
Chapter 27

Why cycle?

“Progress was a labyrinth ... people plunging blindly in

and then rushing wildly back, shouting that they had found

it ... the invisible king - the élan vital - the principle of

evolution ... writing a book, starting a war, founding a

school....”

—F. Scott Fitzgerald, This Side of Paradise

I
n the preceding chapters we have moved rather briskly through the evolution

operator formalism. Here we slow down in order to develop some fingertip

feeling for the traces of evolution operators. It is a melancholy task, as the

“intuition” garnered by these heuristic approximations is in all ways inferior to

the straightforward and exact theory developed so far. But, it has to be done, as

there is immense literature out there that deploys these heuristic estimates, most

of it of it uninspired, some of it plain wrong, and the reader should be able to

understand and sort through that literature. We start out by explaining qualitatively

how local exponential instability of topologically distinct trajectories leads to a

global exponential instability.

27.1 Escape rates

We start by verifying the claim (20.10) that for a nice hyperbolic flow the trace of

the evolution operator grows exponentially with time. Consider again the game

of pinball in figure 1.1. Designate byM a region of state space that encloses the

three disks, such as the surface of the table along with all pinball directions. The

fraction of initial points whose trajectories start within M and recur within that

region at the time t is given by

Γ̂M(t) =
1

|M|

∫ ∫

M

dxdy δ
(

y − f t(x)
)

. (27.1)

This quantity is both measurable and physically interesting in a variety of prob-

lems spanning nuclear physics to celestial mechanics. The integral over x takes
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care of all possible initial pinballs; the integral over y checks whether they are

still withinM by time t. If the dynamics is bounded, andM envelops the entire

accessible state space, Γ̂M(t) = 1 for all t. However, if trajectories exit M, the

recurrence fraction decreases with time. For example, any trajectory that falls off

the pinball table in figure 1.1 is gone for good.

These observations can be made more concrete by examining the pinball

phase-space of figure 1.9. With each pinball bounce the initial conditions that

survive get thinned out, each strip yielding two thinner strips within it. The total

fraction of survivors (1.2) after n bounces is given by

Γ̂n =
1

|M|

(n)
∑

i

|Mi| , (27.2)

where i is a binary label of the ith strip, and |Mi| is the area of the ith strip. Phase-

space volume is preserved by the flow, so the strips of survivors are contracted

along the stable eigen-directions and ejected along the unstable eigen-directions.

As a crude estimate of the number of survivors in the ith strip, assume that a ray

of trajectories spreads by a factor Λ after every bounce. The quantity Λ represents

the mean value of the expanding eigenvalue of the corresponding Jacobian matrix

of the flow. We replace |Mi| by the phase-space strip width estimate |Mi|/|M| ∼

1/Λi, which is right in spirit but not without drawbacks. For example, in general

the eigenvalues of a Jacobian matrix for a finite segment of a trajectory have no

invariant meaning; they depend on the choice of coordinates. However, we saw

in chapter 21 that neighborhood sizes are determined by Floquet multipliers of

periodic points, which are invariant under smooth coordinate transformations.

In the approximation Γ̂n receives 2n contributions of equal size

Γ̂1 ∼
1

Λ
+

1

Λ
, · · · , Γ̂n ∼

2n

Λn
= e−n(λ−h)

= e−nγ , (27.3)

up to pre-exponential factors. We see here the interplay of the two key ingredients

of chaos first mentioned in sect. 1.3.1: the escape rate γ equals the local expansion

rate (the Lyapunov exponent λ = lnΛ) minus the rate of global reinjection back

into the system (the topological entropy h = ln 2).

At each bounce one routinely loses the same fraction of trajectories, so one

expects the sum (27.2) to decay exponentially with n. More precisely, by the

hyperbolicity assumption of sect. 21.1.1, the expanding eigenvalue of the Jacobian

matrix of the flow is exponentially bounded from both above and below,

1 < |Λmin| ≤ |Λ(x)| ≤ |Λmax| , (27.4)

and the area of each strip in (27.2) is bounded by |Λ
−n
max| ≤ |Mi| ≤ |Λ

−n

min
|. Replac-

ing |Mi| in (27.2) by its estimates in terms of |Λmax| and |Λmin| immediately leads

to exponential bounds (2/|Λmax |)
n ≤ Γ̂n ≤ (2/|Λmin |)

n , i.e.,

ln |Λmax| − ln 2 ≥ −
1

n
ln Γ̂n ≥ ln |Λmin| − ln 2 . (27.5)
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The argument based on (27.5) establishes only that the sequence γn = −
1
n

ln Γn

has a lower and an upper bound for any n. In order to prove that γn converge to the

limit γ, we first show that for hyperbolic systems the sum over surviving intervals

(27.2) can be replaced by a sum over periodic orbit stabilities. By (27.4) the size

of the stripMi can be bounded by the stability Λi of the ith periodic point:

C1

1

|Λi|
<
|Mi|

|M|
< C2

1

|Λi|
, (27.6)

for any periodic point i of period n, with constants C j dependent on the dynamical

system but independent of n. The meaning of these bounds is that for increasingly

long cycles in a system of bounded hyperbolicity, the shrinking of the ith strip is

better approximated by the derivatives evaluated on the periodic point within the

strip. Hence, the survival probability can be bounded close to the periodic point

stability sum

Ĉ1 Γn <

(n)
∑

i

|Mi|

|M|
< Ĉ2 Γn , (27.7)

where Γn =
∑(n)

i
1/|Λi| is the asymptotic trace sum (21.22). This establishes that

for hyperbolic systems the survival probability sum (27.2) can be replaced by the

periodic orbit sum (21.22). exercise 27.1

exercise 19.4

We conclude that for hyperbolic, locally unstable flows the fraction (27.1) of

initial x whose trajectories remain trapped within M up to time t is expected to

decay exponentially,

ΓM(t) ∝ e−γt ,

where γ is the asymptotic escape rate defined by

γ = − lim
t→∞

1

t
ln ΓM(t) . (27.8)

27.2 Natural measure in terms of periodic orbits

Let us now refine the reasoning of sect. 27.1 and argue that the trace is a discretized

integral over state space. Consider the trace (21.6) in the large time limit (21.21):

trLn
=

∫

dx δ
(

x − f n(x)
)

eβA(x,n) ≈

(n)
∑

i

eβA(xi ,n)

|Λi|
.

The factor 1/|Λi| was interpreted in (27.2) as the area of the ith phase-space strip.

Hence, the trLn represents a discrete version of
∫

dx eβA(x,n) approximated by

a tessellation into strips centered on periodic points xi, (see figure 1.11), with

the volume of the ith neighborhood given by estimate |Mi| ∼ 1/|Λi|, and eβA(x,n)

estimated by eβA(xi,n), its value at the ith periodic point. If the symbolic dynam-

ics is complete, any state space rectangle [s−m · · · s0.s1s2 · · · sn] always contains section 15.3.1

the periodic point s−m · · · s0s1s2 · · · sn; hence, although the periodic points are of
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measure zero (just like rationals in the unit interval), they are dense on the non–

wandering set. Equipped with a measure for the associated rectangles, periodic

orbits suffice to cover the entire non–wandering set. The average of eβA evaluated

on the non–wandering set is therefore given by the trace, properly normalized so

that 〈1〉 = 1:

〈eβA〉n ≈

∑(n)

i
eβA(xi,n)/|Λi|

∑(n)

i
1/|Λi|

=

(n)
∑

i

µi eβA(xi,n) . (27.9)

Here µi is the normalized natural measure section 20.4

(n)
∑

i

µi = 1 , µi = enγn/|Λi| , (27.10)

which is correct both for closed systems as well as open systems.

Unlike brute numerical slicing of the integration space into an arbitrary lattice

(for a critique, see sect. 19.3), periodic orbit theory is smart, as it automatically

partitions integrals according to the intrinsic topology of the flow, and assigns to

each tile i the invariant natural measure µi.

27.2.1 Unstable periodic orbits are dense

(L. Rondoni and P. Cvitanović)

Our goal in sect. 20.1 was to evaluate the space and time averaged expectation

value (20.8). An average over all periodic orbits can accomplish the job only if

the periodic orbits fully explore the asymptotically accessible state space.

Why should unstable periodic points end up being dense? The cycles are intu-

itively expected to be dense because on a connected chaotic set a typical trajectory

is expected to behave ergodically, and infinitely many times pass arbitrarily close

to any point on the set (including the initial point of the trajectory itself). The

argument proceeds more or less as follows. Partition M in arbitrarily small re-

gions and consider particles that start in the regionMi, and return to it in n steps

after some peregrination in the state space. For example, a trajectory might re-

turn a little to the left of its original position, whereas a nearby neighbor might

return a little to the right of its original position. By assumption, the flow is con-

tinuous, so generically one expects to be able to gently move the initial point in

such a way that the trajectory returns precisely to the initial point, i.e., one ex-

pects a periodic point of period n in cell i. As we diminish the size of regionsMi,

aiming a trajectory that returns toMi becomes increasingly difficult. Therefore,

we are guaranteed that unstable orbits of increasingly large periods are densely

interspersed in the asymptotic non–wandering set.

The above argument is heuristic, by no means guaranteed to work, and it must

be checked for the particular system at hand. A variety of ergodic but insuffi-

ciently mixing counter-examples can be constructed - the most familiar being a

quasiperiodic motion on a torus.
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27.3 Correlation functions

The time correlation function CAB(t) of two observables A and B along the trajec-

tory x(t) = f t(x0) is defined as

CAB(t; x0) = lim
T→∞

1

T

∫ T

0

dτA(x(τ + t))B(x(τ)) , x0 = x(0) . (27.11)

If the system is ergodic, with invariant continuous measure ρ0(x)dx, then correla-

tion functions do not depend on x0 (apart from a set of zero measure), and may be

computed by a state space average as well,

CAB(t) =

∫

M

dx0 ρ0(x0)A( f t(x0))B(x0) . (27.12)

For a chaotic system we expect that time evolution will lose the information con-

tained in the initial conditions, so that CAB(t) will approach the uncorrelated limit

〈A〉 · 〈B〉. As a matter of fact the asymptotic decay of correlation functions

ĈAB := CAB − 〈A〉〈B〉 (27.13)

for any pair of observables coincides with the definition of mixing, a fundamental

property in ergodic theory. We now assume without loss of generality that 〈B〉 = 0.

(Otherwise we may define a new observable by B(x) − 〈B〉.) Our purpose is now

to connect the asymptotic behavior of correlation functions with the spectrum of

the Perron-Frobenius operator L. We can write (27.12) as

C̃AB(t) =

∫

M

dx

∫

M

dy A(y)B(x)ρ0(x)δ(y − f t(x))

and recover the evolution operator

C̃AB(t) =

∫

M

dx

∫

M

dy A(y)Lt(y, x)B(x)ρ0(x).

Recall sect. 19.1, where we showed that ρ(x) is the eigenvector of L corre-

sponding to probability conservation:

∫

M

dy Lt(x, y)ρ(y) = ρ(x) .

We can expand the x-dependent part of this equation in terms of the eigenbasis of

L:

B(x)ρ0(x) =

∞
∑

α=0

cαρα(x) ,

where ρ0(x) is the natural measure. Since the average of the left hand side is zero

the coefficient c0 must vanish. The action of L can then be written as

C̃AB(t) =
∑

α,0

e−sαtcα

∫

M

dy A(y)ρα(y). (27.14)
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We see immediately that if the spectrum has a gap, i.e., if the second largest exercise 27.2

leading eigenvalue is isolated from the largest eigenvalue (s0 = 0) then (27.14)

implies exponential decay of correlations

C̃AB(t) ∼ e−νt .

The correlation decay rate ν = s1 then depends only on intrinsic properties of the

dynamical system (the position of the next-to-leading eigenvalue of the Perron-

Frobenius operator), and the choice of a particular observable influences only the

prefactor.

Correlation functions are often accessible from time series measurable in lab-

oratory experiments and numerical simulations; moreover, they are intimately

linked to transport exponents.

27.4 Trace formulas vs. level sums

Benoit B. Mandelbrot: “I would be perfectly happy being

Kepler” [to a coming fractals’ Newton]. Referring to the

broad array of things now described by fractals, he added,

“I have been Kepler many times over.”

—J. Gleick, New York Times, January 22, 1985

Trace formulas (21.9) and (21.19) diverge precisely where one would

like to use them, at s equal to eigenvalues sα. To avoid this divergence, one can

proceed as follows; according to (21.23) the “level” sums (all symbol strings of

length n) are asymptotically dominated by the leading eigenvalue es0n of the evo-

lution operator

∑

i∈Fix f n

eβA(xi,n)

|Λi|
→ es0n ,

so an nth order estimate s(n) of the leading eigenvalue s0 is fixed by the condition

1 =
∑

i∈Fix f n

eβA(xi,n)e−s(n)n

|Λi|
. (27.15)

The eigenvalue condition for the level sum (27.15) can be written in the same form

as the two conditions (23.18) and (23.19) given so far:

0 = 1 −

(n)
∑

i

ti , ti = ti(β, s(β)) , ni = n . (27.16)

We do not recommended it as a computational method. The difficulty in estimat-

ing the leading eigenvalue s0 from this n→ ∞ limit is at least twofold:

1. Due to an exponential growth in the number of intervals and an exponential

decrease in the attainable accuracy, the maximum n, achieved experimentally or

numerically, is approximately between 5 and 20.
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2. The pre-asymptotic sequence of finite estimates s(n) is not unique, because

the sums Γn depend on how we define the escape region, and because in gen-

eral the areas |Mi| in the sum (27.2) should be weighted by the density of initial

conditions ρ(0). For example, an overall measuring unit rescaling |Mi| → α|Mi|

introduces 1/n corrections in s(n) defined by the log of the sum (27.8): s(n) →

s(n) + lnα/n. This problem can be ameliorated by defining a level average as a

function of s,

〈eβA(s)〉(n) :=
∑

i∈Fix f n

eβA(xi,n)esn

|Λi|
, (27.17)

and determining the nth level estimate s(n) by requiring that the ratios of successive

levels satisfy

1 =
〈eβA(s(n))〉(n)

〈eβA(s(n))〉(n−1)

.

This avoids the worst problem with formula (27.15), the 1/n corrections due to

its lack of rescaling invariance. However, even though much published ponder-

ing of “chaos” relies on it, there is no need for such gymnastics: dynamical zeta

functions and spectral determinants are already invariant not only under linear

rescalings, but under all smooth nonlinear conjugacies x → h(x), and require no

n→ ∞ extrapolations to asymptotic times. Comparing this with cycle expansions

(23.8), we see the difference; in the level sum approach, we keep increasing expo-

nentially the number of terms with no reference to the fact that most are already

known from shorter estimates, but in cycle expansions short terms dominate and

longer ones enter only as exponentially small corrections.

27.4.1 Flow conservation sum rules

The trace formula version of the flow conservation sum rule (23.17) comes in two

varieties (one for maps and another for flows). By flow conservation, the leading

eigenvalue is s0 = 0, which for maps (27.16) yields

trLn
=

∑

i∈Fix f n

1

|det (1 − Mn(xi)) |
= 1 + es1n

+ . . . . (27.18)

For flows, one can apply this rule by grouping together cycles from t = T to

t = T + ∆T

1

∆T

T≤rTp≤T+∆T
∑

p,r

Tp
∣

∣

∣

∣

det
(

1 − Mr
p

)

∣

∣

∣

∣

=
1

∆T

∫ T+∆T

T

dt
(

1 + es1t
+ . . .

)

= 1 +
1

∆T

∞
∑

α=1

esαT

sα

(

esα∆T − 1
)

≈ 1 + es1T
+ · · · .(27.19)

As is usual for fixed level trace sums, the convergence of (27.18) is controlled

by the gap between the leading and next-to-leading eigenvalues of the evolution

operator.

getused - 24dec2012 ChaosBook.org version15.9, Jun 24 2017

CHAPTER 27. WHY CYCLE? 508

Résumé

We conclude this chapter by a general comment on the relation of finite trace

sums such as (27.2) to spectral determinants and dynamical zeta functions. One

might be tempted to believe that given a deterministic rule, a sum like (27.2)

can be evaluated to any desired precision. For short times, this is indeed true:

every region Mi in (27.2) can be accurately delineated, and there is no need for

any fancy theory. However, if the dynamics is unstable, local variations in initial

conditions grow exponentially and in a finite time attain the size of the system.

The difficulty with estimating the n → ∞ limit from (27.2) is then at least twofold:

1. Due to the exponential growth in number of intervals, and the exponen-

tial decrease in attainable accuracy, the maximal n attainable experimentally or

numerically is in practice of order of something between 5 to 20;

2. The pre-asymptotic sequence of finite estimates γn is not unique, because

the sums Γ̂n depend on how we define the escape region, and because in general

the areas |Mi| in the sum (27.2) should be weighted by the density of initial x0.

In contrast, dynamical zeta functions and spectral determinants are invariant

under all smooth nonlinear conjugacies x → h(x), not only linear rescalings, and

require no n→ ∞ extrapolations.

Commentary

Remark 27.1 Nonhyperbolic measures. The measure µi = 1/|Λi| is the natural

measure only for the strictly hyperbolic systems. For non-hyperbolic systems, the mea-

sure might develop cusps. For example, for Ulam maps (unimodal maps with quadratic

critical point mapped onto the “left” unstable fixed point x0, discussed in more detail in

chapter 29), the measure develops a square-root singularity on the 0 cycle:

µ0 =
1

|Λ0|1/2
. (27.20)

Thermodynamic averages are still expected to converge in the “hyperbolic” phase in

which the positive entropy of unstable orbits dominates the marginal orbits, but they fail

in the “non-hyperbolic” phase. The general case remains unclear [A1.26, 27.2, 27.3, 27.4,

27.6].

Remark 27.2 Trace formula periodic orbit averaging. The cycle averaging formu-

las are not the first thing one intuitively writes down; the approximate trace formulas are

more accessibly heuristically. Trace formula for averaging (27.19) seems to have been

discussed for the first time by Hannay and Ozorio de Almeida [27.9, A2.9]. Another nov-

elty of cycle averaging formulas is one of their main virtues, in contrast to the explicit

analytical results such as those of ref. [25.21]. Their evaluation does not require any ex-

plicit construction of the (coordinate dependent) eigenfunctions of the Perron-Frobenius

operator (i.e., the natural measure ρ0).
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Remark 27.3 Role of noise in dynamical systems. In any physical application,

the dynamics is always accompanied by external noise in addition to deterministic chaos.

The former can be characterized by its strength σ and distribution. Lyapunov exponents,

correlation decay, and dynamo rate can be defined in this case the same way as in the

deterministic case. One might think that noise completely destroys the results derived

here. However, as we show chapter 32, deterministic formulas remain valid to accuracy

comparable with noise width if the noise level is small. A small level of noise even helps,

as it makes the dynamics more ergodic. Deterministically non-communicating parts of

state space become weakly connected due to noise. This argument explains why periodic

orbit theory is also applicable to non-ergodic systems. For small amplitude noise, one can

expand perturbatively

a = a0 + a1σ
2
+ a2σ

4
+ ... ,

around the deterministic averages a0. The expansion coefficients a1, a2, ... can also be

expressed in terms of periodic orbit formulas. Calculating these coefficients is one of the

challenges facing periodic orbit theory, discussed in refs. [19.9, 19.10, 19.11].

Exercises

27.1. Escape rate of the logistic map.

(a) Calculate the fraction of trajectories remaining

trapped in the interval [0, 1] for the logistic map

f (x) = A(1 − (2x − 1)2), (27.21)

and determine the A dependence of the escape rate

γ(A) numerically.

(b) Develop a numerical method for calculating the

lengths of intervals of trajectories remaining stuck

for n iterations of the map.

(c) Describe the dependence of A near the critical

value Ac = 1?

27.2. Four-scale map correlation decay rate. Consider

the piecewise-linear map

f (x) =



























f00 = Λ0x
f01 = s01(x − b) + 1
f11 = Λ1(x − b) + 1
f10 = s10(x − 1)

with a 4-interval state space Markov partition

M = {M00,M01,M10,M11}

= {[0, b/Λ0], (b/Λ0, b](b, c](c, 1]} .

(a) compute s01, s10, c.

(b) Show that the 2-cycle Floquet multiplier does not

depend on b,

Λ01 = s01 s10 = −
Λ0Λ1

(Λ0 − 1)(Λ1 + 1)
.

(c) Write down the [2×2] Perron-Frobenius operator

acting on the space of densities piecewise constant

over the four partitions.

(d) Construct the corresponding transition graph.

(e) Write down the corresponding spectral determin-

ant.

(f) Show that the escape rate vanishes, γ = − ln(z0) =

0.

(g) Determine the spectrum of the Perron-Frobenius

operator on the space of densities piecewise con-

stant over the four partitions. Show that the second

largest eigenvalue of the is 1
z1
= −1 + 1

Λ0
− 1
Λ1

.

(h) Is this value consistent with the tent map value

previously computed in exercise 19.4 (with the ap-

propriate choice of {Λ0,Λ1, c}).

exerGetused - 1sep2007 ChaosBook.org version15.9, Jun 24 2017

REFERENCES 510

(i) (optional) Is this next-to leading eigenvalue still

correct if the Perron-Frobenius operator acts on

the space of analytic functions?

27.3. Lyapunov exponents for 1-dimensional maps. Ex-

tend your cycle expansion programs so that the first and

the second moments of observables can be computed.

Use it to compute the Lyapunov exponent for the fol-

lowing maps:

(a) the piecewise-linear skew tent (flow conserving

map)

f (x) =

{

Λ0x if 0 ≤ x < Λ−1
0
,

Λ1(1 − x) if Λ−1
0
≤ x ≤ 1.

,

Λ1 = Λ0/(Λ0 − 1).

(b) the Ulam map f (x) = 4x(1 − x) .

(c) the skew Ulam map

f (x) = Λ0x(1 − x)(1 − bx) , (27.22)

1/Λ0 = xc(1 − xc)(1 − bxc) . In our numeri-

cal work we fix (arbitrarily, the value chosen in

ref. [A1.27]) b = 0.6, so

f (x) = 0.1218 x(1− x)(1 − 0.6 x)

with a peak f (xc) = 1 at xc = 0.7.

(d) the repeller of f (x) = Ax(1− x), for either A = 9/2

or A = 6 (this is a continuation of exercise 23.2).

(e) the 2-branch flow conserving map

f0(x) =
1

2h

(

h − p +

√

(h − p)2 + 4hx

)

f1(x) =
1

2h
(h + p − 1) (27.23)

+
1

2h

√

(h + p − 1)2 + 4h(x − p) ,

with a 2-interval state space Markov partition

M = {M0,M1} = {[0, p], (p, 1]} . This is a non-

linear perturbation of the Bernoulli shift map, for

which h = 0 (28.6); the first 15 eigenvalues of the

Perron-Frobenius operator are listed in ref. [27.1]

for p = 0.8, h = 0.1. Use these parameter values

when computing the Lyapunov exponent.

Cases (a) and (b) can be computed analytically; cases

(c), (d) and (e) require numerical computation of cy-

cle stabilities. Just to see whether the theory is worth

the trouble, also check your cycle expansions results for

cases (c) and (d) with Lyapunov exponents computed

by direct numerical averaging along trajectories of ran-

domly chosen initial points:

(f) trajectory-trajectory separation (6.1) (hint: rescale

δx every so often, to avoid numerical overflows),

(g) iterated stability (6.11).

How good is the numerical accuracy compared with pe-

riodic orbit theory predictions for (a) - (g)?
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