
Chapter 19

Transporting densities

Paulina: I’ll draw the curtain:

My lord’s almost so far transported that

He’ll think anon it lives.

—W. Shakespeare, The Winter’s Tale

(P. Cvitanović, R. Artuso, L. Rondoni, and E.A. Spiegel)

I
n chapters 2, 3, 8 and 9 we learned how to track an individual trajectory, and

saw that such a trajectory can be very complicated. In chapter 4 we stud-

ied a small neighborhood of a trajectory and learned that such neighborhood

can grow exponentially with time, making the concept of tracking an individual

trajectory for long times a purely mathematical idealization.

While the trajectory of an individual representative point may be highly con-

voluted, as we shall see, the density of these points might evolve in a manner that

is relatively smooth. The evolution of the density of representative points is for

this reason (and other that will emerge in due course) of great interest. So are

the behaviors of other properties carried by the evolving swarm of representative

points.

We shall now show that the global evolution of the density of representative

points is conveniently formulated in terms of linear action of evolution operators.

We shall also show that the important, long-time “natural” invariant densities are

unspeakably unfriendly and essentially uncomputable everywhere singular func-

tions with support on fractal sets. Hence, in chapter 20 we rethink what is it that

the theory needs to predict (“expectation values” of “observables”), relate these

to the eigenvalues of evolution operators, and in chapters 21 to 23 show how to

compute these without ever having to compute a “natural” invariant density ρ0.
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Figure 19.1: (a) First level of partitioning: A

coarse partition of M into regions M0, M1, and

M2. (b) n = 2 level of partitioning: A refinement

of the above partition, with each regionMi subdi-

vided intoMi0,Mi1, andMi2.
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19.1 Measures

Do I then measure, O my God, and know not what I mea-

sure?

—St. Augustine, The confessions of Saint Augustine



A fundamental concept in the description of dynamics of a chaotic system is that

of measure, which we denote by dµ(x) = ρ(x)dx. An intuitive way to define and

construct a physically meaningful measure is by a process of coarse-graining.

Consider a sequence 1, 2, ..., n, ... of increasingly refined partitions of state space,

figure 19.1, into 3 regionsMi defined by the characteristic function

χi(x) =

{

1 if x ∈ Mi ,
0 otherwise .

(19.1)

A coarse-grained measure is obtained by assigning the “mass,” or the fraction of

trajectories contained in the ith regionMi ⊂ M at the nth level of partitioning of

the state space:

∆µi =

∫

M
dµ(x)χi(x) =

∫

Mi

dµ(x) =

∫

Mi

dx ρ(x) . (19.2)

The function ρ(x) = ρ(x, t) denotes the density of representative points in state

space at time t. This density can be (and in chaotic dynamics, often is) an ar-

bitrarily ugly function, and it may display remarkable singularities; for instance,

there may exist directions along which the measure is singular with respect to the

Lebesgue measure (namely the uniform measure on the state space). We shall

assume that the measure is normalized

(n)
∑

i

∆µi = 1 , (19.3)

where the sum is over subregions i at the nth level of partitioning. The infinites-

imal measure ρ(x) dx can be thought of as an infinitely refined partition limit of

∆µi = |Mi| ρ(xi) , where |Mi| is the volume of subregion Mi and xi ∈ Mi; also

ρ(x) is normalized

∫

M
dx ρ(x) = 1 . (19.4)
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Figure 19.2: The evolution rule f tcan be used to map

a regionMi of the state space into the region f t(Mi).
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Here |Mi| is the volume of regionMi, and all |Mi| → 0 as n→ ∞.

So far, any arbitrary sequence of partitions will do. What are intelligent ways

of partitioning state space? We already know the answer from chapter 14, but let

us anyway have another look at this, in order to develop some intuition about how

the dynamics transports densities. chapter 14

19.2 Perron-Frobenius operator

Given a density, the question arises as to what it might evolve into with time.

Consider a swarm of representative points making up the measure contained in a

region Mi at time t = 0. As the flow evolves, this region is carried into f t(Mi),

as in figure 19.2. No trajectory is created or destroyed, so the conservation of

representative points requires that

∫

f t(Mi)

dx ρ(x, t) =

∫

Mi

dx0 ρ(x0, 0) .

Transform the integration variable in the expression on the left hand side to the

initial points x0 = f −t(x),

∫

Mi

dx0 ρ( f t(x0), t)
∣

∣

∣det Jt(x0)
∣

∣

∣ =

∫

Mi

dx0 ρ(x0, 0) .

The density changes with time as the inverse of the Jacobian (4.28)

ρ(x, t) =
ρ(x0, 0)

|det Jt(x0)| , x = f t(x0) , (19.5)

which makes sense: the density varies inversely with the infinitesimal volume

occupied by the trajectories of the flow.

The relation (19.5) is linear in ρ, so the manner in which a flow transports

densities may be recast into the language of operators, by writing exercise 19.1

ρ(x, t) =
(

Lt ◦ ρ
)

(x) =

∫

M
dx0 δ

(

x − f t(x0)
)

ρ(x0, 0) . (19.6)

Let us check this formula. As long as the zero is not smack on the border of ∂M,

integrating Dirac delta functions is easy:
∫

M dx δ(x) = 1 if 0 ∈ M, zero otherwise.
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Figure 19.3: The piecewise-linear skew ‘full tent

map’ (19.37), with Λ0 = 4/3, Λ1 = −4. See exam-

ple 19.1.
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The integral over a 1-dimensional Dirac delta function picks up the Jacobian of its

argument evaluated at all of its zeros:

∫

dx δ(h(x)) =

(x−x )h’(x )* *

x*

h(x)

x (19.7)

=
∑

{x:h(x)=0}

1

|h′(x)| ,

and in d dimensions the denominator is replaced by
∫

dx δ(h(x)) =
∑

j

∫

M j

dx δ(h(x)) =
∑

j

1
∣

∣

∣

∣

det
∂h(x j)

∂x

∣

∣

∣

∣

, (19.8)

where M j is any open neighborhood that contains the single x j zero of h. Now

you can check that (19.6) is just a rewrite of (19.5): exercise 19.2

(

Lt ◦ ρ
)

(x) =
∑

x0= f −t(x)

ρ(x0)

| f t(x0)′| (1-dimensional)

=
∑

x0= f −t(x)

ρ(x0)

|det Jt(x0)| (d-dimensional) . (19.9)

For a deterministic, invertible flow x has only one preimage x0; allowing for mul-

tiple preimages also takes account of noninvertible mappings such as the ‘stretch

& fold’ maps of the interval, to be discussed briefly in example 19.1, and in more

detail in sect. 14.3.

We shall refer to the integral operator with singular kernel (19.6) as the Perron-

Frobenius operator: exercise 19.3

example 28.7

Lt(y, x) = δ
(

y − f t(x)
)

. (19.10)

The Perron-Frobenius operator assembles the density ρ(y, t) at time t by going

back in time to the density ρ(x, 0) at time t = 0. The family of Perron-Frobenius

operators
{Lt}

t∈R+ forms a semigroup parameterized by time

measure - 9mar2015 ChaosBook.org version15.9, Jun 24 2017
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(a) L0 = I

(b) LtLt′ = Lt+t′ t, t′ ≥ 0 (semigroup property) .

If you do not like the word “kernel” you might prefer to think of Lt(y, x) as a

matrix with indices x, y, and index summation in matrix multiplication replaced

by an integral over x,
(Lt ◦ ρ) (y) =

∫

dyLt(y, x)ρ(x) . In example 19.1, Perron- remark 22.4

Frobenius operator is a matrix, and (19.11) illustrates a matrix approximation to

the Perron-Frobenius operator.

example 19.1

p. 360

fast track:

sect. 19.4, p. 352

19.3 Why not just leave it to a computer?

Another subtlety in the [dynamical systems ] theory is that

topological and measure-theoretic concepts of genericity

lead to different results.

— John Guckenheimer

(R. Artuso and P. Cvitanović)

To a student with a practical bent the above Example 19.1 suggests a strategy for

constructing evolution operators for smooth maps, as limits of partitions of state

space into regionsMi, with a piecewise-linear approximations fi to the dynamics

in each region, but that would be too naive; much of the physically interesting

spectrum would be missed. As we shall see, the choice of function space for ρ is chapter 28

crucial, and the physically motivated choice is a space of smooth functions, rather

than the space of piecewise constant functions.

All of the insight gained in this chapter and in what is to follow is nothing but

an elegant way of thinking of the evolution operator, L, as a matrix (this point of

view will be further elaborated in chapter 28). There are many textbook methods

of approximating an operator L by sequences of finite matrix approximations L,

but in what follows the great achievement will be that we shall avoid construct-

ing any matrix approximation to L altogether. Why a new method? Why not

just run it on a computer, as many do with such relish in diagonalizing quantum

Hamiltonians?

The simplest possible way of introducing a state space discretization, fig-

ure 19.4, is to partition the state space M with a non-overlapping collection of

setsMi, i = 1, . . . ,N, and to consider densities (19.2) piecewise constant on each

Mi:

ρ(x) =

N
∑

i=1

ρi

χi(x)

|Mi|

measure - 9mar2015 ChaosBook.org version15.9, Jun 24 2017
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Figure 19.4: State space discretization approach to

computing averages.

where χi(x) is the characteristic function (19.1) of the set Mi. This piecewise

constant density is a coarse grained presentation of a fine grained density ρ̂(x),

with (19.2)

ρi =

∫

Mi

dx ρ̂(x).

The Perron-Frobenius operator does not preserve the piecewise constant form, but

we may reapply coarse graining to the evolved measure

ρ′i =

∫

Mi

dx (L ◦ ρ)(x)

=

N
∑

j=1

ρ j

|M j|

∫

Mi

dx

∫

M j

dy δ(x − f (y)) ,

or

ρ′i =
N

∑

j=1

ρ j

|M j ∩ f −1(Mi)|
|M j|

.

In this way

Li j =
|Mi ∩ f −1(M j)|

|Mi|
, ρ′ = ρL (19.11)

is a matrix approximation to the Perron-Frobenius operator, and its leading left

eigenvector is a piecewise constant approximation to the invariant measure. remark 19.3

The problem with such state space discretization approaches is that they are

blind, the grid knows not what parts of the state space are more or less important.

This observation motivated the development of the invariant partitions of chaotic

systems undertaken in chapter 14, we exploited the intrinsic topology of a flow to

give us both an invariant partition of the state space and a measure of the partition

volumes, in the spirit of figure 15.13.
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Furthermore, a piecewise constant ρ belongs to an unphysical function space,

and with such approximations one is plagued by numerical artifacts such as spu-

rious eigenvalues. In chapter 28 we shall employ a more refined approach to

extracting spectra, by expanding the initial and final densities ρ, ρ′ in some basis

ϕ0, ϕ1, ϕ2, · · · (orthogonal polynomials, let us say), and replacing L(y, x) by its

ϕα basis representation Lαβ = 〈ϕα|L|ϕβ〉. The art is then the subtle art of finding

a “good” basis for which finite truncations of Lαβ give accurate estimates of the

eigenvalues of L. chapter 28

Regardless of how sophisticated the choice of basis might be, the basic prob-

lem cannot be avoided - as illustrated by the natural measure for the Hénon map

(3.17) sketched in figure 19.5, eigenfunctions ofL are complicated, singular func-

tions concentrated on fractal sets, and in general cannot be represented by a nice

basis set of smooth functions. We shall resort to matrix representations of L and

the ϕα basis approach only insofar this helps us prove that the spectrum that we

compute is indeed the correct one, and that finite periodic orbit truncations do

converge.

in depth:

chapter 1, p. 3

19.4 Invariant measures

A stationary or invariant density is a density left unchanged by the flow

ρ(x, t) = ρ(x, 0) = ρ(x) . (19.12)

Conversely, if such a density exists, the transformation f t(x) is said to be measure-

preserving. As we are given deterministic dynamics and our goal is the compu-

tation of asymptotic averages of observables, our task is to identify interesting

invariant measures for a given f t(x). Invariant measures remain unaffected by dy-

namics, so they are fixed points (in the infinite-dimensional function space of ρ

densities) of the Perron-Frobenius operator (19.10), with the unit eigenvalue: exercise 19.3

Ltρ(x) =

∫

M
dy δ(x − f t(y))ρ(y) = ρ(x). (19.13)

We will construct explicitly such eigenfunction for the piecewise linear map in

example 20.4, with ρ(y) = const and eigenvalue 1. In general, depending on the

choice of f t(x) and the function space for ρ(x), there may be no, one, or many

solutions of the eigenfunction condition (19.13). For instance, a singular measure

dµ(x) = δ(x − xq)dx concentrated on an equilibrium point xq = f t(xq), or any

linear combination of such measures, each concentrated on a different equilib-

rium point, is stationary. There are thus infinitely many stationary measures that

can be constructed. Almost all of them are unnatural in the sense that the slightest

perturbation will destroy them.

measure - 9mar2015 ChaosBook.org version15.9, Jun 24 2017
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From a physical point of view, there is no way to prepare initial densities

which are singular, so we shall focus on measures which are limits of transforma-

tions experienced by an initial smooth distribution ρ(x) under the action of f ,

ρ0(x) = lim
t→∞

∫

M
dy δ(x − f t(y)) ρ(y, 0) ,

∫

M
dy ρ(y, 0) = 1 . (19.14)

Intuitively, the “natural” measure should be the measure that is the least sensitive

to the (in practice unavoidable) external noise, no matter how weak, or round-off

errors in a numerical computation.

19.4.1 Natural measure

Huang: Chen-Ning, do you think ergodic theory gives us

useful insight into the foundation of statistical mechanics?

Yang: I don’t think so.

—Kerson Huang, C.N. Yang interview



In computer experiments, as the Hénon example of figure 19.5, the long time evo-

lution of many “typical” initial conditions leads to the same asymptotic distribu-

tion. Hence the natural measure (also called equilibrium measure, SRB measure,

Sinai-Bowen-Ruelle measure, physical measure, invariant density, natural density,

or even “natural invariant”) is defined as the limit exercise 19.8

exercise 19.9

ρx0
(y) =























limt→∞
1
t

∫ t

0
dτ δ(y − f τ(x0)) flows

limn→∞
1
n

∑n−1
k=0 δ

(

y − f k(x0)
)

maps ,

(19.15)

where x0 is a generic initial point. Generated by the action of f , the natural

measure satisfies the stationarity condition (19.13) and is thus invariant by con-

struction.

Staring at an average over infinitely many Dirac deltas is not a prospect we

cherish. From a computational point of view, the natural measure is the visitation

frequency defined by coarse-graining, integrating (19.15) over theMi region

∆µi = lim
t→∞

ti

t
, (19.16)

where ti is the accumulated time that a trajectory of total duration t spends in the

Mi region, with the initial point x0 picked from some smooth density ρ(x).



Let a = a(x) be any observable. In the mathematical literature a(x) is a func-

tion belonging to some function space, for instance the space of integrable func-

tions L1, that associates to each point in state space a number or a set of numbers.

In physical applications the observable a(x) is necessarily a smooth function. The

observable reports on some property of the dynamical system. Several examples

will be given in sect. 20.1.
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The space average of the observable a with respect to a measure ρ is given by

the d-dimensional integral over the state spaceM:

〈a〉ρ =
1

|ρM|

∫

M
dx ρ(x)a(x)

|ρM| =
∫

M
dx ρ(x) = mass inM . (19.17)

For now we assume that the state space M has a finite dimension and a finite

volume. By its construction, 〈a〉ρ is a function(al) of ρ. For ρ = ρ0 natural measure

we shall drop the subscript in the definition of the space average; 〈a〉ρ = 〈a〉.

Inserting the right-hand-side of (19.15) into (19.17), we see that the natural

measure corresponds to a time average of the observable a along a trajectory of

the initial point x0,

ax0
= lim

t→∞
1

t

∫ t

0

dτ a( f τ(x0)) . (19.18)

Analysis of the above asymptotic time limit is the central problem of ergodic

theory. The Birkhoff ergodic theorem asserts that if an invariant measure ρ ex- remark 19.1

appendix A1ists, the limit a(x0) for the time average (19.18) exists for (almost) all initial x0.

Still, Birkhoff theorem says nothing about the dependence on x0 of time averages

ax0
(or, equivalently, that the construction of natural measures (19.15) leads to a

“single” density, independent of x0). This leads to one of the possible definitions

of ergodic evolution: f is ergodic if for any integrable observable a in (19.18)

the limit function is constant. If a flow enjoys such a property, the time averages

coincide (apart from a set of ρ measure 0) with space averages

lim
t→∞

1

t

∫ t

0

dτ a( f τ(x0)) = 〈a〉 . (19.19)

For future reference, we note a further property that is stronger than ergodicity:

if the space average of a product of any two variables decorrelates with time, section 27.3

lim
t→∞
〈a(x)b( f t(x))〉 = 〈a〉〈b〉 , (19.20)

the dynamical system is said to be mixing. The terminology may be understood

better once we consider as the pair of observables in (19.20) characteristic func-

tions of two setsA and B: then (19.20) may be written as

lim
t→∞
µ
(A∩ f t(B)

)

µ(A)
= µ(B)

so that the set B spreads “uniformly” over the whole state space as t increases.

Mixing is a fundamental notion in characterizing statistical behavior for dynam-

ical systems: suppose we start with an arbitrary smooth nonequilibrium distribu-

tion ρ(x)ν(x): the after time t the average of an observable a is given by
∫

M
dx ρ(x)ν( f t(x))a(x)
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Figure 19.5: Natural measure (19.16) for the Hénon

map (3.17) strange attractor at parameter values

(a, b) = (1.4, 0.3). See figure 3.6 for a sketch of the

attractor without the natural measure binning. See ex-

ample 19.2. (Courtesy of J.-P. Eckmann)

-0.4

0

0.4

y

-1.5

0

1.5

x

µ

-0.4

0

0.4

y

µ

and this tends to the equilibrium average 〈a〉ρ if f is mixing.

example 19.2

p. 361

remark A1.2

If an invariant measure is quite singular –for instance a Dirac δ concentrated

on a fixed point or a cycle– it is most likely of no physical import. No smooth

initial density will converge to this measure if its neighborhood is repelling. In

practice the average (19.15) is problematic and often hard to control, as generic

dynamical systems are neither uniformly hyperbolic nor structurally stable: it is

not known whether even the simplest model of a strange attractor, the Hénon

attractor of figure 19.5, is “strange,” or merely a transient to a very long stable

cycle. exercise 6.3

19.4.2 Determinism vs. stochasticity



While dynamics can lead to very singular ρ’s, in any physical setting we cannot

do better than to measure ρ averaged over some regionMi; the coarse-graining is

not an approximation but a physical necessity. One is free to think of a measure

as a probability density, as long as one keeps in mind the distinction between

deterministic and stochastic flows. In deterministic evolution the evolution kernels

are not probabilistic; the density of trajectories is transported deterministically.

What this distinction means will became apparent later: for deterministic flows chapter 22

our trace and determinant formulas will be exact, while for quantum and stochastic

flows they will only be the leading saddle point (stationary phase, steepest descent)

approximations.

Clearly, while deceptively easy to define, measures spell trouble. The good

news is that if you hang on, you will never need to compute them, at least not

in this book. How so? The evolution operators to which we next turn, and the

trace and determinant formulas to which they will lead us, will assign the correct

weights to desired averages without recourse to any explicit computation of the

coarse-grained measure ∆ρi.
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19.5 Density evolution for infinitesimal times

Consider the evolution of a smooth density ρ(x) = ρ(x, 0) under an infinitesimal

step δτ, by expanding the action of Lδτ to linear order in δτ:

Lδτρ(y) =

∫

M
dx δ

(

y − f δτ(x)
)

ρ(x)

=

∫

M
dx δ(y − x − δτv(x)) ρ(x)

=
ρ(y − δτv(y))

∣

∣

∣

∣

det
(

1 + δτ
∂v(y)
∂x

)

∣

∣

∣

∣

=
ρ(y) − δτvi(y)∂iρ(y)

1 + δτ
∑d

i=1 ∂ivi(y)

ρ(x, δτ) = ρ(x, 0) − δτ ∂
∂x

(v(x)ρ(x, 0)) . (19.21)

Here we have used the infinitesimal form of the flow (2.7), the Dirac delta Jaco- exercise 4.1

bian (19.9), and the ln det = tr ln relation. By the Einstein summation conven-

tion, repeated indices imply summation, vi(y)∂i =
∑d

i=1 vi(y)∂i. Moving ρ(y, 0) to

the left hand side and dividing by δτ, we discover that the rate of the deformation

of ρ under the infinitesimal action of the Perron-Frobenius operator is nothing but

the continuity equation for the density:

∂tρ + ∂ · (ρv) = 0 . (19.22)

From (19.21), time evolution by an infinitesimal step δτ forward in time is gener-

ated by

Aρ(x) = + lim
δτ→0+

1

δτ

(

Lδτ − I
)

ρ(x) = −∂i(vi(x)ρ(x)) . (19.23)

We shall refer to

A = −∂ · v −
d

∑

i

vi(x)∂i (19.24)

as the time-evolution generator. If the flow is finite-dimensional and invertible,

A is a generator of a full-fledged group. The left hand side of (19.23) is the

definition of time derivative, so the evolution equation for ρ(x) is
(

∂

∂t
−A

)

ρ(x) = 0 . (19.25)

The finite time Perron-Frobenius operator (19.10) can be formally expressed

by exponentiating the time evolution generator A as

Lt = etA . (19.26)

The generator A is reminiscent of the generator of translations. Indeed, for a con-

stant velocity field dynamical evolution is nothing but a translation by (time× velocity):

exercise 19.10

e−tv ∂
∂x a(x) = a(x − tv) . (19.27)
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19.6 Liouville operator

A case of special interest is the Hamiltonian or symplectic flow defined

by Hamilton’s equations of motion (8.1). A reader versed in quantum mechan-

ics will have observed by now that with replacement A → − i
~
Ĥ , where Ĥ is

the quantum Hamiltonian operator, (19.25) looks rather like the time dependent

Schrödinger equation, so this is the right moment to figure out what all this means

for Hamiltonian flows.

The Hamilton’s evolution equations (8.1) for any time-independent quantity

Q = Q(q, p) are given by

dQ

dt
=
∂Q

∂qi

dqi

dt
+
∂Q

∂pi

dpi

dt
=
∂H

∂pi

∂Q

∂qi

− ∂Q
∂pi

∂H

∂qi

, (19.28)

where (pi, qi) span the full state space, which for Hamiltonian flows we shall refer

to as the phase space. As equations with this structure arise frequently for sym-

plectic flows, it is convenient to introduce a notation for them, the Poisson bracket

remark 19.4

{A, B} = ∂A
∂pi

∂B

∂qi

− ∂A
∂qi

∂B

∂pi

. (19.29)

In terms of Poisson brackets the time-evolution equation (19.28) takes the compact

form

dQ

dt
= {H,Q} . (19.30)

The discussion of sect. 19.5 applies to any deterministic flow. The full phase

space flow velocity is ẋ = v = (q̇, ṗ), where the dot signifies time derivative. section 32.1

If the density itself is a material invariant, combining

∂tI + v · ∂I = 0 .

and (19.22) we conclude that ∂ivi = 0 and det Jt(x0) = 1. An example of such

incompressible flow is the Hamiltonian flow. For incompressible flows the con-

tinuity equation (19.22) becomes a statement of conservation of the phase space

volume (see sect. 8.3), or the Liouville theorem

∂tρ + vi∂iρ = 0 . (19.31)

The symplectic structure of Hamilton’s equations (8.1) implies that the flow

is incompressible, ∂ivi = 0, so for Hamiltonian flows the equation for ρ reduces to

the continuity equation for the phase-space density:

∂tρ + ∂i(ρvi) = 0 , i = 1, 2 . . . ,D . (19.32)

Consider the evolution of the phase-space density ρ of an ensemble of nonin-

teracting particles; the particles are conserved, so

d

dt
ρ(q, p, t) =

(

∂

∂t
+ q̇i

∂

∂qi

+ ṗi

∂

∂pi

)

ρ(q, p, t) = 0 .
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Inserting Hamilton’s equations (8.1) we obtain the Liouville equation, a special

case of (19.25): remark 19.4

∂

∂t
ρ(q, p, t) = −A ρ(q, p, t) = {H, ρ(q, p, t)} , (19.33)

where { , } is the Poisson bracket (19.29). The generator of the flow (19.24) is in

this case a generator of infinitesimal symplectic transformations,

A = q̇i

∂

∂qi

+ ṗi

∂

∂pi

=
∂H

∂pi

∂

∂qi

− ∂H
∂qi

∂

∂pi

. (19.34)

For example, for separable Hamiltonians of form H = p2/2m+V(q), the equations

of motion are

q̇i =
pi

m
, ṗi = −

∂V(q)

∂qi

. (19.35)

and the action of the generator exercise 19.11

A = − pi

m

∂

∂qi

+ ∂iV(q)
∂

∂pi

. (19.36)

Looking back at (19.27) we see that the first term generates a translation in the

configuration space, f (q, p) → f (q − dt q̇, p), and the second generates acceler-

ation by force ∂V(q) in the momentum space. They do not commute, hence the

time integration is not trivial.

The time-evolution generator (19.24) for the case of symplectic flows is called

the Liouville operator. You might have encountered it in statistical mechanics,

while discussing what ergodicity means for 6.02214129 × 1023 hard balls. Here

its action will be very tangible; we shall apply the Liouville operator to systems

as small as 1 or 2 hard balls and to our surprise learn that this suffices to already

get a bit of a grip on foundations of the nonequilibrium statistical mechanics.

Résumé

In physically realistic settings the initial state of a system can be specified only to

a finite precision. If the dynamics is chaotic, it is not possible to calculate the long

time trajectory of a given initial point. Depending on the desired precision, and

given a deterministic law of evolution, the state of the system can then be tracked

for a finite time only.

The study of long-time dynamics thus requires trading in the evolution of a

single state space point for the evolution of a measure, or the density of repre-

sentative points in state space, acted upon by an evolution operator. Essentially

this means trading in nonlinear dynamical equations on a finite dimensional space

x = (x1, x2 · · · xd) for a linear equation on an infinite dimensional vector space of

density functions ρ(x). For finite times and for maps such densities are evolved by

the Perron-Frobenius operator,

ρ(x, t) =
(

Lt ◦ ρ
)

(x) ,

measure - 9mar2015 ChaosBook.org version15.9, Jun 24 2017

CHAPTER 19. TRANSPORTING DENSITIES 359

and in a differential formulation they satisfy the continuity equation:

∂tρ + ∂ · (ρv) = 0 .

The most physical of stationary measures is the natural measure, a measure robust

under perturbations by weak noise.

For long times the dynamics is described in terms of stationary measures, i.e.,

fixed points of the appropriate evolution operators. Reformulated this way, clas-

sical dynamics takes on a distinctly quantum-mechanical flavor. If the Lyapunov

time (1.1), the time after which the notion of an individual deterministic trajectory

loses meaning, is much shorter than the observation time, the “sharp” observables

are those dual to time, the eigenvalues of evolution operators. This is very much

the same situation as in quantum mechanics; as atomic time scales are so short,

what is measured is the energy, the quantum-mechanical observable dual to the

time. Both in classical and quantum mechanics one has a choice of implementing

dynamical evolution on densities (“Schrödinger picture,” sect. 19.5) or on observ-

ables (“Heisenberg picture,” sect. 20.3 and chapter 21).

In what follows we shall find the second formulation more convenient, but the

alternative is worth keeping in mind when posing and solving invariant density

problems. However, as classical evolution operators are not unitary, their eigen-

functions can be quite singular and difficult to work with. In what follows we

shall learn how to avoid dealing with these eigenstates altogether. As a matter of

fact, what follows will be a labor of radical deconstruction; after having argued

so strenuously here that only smooth measures are “natural,” we shall merrily

proceed to erect the whole edifice of our theory on periodic orbits, i.e., objects

that are δ-functions in state space. The trick is that each comes with an interval, its

neighborhood – periodic points only serve to pin these intervals, just as millimeter

markings on a measuring rod are used to partition a continuum into intervals.

Commentary

Remark 19.1 Ergodic theory: An overview of ergodic theory is outside the scope of

this book: the interested reader may find it useful to consult refs. [19.1, 28.15, 19.4, 19.5].

The existence of time average (19.18) is the basic result of ergodic theory, known as the

Birkhoff theorem, see for example refs. [19.1, 19.25], or the statement of theorem 7.3.1

in ref. [19.12]. The natural measure (19.16) of sect. 19.4.1 is often referred to as the SRB

or Sinai-Ruelle-Bowen measure [A39.1, A1.70, A39.14].

There is much literature on explicit form of natural measure for special classes of

1-dimensional maps [1.19, 19.14, 19.15] - J. M. Aguirregabiria [A2.12], for example,

discusses several families of maps with known smooth measure, and behavior of measure

under smooth conjugacies. As no such explicit formulas exist for higher dimensions and

general dynamical systems, we do not discuss such measures here.

Remark 19.2 Time evolution as a Lie group: Time evolution of sect. 19.5 is an

example of a 1-parameter Lie group. Consult, for example, chapter 2. of ref. [19.13] for a
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clear and pedagogical introduction to Lie groups of transformations. For a discussion of

the bounded semigroups of page 375 see, for example, Marsden and Hughes [19.6].

Remark 19.3 Discretization of the Perron-Frobenius operator operator It is an old

idea of Ulam [19.18] that such an approximation for the Perron-Frobenius operator is a

meaningful one. The piecewise-linear approximation of the Perron-Frobenius operator

(19.11) has been shown to reproduce the spectrum for expanding maps, once finer and

finer Markov partitions are used [19.19, 19.23, 19.20]. The subtle point of choosing a

state space partitioning for a “generic case” is discussed in ref. [19.21, 28.22].

Remark 19.4 The sign convention of the Poisson bracket: The Poisson bracket

is antisymmetric in its arguments and there is a freedom to define it with either sign

convention. When such freedom exists, it is certain that both conventions are in use and

this is no exception. In some texts [A1.65, 19.7] you will see the right hand side of (19.29)

defined as {B, A} so that (19.30) is
dQ

dt
= {Q,H}. Other equally reputable texts [19.24]

employ the convention used here. Landau and Lifshitz [38.2] denote a Poisson bracket by

[A, B], notation that we reserve here for the quantum-mechanical commutator. As long as

one is consistent, there should be no problem.

Remark 19.5 “Anon it lives”? “Anon it lives” refers to a statue of King Leontes’s wife,

Hermione, who died in a fit of grief after he unjustly accused her of infidelity. Twenty

years later, the servant Paulina shows Leontes this statue of Hermione. When he repents,

the statue comes to life. Or perhaps Hermione actually lived and Paulina has kept her

hidden all these years. The text of the play seems deliberately ambiguous. It is probably

a parable for the resurrection of Christ. (John F. Gibson)

19.7 Examples

Example 19.1 Perron-Frobenius operator for a piecewise-linear map: Consider

the expanding 1-dimensional map f (x) of figure 19.3, a piecewise-linear 2–branch map

with slopes Λ0 > 1 and Λ1 = −Λ0/(Λ0 − 1) < −1 : exercise 19.7

f (x) =

{

f0(x) = Λ0 x , x ∈ M0 = [0, 1/Λ0)
f1(x) = Λ1(1 − x) , x ∈ M1 = (1/Λ0, 1] .

(19.37)

Both f (M0) and f (M1) map onto the entire unit intervalM = [0, 1]. We shall refer to

any unimodal map whose critical point maps onto the “left” unstable fixed point x0 as

the “Ulam” map. Assume a piecewise constant density

ρ(x) =

{

ρ0 if x ∈ M0

ρ1 if x ∈ M1
. (19.38)

As can be easily checked using (19.9), the Perron-Frobenius operator acts on this

piecewise constant function as a [2×2] Markov matrix L with matrix elements exercise 19.1

exercise 19.5
(

ρ0

ρ1

)

→ Lρ =

[ 1
|Λ0|

1
|Λ1|

1
|Λ0|

1
|Λ1|

] (

ρ0

ρ1

)

, (19.39)
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stretching both ρ0 and ρ1 over the whole unit interval Λ. In this example the density is

constant after one iteration, so L has only a unit eigenvalue es0 = 1/|Λ0| + 1/|Λ1| = 1,

with constant density eigenvector ρ0 = ρ1. The quantities 1/|Λ0|, 1/|Λ1| are, respec-

tively, the fractions of state space taken up by the |M0|, |M1| intervals. This simple

explicit matrix representation of the Perron-Frobenius operator is a consequence of the

piecewise linearity of f , and the restriction of the densities ρ to the space of piece-

wise constant functions. The example gives a flavor of the enterprize upon which we

are about to embark in this book, but the full story is much subtler: in general, there

will exist no such finite-dimensional representation for the Perron-Frobenius operator.

(continued in example 20.4) click to return: p. ??

Example 19.2 The Hénon attractor natural measure: A numerical calculation of

the natural measure (19.16) for the Hénon attractor (3.17) is given by the histogram

in figure 19.5. The state space is partitioned into many equal-size areasMi, and the

coarse grained measure (19.16) is computed by a long-time iteration of the Hénon map,

and represented by the height of the column over areaMi. What we see is a typical

invariant measure - a complicated, singular function concentrated on a fractal set.click to return: p. ??

Exercises

19.1. Integrating over Dirac delta functions. Check the

delta function integrals in

(a) 1 dimension (19.7),

∫

dx δ(h(x)) =
∑

{x:h(x)=0}

1

|h′(x)| , (19.40)

(b) and in d dimensions (19.8), h : Rd → Rd,
∫

Rd

dx δ(h(x)) =
∑

j

∫

M j

dx δ(h(x))

=
∑

{x:h(x)=0}

1
∣

∣

∣det ∂h(x)
∂x

∣

∣

∣

.(19.41)

whereM j are arbitrarily small regions enclosing

the zeros x j (with x j not on the boundary ∂M j).

For a refresher on Jacobian determinants, read, for

example, Stone and Goldbart Sect. 12.2.2.

(c) The delta function can be approximated by a se-

quence of Gaussians

∫

dx δ(x) f (x) = lim
σ→0

∫

dx
e−

x2

2σ

√
2πσ

f (x) .

Use this approximation to see whether the formal

expression
∫

R

dx δ(x2)

makes sense.

19.2. Derivatives of Dirac delta functions. Consider

δ(k)(x) = ∂k

∂xk δ(x) .

Using integration by parts, determine the value of
∫

R

dx δ′(y) , where y = f (x) − x (19.42)

∫

dx δ(2) (y) =
∑

{x:y(x)=0}

1

|y′|

{

3
(y′′)2

(y′)4
− y′′′

(y′)3

}

(19.43)

∫

dx b(x)δ(2)(y) =
∑

{x:y(x)=0}

1

|y′|

{

b′′

(y′)2
− b′y′′

(y′)3

+b

(

3
(y′′)2

(y′)4
− y′′′

(y′)3

)}

.(19.44)

These formulas are useful for computing effects of weak

noise on deterministic dynamics [19.9].

19.3. Lt generates a semigroup. Check that the Perron-

Frobenius operator has the semigroup property,

∫

M

dzLt2 (y, z)Lt1(z, x) = Lt2+t1 (y, x) , t1, t2 ≥ 0 .
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(19.45)

As the flows in which we tend to be interested are in-

vertible, the L’s that we will use often do form a group,

with t1, t2 ∈ R.

19.4. Escape rate of the tent map.

(a) Calculate by numerical experimentation the log of

the fraction of trajectories remaining trapped in

the interval [0, 1] for the tent map

f (x) = a(1 − 2|x − 0.5|)

for several values of a.

(b) Determine analytically the a dependence of the es-

cape rate γ(a).

(c) Compare your results for (a) and (b).

19.5. Invariant measure. We will compute the invariant

measure for two different piecewise linear maps.

α0 1 0 1

(a) Verify the matrix L representation (19.39).

(b) The maximum value of the first map is 1. Com-

pute an invariant measure for this map.

(c) Compute the leading eigenvalue ofL for this map.

(d) For this map there is an infinite number of in-

variant measures, but only one of them will be

found when one carries out a numerical simula-

tion. Determine that measure, and explain why

your choice is the natural measure for this map.

(e) In the second map the maximum occurs at α =

(3 −
√

5)/2 and the slopes are ±(
√

5 + 1)/2. Find

the natural measure for this map. Show that it is

piecewise linear and that the ratio of its two values

is (
√

5 + 1)/2.

(medium difficulty)

19.6. Escape rate for a flow conserving map. Adjust Λ0,

Λ1 in (19.37) so that the gap between the intervalsM0,

M1 vanishes. Show that the escape rate equals zero in

this situation.

19.7. Eigenvalues of the Perron-Frobenius operator for the

skew full tent map. Show that for the skew full tent

map

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Λ0


Λ1


f (x) =

{

f0(x) = Λ0x , x ∈ M0 = [0, 1/Λ0)

f1(x) = Λ0

Λ0−1
(1 − x) , x ∈ M1 = (1/Λ0, 1] .

(19.46)

the eigenvalues are available analytically, compute the

first few.

19.8. “Kissing disks”∗ (continuation of exercises 9.1 and

9.2) Close off the escape by setting R = 2, and look

in real time at the density of the Poincaré section iter-

ates for a trajectory with a randomly chosen initial con-

dition. Does it look uniform? Should it be uniform?

(Hint - phase-space volumes are preserved for Hamil-

tonian flows by the Liouville theorem). Do you notice

the trajectories that loiter near special regions of phase

space for long times? These exemplify “intermittency,”

a bit of unpleasantness to which we shall return in chap-

ter 29.

19.9. Invariant measure for the Gauss map. Consider

the Gauss map:

f (x) =

{

1
x
−

[

1
x

]

x , 0

0 x = 0
(19.47)

where [ ] denotes the integer part.

(a) Verify that the density

ρ(x) =
1

log 2

1

1 + x

is an invariant measure for the map.

(b) Is it the natural measure?

19.10. A as a generator of translations. Verify that for

a constant velocity field the evolution generator A in

(19.27) is the generator of translations,

etv ∂
∂x a(x) = a(x + tv) .

19.11. Incompressible flows. Show that (19.9) implies that

ρ0(x) = 1 is an eigenfunction of a volume-preserving

flow with eigenvalue s0 = 0. In particular, this im-

plies that the natural measure of hyperbolic and mixing

Hamiltonian flows is uniform. Compare this results with

the numerical experiment of exercise 19.8.
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