Chapter 38

Diffr action distraction

(N. Whelan)

IFFRACTION EFFECTS characteristic to scatteringfovedges are incorporated
into the periodic orbit theory.

38.1 Quantum eavesdropping

As noted in chapter 37, the classical mechanics of the heditom is undefined
at the instant of a triple collision. This is a common phennare- there is often
some singularity or discontinuity in the classical mecharaf physical systems.
This discontinuity can even be helpful in classifying thedwics. The points in
phase space which have a past or future at the discontirarity fnanifolds which
divide the phase space and provide the symbolic dynamiasg&heral rule is that
guantum mechanics smoothes over these discontinuitiepriocass we interpret
as difraction. We solve the local firaction problem quantum mechanically and
then incorporate this into our global solution. By doing 8@ reconfirm the
central leitmotif of this treatise: think locally - act glaly.

While being a well-motivated physical example, the helitomais somewhat
involved. In fact, so involved that we do not have a clue hovddoit. In its
place we illustrate the concept offffactive dfects with a pinball game. There
are various classes of discontinuities which a billiard bame. There may be a
grazing condition such that some trajectories hit a smootfase while others
are undtected - this leads to the creeping described in chapter 3&reThay be a
vertex such that trajectories to one side bounékrntly from those to the other
side. There may be a point scatterer or a magnetic flux lina et we do not
know how to continue classical mechanics through the dismaities. In what
follows, we specialize the discussion to the second examibiat of vertices or
wedges. To further simplify the discussion, we considersihecial case of a half
line which can be thought of as a wedge of angle zero.
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Figure 38.1: Scattering of a plane waveta half line. !

We start by solving the problem of the scattering of a plangend a half
line (see figure 38.1). This is the local problem whose sofutive will use to
construct a global solution of more complicated geometifés define the vertex
to be the origin and launch a plane wave at it from an anglg/hat is the total
field? This is a problem solved by Sommerfeld in 1896 and assudision closely
follows his.

The total field consists of three parts - the incident fiel@ téflected field
and the dffractive field. Ignoring the third of these for the moment, we shat
the space is divided into three regions. In region | thereoib lan incident and a
reflected wave. In region Il there is only an incident field.région Il there is
nothing so we call this the shadowed region. However, becafidiffraction the
field does enter this region. This accounts for why you camhees a conversation
if you are on the opposite side of a thick wall but with a dooew fneters away.
Traditionally such &ects have been ignored in semiclassical calculations Becau
they are relatively weak. However, they can be significant.

To solve this problem Sommerfeld worked by analogy with thieline case,
so let us briefly consider that much simpler problem. Thereknaw that the
problem can be solved by images. An incident wave of ampifuts of the form

W(r,u) = Ae oo (38.1)

wherey = ¢ — @ and¢ is the angular coordinate. The total field is then given by
the method of images as

Viot = V(. ¢ — @) = V(1. ¢ + ), (38.2)

where the negative sign ensures that the boundary condifiaero field on the
line is satisfied.

Sommerfeld then argued thet, ) can also be given a complex integral rep-

resentation

v(r.v) = A fc dB1(B.w)e ™ 0%, (38.3)

whelan - 30nov2001 ChaosBook.org version13, Dec 31 2009



CHAPTER 38. DIFFRACTION DISTRACTION 695 CHAPTER 38. DIFFRACTION DISTRACTION 696

We assume that the complete solution is also given by theadathimages
as

Vot = U(r, ¢ —a) — U(r. ¢ + ). (38.5)

where u(r,y) is a 4r-periodic function to be determined. The second term is
interpreted as an incident field from the unphysical spackthe negative sign
guarantees that the solution vanishes on both faces of thénea Sommerfeld
then made the ansatz thats as given in equation (38.3) with the same contour
Cy + C, but with the 4 periodicity accounted for by replacing equation (38.4)
with

Figure 38.2: The contour in the compleX plane.
The pole is a8 = —y (marked byx in the figure)
and the integrand approaches zero in the shaded
regions as the magnitude of the imaginary part of
B approaches infinity.

1 dhr

fB.y) = P e (38.6)

This is certainly correct if the functiofi(3, ) has a pole of residue/2ri atp =
—y and if the contouC encloses that pole. One choice is

1 &8

fB.v) = mdF i (38.4)

(We choose the pole to be@at —y rather tharB = y for reasons discussed later.)
One valid choice for the contour is shown in figure 38.2. Thisleses the pole
and vanishes gimp| — « (as denoted by the shading). The sectibaandD;
are congruent because they are displacedbyHowever, they are traversed in
an opposite sense and cancel, so our contour consists @h@isectionC; and
C,. The motivation for expressing the solution in this comgiérl manner should
become clear soon.

What have we done? We extended the space under considédmgitefactor
of two and then constructed a solution by assuming that tiseaso a source in
the unphysical space. We superimpose the solutions fronwtheources and at
the end only consider the solution in the physical space tmeeningful. Fur-
thermore, we expressed the solution as a contour integradhwhflects the 2
periodicity of the problem. The half line scattering prabléollows by analogy.

Whereas for the full line the field is periodic inr2for the half line it is peri-
odic in 4r. This can be seen by the fact that the field can be expandedeines s
of the form {sin(p/2), sin(®), sin(34/2),---}. As above, we extend the space by
thinking of it as two sheeted. The physical sheet is as shoigure 38.1 and the
unphysical sheet is congruent to it. The sheets are gluesthtegalong the half
line so that a curve in the physical space which interseetsdif line is continued
in the unphysical space and vice-versa. The boundary donsliare that the total
field is zero on both faces of the half line (which are phygjcdistinct boundary
conditions) and that as — oo the field is composed solely of plane waves and
outgoing circular waves of the form(g) exp(kr)/ Vkr. This last condition is a
result of Huygens’ principle.
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(We divide by 4 rather than 2 so that the residue is properly normalized.) The
integral (38.3) can be thought of as a linear superpositfoananfinity of plane
waves each of which satisfies the Helmholtz equatigh+(k?)v = 0, and so their
combination also satisfies the Helmholtz equation. We \e# that the dfracted
field is an outgoing circular wave; this being a result of cking the pole g8 =

—y rather tharB = y in equation (38.4). Therefore, this ansatz is a solution of
the equation and satisfies all boundary conditions andfiivereonstitutes a valid
solution. By uniqueness this is the only solution.

In order to further understand this solution, it is usefufrtassage the contour.
Depending orp there may or may not be a pole betwges —7 andp = n. In
region |, both functionsu(r, ¢ + @) have poles which correspond to the incident
and reflected waves. In region I, onlyr, ¢ — @) has a pole corresponding to the
incident wave. In region Il there are no poles because oftielow. Once we
have accounted for the geometrical waves (i.e., the palesgxtract the diracted
waves by saddle point analysis@at +r. We do this by deforming the contours
C so that they go through the saddles as shown in figure 38.2.

ContourC; becomesE;, + F while contourC, becomesE; — F where the
minus sign indicates that it is traversed in a negative seAsa resultF has no
net contribution and the contour consists of jEstandE;.

As a result of these machinations, the curgeare simply the curve® of
figure 38.2 but with a reversed sense. Since the integraral@nger 2r periodic,
the contributions from these curves no longer cancel. Whiateboth stationary
phase integrals to obtain

dr/4 jkr
u(r,¥) ~ —~A——sec(/2 38.7
(r.¥) N 0/2) N (38.7)
so that the total diracted field is
gn/4 ¢—a é+ay ¥
Vi = ~A—— (sec(—)—se({—))—. 38.8
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Here® is the angle to the source as measured from the vertex arthe angle to

the receiver. They were denoted@and¢ previously. Note that there is a sym-

metry between the source and receiver as we expect for aréuegsal invariant

process. Also the fraction codficientd does not depend on which face of the

half line we use to measure the angles. As we will see, a veppitant property

of Gy is that it is a simple multiplicative combination of othemselassical

Green’s functions. exercise 38.2

We now recover our classical perspective by realizing tratan still think of
classical trajectories. In calculating the quantum Greémhction, we sum over
the contributions of various paths. These include the dabkgajectories which
connect the points and also paths which connect the poiattheivertex. These
have diferent weights as given by equations (38.9) and (38.10) keutdhcept of
summing over classical paths is preserved.

Figure 38.3: The contour used to evaluate the
diffractive field after the contribution of possible
poles has been explicitly evaluated. The cufve

is traversed twice in opposite directions and has no
net contribution.

Note that this expression breaks down wien @ = #. These angles correspond

to the borders among the three regions of figure 38.1 and neusabdled more

carefully - we can not do a stationary phase integral in tlenity of a pole.

However, the integral representation (38.3) and (38.6pifotmly valid. exercise 38.1

We now turn to the simple task of translating this result itite language of
semiclassical Green’s functions. Instead of an incidesmt@lave, we assume a
source at poink’ and then compute the resulting field at the receiver position
If xis in region I, there is both a direct term, and a reflected témis in region
Il there is only a direct term and K is in region Il there is neither. In any event
these contributions to the semiclassical Green’s funai@known since the free
space Green'’s function between two poirgandx; is

G (%2, %1, K) = _Llng;) (kd) ~ — expli(kd + 7/4)}, (38.9)

1
V8rkd

whered is the distance between the points. For a reflection, we resatttiply
by —1 and the distance is the length of the path via the reflect@ntp Most
interesting for us, there is also aftlactive contribution to the Green’s function.
In equation (38.8), we recognize that the fiméentA is simply the intensity at the
origin if there were no scatterer. This is therefore repiblog the Green'’s function
to go from the source to the vertex which we lakel Furthermore, we recognize
that expikr)/ Vkr is, within a proportionality constant, the semiclassicaé@’s
function to go from the vertex to the receiver.

Collecting these facts, we say
Gy (% X', k) = Gg(x, xv. K)d(6, 8")Gs(xv. X, k), (38.10)

where, by comparison with equations (38.8) and (38.9), we ha

d0.0) = se{e‘zel) _Sec(g_;g/)‘ (38.11)
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For completeness, we remark that there is an exact integpatsentation for
the Green'’s function in the presence of a wedge of arbitragnong angle [38.15].
It can be written as

G(x, X, k) =g(r,r', k¢ —6) —g(r,r',k, ¢ +6) (38.12)

where ¢, 0) and ¢/, ") are the polar coordinates of the poixtandx’ as measured
from the vertex and the angles are measured from either fatteeavedge. The
functiongis given by

(38.13)

) = =
orr k) = g

f dﬂHg(k\/r2+ 1’2 — 2rr’ cosp)
C1+C2

1- exp(i’ﬂ)

v

wherev = y/x andy is the opening angle of the wedge. fie= 2r in the case of
the half plane). The conto@; + C; is the same as shown in figure 38.2.

The poles of this integral give contributions which can benidfied with the
geometric paths connectingand x’. The saddle points # = +x give contribu-
tions which can be identified with theftliactive path connecting andx’. The
saddle point analysis allows us to identify th@diction constant as

4sinZ singsin
v y >y (38.14)

de,o) = - ,
©.6) v (cosZ - cos®” ) (cos® - cos=E)

which reduces to (38.11) when= 2. Note that the diraction codicient vanishes
identically if v = 1/n wheren is any integer. This corresponds to wedge angles
of y = n/n (eg. =1 corresponds to a full line and=2 corresponds to a right
angle). This demonstration is limited by the fact that it eafrom a leading
order asymptotic expansion but the result is quite genéra such wedge angles,
we can use the method of images (we will require-21 images in addition to
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Figure 38.4: The billiard considered here. The dy-
namics consists of free motion followed by specular
reflections & the faces. The top vertex inducesfric-

tion while the bottom one is a right angle and induces
two specular geometric reflections. A

the actual source point) to obtain the Green'’s function &edet is no diractive
contribution to any order. Classically this correspondghie fact that for such
angles, there is no discontinuity in the dynamics. Trajéesogoing into the vertex
can be continued out of them unambiguously. This meshesthétdiscussion in
the introduction where we argued thaffthctive étects are intimately linked with
classical discontinuities.

The integral representation is also useful because it allasvto consider ge-
ometries such that the angles are near the optical bousdarithe wedge angle
is close tar/n. For these geometries the saddle point analysis leadingBtd4)
is invalid due to the existence of a nearby pole. In that eweatrequire a more
sophisticated asymptotic analysis of the full integraresentation.

38.2 An application

Although we introduced dliraction as a correction to the purely classicdiéets;

it is instructive to consider a system which can be quantzaély in terms of
periodic difractive orbits. Consider the geometry shown in figure 38.4 @las-
sical mechanics consists of free motion followed by speaelfections @ faces.
The upper vertex is a source ofidlaction while the lower one is a right angle and
induces no diraction. This is an open system, there are no bound stately - on
scattering resonances. However, we can still test ffextveness of the theory
in predicting them. Formally, scattering resonances agetiles of the scattering
S matrix and by an identity of Balian and Bloch are also poleshef quantum
Green’s function. We demonstrate this fact in chapter 32fdimensional scat-
terers. The poles have complex wavenunibess for the 3-disk problem.

Let us first consider how @ractive orbits arise in evaluating the trace®f
which we callg(k). Specifying the trace means that we must consider all paths
which close on themselves in the configuration space wtalgosiary phase ar-
guments for large wavenumbérextract those which are periodic - just as for
classical trajectories. In generalk) is given by the sum over all firactive and
geometric orbits. The contribution of the simplédfdictive orbit labeled shown
in figure 38.5 tog(k) is determined as follows.

We consider a poinP just a little df the path and determine the semiclassical
Green’s function to return tB via the vertex using (38.9) and (38.10). To leading
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Figure 38.5: The dashed line shows a simple periodiy| _ -~~~ - ——————
diffractive orbity. Between the verte¥ and a poinf?
close to the orbit there are two geometric legs label

atR.

order iny the lengths of the two geometric paths connecthgndV ared. =
(L+X)+y?/(L+x)?/2 so that the phase factid(d, +d_) equals KL+iky?/(L?—x?).
The trace integral involves integrating over all poiftand is

d@kLm/) AL gy o0 ikyzﬁ)
00~ 20, g — [ == | "ol (38.15)

We introduced an overall negative sign to account for thecéfin at the hard wall
and multiplied by 2 to account for the two traversal sens&V andVPRV. In
the spirit of stationary phase integrals, we have negletttey dependence ev-
erywhere except in the exponential. Théfidiction constandl, is the one corre-
sponding to the diractive periodic orbit. To evaluate theintegral, we use the
identity

f ded®® = g/ \/g (38.16)

and thus obtain a factor which precisely cancelsttependence in theintegral.
This leads to the rather simple result

ily [ dy -
oL X dKyrr/4) 38.17
% { 8”"'7} ( )

wherel, = 2L is the length of the periodic firactive orbit. A more sophisticated
analysis of the trace integral has been done [38.6] usinoytegral representation
(38.13). Itis valid in the vicinity of an optical boundaryaalso for wedges with
opening angles close m/n.

Consider a periodic dliractive orbit withn, reflections d straight hard walls
andy, diffractions each with a ffraction constantl, ;. The total length of the
orbit L, = 1, ; is the sum of the various fiifactive legs and, is the length of
the corresponding prime orbit. For such an orbit, (38.1Hegalizes to

Hy

_ iy dy.j
6, = Zk{g e

} expli(kLy + nyz — 3u,m/4)}. (38.18)
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exercise 38.3

Each difraction introduces a factor of vk and multi-difractive orbits are thereby
suppressed.

If the orbity is prime therL, = |,. If y is ther’th repeat of a prime orbj we

havel, = rlg, n, = rpg andu, = rog, wherelg, ps andoy all refer to the prime
orbit. We can then write

il

9y =Gsr = —2—kt,5 (38.19)
where
ﬁ 9.
= —2L_ L expli(klg + pgz — 307p7/4)). (38.20)
j-1 VBrKlg

It then makes sense to organize the sum ovéraditive orbits as a sum over the
prime difractive orbits and a sum over the repetitions

N i t
Gaifr () = D D Gar =5 ) 'ﬁrﬁtﬁ' (38.21)
B -1 7

We cast this as a logarithmic derivative (19.7) by notingt t%[@ = ilgtg —
optg/2k and recognizing that the first term dominates in the sensiablimit. It
follows that

A () ~ %( % {In [a- tﬂ)} . (38.22)
B

In the case that there are onlyffdactive periodic orbits - as in the geometry of
figure 38.4 - the poles dj(k) are the zeros of a dynamical zeta function

e =] ]a-1. (38.23)
B

For geometric orbits, this function would be evaluated veitbycle expansion as
discussed in chapter 20. However, here we can use the nudtipé nature of the
weightsts to find a closed form representation of the function usingaadition
graph, as in chapter 14. This multiplicative property of éheights follows from
the fact that the diractive Green’s function (38.10) is multiplicative in segm
semiclassical Green'’s functions, unlike the geometriecas
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1 5
Figure 38.6: The two-node transition graph with all B A
the difractive processes connecting the nodes.

There is a reflection symmetry in the problem which meansdtatsonances
can be classified as even or odd. Because of this, the dynlaretesfunction fac-
torizes as I = 1/, (as explained in sects. 21.5 and 21.1.1) and we determine
1/¢+ and Y- separately using the ideas of symmetry decomposition gb-cha
ter 21.

In the transition graph shown in figure 38.6, we enumeratpraltesses. We
start by identifying the fundamental domain as just thetriggdf of figure 38.4.
There are two nodes which we céllandB. To get to another node from, we
can difract (always via the vertex) in one of three directions. Wediffract back
to B which we denote as process 1. We caffrdct toB’s image point3’ and then
follow this by a reflection. This process we denote2ashere the bar indicates
that it involves a reflection. Third, we canflifact to nodeA. Starting atA we can
also difract to a node in three ways. We carffidict to B which we denote as 4.
We can difract toB’ followed by a reflection which we denote 4s Finally, we
can difract back toA which we denote as process 5. Each of these processes has
its own weight which we can determine from the earlier dis@us. First though,
we construct the dynamical zeta functions.

The dynamical zeta functions are determined by enumeratirgjosed loops
which do not intersect themselves in figure 38.6. We do it fostl/Z, because
that is simpler. In that case, the processes with bars attt®n an equal footing
as the others. Appealing back to sect. 21.5 we find

/¢, 1-1t; —t; —ts —taty — tatz + tsty + tsts,

1- (tl + t§+ ts) - 2t3t4 + ts(tl + ti) (3824)

where we have used the fact that= t; by symmetry. The last term has a positive
sign because it involves the product of shorter closed lodmscalculate 17,
we note that the processes with bars have a relative negaginalue to the group
theoretic weight. Furthermore, process 5 is a boundaryt (sbe sect. 21.3.1) and
only afects the even resonances - the terms involtirage absent from/L_. The
result is

1/ = 1-ti+t;—tatg +tatg,
1-(t —t5). (38.25)

Note that these expressions have a finite number of termsrantbain the form exercise 38.4
of a curvature expansion, as for the 3-disk problem.

It now just remains to fix the weights. We use equation (38f2@)note that
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complex k-plane

Figure 38.7: The even resonances of the wedge scat- j:
terer of figure 38.4 plotted in the compld«plane, 20
with L = 1. The exact resonances are represented ,
as circles and their semiclassical approximations as
Crosses.

s

30
0.

each weight involves just onefttiaction constant. It is then convenient to define
the quantities

expli(2kL + 2r)} 2 = expli(2kH + n)}
167KL 57 VIGkH

uz = (38.26)

The lengthd. andH = L/ V2 are defined in figure 38.4; we det= 1 throughout.
Bouncing inside the right angle Atcorresponds to two specular reflections so that
p = 2. We therefore explicitly include the factor exgr) in (38.26) although it is
trivially equal to one. Similarly, there is one speculareeflon at pointB giving

p = 1 and therefore a factor of expr]. We have definedia and ug because,
together with some diraction constants, they can be used to construct all of the
weights. Altogether we define four fifiaction codicients: dag is the constant
corresponding to diracting fromB to Aand is found from (38.11) with’ = 3r/4
andé = x and equals 2 sea(8) ~ 2.165. With analogous notation, we hadga
anddgg = dg g which equal 2 and ¢ V2 respectivelyd;; = dj; due to the Green’s
function symmetry between source and receiver referreditiiee Finally, there

is the difractive phase factos = exp (-i37/4) each time there is afliiaction.
The weights are then as follows:

= SjBBUZB t SjBrBUZB ta=t4=1;= sdagUaUR
ts = sdaald. (38.27)

Each weight involves twars and oned. Theu's represent the contribution to
the weight from the paths connecting the nodes to the veridxfzed gives the
diffraction constant connecting the two paths.

The equality ofdgg anddg g implies thatt; = t;. From (38.25) this means that
there are no odd resonances because 1 can never equal Oe Egethresonances
equation (38.24) is an implicit equation fowhich has zeros shown in figure 38.7.

For comparison we also show the result from an exact quanalaulation.
The agreement is very good right down to the ground state s as ioften the
case with semiclassical calculations. In addition we canais dynamical zeta
function to find arbitrarily high resonances and the resattsially improve in that
limit. In the same limit, the exact numerical solution beesmmore diicult to
find so the dynamical zeta function approximation is paléidy useful in that

case. exercise 38.5

In general a system will consist of both geometric an@ralctive orbits. In
that case, the full dynamical zeta function is the producthef geometric zeta
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function and the diractive one. The diractive weights are typically smaller
by orderO(1/ vk) but for smallk they can be numerically competitive so that
there is a significant diractive éfect on the low-lying spectrum. It might be
expected that higher in the spectrum, thEeet of difraction is weaker due to
the decreasing weights. However, it should be pointed @itgh analysis of the
situation for creeping diraction [38.7] concluded that theftiiaction is actually
more important higher in the spectrum due to the fact that an eseatgr fraction
of the orbits need to be corrected fofffdactive d@fects. The equivalent analysis
has not been done for edgefdaction but a similar conclusion can probably be
expected.

To conclude this chapter, we return to the opening paragaapohdiscuss the
possibility of doing such an analysis for helium. The impattpoint which al-
lowed us to successfully analyze the geometry of figure 38tH&t when a trajec-
tory is near the vertex, we can extract itffdiction constant without reference to
the other facets of the problem. We say, therefore, thatishés“local” analysis
for the purposes of which we have “turned’othe other aspects of the prob-
lem, namely side#\B andAB’. By analogy, for helium, we would look for some
simpler description of the problem which applies near thredrbody collision.
However, there is nothing to “turnfid’ The local problem is just as fiicult as
the global one since they are precisely the same probletrglaged by scaling.
Therefore, it is not at all clear that such an analysis isiptesgor helium.

Résum é

In this chapter we have discovered new types of periodid®duntributing to the
semiclassical traces and determinants. Unlike the periodiits we had seen so
far, these are not true classical orbits. They are genelatesingularities of the
scattering potential. In these singular points the classignamics has no unique
definition, and the classical orbits hitting the singulastcan be continued in
many diterent directions. While the classical mechanics does notvkrhich
way to go, quantum mechanics solves the dilemma by allowint wontinue in
all possible directions. The likelihoods offf#irent paths are given by the quan-
tum mechanical weights calledffiaction constants. The total contribution to a
trace from such orbit is given by the product of transmissiamlitudes between
singularities and diraction constants of singularities. The weights dfrdictive
periodic orbits are at least of ordef ¢k weaker than the weights associated with
classically realizable orbits, and their contribution atgle energies is therefore
negligible. Nevertheless, they can strongly influence tive liying resonances
or energy levels. In some systems, such asNhaisk scattering the €firaction
effects do not only perturb semiclassical resonances, butlsarceeate new low
energy resonances. Therefore itis always important taidecthe contributions of
diffractive periodic orbits when semiclassical methods aréegpt low energies.
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Commentary

Remark 38.1 Classical discontinuities. Various classes of discontinuities for billiard
and potential problems discussed in the literature:

e a grazing condition such that some trajectories hit a smeoiface while others
are undtected, refs. [38.1, 38.2, 38.3, 38.7]

e avertex such that trajectories to one side bounfferdintly from those to the other
side, refs. [38.2, 38.4, 38.5, 38.8, 38.9].

e a point scatterer [38.10, 38.11] or a magnetic flux line [2838.13] such that we
do not know how to continue classical mechanics through ibeodtinuities.

Remark 38.2 Geometrical theory of diffraction. In the above discussion we borrowed
heavily from the ideas of Keller who was interested in extegdhe geometrical ray
picture of optics to cases where there is a discontinuity. niééntained that we could
hang onto that ray-tracing picture by allowing rays to #rike vertex and then leave at
any angle with amplitude (38.8). Both he and Sommerfeld wreriing of optics and not
guantum mechanics and they did not phrase the results irstefsemiclassical Green'’s
functions but the essential idea is the same.

Remark 38.3 Generalizations  Consider the fect of replacing our half line by a
wedge of angley; and the right angle by an arbitrary angle. If y, > y1 andy; >
#/2 this is an open problem whose solution is given by equat{88s24) and (38.25)
(there will then be odd resonances) but with modified weightkecting the changed
geometry [38.8]. (Foy, < n/2, more difractive periodic orbits appear and the dynam-
ical zeta functions are more complicated but can be caledaith the same machinery.)
Wheny, = v, the problem in fact has bound states [38.21, 38.22]. Tlsisdase has
been of interest in studying electron transport in mesoiscdgvices and in microwave
waveguides. However we can not use our formalism as it sthadause the firactive
periodic orbits for this geometry lie right on the bordenbeén illuminated and shadowed
regions so that equation (38.7) is invalid. Even the moréoum derivation of [38.6] fails
for that particular geometry, the problem being that théractive orbit actually lives on
the edge of a family of geometric orbits and this makes théyaisastill more dificult.

Remark 38.4 Diffractive Green’s functions. The result (38.17) is proportional to the
length of the orbit times the semiclassical Green’s func(i®8.9) to go from the vertex

back to itself along the classical path. The multidictive formula (38.18) is propor-
tional to the total length of the orbit times the product of gemiclassical Green’s func-
tions to go from one vertex to the next along classical pafftss result generalizes to
any system — either a pinball or a potential — which contaiospsingularities such

that we can define a fifaction constant as above. The contribution to the tracéef t
semiclassical Green’s function coming from &udictive orbit which hits the singularities
is proportional to the total length (or period) of the orfiités the product of semiclassical
Green’s functions in going from one singularity to the nekhis result first appeared in
reference [38.2] and a derivation can be found in refere88e9]. A similar structure also

exists for creeping [38.2].
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Remark 38.5 Diffractive orbits for hydrogenic atoms. An analysis in terms of dirac-
tive orbits has been made in dféirent atomic physics system, the response of hydrogenic
atoms to strong magnetic fields [38.23]. In these systemisigteselectron is highly ex-
cited and takes long traversals far from the nucleus. Uptmmang to a hydrogen nucleus,
it is re-ejected with the reversed momentum as discussellapter 37. However, if the
atom is not hydrogen but sodium or some other atom with oneneal electron, the re-
turning electron feels the charge distribution of the cdeeteons and not just the charge
of the nucleus. This so-called quantum defect inducesesaagtin addition to the clas-
sical re-ejection present in the hydrogen atom. (In thig ¢he local analysis consists of
neglecting the magnetic field when the trajectory is neamtheleus.) This is formally
similar to the vertex which causes both specular reflectimhdiffraction. There is then
additional structure in the Fourier transform of the quamtpectrum corresponding to

the induced diractive orbits, and this has been observed experimen@8iyf].

Exercises

38.1.

38.2.

38.3.

exerWhelan - 18dec97

Stationary phaseintegral.  Evaluate the two station-
ary phase integrals corresponding to contdtrandE;
of figure 38.3 and thereby verify (38.7).

(N. Whelan)

Scattering from a small disk  Imagine that instead

of a wedge, we have a disk whose radaiss much
smaller than the typical wavelengths we are considering.
In that limit, solve the quantum scattering problem - find
the scattered wave which result from an incident plane
wave. You can do this by the method of partial waves -
the analogous three dimensional problem is discussed in
most quantum textbooks. You should find that only the
m = 0 partial wave contributes for smal Following

the discussion above, show that thérdiction constant

1S 38.5.

2n

. S (38.28)
log (&) - ve +i5

whereye = 0.577--- is Euler’s constant. Note that in
this limit d depends weakly ok but not on the scatter-
ing angle.

(N. Whelan)

Several diffractivelegs. Derive equation (38.18). The
calculation involves considering slight variations of the
diffractive orbit as in the simple case discussed above.
Here it is more complicated because there are more
diffractive arcs - however you should convince yourself

that a slight variation of the firactive orbit only @ect
one leg at a time.

(N. Whelar

4. Unsymmetrized dynamical zeta function. As

sume you know nothing about symmetry decom
tion. Construct the 3-node transition graph for
ure 38.1 by considering,, B and B’ to be physical
distinct. Write down the corresponding dynamical
function and check explicitly that foB = B’ it factor
izes into the product of the even and odd dynamica
functions. Why is there no terg in the full dynamic:
zeta function?

(N. Whelar

Three point scatterers.

Consider the limiting case of the three disk game of
ball of figure 1.1 where the disks are very much sm
than their spacin@®. Use the results of exercise 38.
construct the desymmetrized dynamical zeta func
as in sect. 21.6. You should find, = 1 - 2t wher
t = de®R-37/4)/ \/8xkR. Compare this formula with tt
from chapter 11. By assuming that the real part
is much greater than the imaginary part show the
positions of the resonances d¢R = a, — i, wher
an = 27N + 31/4, By = Iog(x/Z:mn/d) andn is a nor
negative integer. (See also reference [38.11].)

(N. Whelar
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