
Chapter 21

Discrete factorization

No endeavor that is worthwhile is simple in prospect; if it
is right, it will be simple in retrospect.

—Edward Teller

T  of discrete symmetries in reducing spectrum calculations is fa-
miliar from quantum mechanics. Here we show that the classical spectral
determinants factor in essentially the same way as the quantum ones. In the

process we 1.) learn that the classical dynamics, once recast into the language of
evolution operators, is much closer to quantum mechanics than is apparent in the
Newtonian, ODE formulation (linear evolution operators/PDEs, group-theoretical
spectral decompositions,. . .), 2.) that once the symmetry group is quotiented out,
the dynamics simplifies, and 3.) it’s a triple home run: simpler symbolic dynam-
ics, fewer cycles needed, much better convergence of cycle expansions. Once you
master this, going back is unthinkable.

The main result of this chapter can be stated as follows:

If the dynamics possesses a discrete symmetry, the contribution of a cyclep
of multiplicity mp to a dynamical zeta function factorizes into a product over the
dα-dimensional irreducible representationsDα of the symmetry group,

(1− tp)mp =
∏

α

det
(

1− Dα(hp̃)tp̃

)dα
, tp = t

g/mp

p̃ ,

wheretp̃ is the cycle weight evaluated on the relative periodic orbitp̃, g = |G| is the
order of the group,hp̃ is the group element relating the fundamental domain cycle
p̃ to a segment of the full space cyclep, andmp is the multiplicity of thep cycle.
As dynamical zeta functions have particularly simple cycleexpansions, a geomet-
rical shadowing interpretation of their convergence, and suffice for determination
of leading eigenvalues, we shall use them to explain the group-theoretic factoriza-
tions; the full spectral determinants can be factorized using the same techniques.
p-cycle into a cycle weighttp.
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This chapter is meant to serve as a detailed guide to the computation of dynam-
ical zeta functions and spectral determinants for systems with discrete symmetries.
Familiarity with basic group-theoretic notions is assumed, with the definitions
relegated to appendix H.1. We develop here the cycle expansions for factorized
determinants, and exemplify them by working two cases of physical interest:C2 =

D1, C3v = D3 symmetries.C2v = D2×D2 andC4v = D4 symmetries are discussed
in appendix H.

21.1 Preview

As we saw in chapter 9, discrete symmetries relate classes ofperiodic orbits and
reduce dynamics to a fundamental domain. Such symmetries simplify and im-
prove the cycle expansions in a rather beautiful way; in classical dynamics, just
as in quantum mechanics, the symmetrized subspaces can be probed by linear op-
erators of different symmetries. If a linear operator commutes with the symmetry,
it can be block-diagonalized, and, as we shall now show, the associated spectral
determinants and dynamical zeta functions factorize.

21.1.1 Reflection symmetric 1-d maps

Consider f , a map on the interval with reflection symmetryf (−x) = − f (x). A
simple example is the piecewise-linear sawtooth map of figure 9.2. Denote the
reflection operation byRx= −x. The symmetry of the map implies that if{xn} is a
trajectory, than also{Rxn} is a trajectory becauseRxn+1 = R f(xn) = f (Rxn) . The
dynamics can be restricted to a fundamental domain, in this case to one half of
the original interval; every time a trajectory leaves this interval, it can be mapped
back usingR. Furthermore, the evolution operator commutes withR, L(y, x) =
L(Ry,Rx). R satisfiesR2 = e and can be used to decompose the state space
into mutually orthogonal symmetric and antisymmetric subspaces by means of
projection operators

PA1 =
1
2

(e+ R) , PA2 =
1
2

(e− R) ,

LA1(y, x) = PA1L(y, x) =
1
2

(L(y, x) +L(−y, x)) ,

LA2(y, x) = PA2L(y, x) =
1
2

(L(y, x) − L(−y, x)) . (21.1)

To compute the traces of the symmetrization and antisymmetrization projec-
tion operators (21.1), we have to distinguish three kinds ofcycles: asymmetric cy-
clesa, symmetric cyclessbuilt by repeats of irreducible segments ˜s, and boundary
cyclesb. Now we show that the spectral determinant can be written as the prod-
uct over the three kinds of cycles: det (1−L) = det (1−L)adet (1−L)s̃det (1−L)b.
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Asymmetric cycles:A periodic orbits is not symmetric if{xa}∩ {Rxa} = ∅, where
{xa} is the set of periodic points belonging to the cyclea. ThusR generates a
second orbit with the same number of points and the same stability properties.
Both orbits give the same contribution to the first term and nocontribution to the
second term in (21.1); as they are degenerate, the prefactor1/2 cancels. Resum-
ing as in the derivation of (19.15) we find that asymmetric orbits yield the same
contribution to the symmetric and the antisymmetric subspaces:

det (1− L±)a =
∏

a

∞
∏

k=0

(

1−
ta
Λk

a

)

, ta =
zna

|Λa|
.

Symmetric cycles: A cycle s is reflection symmetric if operating withR on the
set of periodic points reproduces the set. The period of a symmetric cycle is
always even (ns = 2ns̃) and the mirror image of thexs periodic point is reached by
traversing the irreducible segment ˜sof lengthns̃, f ns̃(xs) = Rxs. δ(x− f n(x)) picks
up 2ns̃ contributions for every even traversal,n = rns̃, r even, andδ(x+ f n(x)) for
every odd traversal,n = rns̃, r odd. Absorb the group-theoretic prefactor in the
Floquet multiplier by defining the stability computed for a segment of lengthns̃,

Λs̃ = −
∂ f ns̃(x)
∂x

∣

∣

∣

∣

∣

x=xs

.

Restricting the integration to the infinitesimal neighborhoodMs of the s cycle,
we obtain the contribution to trLn

±:

zntrLn
± →

∫

Ms

dx zn
1
2

(

δ
(

x− f n(x)
)

± δ
(

x+ f n(x)
))

= ns̃

















even
∑

r=2

δn,rns̃

trs̃
1− 1/Λr

s̃

±

odd
∑

r=1

δn,rns̃

trs̃
1− 1/Λr

s̃

















= ns̃

∞
∑

r=1

δn,rns̃

(±ts̃)r

1− 1/Λr
s̃

.

Substituting all symmetric cycless into det (1− L±) and resuming we obtain:

det (1− L±)s̃ =
∏

s̃

∞
∏

k=0













1∓
ts̃
Λk

s̃













Boundary cycles: In the example at hand there is only one cycle which is neither
symmetric nor antisymmetric, but lies on the boundary of thefundamental do-
main, the fixed point at the origin. Such cycle contributes simultaneously to both
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δ(x− f n(x)) andδ(x+ f n(x)):

zntrLn
± →

∫

Mb

dx zn
1
2

(

δ
(

x− f n(x)
)

± δ
(

x+ f n(x)
))

=

∞
∑

r=1

δn,r trb
1
2

(

1
1− 1/Λr

b

±
1

1+ 1/Λr
b

)

zn trLn
+ →

∞
∑

r=1

δn,r
trb

1− 1/Λ2r
b

; zn trLn
− →

∞
∑

r=1

δn,r
1
Λr

b

trb
1− 1/Λ2r

b

.

Boundary orbit contributions to the factorized spectral determinants follow by
resummation:

det (1− L+)b =

∞
∏

k=0















1−
tb
Λ2k

b















, det (1− L−)b =

∞
∏

k=0















1−
tb
Λ2k+1

b















Only the even derivatives contribute to the symmetric subspace, and only the odd
ones to the antisymmetric subspace, because the orbit lies on the boundary.

Finally, the symmetry reduced spectral determinants follow by collecting the
above results:

F+(z) =
∏

a

∞
∏

k=0

(

1−
ta
Λk

a

)

∏

s̃

∞
∏

k=0













1−
ts̃
Λk

s̃













∞
∏

k=0















1−
tb
Λ2k

b















F−(z) =
∏

a

∞
∏

k=0

(

1−
ta
Λk

a

)

∏

s̃

∞
∏

k=0













1+
ts̃
Λk

s̃













∞
∏

k=0















1−
tb
Λ2k+1

b















(21.2)

We shall work out the symbolic dynamics of such reflection symmetric systems in
some detail in sect. 21.5. As reflection symmetry is essentially the only discrete
symmetry that a map of the interval can have, this example completes the group-
theoretic factorization of determinants and zeta functions for 1− dimensional
maps. We now turn to discussion of the general case. exercise 21.1

21.2 Discrete symmetries

A dynamical system is invariant under a symmetry groupG = {e, g2, . . . , g|G|} if
the equations of motion are invariant under all symmetriesg ∈ G. For a map
xn+1 = f (xn) and the evolution operatorL(y, x) defined by (17.23) this means

f (x) = g−1 f (gx)

L(y, x) = L(gy, gx) . (21.3)
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Bold face letters for group elements indicate a suitable representation on state
space. For example, if a 2-dimensional map has the symmetryx1 → −x1, x2 →

−x2, the symmetry groupG consists of the identity andC, a rotation byπ around
the origin. The mapf must then commute with rotations byπ, f (Rx) = C f (x),
with Rgiven by the [2× 2] matrix

R=

(

−1 0
0 −1

)

. (21.4)

R satisfiesR2 = e and can be used to decompose the state space into mutually or-
thogonal symmetric and antisymmetric subspaces by means ofprojection opera-
tors (21.1). More generally the projection operator onto theα irreducible subspace
of dimensiondα is given byPα = (dα/|G|)

∑

χα(h)h−1, whereχα(h) = tr Dα(h)
are the group characters, and the transfer operatorL splits into a sum of inequiv-
alent irreducible subspace contributions

∑

α trLα,

Lα(y, x) =
dα
|G|

∑

h∈G

χα(h)L(h−1y, x) . (21.5)

The prefactordα in the above reflects the fact that adα-dimensional representation
occursdα times.

21.2.1 Cycle degeneracies

Taking into account these degeneracies, the Euler product (19.15) takes the form

∏

p

(1− tp) =
∏

p̂

(1− tp̂)mp̂. (21.6)

The Euler product (19.15) for theD3 symmetric 3-disk problem is given in
(20.36).

21.3 Dynamics in the fundamental domain

If the dynamics is invariant under a discrete symmetry, the state spaceM can be
completely tiled by the fundamental domaiñM and its imagesaM̃, bM̃, . . . under
the action of the symmetry groupG = {e, a, b, . . .},

M =
∑

a∈G

Ma =
∑

a∈G

aM̃ .
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In the above example (21.4) with symmetry groupG = {e,C}, the state space
M = {x1-x2 plane} can be tiled by a fundamental domaiñM = {half-planex1 ≥ 0},
andCM̃ = {half-planex1 ≤ 0}, its image under rotation byπ.

If the spaceM is decomposed intog tiles, a functionφ(x) over M splits into
a g-dimensional vectorφa(x) defined byφa(x) = φ(x) if x ∈ Ma, φa(x) = 0
otherwise. Leth = ab−1 conflicts with be the symmetry operation that maps the
endpoint domainMb into the starting point domainMa, and letD(h)ba, the left
regular representation, be the [g × g] matrix whoseb, a-th entry equals unity if
a = hb and zero otherwise;D(h)ba = δbh,a. Since the symmetries act on state
space as well, the operationh enters in two guises: as a [g× g] matrix D(h) which
simply permutes the domain labels, and as a [d × d] matrix representationh of a
discrete symmetry operation on thed state space coordinates. For instance, in the
above example (21.4)h ∈ C2 andD(h) can be either the identity or the interchange
of the two domain labels,

D(e) =

(

1 0
0 1

)

, D(C) =

(

0 1
1 0

)

. (21.7)

Note thatD(h) is a permutation matrix, mapping a tileMa into a different tile
Mha , Ma if h , e. Consequently onlyD(e) has diagonal elements, and trD(h) =
gδh,e. However, the state space transformationh , e leaves invariant sets of
boundarypoints; for example, under reflectionσ across a symmetry axis, the
axis itself remains invariant. The boundary periodic orbits that belong to such
pointwise invariant sets will require special care in trL evaluations.

One can associate to the evolution operator (17.23) a [g× g] matrix evolution
operator defined by

Lba(y, x) = D(h)baL(y, x) ,

if x ∈ Ma and y ∈ Mb, and zero otherwise. Now we can use the invariance
condition (21.3) to move the starting pointx into the fundamental domainx = ax̃,
L(y, x) = L(a−1y, x̃), and then use the relationa−1b = h−1 to also relate the
endpointy to its image in the fundamental domain,L̃(ỹ, x̃) := L(h−1ỹ, x̃). With
this operator which is restricted to the fundamental domain, the global dynamics
reduces to

Lba(y, x) = D(h)baL̃(ỹ, x̃) .

While the global trajectory runs over the full spaceM, the restricted trajectory is
brought back into the fundamental domaiñM any time it crosses into adjoining
tiles; the two trajectories are related by the symmetry operationh which maps the
global endpoint into its fundamental domain image.
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Now the traces (19.3) required for the evaluation of the eigenvalues of the
transfer operator can be evaluated on the fundamental domain alone

trL =
∫

M
dxL(x, x) =

∫

M̃
dx̃

∑

h

tr D(h) L(h−1x̃, x̃) (21.8)

The fundamental domain integral
∫

dx̃ L(h−1x̃, x̃) picks up a contribution from
every global cycle (for whichh = e), but it also picks up contributions from
shorter segments of global cycles. The permutation matrixD(h) guarantees by the
identity trD(h) = 0, h , e, that only those repeats of the fundamental domain
cycles p̃ that correspond to complete global cyclesp contribute. Compare, for
example, the contributions of the12 and0 cycles of figure 12.12. trD(h)L̃ does
not get a contribution from the0 cycle, as the symmetry operation that maps the
first half of the12 into the fundamental domain is a reflection, and trD(σ) = 0. In
contrast,σ2 = e, tr D(σ2) = 6 insures that the repeat of the fundamental domain
fixed point tr (D(h)L̃)2 = 6t20, gives the correct contribution to the global trace
trL2 = 3 · 2t12.

Let p be the full orbit, p̃ the orbit in the fundamental domain andhp̃ an ele-
ment ofHp, the symmetry group ofp. Restricting the volume integrations to the
infinitesimal neighborhoods of the cyclesp and p̃, respectively, and performing
the standard resummations, we obtain the identity

(1− tp)mp = det
(

1− D(hp̃)tp̃

)

, (21.9)

valid cycle by cycle in the Euler products (19.15) for det (1−L). Here “det” refers
to the [g×g] matrix representationD(hp̃); as we shall see, this determinant can be
evaluated in terms of standard characters, and no explicit representation ofD(hp̃)
is needed. Finally, if a cyclep is invariant under the symmetry subgroupHp ⊆ G
of order hp, its weight can be written as a repetition of a fundamental domain
cycle

tp = t
hp

p̃ (21.10)

computed on the irreducible segment that corresponds to a fundamental domain
cycle. For example, in figure 12.12 we see by inspection thatt12 = t20 andt123 = t31.

21.3.1 Boundary orbits

Before we can turn to a presentation of the factorizations ofdynamical zeta func-
tions for the different symmetries we have to discuss an effect that arises for orbits
that run on a symmetry line that borders a fundamental domain. In our 3-disk
example, no such orbits are possible, but they exist in othersystems, such as in
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the bounded region of the Hénon-Heiles potential and in 1-dmaps. For the sym-
metrical 4-disk billiard, there are in principle two kinds of such orbits, one kind
bouncing back and forth between two diagonally opposed disks and the other kind
moving along the other axis of reflection symmetry; the latter exists for bounded
systems only. While there are typically very few boundary orbits, they tend to be
among the shortest orbits, and their neglect can seriously degrade the convergence
of cycle expansions, as those are dominated by the shortest cycles.

While such orbits are invariant under some symmetry operations, their neigh-
borhoods are not. This affects the Jacobian matrixMp of the linearization perpen-
dicular to the orbit and thus the eigenvalues. Typically,e.g. if the symmetry is
a reflection, some eigenvalues ofMp change sign. This means that instead of a
weight 1/det (1− Mp) as for a regular orbit, boundary cycles also pick up contri-
butions of form 1/det (1− hMp), whereh is a symmetry operation that leaves the
orbit pointwise invariant; see for example sect. 21.1.1.

Consequences for the dynamical zeta function factorizations are that some-
times a boundary orbit does not contribute. A derivation of adynamical zeta
function (19.15) from a determinant like (19.9) usually starts with an expansion
of the determinants of the Jacobian. The leading order termsjust contain the prod-
uct of the expanding eigenvalues and lead to the dynamical zeta function (19.15).
Next to leading order terms contain products of expanding and contracting eigen-
values and are sensitive to their signs. Clearly, the weights tp in the dynamical
zeta function will then be affected by reflections in the Poincaré surface of section
perpendicular to the orbit. In all our applications it was possible to implement
these effects by the following simple prescription.

If an orbit is invariant under a little groupHp = {e, b2, . . . , bh}, then the cor-
responding group element in (21.9) will be replaced by a projector. If the weights
are insensitive to the signs of the eigenvalues, then this projector is

gp =
1
h

h
∑

i=1

bi . (21.11)

In the cases that we have considered, the change of sign may betaken into account
by defining a sign functionǫp(g) = ±1, with the “-” sign if the symmetry element
g flips the neighborhood. Then (21.11) is replaced by

gp =
1
h

h
∑

i=1

ǫ(bi ) bi . (21.12)

We have illustrated the above in sect. 21.1.1 by working out the full factorization
for the 1-dimensional reflection symmetric maps.
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21.4 Factorizations of dynamical zeta functions

In chapter 9 we have shown that a discrete symmetry induces degeneracies among
periodic orbits and decomposes periodic orbits into repetitions of irreducible seg-
ments; this reduction to a fundamental domain furthermore leads to a convenient
symbolic dynamics compatible with the symmetry, and, most importantly, to a
factorization of dynamical zeta functions. This we now develop, first in a general
setting and then for specific examples.

21.4.1 Factorizations of dynamical dynamical zeta functions

According to (21.9) and (21.10), the contribution of a degenerate class of global
cycles (cyclep with multiplicity mp = g/hp) to a dynamical zeta function is given
by the corresponding fundamental domain cycle ˜p:

(1− t
hp

p̃ )g/hp = det
(

1− D(hp̃)tp̃

)

(21.13)

Let D(h) =
⊕

α
dαDα(h) be the decomposition of the matrix representationD(h)

into thedα dimensional irreducible representationsα of a finite groupG. Such
decompositions are block-diagonal, so the corresponding contribution to the Euler
product (19.9) factorizes as

det (1− D(h)t) =
∏

α

det (1− Dα(h)t)dα , (21.14)

where now the product extends over all distinctdα-dimensional irreducible rep-
resentations, each contributingdα times. For the cycle expansion purposes, it
has been convenient to emphasize that the group-theoretic factorization can be ef-
fected cycle by cycle, as in (21.13); but from the transfer operator point of view,
the key observation is that the symmetry reduces the transfer operator to a block
diagonal form; this block diagonalization implies that thedynamical zeta func-
tions (19.15) factorize as

1
ζ
=

∏

α

1

ζ
dα
α

,
1
ζα
=

∏

p̃

det
(

1− Dα(hp̃)tp̃

)

. (21.15)

Determinants ofd-dimensional irreducible representations can be evaluated
using the expansion of determinants in terms of traces,

det (1+ M) = 1+ tr M +
1
2

(

(tr M)2 − tr M2
)

+
1
6

(

(tr M)3 − 3 (tr M)(tr M2) + 2 tr M3
)

+ · · · +
1
d!

(

(tr M)d − · · ·
)

, (21.16)
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and each factor in (21.14) can be evaluated by looking up the charactersχα(h) =
tr Dα(h) in standard tables [21.17]. In terms of characters, we havefor the 1-
dimensional representations

det (1− Dα(h)t) = 1− χα(h)t ,

for the 2-dimensional representations

det (1− Dα(h)t) = 1− χα(h)t +
1
2

(

χα(h)2 − χα(h
2)
)

t2,

and so forth.

In the fully symmetric subspace trDA1(h) = 1 for all orbits; hence a straight-
forward fundamental domain computation (with no group theory weights) always
yields a part of the full spectrum. In practice this is the most interesting subspec-
trum, as it contains the leading eigenvalue of the transfer operator. exercise 21.2

21.4.2 Factorizations of spectral determinants

Factorization of the full spectral determinant (19.3) proceeds in essentially the
same manner as the factorization of dynamical zeta functions outlined above. By
(21.5) and (21.8) the trace of the transfer operatorL splits into the sum of inequiv-
alent irreducible subspace contributions

∑

α trLα, with

trLα = dα
∑

h∈G

χα(h)
∫

M̃
dx̃L(h−1x̃, x̃) .

This leads by standard manipulations to the factorization of (19.9) into

F(z) =
∏

α

Fα(z)
dα

Fα(z) = exp



















−
∑

p̃

∞
∑

r=1

1
r

χα(hr
p̃)znp̃r

|det
(

1− M̃r
p̃

)

|



















, (21.17)

where M̃p̃ = hp̃Mp̃ is the fundamental domain Jacobian. Boundary orbits re-
quire special treatment, discussed in sect. 21.3.1, with examples given in the next
section as well as in the specific factorizations discussed below.

The factorizations (21.15), (21.17) are the central formulas of this chapter.
We now work out the group theory factorizations of cycle expansions of dynam-
ical zeta functions for the cases ofC2 andD3 symmetries. The cases of theD2,
D4 symmetries are worked out in appendix H below.
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21.5 C2 factorization

As the simplest example of implementing the above scheme consider theC2 sym-
metry. For our purposes, all that we need to know here is that each orbit or configu-
ration is uniquely labeled by an infinite string{si}, si = +,− and that the dynamics
is invariant under the+ ↔ − interchange, i.e., it isC2 symmetric. TheC2 sym-
metry cycles separate into two classes, the self-dual configurations+−, + + −−,
+ + + − −−, + − − + − + +−, · · ·, with multiplicity mp = 1, and the asymmetric
configurations+, −, + + −, − − +, · · ·, with multiplicity mp = 2. For example,
as there is no absolute distinction between the “up” and the “down” spins, or the
“left” or the “right” lobe, t+ = t−, t++− = t+−−, and so on. exercise 21.5

The symmetry reduced labelingρi ∈ {0, 1} is related to the standardsi ∈ {+,−}

Ising spin labeling by

If si = si−1 then ρi = 1

If si , si−1 then ρi = 0 (21.18)

For example,+ = · · · + + + + · · · maps into· · · 111· · · = 1 (and so does−),
−+ = · · · − + − + · · · maps into· · ·000· · · = 0,− + +− = · · · − − + + − − + + · · ·
maps into· · · 0101· · · = 01, and so forth. A list of such reductions is given in
table 12.1.

Depending on the maximal symmetry groupHp that leaves an orbitp invariant
(see sects. 21.2 and 21.3 as well as sect. 21.1.1), the contributions to the dynamical
zeta function factor as

A1 A2

Hp = {e} : (1− tp̃)2 = (1− tp̃)(1− tp̃)

Hp = {e, σ} : (1− t2p̃) = (1− tp̃)(1+ tp̃) , (21.19)

For example:

H++− = {e} : (1− t++−)
2 = (1− t001)(1− t001)

H+− = {e, σ} : (1− t+−) = (1− t0) (1+ t0), t+− = t20

This yields two binary cycle expansions. TheA1 subspace dynamical zeta function
is given by the standard binary expansion (20.7). The antisymmetricA2 subspace
dynamical zeta functionζA2 differs fromζA1 only by a minus sign for cycles with
an odd number of 0’s:

1/ζA2 = (1+ t0)(1− t1)(1+ t10)(1− t100)(1+ t101)(1+ t1000)

(1− t1001)(1+ t1011)(1− t10000)(1+ t10001)

(1+ t10010)(1− t10011)(1− t10101)(1+ t10111) . . .

= 1+ t0 − t1 + (t10 − t1t0) − (t100− t10t0) + (t101− t10t1)

−(t1001− t1t001− t101t0 + t10t0t1) − . . . . . . (21.20)

symm - 13jun2008 ChaosBook.org version13, Dec 31 2009

CHAPTER 21. DISCRETE FACTORIZATION 411

Note that the group theory factors do not destroy the curvature corrections (the
cycles and pseudo cycles are still arranged into shadowing combinations).

If the system under consideration has a boundary orbit (cf. sect. 21.3.1) with
group-theoretic factorhp = (e+ σ)/2, the boundary orbit does not contribute to
the antisymmetric subspace

A1 A2

boundary: (1− tp) = (1− tp̃)(1− 0tp̃) (21.21)

This is the 1/ζ part of the boundary orbit factorization of sect. 21.1.1.

21.6 D3 factorization: 3-disk game of pinball

The next example, theD3 symmetry, can be worked out by a glance at figure 12.12 (a).
For the symmetric 3-disk game of pinball the fundamental domain is bounded by
a disk segment and the two adjacent sections of the symmetry axes that act as
mirrors (see figure 12.12 (b)). The three symmetry axes divide the space into six
copies of the fundamental domain. Any trajectory on the fullspace can be pieced
together from bounces in the fundamental domain, with symmetry axes replaced
by flat mirror reflections. The binary{0, 1} reduction of the ternary three disk
{1, 2, 3} labels has a simple geometric interpretation: a collision of type 0 reflects
the projectile to the disk it comes from (back–scatter), whereas after a collision
of type 1 projectile continues to the third disk. For example, 23 = · · ·232323· · ·
maps into· · · 000· · · = 0 (and so do12 and13), 123 = · · · 12312· · · maps into
· · · 111· · · = 1 (and so does132), and so forth. A list of such reductions for short
cycles is given in table 12.2.

D3 has two 1-dimensional irreducible representations, symmetric and anti-
symmetric under reflections, denotedA1 and A2, and a pair of degenerate 2-
dimensional representations of mixed symmetry, denotedE. The contribution
of an orbit with symmetryg to the 1/ζ Euler product (21.14) factorizes according
to

det (1−D(h)t) =
(

1− χA1(h)t
) (

1− χA2(h)t
)

(

1− χE(h)t + χA2(h)t2
)2

(21.22)

with the three factors contributing to theD3 irreducible representationsA1, A2

and E, respectively, and the 3-disk dynamical zeta function factorizes intoζ =
ζA1ζA2ζ

2
E. Substituting theD3 characters [21.17]

D3 A1 A2 E
e 1 1 2

C,C2 1 1 −1
σv 1 −1 0
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into (21.22), we obtain for the three classes of possible orbit symmetries (indicated
in the first column)

hp̃ A1 A2 E

e : (1− tp̃)6 = (1− tp̃)(1− tp̃)(1− 2tp̃ + t2p̃)2

C,C2 : (1− t3p̃)2 = (1− tp̃)(1− tp̃)(1+ tp̃ + t2p̃)2

σv : (1− t2p̃)3 = (1− tp̃)(1+ tp̃)(1+ 0tp̃ − t2p̃)2. (21.23)

whereσv stands for any one of the three reflections.

The Euler product (19.15) on each irreducible subspace follows from the fac-
torization (21.23). On the symmetricA1 subspace theζA1 is given by the standard
binary curvature expansion (20.7). The antisymmetricA2 subspaceζA2 differs
from ζA1 only by a minus sign for cycles with an odd number of 0’s, and isgiven
in (21.20). For the mixed-symmetry subspaceE the curvature expansion is given
by

1/ζE = (1+ zt1 + z2t21)(1− z2t20)(1+ z3t100+ z6t2100)(1− z4t210)

(1+ z4t1001+ z8t21001)(1+ z5t10000+ z10t210000)

(1+ z5t10101+ z10t210101)(1− z5t10011)
2 . . .

= 1+ zt1 + z2(t21 − t20) + z3(t001− t1t20)

+z4
[

t0011+ (t001− t1t20)t1 − t201

]

+z5
[

t00001+ t01011− 2t00111+ (t0011− t201)t1 + (t21 − t20)t100

]

+ · · ·(21.24)

We have reinserted the powers ofz in order to group together cycles and pseu-
docycles of the same length. Note that the factorized cycle expansions retain the
curvature form; long cycles are still shadowed by (somewhatless obvious) com-
binations of pseudocycles.

Referring back to the topological polynomial (15.40) obtained by settingtp =

1, we see that its factorization is a consequence of theD3 factorization of theζ
function:

1/ζA1 = 1− 2z , 1/ζA2 = 1 , 1/ζE = 1+ z , (21.25)

as obtained from (20.7), (21.20) and (21.24) fortp = 1.

Their symmetry isK = {e, σ}, so according to (21.11), they pick up the group-
theoretic factorhp = (e+ σ)/2. If there is no sign change intp, then evaluation of
det (1− e+σ

2 tp̃) yields

A1 A2 E

boundary: (1− tp)3 = (1− tp̃)(1− 0tp̃)(1− tp̃)2 , tp = tp̃ . (21.26)
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However, if the cycle weight changes sign under reflection,tσp̃ = −tp̃, the bound-
ary orbit does not contribute to the subspace symmetric under reflection across the
orbit;

A1 A2 E

boundary: (1− tp)3 = (1− 0tp̃)(1− tp̃)(1− tp̃)2 , tp = tp̃ . (21.27)

Résum é

If a dynamical system has a discrete symmetry, the symmetry should be exploited;
much is gained, both in understanding of the spectra and easeof their evaluation.
Once this is appreciated, it is hard to conceive of a calculation without factor-
ization; it would correspond to quantum mechanical calculations without wave–
function symmetrizations.

While the reformulation of the chaotic spectroscopy from the trace sums to
the cycle expansions does not reduce the exponential growthin number of cycles
with the cycle length, in practice only the short orbits are used, and for them the
labor saving is dramatic. For example, for the 3-disk game ofpinball there are
256 periodic points of length 8, but reduction to the fundamental domain non-
degenerate prime cycles reduces the number of the distinct cycles of length 8 to
30.

In addition, cycle expansions of the symmetry reduced dynamical zeta func-
tions converge dramatically faster than the unfactorized dynamical zeta functions.
One reason is that the unfactorized dynamical zeta functionhas many closely
spaced zeros and zeros of multiplicity higher than one; since the cycle expansion
is a polynomial expansion in topological cycle length, accommodating such be-
havior requires many terms. The dynamical zeta functions onseparate subspaces
have more evenly and widely spaced zeros, are smoother, do not have symmetry-
induced multiple zeros, and fewer cycle expansion terms (short cycle truncations)
suffice to determine them. Furthermore, the cycles in the fundamental domain
sample state space more densely than in the full space. For example, for the 3-
disk problem, there are 9 distinct (symmetry unrelated) cycles of length 7 or less
in full space, corresponding to 47 distinct periodic points. In the fundamental
domain, we have 8 (distinct) periodic orbits up to length 4 and thus 22 different
periodic points in 1/6-th the state space, i.e., an increase in density by a factor3
with the same numerical effort.

We emphasize that the symmetry factorization (21.23) of thedynamical zeta
function isintrinsic to the classical dynamics, and not a special property of quantal
spectra. The factorization is not restricted to the Hamiltonian systems, or only to
the configuration space symmetries; for example, the discrete symmetry can be
a symmetry of the Hamiltonian phase space [21.4]. In conclusion, the manifold
advantages of the symmetry reduced dynamics should thus be obvious; full state
space cycle expansions, such as those of exercise 20.8, are useful only for cross-
checking purposes.
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Commentary

Remark 21.1 Symmetry reductions in periodic orbit theory. This chapter is based on
a collaborative effort with B. Eckhardt, ref. [21.1]. The group-theoretic factorizations
of dynamical zeta functions that we develop here were first introduced and applied in
ref. [21.2]. They are closely related to the symmetrizations introduced by Gutzwiller [21.3]
in the context of the semiclassical periodic orbit trace formulas, put into more gen-
eral group-theoretic context by Robbins [21.4], whose exposition, together with Lau-
ritzen’s [21.5] treatment of the boundary orbits, has influenced the presentation given here.
The symmetry reduced trace formula for a finite symmetry groupG = {e, g2, . . . , g|G|}with
|G| group elements, where the integral over Haar measure is replaced by a finite group
discrete sum|G|−1 ∑

g∈G = 1 , was derived in ref. [21.1]. A related group-theoretic decom-
position in context of hyperbolic billiards was utilized inref. [21.6], and for the Selberg’s
zeta function in ref. [21.7]. One of its loftier antecedentsis the Artin factorization formula
of algebraic number theory, which expresses the zeta-function of a finite extension of a
given field as a product ofL-functions over all irreducible representations of the corre-
sponding Galois group.

The techniques of this chapter have been applied to computations of the 3-disk classi-
cal and quantum spectra in refs. [21.8, 21.9], and to a “Zeeman effect” pinball and thex2y2

potentials in ref. [21.10]. In a larger perspective, the factorizations developed above are
special cases of a general approach to exploiting the group-theoretic invariances in spec-
tra computations, such as those used in enumeration of periodic geodesics [21.6, 21.11,
21.12] for hyperbolic billiards [21.13] and Selberg zeta functions [21.14].

Remark 21.2 Other symmetries. In addition to the symmetries exploited here, time
reversal symmetry and a variety of other non-trivial discrete symmetries can induce fur-
ther relations among orbits; we shall point out several of examples of cycle degeneracies
under time reversal. We do not know whether such symmetries can be exploited for fur-
ther improvements of cycle expansions.

Exercises

21.1. Sawtooth map desymmetrization. Work out the
some of the shortest global cycles of different symme-
tries and fundamental domain cycles for the sawtooth
map of figure 9.2. Compute the dynamical zeta function
and the spectral determinant of the Perron-Frobenius
operator for this map; check explicitly the factorization
(21.2).

21.2. 2− dimensionalasymmetric representation. The
above expressions can sometimes be simplified further
using standard group-theoretical methods. For example,

the 1
2

(

(tr M)2 − tr M2
)

term in (21.16) is the trace of the
antisymmetric part of theM × M Kronecker product.
Show that ifα is a 2-dimensional representation, this is
theA2 antisymmetric representation, and

2-dim: det (1−Dα(h)t) = 1−χα(h)t+χA2(h)t2.(21.28)

21.3. Characters of D3. (continued from exer-
cise 9.5) D3 � C3v, the group of symmetries of an equi-
lateral triangle: has three irreducible representations,
two one-dimensional and the other one of multiplicity
2.
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(a) All finite discrete groups are isomorphic to a per-
mutation group or one of its subgroups, and ele-
ments of the permutation group can be expressed
as cycles. Express the elements of the group D3

as cycles. For example, one of the rotations is
(123), meaning that vertex 1 maps to 2, 2→ 3,
and 3→ 1.

(b) Use your representation from exercise 9.5 to com-
pute the D3 character table.

(c) Use a more elegant method from the group-theory
literature to verify your D3 character table.

(d) Two D3 irreducible representations are one dimen-
sional and the third one of multiplicity 2 is formed
by [2×2] matrices. Find the matrices for all six
group elements in this representation.

(Hint: get yourself a good textbook, like Hamer-
mesh [10.2] or Tinkham [21.15], and read up on classes
and characters.)

21.4. 3-disk desymmetrization.

a) Work out the 3-disk symmetry factorization for
the 0 and 1 cycles, i.e. which symmetry do they
have, what is the degeneracy in full space and how
do they factorize (how do they look in theA1, A2

and theE representations).

b) Find the shortest cycle with no symmetries and
factorize it as in a)

c) Find the shortest cycle that has the property that
its time reversal is not described by the same sym-
bolic dynamics.

d) Compute the dynamical zeta functions and the
spectral determinants (symbolically) in the three
representations; check the factorizations (21.15)
and (21.17).

(Per Rosenqvist)

21.5. C2 factorizations: the Lorenz and Ising systems. In
the Lorenz system the labels+ and− stand for the left or
the right lobe of the attractor and the symmetry is a rota-
tion by π around thez-axis. Similarly, the Ising Hamil-
tonian (in the absence of an external magnetic field) is
invariant under spin flip. Work out the factorizations for
some of the short cycles in either system.

21.6. Ising model. The Ising model with two statesǫi =
{+,−} per site, periodic boundary condition, and Hamil-
tonian

H(ǫ) = −J
∑

i

δǫi ,ǫi+1 ,

is invariant under spin-flip:+ ↔ −. Take advantage of
that symmetry and factorize the dynamical zeta function
for the model, i.e., find all the periodic orbits that con-
tribute to each factor and their weights.

21.7. One orbit contribution. If p is an orbit in the fun-
damental domain with symmetryh, show that it con-
tributes to the spectral determinant with a factor

det













1− D(h)
tp

λk
p













,

whereD(h) is the representation ofh in the regular rep-
resentation of the group.
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