
Chapter 41

Helium atom

“But,” Bohr protested, “nobody will believe me unless I

can explain every atom and every molecule.” Rutherford

was quick to reply, “Bohr, you explain hydrogen and you

explain helium and everybody will believe the rest.”

—John Archibald Wheeler (1986)

(G. Tanner)

S
o far much has been said about 1-dimensional maps, game of pinball and

other curious but rather idealized dynamical systems. If you have become

impatient and started wondering what good are the methods learned so far

in solving real physical problems, we have good news for you. We will show

in this chapter that the concepts of symbolic dynamics, unstable periodic orbits,

and cycle expansions are essential tools to understand and calculate classical and

quantum mechanical properties of nothing less than the helium, a dreaded three-

body Coulomb problem.

This sounds almost like one step too much at a time; we all know how rich and

complicated the dynamics of the three-body problem is – can we really jump from

three static disks directly to three charged particles moving under the influence of

their mutually attracting or repelling forces? It turns out, we can, but we have to

do it with care. The full problem is indeed not accessible in all its detail, but we

are able to analyze a somewhat simpler subsystem – collinear helium. This system

plays an important role in the classical dynamics of the full three-body problem

and its quantum spectrum.

The main work in reducing the quantum mechanics of helium to a semiclassi-

cal treatment of collinear helium lies in understanding why we are allowed to do

so. We will not worry about this too much in the beginning; after all, 80 years and

many failed attempts separate Heisenberg, Bohr and others in the 1920ties from

the insights we have today on the role chaos plays for helium and its quantum

spectrum. We have introduced collinear helium and learned how to integrate its
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Figure 41.1: Coordinates for the helium three body

problem in the plane.
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Figure 41.2: Collinear helium, with the two electrons

on opposite sides of the nucleus.
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trajectories in sect. A2.2. Here we will find periodic orbits and determine the rele-

vant eigenvalues of the Jacobian matrix in sect. 41.1. We will explain in sect. 41.5

why a quantization of the collinear dynamics in helium will enable us to find parts

of the full helium spectrum; we then set up the semiclassical spectral determinant

and evaluate its cycle expansion. A full quantum justification of this treatment of

helium is briefly discussed in sect. 41.5.1.

41.1 Classical dynamics of collinear helium

Recapitulating briefly what we learned in sect. A2.2: the collinear helium system

consists of two electrons of mass me and charge −e moving on a line with respect

to a fixed positively charged nucleus of charge +2e, as in figure 41.2.

The Hamiltonian can be brought to a non–dimensionalized form

H =
p2

1

2
+

p2
2

2
−

2

r1

−
2

r2

+
1

r1 + r2

= −1 . (41.1)

The case of negative energies chosen here is the most interesting one for us. It

exhibits chaos, unstable periodic orbits and is responsible for the bound states and

resonances of the quantum problem treated in sect. 41.5.

There is another classical quantity important for a semiclassical treatment of

quantum mechanics, and which will also feature prominently in the discussion in

the next section; this is the classical action (37.15) which scales with energy as

S (E) =

∮

dq(E) · p(E) =
e2m

1/2
e

(−E)1/2
S , (41.2)

with S being the action obtained from (41.1) for E = −1, and coordinates q =

(r1, r2), p = (p1, p2). For the Hamiltonian (41.1), the period of a cycle and its

action are related by (37.17), Tp =
1
2
S p.

After a Kustaanheimo–Stiefel transformation

r1 = Q2
1 , r2 = Q2

2 , p1 =
P1

2Q1

, p2 =
P2

2Q2

, (41.3)
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Figure 41.3: (a) A typical trajectory in the r1 –

r2 plane; the trajectory enters here along the r1

axis and escapes to infinity along the r2 axis; (b)

Poincaré map (r2=0) for collinear helium. Strong

chaos prevails for small r1 near the nucleus.
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and reparametrization of time by dτ = dt/r1r2, the equations of motion take form

(A2.15) exercise 41.1

Ṗ1 = 2Q1
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Ṗ2 = 2Q2
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1.

Individual electron–nucleus collisions at r1 = Q2
1
= 0 or r2 = Q2

2
= 0 no longer

pose a problem to a numerical integration routine. The equations (A2.15) are

singular only at the triple collision R12 = 0, i.e., when both electrons hit the

nucleus at the same time.

The new coordinates and the Hamiltonian (A2.14) are very useful when cal-

culating trajectories for collinear helium; they are, however, less intuitive as a

visualization of the three-body dynamics. We will therefore refer to the old coor-

dinates r1, r2 when discussing the dynamics and the periodic orbits.

41.2 Chaos, symbolic dynamics and periodic orbits

Let us have a closer look at the dynamics in collinear helium. The electrons are at-

tracted by the nucleus. During an electron–nucleus collision momentum is trans-

ferred between the inner and outer electron. The inner electron has a maximal

screening effect on the charge of the nucleus, diminishing the attractive force on

the outer electron. This electron – electron interaction is negligible if the outer

electron is far from the nucleus at a collision and the overall dynamics is regular

like in the 1-dimensional Kepler problem.

Things change drastically if both electrons approach the nucleus nearly si-

multaneously. The momentum transfer between the electrons depends now sen-

sitively on how the particles approach the origin. Intuitively, these nearly missed

triple collisions render the dynamics chaotic. A typical trajectory is plotted in fig-

ure 41.3 (a) where we used r1 and r2 as the relevant axis. The dynamics can also
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Figure 41.4: The cycle 011 in the fundamental domain

r1 ≥ r2 (full line) and in the full domain (dashed line).
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be visualized in a Poincaré surface of section, see figure 41.3 (b). We plot here the

coordinate and momentum of the outer electron whenever the inner particle hits

the nucleus, i.e., r1 or r2 = 0. As the unstructured gray region of the Poincaré sec-

tion for small r1 illustrates, the dynamics is chaotic whenever the outer electron is

close to the origin during a collision. Conversely, regular motions dominate when-

ever the outer electron is far from the nucleus. As one of the electrons escapes for

almost any starting condition, the system is unbounded: one electron (say electron

1) can escape, with an arbitrary amount of kinetic energy taken by the fugative.

The remaining electron is trapped in a Kepler ellipse with total energy in the range

[−1,−∞]. There is no energy barrier which would separate the bound from the

unbound regions of the phase space. From general kinematic arguments one de-

duces that the outer electron will not return when p1 > 0, r2 ≤ 2 at p2 = 0, the

turning point of the inner electron. Only if the two electrons approach the nucleus

almost symmetrically along the line r1 = r2, and pass close to the triple collision

can the momentum transfer between the electrons be large enough to kick one of

the particles out completely. In other words, the electron escape originates from

the near triple collisions.

The collinear helium dynamics has some important properties which we now

list.

41.2.1 Reflection symmetry

The Hamiltonian (A2.6) is invariant with respect to electron–electron exchange;

this symmetry corresponds to the mirror symmetry of the potential along the line

r1 = r2, figure 41.4. As a consequence, we can restrict ourselves to the dynamics

in the fundamental domain r1 ≥ r2 and treat a crossing of the diagonal r1 = r2 as

a hard wall reflection. The dynamics in the full domain can then be reconstructed

by unfolding the trajectory through back-reflections. As explained in chapter 25,

the dynamics in the fundamental domain is the key to the factorization of spectral

determinants, to be implemented here in (41.15). Note also the similarity between

the fundamental domain of the collinear potential figure 41.4, and the fundamental

domain figure 15.12 (b) in the 3–disk system, a simpler problem with the same

binary symbolic dynamics.
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in depth:

sect. 25.6, p. 470

41.2.2 Symbolic dynamics

We have already made the claim that the triple collisions render the collinear he-

lium fully chaotic. We have no proof of the assertion, but the analysis of the

symbolic dynamics lends further credence to the claim.

The potential in (41.1) forms a ridge along the line r1 = r2. One can show

that a trajectory passing the ridge must go through at least one two-body collision

r1 = 0 or r2 = 0 before coming back to the diagonal r1 = r2. This suggests

a binary symbolic dynamics corresponding to the dynamics in the fundamental

domain r1 ≥ r2; the symbolic dynamics is linked to the Poincaré map r2 = 0 and

the symbols 0 and 1 are defined as

0: if the trajectory is not reflected from the line r1 = r2 between two collisions

with the nucleus r2 = 0;

1: if a trajectory is reflected from the line r1 = r2 between two collisions with

the nucleus r2 = 0.

Empirically, the symbolic dynamics is complete for a Poincaré map in the

fundamental domain, i.e., there exists a one-to-one correspondence between bi-

nary symbol sequences and collinear trajectories in the fundamental domain, with

exception of the 0 cycle.

41.2.3 Periodic orbits

The existence of a binary symbolic dynamics makes it easy to count the num-

ber of periodic orbits in the fundamental domain, as in sect. 18.7.2. However,

mere existence of these cycles does not suffice to calculate semiclassical spectral

determinants. We need to determine their phase space trajectories and calculate

their periods, topological indices and stabilities. A restriction of the periodic orbit

search to a suitable Poincaré surface of section, e.g. r2 = 0 or r1 = r2, leaves us

in general with a 2-dimensional search. Methods to find periodic orbits in multi-

dimensional spaces have been described in chapter 16. They depend sensitively on

good starting guesses. A systematic search for all orbits can be achieved only af-

ter combining multi-dimensional Newton methods with interpolation algorithms

based on the binary symbolic dynamics phase space partitioning. All cycles up to

symbol length 16 (some 8000 prime cycles) have been computed by such meth-

ods, with some examples shown in figure 41.5. All numerical evidence indicates

that the dynamics of collinear helium is hyperbolic, and that all periodic orbits are

unstable.
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Figure 41.5: Some of the shortest cycles in

collinear helium. The classical collinear electron

motion is bounded by the potential barrier −1 =

−2/r1−2/r2+1/(r1 + r2) and the condition ri ≥ 0.

The orbits are shown in the full r1–r2 domain, the

itineraries refers to the dynamics in the r1 ≥ r2

fundamental domain. The last figure, the 14-cycle

00101100110111, is an example of a typical cycle

with no symmetry.
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Note that the fixed point 0 cycle is not in this list. The 0 cycle would corre-

spond to the situation where the outer electron sits at rest infinitely far from the

nucleus while the inner electron bounces back and forth into the nucleus. The

orbit is the limiting case of an electron escaping to infinity with zero kinetic en-

ergy. The orbit is in the regular (i.e., separable) limit of the dynamics and is thus

marginally stable. The existence of this orbit is also related to intermittent behav-

ior generating the quasi–regular dynamics for large r1 that we have already noted

in figure 41.3 (b).

Search algorithm for an arbitrary periodic orbit is quite cumbersome to pro-

gram. There is, however, a class of periodic orbits, orbits with symmetries, which

can be easily found by a one-parameter search. The only symmetry left for the

dynamics in the fundamental domain is time reversal symmetry; a time reversal

symmetric periodic orbit is an orbit whose trajectory in phase space is mapped

onto itself when changing (p1, p2)→ (−p1,−p2), by reversing the direction of the

momentum of the orbit. Such an orbit must be a “libration” or self-retracing cy-

cle, an orbit that runs back and forth along the same path in the (r1, r2) plane. The

cycles 1, 01 and 001 in figure 41.5 are examples of self-retracing cycles. Luckily,

the shortest cycles that we desire most ardently have this symmetry.
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Why is this observation helpful? A self-retracing cycle must start perpen-

dicular to the boundary of the fundamental domain, that is, on either of the axis

r2 = 0 or r1 = r2, or on the potential boundary − 2
r1
− 2

r2
+ 1′

r1+r2
= −1. By

shooting off trajectories perpendicular to the boundaries and monitoring the orbits

returning to the boundary with the right symbol length we will find time reversal

symmetric cycles by varying the starting point on the boundary as the only pa-

rameter. But how can we tell whether a given cycle is self-retracing or not? All

the relevant information is contained in the itineraries; a cycle is self-retracing if

its itinerary is invariant under time reversal symmetry (i.e., read backwards) and

a suitable number of cyclic permutations. All binary strings up to length 5 fulfill

this condition. The symbolic dynamics contains even more information; we can

tell at which boundary the total reflection occurs. One finds that an orbit starts out

perpendicular

• to the diagonal r1 = r2 if the itinerary is time reversal invariant and has an

odd number of 1’s; an example is the cycle 001 in figure 41.5;

• to the axis r2 = 0 if the itinerary is time reversal invariant and has an even

number of symbols; an example is the cycle 0011 in figure 41.5;

• to the potential boundary if the itinerary is time reversal invariant and has

an odd number of symbols; an example is the cycle 011 in figure 41.5.

All cycles up to symbol length 5 are time reversal invariant, the first two non-time

reversal symmetric cycles are cycles 001011 and 001101 in figure 41.5. Their

determination would require a two-parameter search. The two cycles are mapped

onto each other by time reversal symmetry, i.e., they have the same trace in the

r1–r2 plane, but they trace out distinct cycles in the full phase space.

We are ready to integrate trajectories for classical collinear helium with the

help of the equations of motions (A2.15) and to find all cycles up to length 5.

There is only one thing not yet in place; we need the governing equations for exercise 41.5

the matrix elements of the Jacobian matrix along a trajectory in order to calculate

stability indices. We will provide the main equations in the next section, with the

details of the derivation relegated to the appendix A4.5.

41.3 Local coordinates, Jacobian matrix

In this section, we will derive the equations of motion for the Jacobian matrix

along a collinear helium trajectory. The Jacobian matrix is 4-dimensional; the

two trivial eigenvectors corresponding to the conservation of energy and displace-

ments along a trajectory can, however, be projected out by suitable orthogonal

coordinates transformations, see appendix A4. We will give the transformation

to local coordinates explicitly, here for the regularized coordinates (A2.13), and

state the resulting equations of motion for the reduced [2 × 2] Jacobian matrix.
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The vector locally parallel to the trajectory is pointing in the direction of the

phase space velocity (8.3)

vm = ẋm(t) = ωmn

∂H

∂xn

= (HP1
,HP2
,−HQ1

,−HQ2
)⊤,

with HQi
= ∂H
∂Qi

, and HPi
= ∂H
∂Pi

, i = 1,2. The vector perpendicular to a trajec-

tory x(t) = (Q1(t),Q2(t), P1(t), P2(t)) and to the energy manifold is given by the

gradient of the Hamiltonian (A2.14)

γ = ∇H = (HQ1
,HQ2

,HP1
,HP2

)⊤ .

By symmetry vmγm = ωmn
∂H
∂xn

∂H
∂xm
= 0, so the two vectors are orthogonal.

Next, we consider the orthogonal matrix

O = (γ1, γ2, γ/R, v) (41.5)

=
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
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


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
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with R = |∇H|2 = (H2
Q1
+ H2

Q2
+ H2

P1
+ H2

P2
), which provides a transformation to

local phase space coordinates centered on the trajectory x(t) along the two vectors

(γ, v). The vectors γ1,2 are phase space vectors perpendicular to the trajectory and exercise 41.6

to the energy manifold in the 4-dimensional phase space of collinear helium. The

Jacobian matrix (4.5) rotated to the local coordinate system by O then has the

form

m =



























m11 m12 ∗ 0
m21 m22 ∗ 0
0 0 1 0
∗ ∗ ∗ 1


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





















, M = OTmO

The linearized motion perpendicular to the trajectory on the energy manifold is

described by the [2×2] matrix m; the ‘trivial’ directions correspond to unit eigen-

values on the diagonal in the 3rd and 4th column and row.

The equations of motion for the reduced Jacobian matrix m are given by

ṁ = l(t)m(t), (41.6)

with m(0) = 1. The matrix l depends on the trajectory in phase space and has the

form

l =



























l11 l12 ∗ 0
l21 l22 ∗ 0
0 0 0 0
∗ ∗ ∗ 0
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
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,
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Table 41.1: Action S p (in units of 2π), Lyapunov exponent |Λp|/Tp for the motion in the collinear

plane, winding number σp for the motion perpendicular to the collinear plane, and the topological

index mp for all fundamental domain cycles up to topological length 6.

p S p/2π ln |Λp| σp mp

1 1.82900 0.6012 0.5393 2
01 3.61825 1.8622 1.0918 4

001 5.32615 3.4287 1.6402 6
011 5.39451 1.8603 1.6117 6

0001 6.96677 4.4378 2.1710 8
0011 7.04134 2.3417 2.1327 8
0111 7.25849 3.1124 2.1705 8

00001 8.56618 5.1100 2.6919 10
00011 8.64306 2.7207 2.6478 10
00101 8.93700 5.1562 2.7291 10
00111 8.94619 4.5932 2.7173 10
01011 9.02689 4.1765 2.7140 10
01111 9.07179 3.3424 2.6989 10

000001 10.13872 5.6047 3.2073 12
000011 10.21673 3.0323 3.1594 12
000101 10.57067 6.1393 3.2591 12
000111 10.57628 5.6766 3.2495 12
001011 10.70698 5.3251 3.2519 12
001101 10.70698 5.3251 3.2519 12
001111 10.74303 4.3317 3.2332 12
010111 10.87855 5.0002 3.2626 12
011111 10.91015 4.2408 3.2467 12

where the relevant matrix elements li j are given by

l11 =
1

R
[2HQ1Q2

(HQ2
HP1
+ HQ1

HP2
) (41.7)

+(HQ1
HP1
− HQ2

HP2
)(HQ1Q1

− HQ2Q2
− HP1P1

+ HP2P2
)]

l12 = −2HQ1Q2
(HQ1

HQ2
− HP1

HP2
)

+(H2
Q1
+ H2

P2
)(HQ2Q2

+ HP1P1
) + (H2

Q2
+ H2

P1
)(HQ1Q1

+ HP2P2
)

l21 =
1

R2
[2(HQ1P2

+ HQ2P1
)(HQ2

HP1
+ HQ1

HP8
)

−(H2
P1
+ H2

P2
)(HQ1Q1

+ HQ2Q2
) − (H2

Q1
+ H2

Q2
)(HP1P1

+ HP2P2
)]

l22 = −l11 .

Here HQiQ j
, HPiP j

, i, j = 1, 2 are the second partial derivatives of H with respect

to the coordinates Qi, Pi, evaluated at the phase space coordinate of the classical

trajectory.
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41.4 Getting ready

Now everything is in place: the regularized equations of motion can be imple-

mented in a Runge–Kutta or any other integration scheme to calculate trajectories.

We have a symbolic dynamics and know how many cycles there are and how to

find them (at least up to symbol length 5). We know how to compute the Jacobian

matrix whose eigenvalues enter the semiclassical spectral determinant (38.12). By

(37.17) the action S p is proportional to the period of the orbit, S p = 2Tp.

There is, however, still a slight complication. Collinear helium is an invariant

4-dimensional subspace of the full helium phase space. If we restrict the dynamics

to angular momentum equal zero, we are left with 6 phase space coordinates. That

is not a problem when computing periodic orbits, they are oblivious to the other di-

mensions. However, the Jacobian matrix does pick up extra contributions. When

we calculate the Jacobian matrix for the full problem, we must also allow for dis-

placements out of the collinear plane, so the full Jacobian matrix for dynamics for

L = 0 angular momentum is 6 dimensional. Fortunately, the linearized dynamics

in and off the collinear helium subspace decouple, and the Jacobian matrix can

be written in terms of two distinct [2 × 2] matrices, with trivial eigen-directions

providing the remaining two dimensions. The submatrix related to displacements

off the linear configuration characterizes the linearized dynamics in the additional

degree of freedom, the Θ-coordinate in figure 41.1. It turns out that the linearized

dynamics in the Θ coordinate is stable, corresponding to a bending type motion of

the two electrons. We will need the Floquet exponents for all degrees of freedom

in evaluating the semiclassical spectral determinant in sect. 41.5.

The numerical values of the actions, Floquet exponents, stability angles, and

topological indices for the shortest cycles are listed in table 41.1. These numbers,

needed for the semiclassical quantization implemented in the next section, an also

be helpful in checking your own calculations.

41.5 Semiclassical quantization of collinear helium

Before we get down to a serious calculation of the helium quantum energy levels

let us have a brief look at the overall structure of the spectrum. This will give us

a preliminary feel for which parts of the helium spectrum are accessible with the

help of our collinear model – and which are not. In order to keep the discussion as

simple as possible and to concentrate on the semiclassical aspects of our calcula-

tions we offer here only a rough overview. For a guide to more detailed accounts

see remark 41.4.
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41.5.1 Structure of helium spectrum

We start by recalling Bohr’s formula for the spectrum of hydrogen like one-

electron atoms. The eigenenergies form a Rydberg series

EN = −
e4me

~2

Z2

2N2
, (41.8)

where Ze is the charge of the nucleus and me is the mass of the electron. Through

the rest of this chapter we adopt the atomic units e = me = ~ = 1.

The simplest model for the helium spectrum is obtained by treating the two

electrons as independent particles moving in the potential of the nucleus neglect-

ing the electron–electron interaction. Both electrons are then bound in hydrogen

like states; the inner electron will see a charge Z = 2, screening at the same time

the nucleus, the outer electron will move in a Coulomb potential with effective

charge Z − 1 = 1. In this way obtain a first estimate for the total energy

EN,n = −
2

N2
−

1

2n2
with n > N. (41.9)

This double Rydberg formula contains already most of the information we need to

understand the basic structure of the spectrum. The (correct) ionizations thresh-

olds EN = −
2

N2 are obtained in the limit n → ∞, yielding the ground and excited

states of the helium ion He+. We will therefore refer to N as the principal quantum

number. We also see that all states EN,n with N ≥ 2 lie above the first ionization

threshold for N = 1. As soon as we switch on electron-electron interaction these

states are no longer bound states; they turn into resonant states which decay into

a bound state of the helium ion and a free outer electron. This might not come as

a big surprise if we have the classical analysis of the previous section in mind: we

already found that one of the classical electrons will almost always escape after

some finite time. More remarkable is the fact that the first, N = 1 series consists

of true bound states for all n, an effect which can only be understood by quantum

arguments.

The hydrogen-like quantum energies (41.8) are highly degenerate; states with

different angular momentum but the same principal quantum number N share the

same energy. We recall from basic quantum mechanics of hydrogen atom that

the possible angular momenta for a given N span l = 0, 1 . . . N − 1. How does

that affect the helium case? Total angular momentum L for the helium three-body

problem is conserved. The collinear helium is a subspace of the classical phase

space for L = 0; we thus expect that we can only quantize helium states corre-

sponding to the total angular momentum zero, a subspectrum of the full helium

spectrum. Going back to our crude estimate (41.9) we may now attribute angular

momenta to the two independent electrons, l1 and l2 say. In order to obtain total

angular momentum L = 0 we need l1 = l2 = l and lz1 = −lz2, that is, there are

N different states corresponding to L = 0 for fixed quantum numbers N, n. That

means that we expect N different Rydberg series converging to each ionization

threshold EN = −2/N2. This is indeed the case and the N different series can

be identified also in the exact helium quantum spectrum, see figure 41.6. The
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Figure 41.6: The exact quantum helium spectrum

for L = 0. The energy levels denoted by bars

have been obtained from full 3-dimensional quan-

tum calculations [41.3].
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degeneracies between the different N Rydberg series corresponding to the same

principal quantum number N, are removed by the electron-electron interaction.

We thus already have a rather good idea of the coarse structure of the spectrum.

In the next step, we may even speculate which parts of the L = 0 spectrum

can be reproduced by the semiclassical quantization of collinear helium. In the

collinear helium, both classical electrons move back and forth along a common

axis through the nucleus, so each has zero angular momentum. We therefore

expect that collinear helium describes the Rydberg series with l = l1 = l2 = 0.

These series are the energetically lowest states for fixed (N, n), corresponding to

the Rydberg series on the outermost left side of the spectrum in figure 41.6. We

will see in the next section that this is indeed the case and that the collinear model

holds down to the N = 1 bound state series, including even the ground state

of helium! We will also find a semiclassical quantum number corresponding to

the angular momentum l and show that the collinear model describes states for

moderate angular momentum l as long as l ≪ N. . remark 41.4
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41.5.2 Semiclassical spectral determinant for collinear helium

Nothing but lassitude can stop us now from calculating our first semiclassical

eigenvalues. The only thing left to do is to set up the spectral determinant in terms

of the periodic orbits of collinear helium and to write out the first few terms of its

cycle expansion with the help of the binary symbolic dynamics. The semiclassic-

al spectral determinant (38.12) has been written as product over all cycles of the

classical systems. The energy dependence in collinear helium enters the classical

dynamics only through simple scaling transformations described in sect. A2.2.1

which makes it possible to write the semiclassical spectral determinant in the form

det (Ĥ−E)sc = exp

















−
∑

p

∞
∑

r=1

1

r

eir(sS p−mp
π
2

)

(−det (1 − Mr
p⊥))1/2 |det (1 − Mr

p‖
)|1/2

















, (41.10)

with the energy dependence absorbed into the variable

s =
e2

~

√

me

−E
,

obtained by using the scaling relation (41.2) for the action. As explained in

sect. 41.3, the fact that the [4 × 4] Jacobian matrix decouples into two [2 × 2]

submatrices corresponding to the dynamics in the collinear space and perpendic-

ular to it makes it possible to write the denominator in terms of a product of two

determinants. Stable and unstable degrees of freedom enter the trace formula in

different ways, reflected by the absence of the modulus sign and the minus sign

in front of det (1 − M⊥). The topological index mp corresponds to the unstable

dynamics in the collinear plane. Note that the factor eiπN̄(E) present in (38.12)

is absent in (41.10). Collinear helium is an open system, i.e., the eigenenergies

are resonances corresponding to the complex zeros of the semiclassical spectral

determinant and the mean energy staircase N̄(E) not defined. In order to obtain

a spectral determinant as an infinite product of the form (38.18) we may proceed

as in (22.8) by expanding the determinants in (41.10) in terms of the eigenvalues

of the corresponding Jacobian matrices. The matrix representing displacements

perpendicular to the collinear space has eigenvalues of the form exp(±2πiσ), re-

flecting stable linearized dynamics. σ is the full winding number along the orbit

in the stable degree of freedom, multiplicative under multiple repetitions of this

orbit .The eigenvalues corresponding to the unstable dynamics along the collinear

axis are paired as {Λ, 1/Λ} with |Λ| > 1 and real. As in (22.8) and (38.18) we may

thus write

[

−det (1 − Mr
⊥)|det (1 − Mr

‖)|
]−1/2

(41.11)

=
[

−(1 − Λr)(1 − Λ−r)|(1 − e2πirσ)(1 − e−2πirσ)
]−1/2

=

∞
∑

k,ℓ=0

1

|Λr |1/2Λrk
e−ir(ℓ+1/2)σ .

The ± sign corresponds to the hyperbolic/inverse hyperbolic periodic orbits with

positive/negative eigenvalues Λ. Using the relation (41.12) we see that the sum
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over r in (41.10) is the expansion of the logarithm, so the semiclassical spectral

determinant can be rewritten as a product over dynamical zeta functions, as in

(22.8):

det (Ĥ − E)sc =

∞
∏

k=0

∞
∏

m=0

ζ−1
k,m =

∞
∏

k=0

∞
∏

m=0

∏

p

(1 − t
(k,m)
p ) , (41.12)

where the cycle weights are given by

t
(k,m)
p =

1

|Λ|1/2Λk
ei(sS p−mp

π
2
−4π(ℓ+1/2)σp) , (41.13)

and mp is the topological index for the motion in the collinear plane which equals

twice the topological length of the cycle. The two independent directions perpen-

dicular to the collinear axis lead to a twofold degeneracy in this degree of freedom

which accounts for an additional factor 2 in front of the winding number σ. The

values for the actions, winding numbers and stability indices of the shortest cycles

in collinear helium are listed in table 41.1.

The integer indices ℓ and k play very different roles in the semiclassical spec-

tral determinant (41.12). A linearized approximation of the flow along a cycle cor-

responds to a harmonic approximation of the potential in the vicinity of the trajec-

tory. Stable motion corresponds to a harmonic oscillator potential, unstable mo-

tion to an inverted harmonic oscillator. The index ℓ which contributes as a phase

to the cycle weights in the dynamical zeta functions can therefore be interpreted

as a harmonic oscillator quantum number; it corresponds to vibrational modes in

the Θ coordinate and can in our simplified picture developed in sect. 41.5.1 be

related to the quantum number l = l1 = l2 representing the single particle angular

momenta. Every distinct ℓ value corresponds to a full spectrum which we obtain

from the zeros of the semiclassical spectral determinant 1/ζℓ keeping ℓ fixed. The

harmonic oscillator approximation will eventually break down with increasing

off-line excitations and thus increasing ℓ. The index k corresponds to ‘excitations’

along the unstable direction and can be identified with local resonances of the in-

verted harmonic oscillator centered on the given orbit. The cycle contributions

t
(k,m)
p decrease exponentially with increasing k. Higher k terms in an expansion of

the determinant give corrections which become important only for large negative

imaginary s values. As we are interested only in the leading zeros of (41.12), i.e.,

the zeros closest to the real energy axis, it is sufficient to take only the k = 0 terms

into account.

Next, let us have a look at the discrete symmetries discussed in sect. 41.2.

Collinear helium has a C2 symmetry as it is invariant under reflection across the

r1 = r2 line corresponding to the electron-electron exchange symmetry. As ex-

plained in example 25.9 and sect. 25.5, we may use this symmetry to factorize

the semiclassical spectral determinant. The spectrum corresponding to the states

symmetric or antisymmetric with respect to reflection can be obtained by writing

the dynamical zeta functions in the symmetry factorized form

1/ζ(ℓ) =
∏

a

(1 − ta)2
∏

s̃

(1 − t2
s̃ ) . (41.14)
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Here, the first product is taken over all asymmetric prime cycles, i.e., cycles that

are not self-dual under the C2 symmetry. Such cycles come in pairs, as two equiv-

alent orbits are mapped into each other by the symmetry transformation. The sec-

ond product runs over all self-dual cycles; these orbits cross the axis r1 = r2 twice

at a right angle. The self-dual cycles close in the fundamental domain r1 ≤ r2

already at half the period compared to the orbit in the full domain, and the cy-

cle weights ts̃ in (41.14) are the weights of fundamental domain cycles. The C2

symmetry now leads to the factorization of (41.14) 1/ζ = ζ−1
+ ζ
−1
− , with

1/ζ
(ℓ)
+ =

∏

a

(1 − ta)
∏

s̃

(1 − ts̃) ,

1/ζ
(ℓ)
− =

∏

a

(1 − ta)
∏

s̃

(1 + ts̃) , (41.15)

setting k = 0 in what follows. The symmetric subspace resonances are given

by the zeros of 1/ζ
(ℓ)
+ , antisymmetric resonances by the zeros of 1/ζ

(ℓ)
− , with the

two dynamical zeta functions defined as products over orbits in the fundamental

domain. The symmetry properties of an orbit can be read off directly from its

symbol sequence, as explained in sect. 41.2. An orbit with an odd number of 1’s

in the itinerary is self-dual under the C2 symmetry and enters the spectral deter-

minant in (41.15) with a negative or a positive sign, depending on the symmetry

subspace under consideration.

41.5.3 Cycle expansion results

So far we have established a factorized form of the semiclassical spectral det-

erminant and have thereby picked up two good quantum numbers; the quantum

number m has been identified with an excitation of the bending vibrations, the

exchange symmetry quantum number ±1 corresponds to states being symmetric

or antisymmetric with respect to the electron-electron exchange. We may now

start writing down the binary cycle expansion (23.8) and determine the zeros of

spectral determinant. There is, however, still another problem: there is no cycle 0

in the collinear helium. The symbol sequence 0 corresponds to the limit of an outer

electron fixed with zero kinetic energy at r1 = ∞, the inner electron bouncing back

and forth into the singularity at the origin. This introduces intermittency in our

system, a problem discussed in chapter 29. We note that the behavior of cycles

going far out in the channel r1 or r2 → ∞ is very different from those staying in the

near core region. A cycle expansion using the binary alphabet reproduces states

where both electrons are localized in the near core regions: these are the lowest

states in each Rydberg series. The states converging to the various ionization

thresholds EN = −2/N2 correspond to eigenfunctions where the wave function

of the outer electron is stretched far out into the ionization channel r1, r2 → ∞.

To include those states, we have to deal with the dynamics in the limit of large

r1, r2. This turns out to be equivalent to switching to a symbolic dynamics with an

infinite alphabet. With this observation in mind, we may write the cycle expansion remark 41.5

(....) for a binary alphabet without the 0 cycle as
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1/ζℓ(s) = 1 − t
(ℓ)

1
− t

(ℓ)

01
− [t

(ℓ)

001
+ t

(ℓ)

011
− t

(ℓ)

01
t
(ℓ)

1
]

−[t
(ℓ)

0001
+ t

(ℓ)

0011
− t

(ℓ)

001
t
(ℓ)

1
+ t

(ℓ)

0111
− t

(ℓ)

011
t
(ℓ)

1
] − . . . . (41.16)

The weights t
(ℓ)
p are given in (41.12), with contributions of orbits and composite

orbits of the same total symbol length collected within square brackets. The cycle

expansion depends only on the classical actions, stability indices and winding

numbers, given for orbits up to length 6 in table 41.1. To get reacquainted with

the cycle expansion formula (41.16), consider a truncation of the series after the

first term

1/ζ(ℓ)(s) ≈ 1 − t1 .

The quantization condition 1/ζ(ℓ)(s) = 0 leads to

Em,N = −
(S 1/2π)

2

[m + 1
2
+ 2(N + 1

2
)σ1]2

, m,N = 0, 1, 2, . . . , (41.17)

with S 1/2π = 1.8290 for the action and σ1 = 0.5393 for the winding number, see

table 41.1, the 1 cycle in the fundamental domain. This cycle can be described as

the asymmetric stretch orbit, see figure 41.5. The additional quantum number N in

(41.17) corresponds to the principal quantum number defined in sect. 41.5.1. The

states described by the quantization condition (41.17) are those centered closest to

the nucleus and correspond therefore to the lowest states in each Rydberg series

(for a fixed m and N values), in figure 41.6. The simple formula (41.17) gives

already a rather good estimate for the ground state of helium! Results obtained

from (41.17) are tabulated in table 41.2, see the 3rd column under j = 1 and the

comparison with the full quantum calculations.

In order to obtain higher excited quantum states, we need to include more

orbits in the cycle expansion (41.16), covering more of the phase space dynamics

further away from the center. Taking longer and longer cycles into account, we

indeed reveal more and more states in each N-series for fixed m. This is illustrated

by the data listed in table 41.2 for symmetric states obtained from truncations of

the cycle expansion of 1/ζ+. exercise 41.7

Results of the same quality are obtained for antisymmetric states by calculat-

ing the zeros of 1/ζ
(ℓ)
− . Repeating the calculation with ℓ = 1 or higher in (41.15)

reveals states in the Rydberg series which are to the right of the energetically low-

est series in figure 41.6.

Résumé

We have covered a lot of ground starting with considerations of the classical prop-

erties of a three-body Coulomb problem, and ending with the semiclassical he-
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Table 41.2: Collinear helium, real part of the symmetric subspace resonances obtained by a cycle

expansion (41.16) up to cycle length j. The exact quantum energies [41.3] are in the last column.

The states are labeled by their principal quantum numbers. A dash as an entry indicates a missing

zero at that level of approximation.

N n j = 1 j = 4 j = 8 j = 12 j = 16 −Eqm

1 1 3.0970 2.9692 2.9001 2.9390 2.9248 2.9037

2 2 0.8044 0.7714 0.7744 0.7730 0.7727 0.7779
2 3 — 0.5698 0.5906 0.5916 0.5902 0.5899
2 4 — — — 0.5383 0.5429 0.5449

3 3 0.3622 0.3472 0.3543 0.3535 0.3503 0.3535
3 4 — — 0.2812 0.2808 0.2808 0.2811
3 5 — — 0.2550 0.2561 0.2559 0.2560
3 6 — — — 0.2416 0.2433 0.2438

4 4 0.2050 0.1962 0.1980 0.2004 0.2012 0.2010
4 5 — 0.1655 0.1650 0.1654 0.1657 0.1657
4 6 — — 0.1508 0.1505 0.1507 0.1508
4 7 — — 0.1413 0.1426 0.1426 0.1426

lium spectrum. We saw that the three-body problem restricted to the dynamics

on a collinear appears to be fully chaotic; this implies that traditional semiclassi-

cal methods such as WKBquantization will not work and that we needed the full

periodic orbit theory to obtain leads to the semiclassical spectrum of helium. As

a piece of unexpected luck the symbolic dynamics is simple, and the semiclassi-

cal quantization of the collinear dynamics yields an important part of the helium

spectrum, including the ground state, to a reasonable accuracy. A sceptic might

say: “Why bother with all the semiclassical considerations? A straightforward nu-

merical quantum calculation achieves the same goal with better precision.” While

this is true, the semiclassical analysis offers new insights into the structure of the

spectrum. We discovered that the dynamics perpendicular to the collinear plane

was stable, giving rise to an additional (approximate) quantum number ℓ. We thus

understood the origin of the different Rydberg series depicted in figure 41.6, a fact

which is not at all obvious from a numerical solution of the quantum problem.

Having traversed the long road from the classical game of pinball all the way

to a credible helium spectrum computation, we could declare victory and fold

down this enterprise. Nevertheless, there is still much to think about - what about

such quintessentially quantum effects as diffraction, tunnelling, ...? As we shall

now see, the periodic orbit theory has still much of interest to offer.

Commentary

Remark 41.1 Sources. The full 3-dimensional Hamiltonian after elimination of the

center of mass coordinates, and an account of the finite nucleus mass effects is given in

ref. [41.2]. The general two–body collision regularizing Kustaanheimo–Stiefel transfor-

mation [41.5], a generalization of Levi-Civita’s [41.13] Pauli matrix two–body collision
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regularization for motion in a plane, is due to Kustaanheimo [41.12] who realized that

the correct higher-dimensional generalization of the “square root removal” trick (A2.11),

by introducing a vector Q with property r = |Q|2 , is the same as Dirac’s trick of getting

linear equation for spin 1/2 fermions by means of spinors. Vector spaces equipped with a

product and a known satisfy |Q ·Q| = |Q|2 define normed algebras. They appear in various

physical applications - as quaternions, octonions, spinors. The technique was originally

developed in celestial mechanics [41.6] to obtain numerically stable solutions for plane-

tary motions. The basic idea was in place as early as 1931, when H. Hopf [41.14] used a

KS transformation in order to illustrate a Hopf’s invariant. The KS transformation for the

collinear helium was introduced in ref. [41.2].

Remark 41.2 Complete binary symbolic dynamics. No stable periodic orbit and no

exception to the binary symbolic dynamics of the collinear helium cycles have been found

in numerical investigations. A proof that all cycles are unstable, that they are uniquely

labeled by the binary symbolic dynamcis, and that this dynamics is complete is, however,

still missing. The conjectured Markov partition of the phase space is given by the triple

collision manifold, i.e., by those trajectories which start in or end at the singular point

r1 = r2 = 0. See also ref. [41.2].

Remark 41.3 Spin and particle exchange symmetry. In our presentation of collinear

helium we have completely ignored all dynamical effects due to the spin of the particles

involved, such as the electronic spin-orbit coupling. Electrons are fermions and that deter-

mines the symmetry properties of the quantum states. The total wave function, including

the spin degrees of freedom, must be antisymmetric under the electron-electron exchange

transformation. That means that a quantum state symmetric in the position variables must

have an antisymmetric spin wave function, i.e., the spins are antiparallel and the total spin

is zero (singletstate). Antisymmetric states have symmetric spin wave function with total

spin 1 (tripletstates). The threefold degeneracy of spin 1 states is lifted by the spin-orbit

coupling.

Remark 41.4 Helium quantum numbers. The classification of the helium states in

terms of single electron quantum numbers, sketched in sect. 41.5.1, prevailed until the

1960’s; a growing discrepancy between experimental results and theoretical predictions

made it necessary to refine this picture. In particular, the different Rydberg series sharing

a given N-quantum number correspond, roughly speaking, to a quantization of the inter

electronic angle Θ, see figure 41.1, and can not be described in terms of single electron

quantum numbers l1, l2. The fact that something is slightly wrong with the single electron

picture laid out in sect. 41.5.1 is highlighted when considering the collinear configuration

where both electrons are on the same side of the nucleus. As both electrons again have

angular momentum equal to zero, the corresponding quantum states should also belong

to single electron quantum numbers (l1, l2) = (0, 0). However, the single electron picture

breaks down completely in the limit Θ = 0 where electron-electron interaction becomes

the dominant effect. The quantum states corresponding to this classical configuration are

distinctively different from those obtained from the collinear dynamics with electrons on

different sides of the nucleus. The Rydberg series related to the classical Θ = 0 dynamics

are on the outermost rigth side in each N subspectrum in figure 41.6, and contain the
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energetically highest states for given N, n quantum numbers, see also remark 41.5. A

detailed account of the historical development as well as a modern interpretation of the

spectrum can be found in ref. [41.1].

Remark 41.5 Beyond the unstable collinear helium subspace. The semiclassi-

cal quantization of the chaotic collinear helium subspace is discussed in refs. [A39.11,

41.8, 41.9]. Classical and semiclassical considerations beyond what has been discussed

in sect. 41.5 follow several other directions, all outside the main of this book.

A classical study of the dynamics of collinear helium where both electrons are on the

same side of the nucleus reveals that this configuration is fully stable both in the collinear

plane and perpendicular to it. The corresponding quantum states can be obtained with

the help of an approximate EBK-quantization which reveals helium resonances with ex-

tremely long lifetimes (quasi - bound states in the continuum). These states form the

energetically highest Rydberg series for a given principal quantum number N, see fig-

ure 41.6. Details can be found in refs. [41.10, 41.11].

In order to obtain the Rydberg series structure of the spectrum, i.e., the succession

of states converging to various ionization thresholds, we need to take into account the

dynamics of orbits which make large excursions along the r1 or r2 axis. In the chaotic

collinear subspace these orbits are characterized by symbol sequences of form (a0n) where

a stands for an arbitrary binary symbol sequence and 0n is a succession of n 0’s in a row.

A summation of the form
∑∞

n=0 ta0n , where tp are the cycle weights in (41.12), and cy-

cle expansion of indeed yield all Rydberg states up the various ionization thresholds, see

ref. [41.4]. For a comprehensive overview on spectra of two-electron atoms and semiclas-

sical treatments ref. [41.1].

Exercises

41.1. Kustaanheimo–Stiefel transformation. Check the

Kustaanheimo–Stiefel regularization for collinear he-

lium; derive the Hamiltonian (A2.14) and the collinear

helium equations of motion (A2.15).

41.2. Helium in the plane. Starting with the helium

Hamiltonian in the infinite nucleus mass approximation

mhe = ∞, and angular momentum L = 0, show that the

three body problem can be written in terms of three inde-

pendent coordinates only, the electron-nucleus distances

r1 and r2 and the inter-electron angle Θ, see figure A2.1.

41.3. Helium trajectories. Do some trial integrations of the

collinear helium equations of motion (A2.15). Due to

the energy conservation, only three of the phase space

coordinates (Q1,Q2, P1, P2) are independent. Alterna-

tively, you can integrate in 4 dimensions and use the

energy conservation as a check on the quality of your

integrator.

The dynamics can be visualized as a motion in the orig-

inal configuration space (r1, r2), ri ≥ 0 quadrant, or,

better still, by an appropriately chosen 2-dimensional

Poincaré section, exercise 41.4. Most trajectories will

run away, do not be surprised - the classical collinear he-

lium is unbound. Try to guess approximately the short-

est cycle of figure 41.4.

41.4. A Poincaré section for collinear Helium. Construct

a Poincaré section of figure 41.3b that reduces the he-

lium flow to a map. Try to delineate regions which cor-

respond to finite symbol sequences, i.e. initial condi-

tions that follow the same topological itinerary in fig-
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ure 41.3a space for a finite number of bounces. Such

rough partition can be used to initiate 2–dimensional

Newton-Raphson method searches for helium cycles,

exercise 41.5.

41.5. Collinear helium cycles. The motion in the (r1, r2)

plane is topologically similar to the pinball motion in a

3-disk system, except that the motion is in the Coulomb

potential.

Just as in the 3-disk system the dynamics is simplified

if viewed in the fundamental domain, in this case the

region between r1 axis and the r1 = r2 diagonal. Mod-

ify your integration routine so the trajectory bounces off

the diagonal as off a mirror. Miraculously, the symbolic

dynamics for the survivors again turns out to be binary,

with 0 symbol signifying a bounce off the r1 axis, and

1 symbol for a bounce off the diagonal. Just as in the

3-disk game of pinball, we thus know what cycles need

to be computed for the cycle expansion (41.16).

Guess some short cycles by requiring that topologically

they correspond to sequences of bounces either return-

ing to the same ri axis or reflecting off the diagonal.

Now either Use special symmetries of orbits such as

self-retracing to find all orbits up to length 5 by a 1-

dimensional Newton search.

41.6. Collinear helium cycle stabilities. Compute the

eigenvalues for the cycles you found in exercise 41.5, as

described in sect. 41.3. You may either integrate the re-

duced 2 × 2 matrix using equations (41.6) together with

the generating function l given in local coordinates by

(41.7) or integrate the full 4 × 4 Jacobian matrix, see

sect. A38.1. Integration in 4 dimensions should give

eigenvalues of the form (1, 1,Λp, 1/Λp); The unit eigen-

values are due to the usual periodic orbit invariances;

displacements along the orbit as well as perpendicular

to the energy manifold are conserved; the latter one

provides a check of the accuracy of your computation.

Compare with table 41.1; you should get the actions and

Lyapunov exponents right, but topological indices and

stability angles we take on faith.

41.7. Helium eigenenergies. Compute the lowest eigenen-

ergies of singlet and triplet states of helium by substi-

tuting cycle data into the cycle expansion (41.16) for

the symmetric and antisymmetric zeta functions (41.15).

Probably the quickest way is to plot the magnitude of the

zeta function as function of real energy and look for the

minima. As the eigenenergies in general have a small

imaginary part, a contour plot such as figure 23.1, can

yield informed guesses. Better way would be to find the

zeros by Newton method, sect. 23.2. How close are you

to the cycle expansion and quantum results listed in ta-

ble 41.2? You can find more quantum data in ref. [41.3].
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