Chapter 38

Diffr action distraction

(N. Whelan)

IFFRACTION EFFECTS Characteristic to scatteringfowedges are incorporated
into the periodic orbit theory.

38.1 Quantum eavesdropping

As noted in chapter 37, the classical mechanics of the heditom is undefined
at the instant of a triple collision. This is a common phenoare- there is often
some singularity or discontinuity in the classical mecharof physical systems.
This discontinuity can even be helpful in classifying thendgics. The points in
phase space which have a past or future at the discontirarity inanifolds which
divide the phase space and provide the symbolic dynamiasg&heral rule is that
quantum mechanics smoothes over these discontinuitiepriocass we interpret
as difraction. We solve the local fifaction problem quantum mechanically and
then incorporate this into our global solution. By doing see reconfirm the
central leitmotif of this treatise: think locally - act glalty.

While being a well-motivated physical example, the helidomais somewhat
involved. In fact, so involved that we do not have a clue hovddoit. In its
place we illustrate the concept offiilactive dfects with a pinball game. There
are various classes of discontinuities which a billiard baxwe. There may be a
grazing condition such that some trajectories hit a smootfase while others
are undfected - this leads to the creeping described in chapter 3&eThay be a
vertex such that trajectories to one side boundkeintly from those to the other
side. There may be a point scatterer or a magnetic flux linb thet we do not
know how to continue classical mechanics through the digswaities. In what
follows, we specialize the discussion to the second examiblat of vertices or
wedges. To further simplify the discussion, we considersimecial case of a half
line which can be thought of as a wedge of angle zero.
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Figure 38.1: Scattering of a plane wavefa half line. I

We start by solving the problem of the scattering of a plangend a half
line (see figure 38.1). This is the local problem whose soifutive will use to
construct a global solution of more complicated geometifgs define the vertex
to be the origin and launch a plane wave at it from an angl&vhat is the total
field? This is a problem solved by Sommerfeld in 1896 and cscwdision closely
follows his.

The total field consists of three parts - the incident field téflected field
and the difractive field. Ignoring the third of these for the moment, we $hat
the space is divided into three regions. In region | thereoitt lan incident and a
reflected wave. In region Il there is only an incident field.rdgion Il there is
nothing so we call this the shadowed region. However, becabidifraction the
field does enter this region. This accounts for why you camieas a conversation
if you are on the opposite side of a thick wall but with a dooea fneters away.
Traditionally such &ects have been ignored in semiclassical calculations kecau
they are relatively weak. However, they can be significant.

To solve this problem Sommerfeld worked by analogy with thieline case,
so let us briefly consider that much simpler problem. Therekmaw that the
problem can be solved by images. An incident wave of ammifui of the form

v(r, ) = AeTK cosv (38.1)

wherey = ¢ — @ and¢ is the angular coordinate. The total field is then given by
the method of images as

Viot = V(I ¢ — @) = V(1 ¢ + a), (38.2)

where the negative sign ensures that the boundary condifiaero field on the
line is satisfied.

Sommerfeld then argued thét, ) can also be given a complex integral rep-
resentation

v(r,y) = A fc dBf (B, y)e K 0% (38.3)
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regions as the magnitude of the imaginary part of
B approaches infinity.
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Figure 38.2: The contour in the complex plane. \\§ \§§§
The pole is aB = —y (marked byx in the figure) \\ § \ § \
and the integrand approaches zero in the shaded \ \k \ \§§\ §
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This is certainly correct if the functiofi(s, ) has a pole of residue/2xi atg =
—y and if the contouC encloses that pole. One choice is

eiﬂ
(We choose the pole to be@t —y rather tharg =  for reasons discussed later.)
One valid choice for the contour is shown in figure 38.2. Thisleses the pole
and vanishes gim 3| — ~ (as denoted by the shading). The sectibasandD
are congruent because they are displacedoyHowever, they are traversed in
an opposite sense and cancel, so our contour consists dh@sections; and
C,. The motivation for expressing the solution in this comgledd manner should

become clear soon.

What have we done? We extended the space under considdogitefactor
of two and then constructed a solution by assuming that tisesso a source in
the unphysical space. We superimpose the solutions frortwiisources and at
the end only consider the solution in the physical space tmeaningful. Fur-
thermore, we expressed the solution as a contour integredhwiflects the 2
periodicity of the problem. The half line scattering prahléollows by analogy.

Whereas for the full line the field is periodic inr2for the half line it is peri-
odic in 4r. This can be seen by the fact that the field can be expandedkeirnes s
of the form{sin(/2), sin(®), sin(3¥/2),---}. As above, we extend the space by
thinking of it as two sheeted. The physical sheet is as shovigure 38.1 and the
unphysical sheet is congruent to it. The sheets are gluegthtegalong the half
line so that a curve in the physical space which interseet#if line is continued
in the unphysical space and vice-versa. The boundary ¢onsliare that the total
field is zero on both faces of the half line (which are phy$jcdistinct boundary
conditions) and that as — o the field is composed solely of plane waves and
outgoing circular waves of the form(¢) exp(kr)/ vkr. This last condition is a
result of Huygens' principle.

whelan - 30nov2001 ChaosBook.org version13, Dec 31 2009

/27 1772012472012 27720 1 2 120 2

72
)
%/

%

7
?
7

_



CHAPTER 38. DIFFRACTION DISTRACTION 696

We assume that the complete solution is also given by theadathimages
as

Viot = U(r, ¢ — @) — u(r, ¢ + a). (38.5)

where u(r,y) is a 4r-periodic function to be determined. The second term is
interpreted as an incident field from the unphysical spacktha negative sign
guarantees that the solution vanishes on both faces of thénga Sommerfeld
then made the ansatz thats as given in equation (38.3) with the same contour
C1 + C, but with the 4 periodicity accounted for by replacing equation (38.4)
with

1 B2
f(B.¥) = In S gz (38.6)
(We divide by 4 rather than 2 so that the residue is properly normalized.) The
integral (38.3) can be thought of as a linear superpositicananfinity of plane
waves each of which satisfies the Helmholtz equatithi(k?)v = 0, and so their
combination also satisfies the Helmholtz equation. We \&#l that the diracted
field is an outgoing circular wave; this being a result of cting the pole aB =
—y rather tharB = ¢ in equation (38.4). Therefore, this ansatz is a solution of
the equation and satisfies all boundary conditions andfibrereonstitutes a valid
solution. By uniqueness this is the only solution.

In order to further understand this solution, it is usefultassage the contour.
Depending orp there may or may not be a pole betwges —r andg = n. In
region I, both functionsu(r, ¢ + @) have poles which correspond to the incident
and reflected waves. In region Il, onlfr, ¢ — ) has a pole corresponding to the
incident wave. In region Il there are no poles because osttalow. Once we
have accounted for the geometrical waves (i.e., the polesgxtract the diracted
waves by saddle point analysist +7. We do this by deforming the contours
C so that they go through the saddles as shown in figure 38.2.

ContourC, becomesE, + F while contourC, becomesE; — F where the
minus sign indicates that it is traversed in a negative sefisa resultF has no
net contribution and the contour consists of jEstandE,.

As a result of these machinations, the cureare simply the curve® of
figure 38.2 but with a reversed sense. Since the integrarall@nger Z periodic,
the contributions from these curves no longer cancel. Wriat@ both stationary
phase integrals to obtain

eirr/4 jkr
) =~ —A 2 38.7
u(r, ) Ve sec(/ )\/ﬁ (38.7)

so that the total diracted field is

i = A (sed 15%) - seq £20)) <. 8.9)
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diffractive field after _the contribution of possible i§&\\\\ \ N \\3 &\§\§§
poles has been explicitly evaluated. The cufve AN NAAMARRNY AN
is traversed twice in opposite directions and has no §§M \\§ \\\\\\\\\@ \\\§\§§§
net contribution. &&\\\\\ \ \\\\\\\\\\ &\\&x\
Note that this expression breaks down wigen @ = 7. These angles correspond
to the borders among the three regions of figure 38.1 and neustbdled more
carefully - we can not do a stationary phase integral in tloenity of a pole.
However, the integral representation (38.3) and (38.6hitoumly valid. exercise 38.1

We now turn to the simple task of translating this result ithte language of
semiclassical Green’s functions. Instead of an incidesmh@hlave, we assume a
source at poink’ and then compute the resulting field at the receiver position
If xisinregion I, there is both a direct term, and a reflected téfrmis in region
Il there is only a direct term and it is in region Il there is neither. In any event
these contributions to the semiclassical Green’s funai@eknown since the free
space Green’s function between two poirgsandx; is

Gt (X2, X1, K) = —i—ng”(kd) NS - expli(kd + 7/4)}, (38.9)

7T

whered is the distance between the points. For a reflection, we reauittiply
by —1 and the distance is the length of the path via the reflectmntp Most
interesting for us, there is also aftlactive contribution to the Green’s function.
In equation (38.8), we recognize that the ffmdent A is simply the intensity at the
origin if there were no scatterer. This is therefore repthliog the Green'’s function
to go from the source to the vertex which we lakg! Furthermore, we recognize
that expikr)/ Vkr is, within a proportionality constant, the semiclassicaé@’s
function to go from the vertex to the receiver.

Collecting these facts, we say
Gigr(* X, k) = G¢(x, xv, K)d(6, " )G¢(xv, X, K), (38.10)

where, by comparison with equations (38.8) and (38.9), we ha

N [0-¢ 0+6
d(e,e)_seo( 2 )—sec{ > ) (38.11)
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CHAPTER 38. DIFFRACTION DISTRACTION 698

Here¢ is the angle to the source as measured from the verter etie angle to

the receiver. They were denoted@snd¢ previously. Note that there is a sym-

metry between the source and receiver as we expect for aréuggsal invariant

process. Also the €éiraction codficientd does not depend on which face of the

half line we use to measure the angles. As we will see, a veppiitant property

of Gy is that it is a simple multiplicative combination of othemsielassical

Green’s functions. exercise 38.2

We now recover our classical perspective by realizing thratan still think of
classical trajectories. In calculating the quantum Gredémction, we sum over
the contributions of various paths. These include the idaktajectories which
connect the points and also paths which connect the poiattheivertex. These
have diferent weights as given by equations (38.9) and (38.10) keutdhcept of
summing over classical paths is preserved.

For completeness, we remark that there is an exact integpatsentation for
the Green’s function in the presence of a wedge of arbitrpgning angle [38.15].
It can be written as

G(x, X,K) =g(r,r', k.8 —0) —g(r,r' .k, & + 6) (38.12)

where ¢, 6) and ¢, ¢') are the polar coordinates of the poixtandx’ as measured
from the vertex and the angles are measured from either fatteeavedge. The
functiong is given by

o(r.r’, ky) = L (38.13)

8ry

f " HS (k+/r2 + 172 — 2rr’ cosp)
C1+Cy 1- exp(i[’i)

4

wherev = y/n andvy is the opening angle of the wedge. fie= 2r in the case of
the half plane). The conto@; + C, is the same as shown in figure 38.2.

The poles of this integral give contributions which can benidfied with the
geometric paths connectingandx’'. The saddle points # = +x give contribu-
tions which can be identified with theftliactive path connecting andx’. The
saddle point analysis allows us to identify thé&diction constant as

4sinZ singsin%
d(6,0') = —

(38.14)
v (cos’—vr — cos

2:0) (cosZ - cos=2)’
which reduces to (38.11) when= 2. Note that the diraction codicient vanishes
identically if v = 1/n wheren is any integer. This corresponds to wedge angles
of y = n/n (eg. r=1 corresponds to a full line and=R corresponds to a right
angle). This demonstration is limited by the fact that it eafrom a leading
order asymptotic expansion but the result is quite gené@lsuch wedge angles,
we can use the method of images (we will require-21 images in addition to
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CHAPTER 38. DIFFRACTION DISTRACTION 699

Figure 38.4: The billiard considered here. The dy-
namics consists of free motion followed by specular
reflections @ the faces. The top vertex induce$fdic- N
tion while the bottom one is a right angle and induces kN
two specular geometric reflections.

the actual source point) to obtain the Green’s function #edet is no diractive
contribution to any order. Classically this correspondshi® fact that for such
angles, there is no discontinuity in the dynamics. Trajéesogoing into the vertex
can be continued out of them unambiguously. This meshesthétdiscussion in
the introduction where we argued thaffthctive dfects are intimately linked with
classical discontinuities.

The integral representation is also useful because it aligsvto consider ge-
ometries such that the angles are near the optical bousdarithe wedge angle
is close tor/n. For these geometries the saddle point analysis leadingBtd4)
is invalid due to the existence of a nearby pole. In that ewsatrequire a more
sophisticated asymptotic analysis of the full integrakresentation.

38.2 An application

Although we introduced diraction as a correction to the purely classicéikets;

it is instructive to consider a system which can be quanteadly in terms of
periodic difractive orbits. Consider the geometry shown in figure 38.4 @las-
sical mechanics consists of free motion followed by speaeifhections ¢ faces.
The upper vertex is a source ofidaction while the lower one is a right angle and
induces no ditraction. This is an open system, there are no bound stately - on
scattering resonances. However, we can still test ffectveness of the theory
in predicting them. Formally, scattering resonances aetiies of the scattering
S matrix and by an identity of Balian and Bloch are also poleshef quantum
Green’s function. We demonstrate this fact in chapter 32fdimensional scat-
terers. The poles have complex wavenumgexs for the 3-disk problem.

Let us first consider how fractive orbits arise in evaluating the trace®f
which we callg(k). Specifying the trace means that we must consider all paths
which close on themselves in the configuration space wheliosiary phase ar-
guments for large wavenumbé&rextract those which are periodic - just as for
classical trajectories. In generglk) is given by the sum over all firactive and
geometric orbits. The contribution of the simpldfdactive orbit labeled shown
in figure 38.5 tag(k) is determined as follows.

We consider a poin® just a little df the path and determine the semiclassical
Green’s function to return tB via the vertex using (38.9) and (38.10). To leading
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Figure 38.5: The dashed line shows a simple periodi
diffractive orbity. Between the verte¥ and a poinP 3§ R V
close to the orbit there are two geometric legs labelepe—— | ——

+. The origin of the coordinate system is chosen to Q
atR. 2

order iny the lengths of the two geometric paths connectihgndV ared. =
(L+£x)+y?/(L+X)?/2 so that the phase factid(d, +d_) equals ZKL+iky?/(L2—x2).
The trace integral involves integrating over all poiftand is

d(2kL+/2)

g,(k) ~ —2d, e fox/if dye Sl XZ) (38.15)

We introduced an overall negative sign to account for thecéfin at the hard wall
and multiplied by 2 to account for the two traversal sens&¥V andVPRV. In
the spirit of stationary phase integrals, we have neglettie¢y dependence ev-
erywhere except in the exponential. Théfdiction constand, is the one corre-
sponding to the diractive periodic orbit. To evaluate theintegral, we use the
identity

f " e = dnld \/g (38.16)

and thus obtain a factor which precisely cancelstidependence in theintegral.
This leads to the rather simple result

i, [ d |,
~ o) (K +n/4) 38.17
% Zk{ rﬁkly} (38.17)

wherel, = 2L is the length of the periodic firactive orbit. A more sophisticated
analysis of the trace integral has been done [38.6] usinimtbgral representation
(38.13). Itis valid in the vicinity of an optical boundaryaalso for wedges with
opening angles close m/'n.

Consider a periodic diractive orbit withn, reflections ¢ straight hard walls
andy,, diffractions each with a firaction constant, ;. The total length of the
orbit L, = >’ 1,; is the sum of the various fliractive legs and, is the length of
the corresponding prime orbit. For such an orbit, (38.1Hegalizes to

g,(k) = }exp{i(kLy + Ny — 3u,m/4)}. (38.18)

Hl
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exercise 38.3

Each difraction introduces a factor of Wk and multi-difractive orbits are thereby
suppressed.

If the orbity is prime therL, = |,. If y is ther'th repeat of a prime orbj we
havelL, = rlg, n, = rpg andu, = ro-,g, wherelg, ps ando all refer to the prime
orbit. We can then write

ilg
g’)/ = gﬂ,r = _Etﬂ (3819)

where

}exp{i(klﬁ + pgm — 3opm/4)). (38.20)

REET

It then makes sense to organize the sum oviraditive orbits as a sum over the
prime difractive orbits and a sum over the repetitions

0 = . %o =~ Z ,31 - (38.21)
B r=1

We cast this as a logarithmic derivative (19.7) by notingt t%t@ = llgtg —
optg/2k and recognizing that the first term dominates in the sensiaklimit. It
follows that

aqifr(K) ~ %(% {ln ]_[(1 - tﬁ)} : (38.22)
B

In the case that there are onlyffdactive periodic orbits - as in the geometry of
figure 38.4 - the poles ajf(k) are the zeros of a dynamical zeta function

1K) =] |@-1t). (38.23)
B

For geometric orbits, this function would be evaluated veitbycle expansion as
discussed in chapter 20. However, here we can use the nudtipé nature of the
weightsts to find a closed form representation of the function usingaadition
graph, as in chapter 14. This multiplicative property of itights follows from
the fact that the diractive Green’s function (38.10) is multiplicative in segmnt
semiclassical Green’s functions, unlike the geometriecas
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1 5
Figure 38.6: The two-node transition graph with all B A
the diffractive processes connecting the nodes.

There is a reflection symmetry in the problem which meansathatsonances
can be classified as even or odd. Because of this, the dynareteafunction fac-
torizes as I/ = 1/7,¢_ (as explained in sects. 21.5 and 21.1.1) and we determine
1/, and Y- separately using the ideas of symmetry decomposition gb-cha
ter 21.

In the transition graph shown in figure 38.6, we enumeratpraltesses. We
start by identifying the fundamental domain as just thetrighlf of figure 38.4.
There are two nodes which we ca@llandB. To get to another node fromd, we
can ditract (always via the vertex) in one of three directions. Wedifract back
to B which we denote as process 1. We cdifrdct toB’s image pointB” and then
follow this by a reflection. This process we denote2ashere the bar indicates
that it involves a reflection. Third, we canfiitact to nodeA. Starting atA we can
also difract to a node in three ways. We carfiidict to B which we denote as 4.
We can difract toB’ followed by a reflection which we denote 4s Finally, we
can difract back toA which we denote as process 5. Each of these processes has
its own weight which we can determine from the earlier disaws. First though,
we construct the dynamical zeta functions.

The dynamical zeta functions are determined by enumeratirgjosed loops
which do not intersect themselves in figure 38.6. We do it fostl/Z, because
that is simpler. In that case, the processes with bars agten an equal footing
as the others. Appealing back to sect. 21.5 we find

1/Z+

1- t1 — tf— t5 — taty — t3tZ+ tsty + t5t§,
1- (tl + ti + t5) — 23ty + t5(t1 + ti) (3824)

where we have used the fact that= t; by symmetry. The last term has a positive
sign because it involves the product of shorter closed lodscalculate 17,
we note that the processes with bars have a relative negaginalue to the group
theoretic weight. Furthermore, process 5 is a boundaryt (e sect. 21.3.1) and
only afects the even resonances - the terms involtdrege absent from/X_. The
result is

1/

1—ty + 1t — tatg + taty,
1-(t —t3). (38.25)

Note that these expressions have a finite number of termsrantbain the form exercise 38.4
of a curvature expansion, as for the 3-disk problem.

It now just remains to fix the weights. We use equation (382@)note that
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complex k-plane

Figure 38.7: The even resonances of the wedge scat- 10
terer of figure 38.4 plotted in the compléx-plane, )
with L = 1. The exact resonances are represented ,
as circles and their semiclassical approximations as ,
crosses. '

each weight involves just oneftliaction constant. It is then convenient to define
the quantities

expli(2kL + 21)) 2 _ eXpli(kH + )
B — ——

uz =
1l6rkL 167kH

(38.26)

The lengthd. andH = L/ V2 are defined in figure 38.4; we det= 1 throughout.
Bouncing inside the right angle Atcorresponds to two specular reflections so that
p = 2. We therefore explicitly include the factor exgs) in (38.26) although it is
trivially equal to one. Similarly, there is one speculareeflon at pointB giving

p = 1 and therefore a factor of exprf. We have definedia and ug because,
together with some diraction constants, they can be used to construct all of the
weights. Altogether we define fourfiliaction codicients: dag is the constant
corresponding to diracting fromB to Aand is found from (38.11) with’ = 37/4
andd = m and equals 2 sea(8) ~ 2.165. With analogous notation, we hasiga
anddgg = dg'g Which equal 2 and V2 respectivelyd;j = d;; due to the Green’s
function symmetry between source and receiver referrecitisee Finally, there

is the ditractive phase factos = exp (-i3n/4) each time there is aftliaction.
The weights are then as follows:

SdB/BUZB ta=1= tZ = SjABUAUB
SdaAUA. (38.27)

1 = SdBBUZB ti

t5

Each weight involves twar's and oned. The u's represent the contribution to
the weight from the paths connecting the nodes to the veridxtzed gives the
diffraction constant connecting the two paths.

The equality ofdgg anddg g implies thatt; = t;. From (38.25) this means that
there are no odd resonances because 1 can never equal Oe Egethresonances
equation (38.24) is an implicit equation fowhich has zeros shown in figure 38.7.

For comparison we also show the result from an exact quanaloulation.
The agreement is very good right down to the ground state s ag ioften the
case with semiclassical calculations. In addition we canais dynamical zeta
function to find arbitrarily high resonances and the resatdtsially improve in that
limit. In the same limit, the exact numerical solution be@snmore diicult to
find so the dynamical zeta function approximation is palidy useful in that
case. exercise 38.5

In general a system will consist of both geometric andiractive orbits. In
that case, the full dynamical zeta function is the producthef geometric zeta
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function and the diractive one. The diractive weights are typically smaller
by orderO(1/ Vk) but for smallk they can be numerically competitive so that
there is a significant diractive dfect on the low-lying spectrum. It might be
expected that higher in the spectrum, theet of difraction is weaker due to
the decreasing weights. However, it should be pointed aittah analysis of the
situation for creeping diraction [38.7] concluded that thefttaction is actually
more important higher in the spectrum due to the fact that an ereatgr fraction
of the orbits need to be corrected folffdactive dfects. The equivalent analysis
has not been done for edgdfdaction but a similar conclusion can probably be
expected.

To conclude this chapter, we return to the opening paragaaphdiscuss the
possibility of doing such an analysis for helium. The impaitpoint which al-
lowed us to successfully analyze the geometry of figure 38tHat when a trajec-
tory is near the vertex, we can extract it§fidiction constant without reference to
the other facets of the problem. We say, therefore, thatishés“local” analysis
for the purposes of which we have “turned’othe other aspects of the prob-
lem, namely sides\B and AB’. By analogy, for helium, we would look for some
simpler description of the problem which applies near theghbody collision.
However, there is nothing to “turnfid” The local problem is just as flicult as
the global one since they are precisely the same problemglaged by scaling.
Therefore, it is not at all clear that such an analysis isiptes$or helium.

Résumé

In this chapter we have discovered new types of periodid®daintributing to the
semiclassical traces and determinants. Unlike the periodiits we had seen so
far, these are not true classical orbits. They are genefatesingularities of the
scattering potential. In these singular points the classignamics has no unique
definition, and the classical orbits hitting the singulagtcan be continued in
many diferent directions. While the classical mechanics does notvkmhich
way to go, qguantum mechanics solves the dilemma by allowsnip wontinue in
all possible directions. The likelihoods offtéirent paths are given by the quan-
tum mechanical weights calledfffaction constants. The total contribution to a
trace from such orbit is given by the product of transmissiamplitudes between
singularities and diraction constants of singularities. The weights dfrdictive
periodic orbits are at least of ordef ¥k weaker than the weights associated with
classically realizable orbits, and their contribution afgle energies is therefore
negligible. Nevertheless, they can strongly influence twe liying resonances
or energy levels. In some systems, such asNhgisk scattering the fliraction
effects do not only perturb semiclassical resonances, butlsarceeate new low
energy resonances. Therefore it is always important taidecthe contributions of
diffractive periodic orbits when semiclassical methods aréiegpt low energies.
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Commentary

Remark 38.1 Classical discontinuities. Various classes of discontinuities for billiard
and potential problems discussed in the literature:

e a grazing condition such that some trajectories hit a smeotface while others
are un#fected, refs. [38.1, 38.2, 38.3, 38.7]

e avertex such that trajectories to one side bounfferintly from those to the other
side, refs. [38.2, 38.4, 38.5, 38.8, 38.9].

e a point scatterer [38.10, 38.11] or a magnetic flux line [2838.13] such that we
do not know how to continue classical mechanics through tbepdtinuities.

Remark 38.2 Geometrical theory of diffraction. In the above discussion we borrowed
heavily from the ideas of Keller who was interested in exiegdhe geometrical ray
picture of optics to cases where there is a discontinuity. ntééntained that we could
hang onto that ray-tracing picture by allowing rays to #rike vertex and then leave at
any angle with amplitude (38.8). Both he and Sommerfeld werking of optics and not
quantum mechanics and they did not phrase the results irstefsemiclassical Green’s
functions but the essential idea is the same.

Remark 38.3 Generalizations  Consider the fect of replacing our half line by a
wedge of angley; and the right angle by an arbitrary angle. If y, > y; andy, >
n/2 this is an open problem whose solution is given by equat{8824) and (38.25)
(there will then be odd resonances) but with modified weighftecting the changed
geometry [38.8]. (Foy, < n/2, more ditractive periodic orbits appear and the dynam-
ical zeta functions are more complicated but can be caledhaith the same machinery.)
Wheny, = y,, the problem in fact has bound states [38.21, 38.22]. Thisdase has
been of interest in studying electron transport in mesascdgvices and in microwave
waveguides. However we can not use our formalism as it staadause the ffractive
periodic orbits for this geometry lie right on the bordenleén illuminated and shadowed
regions so that equation (38.7) is invalid. Even the moréoum derivation of [38.6] fails
for that particular geometry, the problem being that th&active orbit actually lives on
the edge of a family of geometric orbits and this makes théyaisastill more dificult.

Remark 38.4 Diffractive Green’s functions. The result (38.17) is proportional to the
length of the orbit times the semiclassical Green’s fumc{i®8.9) to go from the vertex
back to itself along the classical path. The multidictive formula (38.18) is propor-
tional to the total length of the orbit times the product of gemiclassical Green'’s func-
tions to go from one vertex to the next along classical paififss result generalizes to
any system — either a pinball or a potential — which contaiompsingularities such
that we can define a fiifiaction constant as above. The contribution to the tracéef t
semiclassical Green’s function coming from &dictive orbit which hits the singularities
is proportional to the total length (or period) of the orlités the product of semiclassical
Green’s functions in going from one singularity to the nekhis result first appeared in
reference [38.2] and a derivation can be found in refereB8]. A similar structure also
exists for creeping [38.2].
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Remark 38.5 Diffractive orbits for hydrogenic atoms. An analysis in terms of dirac-
tive orbits has been made in df@irent atomic physics system, the response of hydrogenic
atoms to strong magnetic fields [38.23]. In these systemisgdeselectron is highly ex-
cited and takes long traversals far from the nucleus. Upmming to a hydrogen nucleus,
it is re-ejected with the reversed momentum as discusselapter 37. However, if the
atom is not hydrogen but sodium or some other atom with oneneal electron, the re-
turning electron feels the charge distribution of the cdeetons and not just the charge
of the nucleus. This so-called quantum defect inducesesaadtin addition to the clas-
sical re-ejection present in the hydrogen atom. (In thig ¢he local analysis consists of
neglecting the magnetic field when the trajectory is neamtha@eus.) This is formally
similar to the vertex which causes both specular reflectimhdiffraction. There is then
additional structure in the Fourier transform of the quamtspectrum corresponding to
the induced diractive orbits, and this has been observed experimenGiy2f].

Exercises

38.1.

38.2.

38.3.

exerWhelan - 18dec97

Stationary phaseintegral. Evaluate the two station-
ary phase integrals corresponding to contdtirandE,
of figure 38.3 and thereby verify (38.7).

(N. Whelan)

Scattering from a small disk  Imagine that instead

of a wedge, we have a disk whose radaiss much
smaller than the typical wavelengths we are considering.
In that limit, solve the quantum scattering problem - find
the scattered wave which result from an incident plane
wave. You can do this by the method of partial waves -
the analogous three dimensional problem is discussed in
most quantum textbooks. You should find that only the
m = 0 partial wave contributes for smadl Following

the discussion above, show that thérdiction constant

IS 38.5.

N S
log (&) - e +i%

whereye = 0.577--- is Euler's constant. Note that in
this limit d depends weakly ok but not on the scatter-
ing angle.

(38.28)

(N. Whelan)

Several diffractivelegs. Derive equation (38.18). The
calculation involves considering slight variations of the
diffractive orbit as in the simple case discussed above.
Here it is more complicated because there are more
diffractive arcs - however you should convince yourself

4. Unsymmetrized dynamical zeta function.

that a slight variation of the éfractive orbit only &ects
one leg at a time.

(N. Whelan)

As-
sume you know nothing about symmetry decomposi-
tion. Construct the 3-node transition graph for fig-
ure 38.1 by considering, B and B’ to be physically
distinct. Write down the corresponding dynamical zeta
function and check explicitly that foB = B’ it factor-
izes into the product of the even and odd dynamical zeta
functions. Why is there no termy in the full dynamical
zeta function?

(N. Whelan)

Three point scatterers.

Consider the limiting case of the three disk game of pin-
ball of figure 1.1 where the disks are very much smaller
than their spacing. Use the results of exercise 38.2 to
construct the desymmetrized dynamical zeta functions,
as in sect. 21.6. You should finddy, = 1 - 2t where

t = dé(R-37/4/ v/grkR. Compare this formula with that
from chapter 11. By assuming that the real parkof

is much greater than the imaginary part show that the
positions of the resonances d«R = an — I8, where

an = 270+ 31/4,Bn = Iog(\/Zm;xn/d) andn is a non-
negative integer. (See also reference [38.11].)

(N. Whelan)
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