failing that you

can cheat a bit and peak into exercise 7.1.

23.10. State space volume contraction, recycled. (contin-

uation of exercise 4.3) The plot of instantaneous state

space volume contraction as a function of time in exer-

cise 4.3 (d) illustrates one problem of time-averaging in

chaotic flows - the observable might vary wildly across

each recurrence to a given Poincaré section. Evaluated

on a given short cycle, the average is crisp and arbi-

trarily accurate. Recompute 〈∂ · v〉 by means of cycle

expansion, study its convergence. 1/t convergence of

mindless time-averaging is now replaced by exponential

convergence in the cycle length.

23.11. Ulam map is conjugate to the tent map. (con-

tinuation of exercise 23.3, repeat of exercise A2.4 and

exercise 16.2; requires real smarts, unless you look it

up) Explain the magically simple form of cycle stabil-

ities of exercise 23.3 by constructing an explicit smooth

conjugacy (2.12)

gt(y0) = h ◦ f t ◦ h−1(y0)

that conjugates the Ulam map (14.21) into the tent map

(14.20).

23.12. Continuous vs. discrete mean return time. Show

that the expectation value 〈a〉 time-averaged over con-

tinuous time flow is related to the corresponding average

〈a〉dscr measured in discrete time (e.g. , Poincaré section

returns) by (23.28):

〈a〉dscr = 〈a〉〈T〉ζ/〈n〉ζ . (23.44)

(Hint: consider the form of their cycle expansions.) The

mean discrete period 〈n〉ζ averaged over cycles, and the

mean continuous time period 〈T〉ζ need to be evalu-

ated only once, thereafter one can compute either 〈a〉

or 〈a〉dscr, whichever is more convenient.
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