
Appendix A14

Symbolic dynamics techniques

T
he kneading theory for unimodal mappings is developed in sect. A14.1. The

prime factorization for dynamical itineraries of sect. A14.2 illustrates the

sense in which prime cycles are “prime” - the product structure of zeta func-

tions is a consequence of the unique factorization property of symbol sequences.

A14.1 Topological zeta functions for infinite subshifts

(P. Dahlqvist)

The transition graph methods outlined in chapter 14 are well suited for

symbolic dynamics of finite subshift type. A sequence of well defined rules leads

to the answer, the topological zeta function, which turns out to be a polynomial.

For infinite subshifts one would have to go through an infinite sequence of graph

constructions and it is of course very difficult to make any asymptotic statements

about the outcome. Luckily, for some simple systems the goal can be reached by

much simpler means. This is the case for unimodal maps.

We will restrict our attention to the topological zeta function for unimodal

maps with one external parameter fΛ(x) = Λg(x). As usual, symbolic dynamics is

introduced by mapping a time series . . . xi−1xixi+1 . . . onto a sequence of symbols

. . . si−1sisi+1 . . . where

si = 0 xi < xc

si = C xi = xc

si = 1 xi > xc (A14.1)

and xc is the critical point of the map (i.e., maximum of g). In addition to the usual

binary alphabet we have added a symbol C for the critical point. The kneading

897

APPENDIX A14. SYMBOLIC DYNAMICS TECHNIQUES 898

I(C) ζ−1
top(z)/(1 − z)

1C
101C
1011101C

H∞(1)
∏∞

n=0(1 − z2n

)
10111C
1011111C

101∞ (1 − 2z2)/(1 + z)
10111111C
101111C
1011C
101101C

10C (1 − z − z2)
10010C
100101C

I(C) ζ−1
top(z)/(1 − z)

1001C
100111C
10011C
100110C
100C
100010C
10001C
100011C
1000C
100001C
10000C
100000C
10∞ (1 − 2z)/(1 − z)

Table A14.1: All ordered kneading sequences up to length seven, as well as some longer kneading

sequences. Harmonic extension H∞(1) is defined below.

sequence KΛ is the itinerary of the critical point (14.6). The crucial observation is

that no periodic orbit can have a topological coordinate (see sect. A14.1.1) beyond

that of the kneading sequence. The kneading sequence thus inserts a border in

the list of periodic orbits (ordered according to maximal topological coordinate),

cycles up to this limit are allowed, all beyond are pruned. All unimodal maps

(obeying some further constraints) with the same kneading sequence thus have the

same set of periodic orbitsand the same topological zeta function. The topological

coordinate of the kneading sequence increases with increasing Λ.

The kneading sequence can be of one of three types

1. It maps to the critical point again, after n iterations. If so, we adopt the

convention to terminate the kneading sequence with a C, and refer to the

kneading sequence as finite.

2. Preperiodic, i.e., it is infinite but with a periodic tail.

3. Aperiodic.

As an archetype unimodal map we will choose the tent map

x 7→ f (x) =

{

Λx x ∈ [0, 1/2]
Λ(1 − x) x ∈ (1/2, 1]

, (A14.2)

where the parameter Λ ∈ (1, 2]. The topological entropy is h = logΛ. This

follows from the fact any trajectory of the map is bounded, the escape rate is

strictly zero, and so the dynamical zeta function

1/ζ(z) =
∏

p

(

1 − znp

|Λp|

)

=
∏

p

(

1 −
(

z

Λ

)np
)

= 1/ζtop(z/Λ)

has its leading zero at z = 1.
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The set of periodic points of the tent map is countable. A consequence of this

fact is that the set of parameter values for which the kneading sequence (14.6) is

periodic or preperiodic are countable and thus of measure zero and consequently

the kneading sequence is aperiodic for almost all Λ. For general unimodal maps

the corresponding statement is that the kneading sequence is aperiodic for almost

all topological entropies.

For a given periodic kneading sequence of period n, K
Λ
= PC =

s1s2 . . . sn−1C there is a simple expansion for the topological zeta function. Then

the expanded zeta function is a polynomial of degree n

1/ζtop(z) =
∏

p

(1 − zn
p) = (1 − z)

n−1
∑

i=0

aiz
i , ai =

i
∏

j=1

(−1)s j (A14.3)

and a0 = 1.

Aperiodic and preperiodic kneading sequences are accounted for by simply

replacing n by∞.

Example. Consider as an example the kneading sequence KΛ = 10C. From

(A14.3) we get the topological zeta function 1/ζtop(z) = (1 − z)(1 − z − z2), see

table A14.1. This can also be realized by redefining the alphabet. The only for-

bidden subsequence is 100. All allowed periodic orbits, except 0, can can be built

from a alphabet with letters 10 and 1. We write this alphabet as {10, 1; 0}, yielding

the topological zeta function 1/ζtop(z) = (1 − z)(1 − z − z2). The leading zero is

the inverse golden mean z0 = (
√

5 − 1)/2.

Example. As another example we consider the preperiodic kneading se-

quence KΛ = 101∞. From (A14.3) we get the topological zeta function 1/ζtop(z) =

(1 − z)(1 − 2z2)/(1 + z), see table A14.1. This can again be realized by redefin-

ing the alphabet. There are now an infinite number of forbidden subsequences,

namely 1012n0 where n ≥ 0. These pruning rules are respected by the alphabet

{012n+1; 1, 0}, yielding the topological zeta function above. The pole in the zeta

function ζ−1
top(z) is a consequence of the infinite alphabet.

An important consequence of (A14.3) is that the sequence {ai} has a periodic

tail if and only if the kneading sequence has one (however, their period may differ

by a factor of two). We know already that the kneading sequence is aperiodic for

almost all Λ.

The analytic structure of the function represented by the infinite series
∑

aizi

with unity as radius of convergence, depends on whether the tail of {ai} is periodic

or not. If the period of the tail is N we can write

1/ζtop(z) = p(z) + q(z)(1 + zN + z2N . . .) = p(z) +
q(z)

1 − zN
,

for some polynomials p(z) and q(z). The result is a set of poles spread out along

the unit circle. This applies to the preperiodic case. An aperiodic sequence of
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coefficients would formally correspond to infinite N and it is natural to assume

that the singularities will fill the unit circle. There is indeed a theorem ensuring

that this is the case [15.58], provided the ai’s can only take on a finite number of

values. The unit circle becomes a natural boundary, already apparent in a finite

polynomial approximations to the topological zeta function, as in figure 18.1. A

function with a natural boundary lacks an analytic continuation outside it.

To conclude: The topological zeta function 1/ζtop for unimodal maps has the

unit circle as a natural boundary for almost all topological entropies and for the

tent map (A14.2), for almost all Λ.

Let us now focus on the relation between the analytic structure of the topolo-

gical zeta function and the number of periodic orbits, or rather (18.6), the number

Nn of fixed points of f n(x). The trace formula is (see sect. 18.4)

Nn = tr T n =
1

2πi

∮

γr

dz z−n d

dz
log ζ−1

top

where γr is a (circular) contour encircling the origin z = 0 in clockwise direction.

Residue calculus turns this into a sum over zeros z0 and poles zp of ζ−1
top

Nn =
∑

z0:r<|z0 |<R

z−n
0 −

∑

zp:r<|zp |<R

z−n
0 +

1

2πi

∮

γR

dz z−n d

dz
log ζ−1

top

and a contribution from a large circle γR. For meromorphic topological zeta func-

tions one may let R → ∞ with vanishing contribution from γR, and Nn will be a

sum of exponentials.

The leading zero is associated with the topological entropy, as discussed in

chapter 18.

We have also seen that for preperiodic kneading there will be poles on the unit

circle.

To appreciate the role of natural boundaries we will consider a (very) special

example. Cascades of period doublings is a central concept for the description of

unimodal maps. This motivates a close study of the function

Ξ(z) =

∞
∏

n=0

(1 − z2n

) . (A14.4)

This function will appear again when we derive (A14.3).

The expansion of Ξ(z) begins as Ξ(z) = 1− z− z2 + z3 − z4 + z5 . . .. The radius

of convergence is obviously unity. The simple rule governing the expansion will

effectively prohibit any periodicity among the coefficients making the unit circle

a natural boundary.

It is easy to see that Ξ(z) = 0 if z = exp(2πm/2n) for any integer m and n.

(Strictly speaking we mean that Ξ(z) → 0 when z → exp(2πm/2n) from inside).
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Consequently, zeros are dense on the unit circle. One can also show that singular

points are dense on the unit circle, for instance |Ξ(z)| → ∞when z→ exp(2πm/3n)

for any integer m and n.

As an example, the topological zeta function at the accumulation point of

the first Feigenbaum cascade is ζ−1
top(z) = (1 − z)Ξ(z). Then Nn = 2l+1 if n =

2l, otherwise Nn = 0. The growth rate in the number of cycles is anything but

exponential. It is clear that Nn cannot be a sum of exponentials, the contour γR

cannot be pushed away to infinity, R is restricted to R ≤ 1 and Nn is entirely

determined by
∫

γR
which picks up its contribution from the natural boundary.

We have so far studied the analytic structure for some special cases and we

know that the unit circle is a natural boundary for almost all Λ. But how does

it look out there in the complex plane for some typical parameter values? To

explore that we will imagine a journey from the origin z = 0 out towards the unit

circle. While traveling we let the parameter Λ change slowly. The trip will have a

distinct science fiction flavor. The first zero we encounter is the one connected to

the topological entropy. Obviously it moves smoothly and slowly. When we move

outward to the unit circle we encounter zeros in increasing densities. The closer

to the unit circle they are, the wilder and stranger they move. They move from

and back to the horizon, where they are created and destroyed through bizarre

bifurcations. For some special values of the parameter the unit circle suddenly gets

transparent and and we get (infinitely) short glimpses of another world beyond the

horizon.

We end this section by deriving eqs (A14.5) and (A14.6). The impenetrable

prose is hopefully explained by the accompanying tables.

We know one thing from chapter 14, namely for that finite kneading sequence

of length n the topological polynomial is of degree n. The graph contains a node

which is connected to itself only via the symbol 0. This implies that a factor

(1 − z) may be factored out and ζtop(z) = (1 − z)
∑n−1

i=0 aiz
i. The problem is to find

the coefficients ai.

periodic orbits finite kneading sequences

P1 = A∞(P)
PC

P0
P0PC

P0P1
P0P1P0PC

↓ ↓
H∞(P) H∞(P)

Table A14.2: Relation between periodic orbits and finite kneading sequences in a harmonic cas-

cade. The string P is assumed to contain an odd number of 1’s.

The ordered list of (finite) kneading sequences table A14.1 and the ordered

list of periodic orbits (on maximal form) are intimately related. In table A14.2

we indicate how they are nested during a period doubling cascade. Every finite

chapter/dahlqvist.tex 30nov2001 ChaosBook.org version15.9, Jun 24 2017

APPENDIX A14. SYMBOLIC DYNAMICS TECHNIQUES 902

kneading sequence PC is bracketed by two periodic orbits, P1 and P0. We have

P1 < PC < P0 if P contains an odd number of 1’s, and P0 < PC < P1 otherwise.

From now on we will assume that P contains an odd number of 1’s. The other case

can be worked out in complete analogy. The first and second harmonic of PC are

displayed in table A14.2. The periodic orbit P1 (and the corresponding infinite

kneading sequence) is sometimes referred to as the antiharmonic extension of PC

(denoted A∞(P)) and the accumulation point of the cascade is called the harmonic

extension of PC [A1.8] (denoted H∞(P)).

A central result is the fact that a period doubling cascade of PC is not in-

terfered by any other sequence. Another way to express this is that a kneading

sequence PC and its harmonic are adjacent in the list of kneading sequences to

any order.

I(C) ζ−1
top(z)/(1 − z)

P1 = 100C 1 − z − z2 − z3

H∞(P1) = 10001001100 . . . 1 − z − z2 − z3 − z4 + z5 + z6 + z7 − z8 . . .

P′ = 10001C 1 − z − z2 − z3 − z4 + z5

A∞(P2) = 1000110001 . . . 1 − z − z2 − z3 − z4 + z5 − z6 − z7 − z8 . . .

P2 = 1000C 1 − z − z2 − z3 − z4

Table A14.3: Example of a step in the iterative construction of the list of kneading sequences PC.

Table A14.3 illustrates another central result in the combinatorics of kneading

sequences. We suppose that P1C and P2C are neighbors in the list of order 5

(meaning that the shortest finite kneading sequence P′C between P1C and P2C is

longer than 5.) The important result is that P′ (of length n′ = 6) has to coincide

with the first n′ − 1 letters of both H∞(P1) and A∞(P2). This is exemplified in

the left column of table A14.3. This fact makes it possible to generate the list of

kneading sequences in an iterative way.

The zeta function at the accumulation point H∞(P1) is

ζ−1
P1

(z)Ξ(zn1 ) , (A14.5)

and just before A∞(P2)

ζ−1
P2

(z)/(1 − zn2 ) . (A14.6)

A short calculation shows that this is exactly what one would obtain by applying

(A14.3) to the antiharmonic and harmonic extensions directly, provided that it

applies to ζ−1
P1

(z) and ζ−1
P2

(z). This is the key observation.

Recall now the product representation of the zeta function ζ−1 =
∏

p(1 −
znp ). We will now make use of the fact that the zeta function associated with

P′C is a polynomial of order n′. There is no periodic orbit of length shorter than

n′ + 1 between H∞(P1) and A∞(P2). It thus follows that the coefficients of this

polynomial coincides with those of (A14.5) and (A14.6), see Table A14.3. We

can thus conclude that our rule can be applied directly to P′C.

This can be used as an induction step in proving that the rule can be applied

to every finite and infinite kneading sequences.
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Remark A14.1 How to prove things. The explicit relation between the kneading

sequence and the coefficients of the topological zeta function is not commonly seen in the

literature. The result can proven by combining some theorems of Milnor and Thurston

[A1.9]. That approach is hardly instructive in the present context. Our derivation was

inspired by Metropolis, Stein and Stein classical paper [A1.8]. For further details, consult

ref. [18.14].

A14.1.1 Periodic orbits of unimodal maps

A periodic point (cycle point) xk belonging to a cycle of period n is a real solution

of

f n(xk) = f ( f (. . . f (xk) . . .)) = xk , k = 0, 1, 2, . . . , n − 1 . (A14.7)

The nth iterate of a unimodal map has at most 2n monotone segments, and there-

fore there will be 2n or fewer periodic points of length n. Similarly, the backward

and the forward Smale horseshoes intersect at most 2n times, and therefore there

will be 2n or fewer periodic points of length n. A periodic orbit of length n cor-

responds to an infinite repetition of a length n = np symbol string, customarily

indicated by a line over the string:

S p = (s1s2s3 . . . sn)∞ = s1s2s3 . . . sn .

As all itineraries are infinite, we shall adopt convention that a finite string itinerary

S p = s1s2s3 . . . sn stands for infinite repetition of a finite block, and routinely omit

the overline. x0, its cyclic permutation

sk sk+1 . . . sn s1 . . . sk−1 corresponds to the point xk−1 in the same cycle. A cycle p

is called prime if its itinerary S cannot be written as a repetition of a shorter block

S ′.

Each cycle p is a set of np rational-valued full tent map periodic points γ. It

follows from (14.4) that if the repeating string s1s2 . . . sn contains an odd number

“1”s, the string of well ordered symbols w1w2 . . .w2n has to be of the double

length before it repeats itself. The cycle-point γ is a geometrical sum which we

can rewrite as the fraction

γ(s1s2 . . . sn) =
22n

22n − 1

2n
∑

t=1

wt/2
t (A14.8)

Using this we can calculate the γ̂(S ) for all short cycles. For orbits up to length 5

this is done in table 14.1.

Here we give explicit formulas for the topological coordinate of a periodic

point, given its itinerary. For the purpose of what follows it is convenient to com-

pactify the itineraries by replacing the binary alphabet si = {0, 1} by the infinite

alphabet

{a1, a2, a3, a4, · · · ; 0} = {1, 10, 100, 1000, . . . ; 0} . (A14.9)
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In this notation the itinerary S = aia jakal · · · and the corresponding topological

coordinate (14.4) are related by γ(S ) = .1i0 j1k0l · · · . For example:

S = 111011101001000 . . . = a1a1a2a1a1a2a3a4 . . .

γ(S ) = .101101001110000 . . . = .1101120111021304 . . .

Cycle points whose itineraries start with w1 = w2 = · · · = wi = 0, wi+1 = 1 remain

on the left branch of the tent map for i iterations, and satisfy γ(0 . . . 0S ) = γ(S )/2i.

Periodic points correspond to rational values of γ, but we have to distinguish

even and odd cycles. The even (odd) cycles contain even (odd) number of ai in

the repeating block, with periodic points given by

γ(aia j · · · akaℓ) =















2n

2n−1
.1i0 j · · · 1k even

1
2n+1

(

1 + 2n × .1i0 j · · · 1ℓ) odd
, (A14.10)

where n = i+ j+ · · ·+ k+ ℓ is the cycle period. The maximal value periodic point

is given by the cyclic permutation of S with the largest ai as the first symbol,

followed by the smallest available a j as the next symbol, and so on. For example:

γ̂(1) = γ(a1) = .10101 . . . = .10 = 2/3

γ̂(10) = γ(a2) = .1202 . . . = .1100 = 4/5

γ̂(100) = γ(a3) = .1303 . . . = .111000 = 8/9

γ̂(101) = γ(a2a1) = .1201 . . . = .110 = 6/7

An example of a cycle where only the third symbol determines the maximal value

periodic point is

γ̂(1101110) = γ(a2a1a2a1a1) = .11011010010010 = 100/129 .

Maximal values of all cycles up to length 5 are given in table!?

A14.2 Prime factorization for dynamical itineraries

The Möbius function is not only a number-theoretic function, but can be

used to manipulate ordered sets of noncommuting objects such as symbol strings.

Let P = {p1, p2, p3, · · · } be an ordered set of prime strings, and

N = {n} =
{

p
k1

1
p

k2

2
p

k3

3
· · · pk j

j

}

,

j ∈ N, ki ∈ Z+, be the set of all strings n obtained by the ordered concatenation of

the “primes” pi. By construction, every string n has a unique prime factorization.

We say that a string has a divisor d if it contains d as a substring, and define the

string division n/d as n with the substring d deleted. Now we can do things like

this: defining tn := t
k1
p1

t
k2
p2
· · · tk j

p j
we can write the inverse dynamical zeta function

(23.3) as
∏

p

(1 − tp) =
∑

n

µ(n)tn ,
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factors string

p1 0
p2 1

p2
1

00
p1 p2 01

p2
2

11

p3 10

p3
1

000

p2
1
p2 001

p1 p2
2

011

p3
2

111

p1 p3 010
p2 p3 110
p4 100
p5 101

factors string

p4
1

0000

p3
1
p2 0001

p2
1
p2

2
0011

p1 p3
2

0111

p4
2

1111

p2
1
p3 0010

p1 p2 p3 0110

p2
2
p3 1110

p2
3

1010

p1 p4 0100
p2 p4 1100
p1 p5 0101
p2 p5 1101
p6 1000
p7 1001
p8 1011

factors string

p5
1

00000

p4
1
p2 00001

p3
1
p2

2
00011

p2
1
p3

2
00111

p1 p4
2

01111

p5
2

11111

p3
1
p3 00010

p2
1
p2 p3 00110

p1 p2
2
p3 01110

p3
2
p3 11110

p1 p2
3

01010

p2 p2
3

11010

p2
1
p4 00100

p1 p2 p4 01100

p2
2
p4 11100

p3 p4 10100

factors string

p2
1
p5 00101

p1 p2 p5 01101

p2
2
p5 11101

p3 p5 10101
p1 p6 01000
p2 p6 11000
p1 p7 01001
p2 p7 11001
p1 p8 01011
p2 p8 11011
p9 10000
p10 10001
p11 10010
p12 10011
p13 10110
p14 10111

Table A14.4: Factorization of all periodic points strings up to length 5 into ordered con-

catenations p
k1

1
p

k2

2
· · · pkn

n of prime strings p1 = 0, p2 = 1, p3 = 10, p4 = 100, . . . ,

p14 = 10111.

and, if we care (we do in the case of the Riemann zeta function), the dynamical

zeta function as .
∏

p

1

1 − tp

=
∑

n

tn (A14.11)

A striking aspect of this formula is its resemblance to the factorization of nat-

ural numbers into primes: the relation of the cycle expansion (A14.11) to the

product over prime cycles is analogous to the Riemann zeta (exercise 22.9) repre-

sented as a sum over natural numbers vs. its Euler product representation.

We now implement this factorization explicitly by decomposing recursively

binary strings into ordered concatenations of prime strings. There are 2 strings of

length 1, both prime: p1 = 0, p2 = 1. There are 4 strings of length 2: 00, 01,

11, 10. The first three are ordered concatenations of primes: 00 = p2
1
, 01 = p1 p2,

11 = p2
2
; by ordered concatenations we mean that p1 p2 is legal, but p2 p1 is not.

The remaining string is the only prime of length 2, p3 = 10. Proceeding by

discarding the strings which are concatenations of shorter primes p
k1

1
p

k2

2
· · · pk j

j
,

with primes lexically ordered, we generate the standard list of primes, in agree-

ment with table 18.1: 0, 1, 10, 101, 100, 1000, 1001, 1011, 10000, 10001,

10010, 10011, 10110, 10111, 100000, 100001, 100010, 100011, 100110, 100111,

101100, 101110, 101111, . . . . This factorization is illustrated in table A14.4.

A14.2.1 Prime factorization for spectral determinants

Following sect. A14.2, the spectral determinant cycle expansions is ob-
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tained by expanding F as a multinomial in prime cycle weights tp

F =
∏

p

∞
∑

k=0

Cpk tk
p =

∞
∑

k1k2k3 ···=0

τ
p

k1
1

p
k2
2

p
k3
3
··· (A14.12)

where the sum goes over all pseudo-cycles. In the above we have defined

τ
p

k1
1

p
k2
2

p
k3
3
··· =

∞
∏

i=1

Cpi
ki t

ki
pi
. (A14.13)

exercise 22.9

A striking aspect of the spectral determinant cycle expansion is its resem-

blance to the factorization of natural numbers into primes: as we already noted in

sect. A14.2, the relation of the cycle expansion (A14.12) to the product formula

(22.8) is analogous to the Riemann zeta represented as a sum over natural numbers

vs. its Euler product representation.

This is somewhat unexpected, as the cycle weights factorize exactly with re-

spect to r repetitions of a prime cycle, tpp...p = tr
p, but only approximately (shad-

owing) with respect to subdividing a string into prime substrings, tp1 p2
≈ tp1

tp2
.

The coefficients Cpk have a simple form only in 1-dimensional given by the

Euler formula (28.5). In higher dimensions Cpk can be evaluated by expanding

(22.8), F(z) =
∏

p Fp, where

Fp = 1 −














∞
∑

r=1

tr
p

rdp,r















+
1

2















∞
∑

r=1

tr
p

rdp,r















2

− . . . .

Expanding and recollecting terms, and suppressing the p cycle label for the mo-

ment, we obtain

Fp =

∞
∑

r=1

Cktk, Ck = (−)kck/Dk,

Dk =

k
∏

r=1

dr =

d
∏

a=1

k
∏

r=1

(1 − ur
a) (A14.14)

where evaluation of ck requires a certain amount of not too luminous algebra:

c0 = 1

c1 = 1

c2 =
1

2

(

d2

d1

− d1

)

=
1

2

















d
∏

a=1

(1 + ua) −
d

∏

a=1

(1 − ua)

















c3 =
1

3!













d2d3

d2
1

+ 2d1d2 − 3d3













=
1

6

















d
∏

a=1

(1 + 2ua + 2u2
a + u3

a)

+2

d
∏

a=1

(1 − ua − u2
a + u3

a) − 3

d
∏

a=1

(1 − u3
a)
















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etc.. For example, for a general 2-dimensional map we have

Fp = 1− 1

D1

t+
u1 + u2

D2

t2 −
u1u2(1 + u1)(1 + u2) + u3

1
+ u3

2

D3

t3 + . . . . (A14.15)

We discuss the convergence of such cycle expansions in sect. A20.4.

With τ
p

k1
1

p
k2
2
···pkn

n
defined as above, the prime factorization of symbol strings is

unique in the sense that each symbol string can be written as a unique concatena-

tion of prime strings, up to a convention on ordering of primes. This factorization

is a nontrivial example of the utility of generalized Möbius inversion, sect. A14.2.

How is the factorization of sect. A14.2 used in practice? Suppose we have

computed (or perhaps even measured in an experiment) all prime cycles up to

length n, i.e., we have a list of tp’s and the corresponding Jacobian matrix eigen-

values Λp,1,Λp,2, . . .Λp,d. A cycle expansion of the Selberg product is obtained

by generating all strings in order of increasing length j allowed by the symbolic

dynamics and constructing the multinomial

F =
∑

n

τn (A14.16)

where n = s1s2 · · · s j, si range over the alphabet, in the present case {0, 1}. Fac-

torizing every string n = s1s2 · · · s j = p
k1

1
p

k2

2
· · · pk j

j
as in table A14.4, and sub-

stituting τ
p

k1
1

p
k2
2
··· we obtain a multinomial approximation to F. For example,

τ001001010101 = τ001 001 01 01 01 = τ0012τ013 , and τ013 , τ0012 are known functions of

the corresponding cycle eigenvalues. The zeros of F can now be easily determined

by standard numerical methods. The fact that as far as the symbolic dynamics is

concerned, the cycle expansion of a Selberg product is simply an average over all

symbolic strings makes Selberg products rather pretty.

To be more explicit, we illustrate the above by expressing binary strings as

concatenations of prime factors. We start by computing Nn, the number of terms

in the expansion (A14.12) of the total cycle length n. Setting Cpk tk
p = znpk in

(A14.12), we obtain

∞
∑

n=0

Nnzn =
∏

p

∞
∑

k=0

znpk =
1

∏

p(1 − znp)
.

So the generating function for the number of terms in the Selberg product is the

topological zeta function. For the complete binary dynamics we have Nn = 2n

contributing terms of length n:

ζtop =
1

∏

p(1 − znp)
=

1

1 − 2z
=

∞
∑

n=0

2nzn

Hence the number of distinct terms in the expansion (A14.12) is the same as the

number of binary strings, and conversely, the set of binary strings of length n

suffices to label all terms of the total cycle length n in the expansion (A14.12).
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