
Appendix A45

Infinite dimensional operators

(A. Wirzba)

T
his appendix, taken from ref. [A45.1], summarizes the definitions and prop-

erties of trace-class and Hilbert-Schmidt matrices, the determinants over

infinite dimensional matrices and regularization schemes for matrices or

operators which are not of trace-class.

A45.1 Matrix-valued functions

(P. Cvitanović)

As a preliminary we summarize some of the properties of functions of finite-

dimensional matrices.

The derivative of a matrix is a matrix with elements

A′(x) =
dA(x)

dx
, A′i j(x) =

d

dx
Ai j(x) . (A45.1)

Derivatives of products of matrices are evaluated by the chain rule

d

dx
(AB) =

dA

dx
B + A

dB

dx
. (A45.2)

A matrix and its derivative matrix in general do not commute

d

dx
A2 =

dA

dx
A + A

dA

dx
. (A45.3)

The derivative of the inverse of a matrix, if the inverse exists, follows from d
dx

(AA−1) =

0:

d

dx
A−1 = − 1

A

dA

dx

1

A
. (A45.4)
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A function of a single variable that can be expressed in terms of additions and

multiplications generalizes to a matrix-valued function by replacing the variable

by the matrix.

In particular, the exponential of a constant matrix can be defined either by its

series expansion, or as a limit of an infinite product:

eA =

∞
∑

k=0

1

k!
Ak , A0 = 1 (A45.5)

= lim
N→∞

(

1 +
1

N
A

)N

(A45.6)

The first equation follows from the second one by the binomial theorem, so these

indeed are equivalent definitions. That the terms of order O(N−2) or smaller do

not matter follows from the bound
(

1 +
x − ǫ

N

)N

<

(

1 +
x + δxN

N

)N

<

(

1 +
x + ǫ

N

)N

,

where |δxN | < ǫ. If lim δxN → 0 as N → ∞, the extra terms do not contribute.

Consider now the determinant

det (eA) = lim
N→∞

(det (1 + A/N))N .

To the leading order in 1/N

det (1 + A/N) = 1 +
1

N
tr A + O(N−2) .

hence

det eA = lim
N→∞

(

1 +
1

N
tr A + O(N−2)

)N

= etr A (A45.7)

Due to non-commutativity of matrices, generalization of a function of several

variables to a function of several matrices is not as straightforward. Expression

involving several matrices depend on their commutation relations. For example,

the Baker-Campbell-Hausdorff commutator expansion

etABe−tA = B + t[A, B] +
t2

2
[A, [A, B]] +

t3

3!
[A, [A, [A, B]]] + · · · (A45.8)

sometimes used to establish the equivalence of the Heisenberg and Schrödinger

pictures of quantum mechanics follows by recursive evaluation of t derivatives

d

dt

(

etABe−tA
)

= etA[A, B]e−tA .

Expanding exp(A + B), exp A, exp B to first few orders using (A45.5) yields

e(A+B)/N = eA/NeB/N − 1

2N2
[A, B] + O(N−3) , (A45.9)

and the Trotter product formula: if B, C and A = B +C are matrices, then

eA = lim
N→∞

(

eB/NeC/N
)N

(A45.10)
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A45.2 Operator norms

(R. Mainieri and P. Cvitanović)

The limit used in the above definition involves matrices - operators in

vector spaces - rather than numbers, and its convergence can be checked using

tools familiar from calculus. We briefly review those tools here, as throughout the

text we will have to consider many different operators and how they converge.

The n→ ∞ convergence of partial products

En =
∏

0≤m<n

(

1 +
t

m
A

)

can be verified using the Cauchy criterion, which states that the sequence {En}
converges if the differences ‖Ek −E j‖ → 0 as k, j→ ∞. To make sense of this we

need to define a sensible norm ‖ · · · ‖. Norm of a matrix is based on the Euclidean

norm for a vector: the idea is to assign to a matrix M a norm that is the largest

possible change it can cause to the length of a unit vector n̂:

‖M‖ = sup
n̂

‖Mn̂‖ , ‖n̂‖ = 1 . (A45.11)

We say that ‖ · ‖ is the operator norm induced by the vector norm ‖ · ‖. Construct-

ing a norm for a finite-dimensional matrix is easy, but had M been an operator in

an infinite-dimensional space, we would also have to specify the space n̂ belongs

to. In the finite-dimensional case, the sum of the absolute values of the compo-

nents of a vector is also a norm; the induced operator norm for a matrix M with

components Mi j in that case can be defined by

‖M‖ = max
i

∑

j

|Mi j| . (A45.12)

The operator norm (A45.12) and the vector norm (A45.11) are only rarely distin-

guished by different notation, a bit of notational laziness that we shall uphold.

Now that we have learned how to make sense out of norms of operators, we

can check that exercise A45.1

‖etA‖ ≤ et‖A‖ . (A45.13)

As ‖A‖ is a number, the norm of etA is finite and therefore well defined. In exercise 2.9

particular, the exponential of a matrix is well defined for all values of t, and the

linear differential equation (4.11) has a solution for all times.

A45.3 Trace class and Hilbert-Schmidt class

This section is mainly an extract from ref. [A45.10]. Refs. [A45.8, A45.11,

A45.12, A45.15] should be consulted for more details and proofs. The trace
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class and Hilbert-Schmidt property will be defined here for linear, in general

non-hermitian operators A ∈ L(H): H → H (where H is a separable Hilbert

space). The transcription to matrix elements (used in the prior chapters) is simply

ai j = 〈φi,Aφ j〉 where {φn} is an orthonormal basis ofH and 〈 , 〉 is the inner prod-

uct inH (see sect. A45.5 where the theory of von Koch matrices of ref. [A45.13]

is discussed). So, the trace is the generalization of the usual notion of the sum of

the diagonal elements of a matrix; but because infinite sums are involved, not all

operators will have a trace:

Definition:

(a) An operator A is called trace class, A ∈ J1, if and only if, for every or-

thonormal basis, {φn}:
∑

n

|〈φn,Aφn〉| < ∞ . (A45.14)

The family of all trace class operators is denoted by J1.

(b) An operator A is called Hilbert-Schmidt, A ∈ J2, if and only if, for every

orthonormal basis, {φn}:
∑

n

‖Aφn‖2 < ∞ .

The family of all Hilbert-Schmidt operators is denoted by J2.

Bounded operators are dual to trace class operators. They satisfy the following

condition: |〈ψ, Bφ〉| ≤ C‖ψ‖‖φ‖ with C < ∞ and ψ, φ ∈ H . If they have eigenval-

ues, these are bounded too. The family of bounded operators is denoted by B(H)

with the norm ‖B‖ = supφ,0
‖Bφ‖
‖φ‖ for φ ∈ H . Examples for bounded operators are

unitary operators and especially the unit matrix. In fact, every bounded operator

can be written as linear combination of four unitary operators.

A bounded operator C is compact, if it is the norm limit of finite rank opera-

tors.

An operator A is called positive, A ≥ 0, if 〈Aφ, φ〉 ≥ 0 ∀φ ∈ H . Note that

A†A ≥ 0. We define |A| =
√

A†A.

The most important properties of the trace and Hilbert-Schmidt classes are

summarized in (see refs. [A45.8, A45.10]):

(a) J1 and J2 are ∗ideals., i.e., they are vector spaces closed under scalar mul-

tiplication, sums, adjoints, and multiplication with bounded operators.

(b) A ∈ J1 if and only if A = BC with B,C ∈ J2.

(c) J1 ⊂ J2 ⊂ Compact operators.
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(d) For any operator A, we have A ∈ J2 if
∑

n ‖Aφn‖2 < ∞ for a single basis.

For any operator A ≥ 0 we have A ∈ J1 if
∑

n |〈φn,Aφn〉| < ∞ for a single

basis.

(e) If A ∈ J1, Tr(A) =
∑〈φn,Aφn〉 is independent of the basis used.

(f) Tr is linear and obeys Tr(A†) = Tr(A); Tr(AB) = Tr(BA) if either A ∈ J1

and B bounded, A bounded and B ∈ J1 or both A,B ∈ J2.

(g) J2 endowed with the inner product 〈A,B〉2 = Tr(A†B) is a Hilbert space.

If ‖A‖2 = [ Tr(A†A) ]
1
2 , then ‖A‖2 ≥ ‖A‖ and J2 is the ‖ ‖2-closure of the

finite rank operators.

(h) J1 endowed with the norm ‖A‖1 = Tr(
√

A†A) is a Banach space. ‖A‖1 ≥
‖A‖2 ≥ ‖A‖ andJ1 is the ‖ ‖1-norm closure of the finite rank operators. The

dual space of J1 is B(H), the family of bounded operators with the duality

〈B,A〉 = Tr(BA).

(i) If A,B ∈ J2, then ‖AB‖1 ≤ ‖A‖2‖B‖2. If A ∈ J2 and B ∈ B(H), then

‖AB‖2 ≤ ‖A‖2‖B‖. If A ∈ J1 and B ∈ B(H), then ‖AB‖1 ≤ ‖A‖1‖B‖.

Note the most important property for proving that an operator is trace class is the

decomposition (b) into two Hilbert-Schmidt ones, as the Hilbert-Schmidt prop-

erty can easily be verified in one single orthonormal basis (see (d)). Property (e)

ensures then that the trace is the same in any basis. Properties (a) and (f) show

that trace class operators behave in complete analogy to finite rank operators. The

proof whether a matrix is trace-class (or Hilbert-Schmidt) or not simplifies enor-

mously for diagonal matrices, as then the second part of property (d) is directly

applicable: just the moduli of the eigenvalues (or – in case of Hilbert-Schmidt –

the squares of the eigenvalues) have to be summed up in order to answer that ques-

tion. A good strategy in checking the trace-class character of a general matrix A is

therefore the decomposition of that matrix into two matrices B and C where one,

say C, should be chosen to be diagonal and either just barely of Hilbert-Schmidt

character leaving enough freedom for its partner B or of trace-class character such

that one only has to show the boundedness for B.

A45.4 Determinants of trace class operators

This section is mainly based on refs. [A45.9, A45.11] which should be consulted

for more details and proofs. See also refs. [A45.12, A45.15].

Pre-definitions (Alternating algebra and Fock spaces):

Given a Hilbert spaceH , ⊗nH is defined as the vector space of multi-linear func-

tionals onH with φ1 ⊗ · · · ⊗ φn ∈ ⊗nH in case φ1, . . . , φn ∈ H .
∧n(H) is defined

as the subspace of ⊗nH spanned by the wedge-product

φ1 ∧ · · · ∧ φn =
1
√

n!

∑

π∈Pn

ǫ(π)[φπ(1) ⊗ · · · ⊗ φπ(n)]
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where Pn is the group of all permutations of n letters and ǫ(π) = ±1 depending

on whether π is an even or odd permutation, respectively. The inner product in
∧n(H) is given by

(φ1 ∧ · · · ∧ φn, η1 ∧ · · · ∧ ηn) = det
{

(φi, η j)
}

where det{ai j} =
∑

π∈Pn
ǫ(π)a1π(1) · · · anπ(n).

∧n(A) is defined as functor (a functor

satisfies
∧n(AB) =

∧n(A)
∧n(B)) on

∧n(H) with
∧n

(A) (φ1 ∧ · · · ∧ φn) = Aφ1 ∧ · · · ∧Aφn .

When n = 0,
∧n(H) is defined to be C and

∧n(A) as 1: C → C.

Properties: If A trace class, i.e., A ∈ J1, then for any k,
∧k(A) is trace class, and

for any orthonormal basis {φn} the cumulant

Tr

(

∧k
(A)

)

=
∑

i1<···<ik

(

(φi1 ∧ · · · ∧ φik ), (Aφi1 ∧ · · · ∧ Aφik )
)

< ∞

is independent of the basis (with the understanding that Tr
∧0(A) ≡ 1).

Definition: Let A ∈ J1, then det (1 + A) is defined as

det(1 + A) =

∞
∑

k=0

Tr

(

∧k
(A)

)

(A45.15)

Properties:

Let A be a linear operator on a separable Hilbert space H and {φ j}∞1 an or-

thonormal basis.

(a)
∑∞

k=0 Tr
(

∧k(A)
)

converges for each A ∈ J1.

(b) |det(1 + A)| ≤ ∏∞
j=1

(

1 + µ j(A)
)

where µ j(A) are the singular values of A,

i.e., the eigenvalues of |A| =
√

A†A.

(c) |det(1 + A)| ≤ exp(‖A‖1).

(d) For any A1, . . . ,An ∈ J1, 〈z1, . . . , zn〉 7→ det
(

1 +
∑n

i=1 ziAi

)

is an entire

analytic function.

(e) If A,B ∈ J1, then

det(1 + A)det(1 + B) = det (1 + A + B + AB)

= det ((1 + A)(1 + B))

= det ((1 + B)(1 + A)) . (A45.16)

If A ∈ J1 and U unitary, then

det
(

U−1(1 + A)U
)

= det
(

1 + U−1AU
)

= det(1 + A) .
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(f) If A ∈ J1, then (1 + A) is invertible if and only if det(1 + A) , 0.

(g) If λ , 0 is an n-times degenerate eigenvalue of A ∈ J1, then det(1+ zA) has

a zero of order n at z = −1/λ.

(h) For any ǫ, there is a Cǫ(A), depending on A ∈ J1, so that |det(1 + zA)| ≤
Cǫ(A) exp(ǫ|z|).

(i) For any A ∈ J1,

det(1 + A) =

N(A)
∏

j=1

(

1 + λ j(A)
)

(A45.17)

where here and in the following {λ j(A)}N(A)

j=1
are the eigenvalues of A counted

with algebraic multiplicity .

(j) Lidskii’s theorem: For any A ∈ J1,

Tr(A) =

N(A)
∑

j=1

λ j(A) < ∞ .

(k) If A ∈ J1, then

Tr

(

∧k
(A)

)

=

N
(

∧k(A)
)

∑

j=1

λ j

(

∧k
(A)

)

=
∑

1≤ j1<···< jk≤N(A)

λ j1 (A) · · · λ jk (A) < ∞.

(l) If A ∈ J1, then

det(1 + zA) =

∞
∑

k=0

zk
∑

1≤ j1<···< jk≤N(A)

λ j1 (A) · · · λ jk (A) < ∞. (A45.18)

(m) If A ∈ J1, then for |z| small (i.e., |z|max|λ j(A)| < 1) the series
∑∞

k=1 zkTr
(

(−A)k
)

/k

converges and

det(1 + zA) = exp

















−
∞
∑

k=1

zk

k
Tr

(

(−A)k
)

















= exp (Tr ln(1 + zA)) . (A45.19)

(n) The Plemelj-Smithies formula: Define αm(A) for A ∈ J1 by

det(1 + zA) =

∞
∑

m=0

zmαm(A)

m!
. (A45.20)
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Then αm(A) is given by the m × m determinant:

αm(A) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Tr(A) m − 1 0 · · · 0

Tr(A2) Tr(A) m − 2 · · · 0

Tr(A3) Tr(A2) Tr(A) · · · 0
...

...
...

...
...

1

Tr(Am) Tr(A(m−1)) Tr(A(m−2)) · · · Tr(A)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(A45.21)

with the understanding that α0(A) ≡ 1 and α1(A) ≡ Tr(A). Thus the cumu-

lants cm(A) ≡ αm(A)/m! satisfy the following recursion relation

cm(A) =
1

m

m
∑

k=1

(−1)k+1cm−k(A) Tr(Ak) for m ≥ 1

c0(A) ≡ 1 . (A45.22)

Note that in the context of quantum mechanics formula (A45.20) is the quantum

analog to the curvature expansion of the semiclassical zeta function with Tr(Am)

corresponding to the sum of all periodic orbits (prime and also repeated ones) of

total topological length m, i.e., let cm(s.c.) denote the m th curvature term, then the

curvature expansion of the semiclassical zeta function is given by the recursion

relation

cm(s.c.) =
1

m

m
∑

k=1

(−1)k+m+1cm−k(s.c.)
∑

p;r>0
with [p]r=k

[p]
tp(k)r

1 −
(

1
Λp

)r for m ≥ 1

c0(s.c.) ≡ 1 . (A45.23)

In fact, in the cumulant expansion (A45.20) as well as in the curvature expansion

there are large cancelations involved. Let us order – without lost of generality –

the eigenvalues of the operator A ∈ J1 as follows:

|λ1| ≥ |λ2| ≥ · · · ≥ |λi−1| ≥ |λi| ≥ |λi+1 | ≥ · · ·

(This is always possible because of
∑N(A)

i=1
|λi| < ∞.) Then, in the standard

(Plemelj-Smithies) cumulant evaluation of the determinant, eq. (A45.20), we have

enormous cancelations of big numbers, e.g. at the k th cumulant order (k > 3), all

the intrinsically large ‘numbers’ λk
1
, λk−1

1
λ2, . . . , λk−2

1
λ2λ3, . . . and many more

have to cancel out exactly until only
∑

1≤ j1<···< jk≤N(A) λ j1 · · ·λ jk is finally left over.

Algebraically, the fact that there are these large cancelations is of course of no

importance. However, if the determinant is calculated numerically, the big cance-

lations might spoil the result or even the convergence. Now, the curvature expan-

sion of the semiclassical zeta function, as it is known today, is the semiclassical

approximation to the curvature expansion (unfortunately) in the Plemelj-Smithies

form. As the exact quantum mechanical result is approximated semiclassically,

the errors introduced in the approximation might lead to big effects as they are

done with respect to large quantities which eventually cancel out and not – as it
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would be of course better – with respect to the small surviving cumulants. Thus

it would be very desirable to have a semiclassical analog to the reduced cumulant

expansion (A45.18) or even to (A45.17) directly. It might not be possible to find a

direct semiclassical analog for the individual eigenvalues λ j. Thus the direct con-

struction of the semiclassical equivalent to (A45.17) is rather unlikely. However,

in order to have a semiclassical “cumulant” summation without large cancelations

– see (A45.18) – it would be just sufficient to find the semiclassical analog of each

complete cumulant (A45.18) and not of the single eigenvalues. Whether this will

eventually be possible is still an open question.

A45.5 Von Koch matrices

Implicitly, many of the above properties are based on the theory of von Koch

matrices [A45.12, A45.13, A45.14]: An infinite matrix 1 − A = ‖δ jk − a jk‖∞1 ,

consisting of complex numbers, is called a matrix with an absolutely convergent

determinant, if the series
∑ |a j1k1

a j2k2
· · · a jn ,kn

| converges, where the sum extends

over all pairs of systems of indices ( j1, j2, · · · , jn) and (k1, k2, · · · , kn) which differ

from each other only by a permutation, and j1 < j2 < · · · jn (n = 1, 2, · · · ). Then

the limit

lim
n→∞

det‖δ jk − a jk‖n1 = det(1 − A)

exists and is called the determinant of the matrix 1 − A. It can be represented in

the form

det(1 − A) = 1 −
∞
∑

j=1

a j j +
1

2!

∞
∑

j,k=1

∣

∣

∣

∣

∣

a j j a jk

ak j akk

∣

∣

∣

∣

∣

− 1

3!

∞
∑

j,k,m=1

∣

∣

∣

∣

∣

∣

∣

∣

a j j a jk a jm

ak j akk akm

am j amk amm

∣

∣

∣

∣

∣

∣

∣

∣

+ · · · ,

where the series on the r.h.s. will remain convergent even if the numbers a jk ( j, k =

1, 2, · · · ) are replaced by their moduli and if all the terms obtained by expanding

the determinants are taken with the plus sign. The matrix 1−A is called von Koch

matrix, if both conditions

∞
∑

j=1

|a j j| < ∞ , (A45.24)

∞
∑

j,k=1

|a jk |2 < ∞ (A45.25)

are fulfilled. Then the following holds (see ref. [A45.12, A45.14]): (1) Every von

Koch matrix has an absolutely convergent determinant. If the elements of a von

Koch matrix are functions of some parameter µ (a jk = a jk(µ), j, k = 1, 2, · · · )
and both series in the defining condition converge uniformly in the domain of

the parameter µ, then as n → ∞ the determinant det‖δ jk − a jk(µ)‖n
1

tends to the
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determinant det(1 + A(µ)) uniformly with respect to µ, over the domain of µ.

(2) If the matrices 1 − A and 1 − B are von Koch matrices, then their product

1 − C = (1 − A)(1 − B) is a von Koch matrix, and

det(1 − C) = det(1 − A) det(1 − B) .

Note that every trace-class matrix A ∈ J1 is also a von Koch matrix (and that

any matrix satisfying condition (A45.25) is Hilbert-Schmidt and vice versa). The

inverse implication, however, is not true: von Koch matrices are not automati-

cally trace-class. The caveat is that the definition of von Koch matrices is basis-

dependent, whereas the trace-class property is basis-independent. As the traces

involve infinite sums, the basis-independence is not at all trivial. An example for

an infinite matrix which is von Koch, but not trace-class is the following:

Ai j =



















2/ j for i − j = −1 and j even ,
2/i for i − j = +1 and i even ,
0 else ,

i.e.,

A =







































































0 1 0 0 0 0 · · ·
1 0 0 0 0 0 · · ·
0 0 0 1/2 0 0 · · ·
0 0 1/2 0 0 0 · · ·
0 0 0 0 0 1/3

. . .

0 0 0 0 1/3 0
. . .

...
...

...
...

. . .
. . .

. . .







































































. (A45.26)

Obviously, condition (A45.24) is fulfilled by definition. Second, the condition

(A45.25) is satisfied as
∑∞

n=1 2/n2 < ∞. However, the sum over the moduli of

the eigenvalues is just twice the harmonic series
∑∞

n=1 1/n which does not con-

verge. The matrix (A45.26) violates the trace-class definition (A45.14), as in its

eigenbasis the sum over the moduli of its diagonal elements is infinite. Thus the

absolute convergence is traded for a conditional convergence, since the sum over

the eigenvalues themselves can be arranged to still be zero, if the eigenvalues with

the same modulus are summed first. Absolute convergence is of course essential,

if sums have to be rearranged or exchanged. Thus, the trace-class property is in-

dispensable for any controlled unitary transformation of an infinite determinant,

as then there will be necessarily a change of basis and in general also a re-ordering

of the corresponding traces. Therefore the claim that a Hilbert-Schmidt operator

with a vanishing trace is automatically trace-class is false. In general, such an

operator has to be regularized in addition (see next chapter).

A45.6 Regularization

Many interesting operators are not of trace class (although they might be in some

Jp with p > 1 - an operator A is in Jp iff Tr|A|p < ∞ in any orthonormal ba-

sis). In order to compute determinants of such operators, an extension of the
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cumulant expansion is needed which in fact corresponds to a regularization pro-

cedure [A45.9, A45.11]:

E.g. let A ∈ Jp with p ≤ n. Define

Rn(zA) = (1 + zA) exp

















n−1
∑

k=1

(−z)k

k
Ak

















− 1

as the regulated version of the operator zA. Then the regulated operator Rn(zA) is

trace class, i.e., Rn(zA) ∈ J1. Define now detn(1 + zA) = det(1 + Rn(zA)). Then

the regulated determinant

detn(1 + zA) =

N(zA)
∏

j=1





















(

1 + zλ j(A)
)

exp





















n−1
∑

k=1

(

−zλ j(A)
)k

k









































< ∞. (A45.27)

exists and is finite. The corresponding Plemelj-Smithies formula now reads [A45.11]:

detn(1 + zA) =

∞
∑

m=0

zmα
(n)
m (A)

m!
. (A45.28)

with α
(n)
m (A) given by the m × m determinant:

α
(n)
m (A) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ
(n)

1
m − 1 0 · · · 0

σ
(n)

2
σ

(n)

1
m − 2 · · · 0

σ
(n)

3
σ

(n)

2
σ

(n)

1
· · · 0

...
...

...
...

...

1

σ
(n)
m σ

(n)

m−1
σ

(n)

m−2
· · · σ

(n)

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(A45.29)

where

σ
(n)

k
=

{

Tr(Ak) k ≥ n
0 k ≤ n − 1

As Simon [A45.11] says simply, the beauty of (A45.29) is that we get detn(1+A)

from the standard Plemelj-Smithies formula (A45.20) by simply setting Tr(A),

Tr(A2), . . . , Tr(An−1) to zero.

See also ref. [A45.16] where {λ j} are the eigenvalues of an elliptic (pseudo)-

differential operator H of order m on a compact or bounded manifold of dimension

d, 0 < λ0 ≤ λ1 ≤ · · · and λk ↑ +∞. and the Fredholm determinant

∆(λ) =

∞
∏

k=0

(

1 − λ

λk

)

is regulated in the case µ ≡ d/m > 1 as Weierstrass product

∆(λ) =

∞
∏

k=0

















(

1 − λ

λk

)

exp

















λ

λk

+
λ2

2λ2
k

+ · · · + λ[µ]

[µ]λ
[µ]

k

































(A45.30)
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where [µ] denotes the integer part of µ. This is, see ref. [A45.16], the unique

entire function of order µ having zeros at {λk} and subject to the normalization

conditions

ln∆(0) =
d

dλ
ln∆(0) = · · · = d[µ]

dλ[µ]
ln∆(0) = 0 .

Clearly (A45.30) is the same as (A45.27); one just has to identify z = −λ, A =

1/H and n − 1 = [µ]. An example is the regularization of the spectral determinant

∆(E) = det [(E −H)] (A45.31)

which – as it stands – would only make sense for a finite dimensional basis (or

finite dimensional matrices). In ref. [A45.17] the regulated spectral determinant

for the example of the hyperbola billiard in two dimensions (thus d = 2, m = 2

and hence µ = 1) is given as

∆(E) = det [(E −H)Ω(E,H)]

where

Ω(E,H) = −H−1eEH−1

such that the spectral determinant in the eigenbasis of H (with eigenvalues En , 0)

reads

∆(E) =
∏

n

(

1 − E

En

)

eE/En < ∞ .

Note that H−1 is for this example of Hilbert-Schmidt character.

Exercises

A45.1. Norm of exponential of an operator. Verify inequal- ity (A45.13):

‖etA‖ ≤ et‖A‖ .
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