Chapter 4

Local stability

(R. Mainieri and P. Cvitanovit)

FAR We have concentrated on description of the trajectory ofhglsiinitial

point. Our next task is to define and determine the size rdighborhood

of x(t). We shall do this by assuming that the flow is locally smoaifd
describe the local geometry of the neighborhood by studtfiegflow linearized
aroundx(t). Nearby points aligned along the stable (contractinggalions re-
main in the neighborhood of the trajectaxgt) = f'(xo); the ones to keep an eye
on are the points which leave the neighborhood along theblestirections. As
we shall demonstrate in chapter 18, in hyperbolic systemat wiatters are the
expanding directions. The repercussion are far-reachisglong as the num-
ber of unstable directions is finite, the same theory appbeite-dimensional
ODEs, state space volume preserving Hamiltonian flows, &sipative, volume
contracting infinite-dimensional PDEs.

4.1 Flows transport neighborhoods

| TN

As a swarm of representative points moves along, it carrdesgaand distorts
neighborhoods. The deformation of an infinitesimal neighbod is best un-
derstood by considering a trajectory originating negr= x(0) with an initial
infinitesimal displacemenix(0), and letting the flow transport the displacement
Sx(t) along the trajectori(xo, t) = (o).

4.1.1 Instantaneous shear

The system of lineagquations of variation$or the displacement of the infinites-
imally close neighborx + éx follows from the flow equations (2.6) by Taylor
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5t

Figure 4.1: A swarm of neighboring points of(t) is
instantaneously sheared by the action of the stabilit
matrix A - a bit hard to draw.

expanding to linear order

. : Y
X + 06X = Vi(X+ 6X) ~ Vi(X) + Z a—x'_éxj .
j

The infinitesimal displacemei is thus transported along the trajectoto, t),
with time variation given by

d oV
FiO% 0.0 = Z 7

% 5Xj(Xo, 1) (4.2)

X=X(X0,t)

As both the displacement and the trajectory depend on thialipdint xo and the
timet, we shall often abbreviate the notationxip,t) — X(t) — X, 6X(Xo,t) —
6%i(t) — oxin what follows. Taken together, the set of equations

X =Vi(x), oX = Z Aij (X)0X; (4.2)
j

governs the dynamics in the tangent bundlgsk) € T M obtained by adjoining
the d-dimensional tangent spaéa& € T My to every pointx € M in the d-dim-
ensional state spackl c RY. The stability matrix (velocity gradients matrix)

oVi(X)

Aij(x) = o,

(4.3)

describes the instantaneous rate of shearing of the irdfimitd neighborhood of
X(t) by the flow, figure 4.1.

Example 4.1 Rdéssler and Lorenz flows, linearized: (continued from example 3.6) For
the Rossler (2.17) and Lorenz (2.12) flows the stability matrices are, respectively
0O -1 -1 - o 0
Aross=| 1 a 0 , Ao=| p-z -1 x |. (4.4)
z 0 x-c y X -b

(continued in example 4.6)
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Figure 4.2: The Jacobian matrid' maps an infinitesi- —t
mal displacement ag, into a displacement rotated andx0+ 6X
sheared by the linearized flow Jacobian matfifx,) /
finite timet later.

4.1.2 Linearized flow

Taylor expanding dinite timeflow to linear order,

oft
! (XO)ax,- oo, (4.5)
Xoj

(%0 +6%) = f(x0) + Z g

one finds that the linearized neighborhood is transported by

o%(t)
an

ox(t) = J(x0)ox0,  J0%0) = (4.6)

X=Xo

This Jacobian matrix is sometimes referred to adtimelamental solution matrix

or simply fundamental matrixa name inherited from the theory of linear ODEs.
It is also sometimes called thi@échet derivativeof the nonlinear mappind!(x).

It is often denoted f, but for our needs (we shall have to sort through a plethora
of related Jacobian matrices) matrix notatidiis more economicalJ describes
the deformation of an infinitesimal neighborhood at finiteei in the co-moving
frame of x(t).

As this is a deformation in the linear approximation, one tiank of it as
a deformation of an infinitesimal sphere envelopxginto an ellipsoid around
X(t), described by the eigenvectors and eigenvalues of théizacmatrix of the
linearized flow, figure 4.2. Nearby trajectories separatm@gltheunstable direc-
tions approach each other along teble directionsand change their distance
along themarginal directionsat a rate slower than exponential, corresponding to
the eigenvalues of the Jacobian matrix with magnitude faitgn, smaller than,
or equal 1. In the literature adjectivesutral or indifferentare often used instead
of ‘marginal,’ (attracting) stable directions are somedsicalled ‘asymptotically
stable,” and so on.

One of the preferred directions is what one might expectditection of the
flow itself. To see that, consider two initial points alongrajectory separated
by infinitesimal flight timest: 6% = f%(xg) — Xo = V(Xo)dt. By the semigroup
property of the flow,ft*ot = fo%*t where

O (%) = f(f tJrarv(x(r)) = stv(x(t) + Fi{(x0).
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Figure 4.3: Any two points along a periodic orbit

p are mapped into themselves after one cycle period
T, hence a longitudinal displacemeait = v(xo)dt is
mapped into itself by the cycle Jacobian matijx

Expanding both sides of'(f%(xp)) = f(f'(xo)), keeping the leading term in
dt, and using the definition of the Jacobian matrix (4.6), weeolss thatJ'(xo)
transports the velocity vector ag to the velocity vector ak(t) at timet:

V(X()) = J(x0) V(x0) - (4.7)

In nomenclature of page 71, the Jacobian matrix maps thialjnitagrangian
coordinate frame into the current, Eulerian coordinatena

The velocity at poini(t) in general does not point in the same direction as the
velocity at pointxg, so this is not an eigenvalue condition fr the Jacobian ma-
trix computed for an arbitrary segment of an arbitrary twépey has no invariant
meaning.

As the eigenvalues of finite tim@ have invariant meaning only for periodic
orbits, we postpone their interpretation to chapter 5. Hmxealready at this
stage we see that if the orbit is periodi§T,) = x(0), at any point along cycle
p the velocityv is an eigenvector of the Jacobian matdix = JTe with a unit
eigenvalue,

Jp(X)V(X) = V(X), Xe Mp. (4.8)

Two successive points along the cycle separateéixpyhave the same separation
after a completed perioéix(Tp) = o, see figure 4.3, hence eigenvalue 1.

As we started by assuming that we know the equations of mdtiom (4.3)
we also know stability matrixd, the instantaneous rate of shear of an infinitesimal
neighborhoodsx; (t) of the trajectoryx(t). What we do not know is the finite time
deformation (4.6).

Our next task is to relate the stability matdxto Jacobian matrixt. On the
level of differential equations the relation follows by taking the tinegiehtive of
(4.6) and replacingx by (4.2)

Sx(t) = J'ox0 = ASx(t) = A 6xo.
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Hence thed? matrix elements of Jacobian matrix satisfy the linearizgdagion
(4.1)

dgt‘]t(x) = A(X) J'(x), initial condition J°(x) = 1. (4.9)

Given a numerical routine for integrating the equations ofion, evaluation of
the Jacobian matrix requires minimal additional prograngrefort; one simply
extends thed-dimensional integration routine and integrates conculyewith
fi(x) the d? elements ofl!(x).

The qualifier ‘'simply’ is perhaps too glib. Integration waork for short finite
times, but for exponentially unstable flows one quickly rimte numerical over-
andor underflow problems, so further thought will have to go imiplementation
this calculation.

So now we know how to compute Jacobian maffigiven the stability matrix
A, at least when thd? extra equations are not too expensive to compute. Mission
accomplished.

W fast track:
chapter 7, p. 121

And yet... there are mopping up operations left to do. Weigewusitil we de-
rive the integral formula (4.43) for the Jacobian matrix,aalogue of the finite-
time “Green function” or “path integral” solutions of othinear problems.

We are interested in smooth,flidirentiable flows. If a flow is smooth, in a
suficiently small neighborhood it is essentially linear. Hertice next section,
which might seem an embarrassment (what is a sectiohnear flows doing
in a book onnorlinear dynamics?), féers a firm stepping stone on the way to
understanding nonlinear flows. If you know your eigenvalaged eigenvectors,
you may prefer to fast forward here.

fast track:
W sect. 4.3, p. 79
4.2 Linear flows

Diagonalizing the matrix: that's the key to the whole thing.
— Governor Arnold Schwarzenegger

Linear fields are the simplest vector fields, described bgdirditerential equa-
tions which can be solved explicitly, with solutions thaé &yood for all times.
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The state space for linearttérential equations i81 = RY, and the equations of
motion (2.6) are written in terms of a vectwiand a constant stability matri as

X =V(X) = AX. (4.10)
Solving this equation means finding the state space trajecto

X(t) = (xa(t), X2(t), . . ., Xa(t))

passing through the poing. If x(t) is a solution withx(0) = xg andy(t) another
solution withy(0) = yg, then the linear combinatioax(t) + by(t) with a,b € R is

also a solution, but now starting at the poing + byp. At any instant in time, the
space of solutions is@dimensional vector space, which means that one can find
a basis ofd linearly independent solutions.

How do we solve the linear fierential equation (4.10)? If instead of a matrix
eguation we have a scalar ones Ax, the solution is

x(t) = e'xg. (4.11)

In order to solve thel-dimensional matrix case, it is helpful to rederive the solu
tion (4.11) by studying what happens for a short time stepf at timet = O the
position isx(0), then

t) — x(0
X -XO) _ v, (4.12)
ot
which we iteratentimes to obtain Euler’s formula for compounding interest

X(t) ~ (1 + %a)m X(0). (4.13)

The term in parentheses acts on the initial conditi(®) and evolves it tx(t) by
takingmsmall time stepst = t/m. Asm — oo, the term in parentheses converges
to €. Consider now the matrix version of equation (4.12):

X((St)(s_t x(0) _ AX0). (4.14)

A representative poink is now a vector inRY acted on by the matrid, as in
(4.10). Denoting byl the identity matrix, and repeating the steps (4.12) andj4.1
we obtain Euler's formula for the exponential of a matrix:

x(t) = Ix©0),  J=éeA= lim (1 ; %A)m . (4.15)

m—oo
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We will find this definition the exponential of a matrix helpfo the general case,
where the matriA = A(x(t)) varies along a trajectory.

How do we compute the exponential (4.15)?

W fast track:
sect. 4.3, p. 79

Example 4.2 Jacobian matrix eigenvalues, diagonalizable case: Should we be
so lucky that A = Ap happens to be a diagonal matrix with eigenvalues (A9, 1@, ... A@),
the exponential is simply

d® .. 0
Jt = Ao = '.. . (4'16)
0 . et/l(d>

Next, suppose that A is diagonalizable and that U is a nonsingular matrix that brings it
to a diagonal form Ap = U™XAU. Then J can also be brought to a diagonal form (insert
factors 1 = UU! between the terms of the product (4.15)): exercise 4.2

Jt= A - ydhoyt (4.17)

The action of both A and J is very simple; the axes of orthogonal coordinate system
where A is diagonal are also the eigen-directions of J', and under the flow the neigh-
borhood is deformed by a multiplication by an eigenvalue factor for each coordinate
axis.

In generalJ! is neither diagonal, nor diagonalizable, nor constant glire
trajectory. As any matrix,)! can also be expressed in the singular value decom-
position form

J=uUDV" (4.18)

whereD is diagonal, andJ, V are orthogonal matrices. The diagonal elements
o1, 02, ..., 04 0f D are called theingular valuef J, namely the square root of
the eigenvalues ol J, which is a symmetric, positive semi-definite matrix (and
thus admits only real, non-negative eigenvalues). Fromoanggric point of view,
when all singular values are non-zetbmaps the unit sphere into an ellipsoid:
the singular values are then the lengths of the semiaxessoélitipsoid.

Example 4.3 Singular values and geometry of deformations: Suppose we are
in three dimensions, and J is not singular, so that the diagonal elements of D in (4.18)
satisfy o1 > o > o3 > 0, and consider how J maps the unit ball S = {x € R®| x? = 1}.
V is orthogonal (rotation/reflection), so VTS is still the unit sphere: then D maps S
onto ellipsoid S = {y € R¥|y2/a2 + y5/05 + y5/0% = 1} whose principal axes directions
-y coordinates - are determined by V). Finally the ellipsoid is further rotated by the
orthogonal matrix U. The local directions of stretching and their images under J are
called the right-hand and left-hand singular vectors for J and are given by the columns
inV and U respectively: itis easy to check that I = oUy, if Vk, Uk are the k-th columns
ofV and U.
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Figure 4.4: Streamlines for several typical 2-
dimensional flows: saddle (hyperbolic), in node (at-
tracting), center (elliptic), in spiral.

e

saddle outnode innode

Figure 4.5: Qualitatively distinct types of expo-

nents of a [ 2] Jacobian matrix. . . .
center outspiral in spiral

section 5.1.2

We recapitulate the basic facts of linear algebra in appeBdA 2-dimensional
example serves well to highlight the most important typeknefar flows:

Example 4.4 Linear stability of 2-dimensional flows: For a 2-dimensional flow the
eigenvalues AW, 1@ of A are either real, leading to a linear motion along their eigen-
vectors, xj(t) = x;(0) exptAV), or a form a complex conjugate pair A9 = p +iw, A1? =
u —iw, leading to a circular or spiral motion in the [Xy, X2] plane.

These two possibilities are refined further into sub-cases depending on the
signs of the real part. In the case AV > 0, 1@ < 0, x; grows exponentially with
time, and X, contracts exponentially. This behavior, called a saddle, is sketched in
figure 4.4, as are the remaining possibilities: in/out nodes, inward/outward spirals, and
the center. The magnitude of out-spiral |X(t)| diverges exponentially when u > 0, and
in-spiral contracts into (0, 0) when the u < 0, whereas the phase velocity w controls its
oscillations.

If eigenvalues A0 = 1@ = 1 are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector. We distinguish two cases: (a)
A can be brought to diagonal form. (b) A can be brought to Jordan form, which (in
dimension 2 or higher) has zeros everywhere except for the repeating eigenvalues on
the diagonal, and some 1’s directly above it. For every such Jordan [d,xd,] block there
is only one eigenvector per block.

We sketch the full set of possibilities in figures 4.4 and 4.5, and work out in
detail the most important cases in appendix B, example B.3.
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4.2.1 Eigenvalues, multipliers - a notational interlude

Throughout this text the symba\y will always denote thekth eigenvalue(in
literature sometimes referred to as thmultiplier or Floquet multiplie) of the
finite time Jacobian matrid'. SymbolA® will be reserved for théth Floquetor
characteristicexponent, ocharacteristic valugwith real pariu® and phase)®:

Ay = ¥ = gw®+io) (4.19)

J'(xo) depends on the initial poing and the elapsed tinte For notational brevity
we tend to omit this dependence, but in general

A = Ax = Ak(x0, 1), 1= 2900,1), w=0w®(x,1),- - etc.,

depend on both the trajectory traversed and the choice aficwies.

However, as we shall see in sect. 5.2, if the stability ma&roer the Jacobian
matrix J is computed on a flow-invariant s@tly,, such as an equilibrium or a
periodic orbitp of period Ty,

Aq = A(Xq) » Jo(¥X) = JIP(x), xeMp, (4.20)
(xis any point on the cycle) its eigenvalues
AR = A9(xg), Apk = Ak(x, Tp)

are flow-invariant, independent of the choice of coordisatad the initial point
in the cyclep, so we label them by theq or p label.

We number eigenvaluesy in order of decreasing magnitude
A1l > |Ag| > ... > |Agl. (4.22)
SincelAj| = e« this is the same as labeling by
p® > @ > > @ (4.22)

In dynamics the expanding directiong, > 1, have to be taken care of first,
while the contracting directiong\¢| < 1 tend to take care of themselves, hence
the ordering by decreasing magnitude is the natural one.

W fast track:
sect. 4.3, p. 79
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4.2.2 Yes, but how do you really do it?

Economical description of neighborhoods of equilibria qediodic orbits is af-
forded by projection operators

M -1
Pi=]] 10— 10 (4.23)

j#i

where matrixM is typically either equilibrium stability matri, or periodic orbit
Jacobian matrixJ restricted to a Poincaré section, as in (4.56). While ugual
not phrased in language of projection operators, the régquisear algebra is
standard, and relegated here to appendix B.

Once the distinct non-zero eigenvalua¥)} are computed, projection opera-
tors are polynomials i which need no further diagonalizations or orthogonal-
izations. For each distinct eigenvala® of M, the columgows of P,

M - a01)P; = P;M - D1y = 0, (4.24)

are the righfleft eigenvectore®, ey of M which (providedM is not of Jordan
type) span the corresponding linearized subspace, and @avanient starting
seed for tracing out the global unstaistable manifolds.

MatricesP; areorthogonalandcomplete
r

PiPj = 6;P;, (nosum onj), ZP‘ -1, (4.25)
i=1

with the dimension of théh subspace given by = tr P; . Completeness relation
substituted intoM = M 1 yields

M = APy + 21@P, + ... 4 2Op, (4.26)

As any matrix functionf(M) takes the scalar valué(1")) on theP; subspace,
f(M)P; = f(10)P; , it is easily evaluated through ispectral decomposition

f(M) = Z fAMP; . (4.27)

As M has only real entries, it will in general have either realeeigalues
(over-damped oscillator, for example), or complex conjagaairs of eigenvalues
(under-damped oscillator, for example). That is not ssipg, but also the cor-
responding eigenvectors can be either real or complex. ddkdinates used in
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defining the flow are real numbers, so what is the meaning afraplexeigen-
vector?

If two eigenvalues form a complex conjugate paifd, A& DY = (4 + iw, u —
iw}, they are in a sense degenerate: while ai&kharacterizes a motion along
a line, a complext®¥ characterizes a spiralling motion in a plane. We determine
this plane by replacing the corresponding complex eigaiovedy their real and
imaginary parts{e®, ek} — (Reel, Im &}, or, in terms of projection opera-
tors:

1 .
Py = E(R +iQ), Prs1 = Py,

whereR = Py + Py, 1 is the subspace decomposed byktiecomplex eigenvalue
pair, andQ = (Px — Px.1)/i, both matrices with real elements. Substitution

(Pitl)zé(i —Iu)(g)

brings thei®pP, + A&+Dp, ., complex eigenvalue pair in the spectral decomposi-
tion (4.26) into the real form,

b mlh ()@ of D). e

where we have dropped the superscffbfor notational brevity.

To summarize, spectrally decomposed maivix(4.26) acts along lines on
subspaces corresponding to real eigenvalues, and aRar@ation in a plane on
subspaces corresponding to complex eigenvalue pairs.

Now that we have some feeling for the qualitative behavioeigenvectors
and eigenvalues of linear flows, we are ready to return to tmdimear case.

4.3 Stability of flows -

X

How do you determine the eigenvalues of the finite time loedbanationJt for
a general nonlinear smooth flow? The Jacobian matrix is céeaddoy integrating
the equations of variations (4.2)

x(t) = f'(%0), X(Xo,t) = J(X0) 5X(Xo, 0). (4.29)

The equations are linear, so we should be able to integrata-thut in order to
make sense of the answer, we derive this integral step by step
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4.3.1 Stability of equilibria

For a start, consider the case wheres an equilibrium point (2.8). Expanding
around the equilibrium poinkg, using the fact that the stability matrik = A(Xg)
in (4.2) is constant, and integrating,

i) = X+ eM(x—xg) + -+, (4.30)

we verify that the simple formula (4.15) applies also to theobian matrix of an
equilibrium point,

J'(xg) = &, Aq = A(Xq) - (4.31)

Example 4.5 In-out spirals. Consider an equilibrium whose Floquet exponents
(A, 2@y = {u + iw, u — iw} form a complex conjugate pair. The corresponding com-
plex eigenvectors can be replaced by their real and imaginary parts, {1, e?} —
(Ree, ImeM}. The 2-dimensional real representation (4.28),

(6 3)-(6 Dely o)

consists of the identity and the generator of SQO(2) rotations in the {Ree, Im &Y} plane.
Trajectories X(t) = J'x(0), where (omitting €, &), . . . eigen-directions)

It = At = etﬂ(c‘?s‘“t —sin “’t) , (4.32)
Sinwt  coswt

spiral infout around (x,y) = (0, 0), see figure 4.4, with the rotation period T, and con-
traction/expansion radially by the multiplier Aradiai, @nd by the multiplier A along the
el eigen-direction per a turn of the spiral: exercise B.1

T=21/w, Arda=€*, Aj=e"’. (4.33)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x,y) = (0,0) is of order ~ T (and not, let us say, 1000T, or 10°2T). Aj multipliers
give us estimates of strange-set thickness in eigen-directions transverse to the rotation
plane.

Example 4.6 Stability of equilibria of the R  dssler flow. (continued from ex-
ample 4.1)  The Résler system (2.17) has two equilibrium points (2.18), theexaeise 4.4
equilibrium (x_,y-,z.), and the outer equilibrium point (x*,y*, z"). Together witletteise 2.8
exponents (eigenvalues of the stability matrix) the two equilibria yield quite detailed
information about the flow. Figure 4.6 shows two trajectories which start in the neigh-
borhood of the outer “+’ equilibrium. Trajectories to the right of the equilibrium point +’
escape, and those to the left spiral toward the inner equilibrium point =’, where they
seem to wander chaotically for all times. The stable manifold of outer equilibrium point
thus serves as the attraction basin boundary. Consider now the numerical values for
eigenvalues of the two equilibria
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Figure 4.6: Two trajectories of the Rdssler flow initi-
ated in the neighborhood of the"or ‘outer’ equilib-
rium point (2.18). (R. PaSkauskas)

WY, u® +i0?) = (-5686 0.0970+ i0.9951) 434
WO, 1P+ i0P) = (01929 -4596x10° +i5.428) (4.34)
Outer equilibrium: The ,uf) +i wf) complex eigenvalue pair implies that that neighbor-
hood of the outer equilibrium point rotates with angular period T, =~ |27r /wf)| =1.1575
The multiplier by which a trajectory that starts near the “+’ equilibrium point contracts
in the stable manifold plane is the excrutiatingly slow Aj ~ exp(u(f)TJr) = 0.999994 per
rotation. For each period the point of the stable manifold moves away along the unsta-
ble eigen-direction by factor A} ~ exp(ugrl)T+) = 1.2497. Hence the slow spiraling on
both sides of the ‘+’ equilibrium point.

Inner equilibrium:  The ©@ = i w®

* complex eigenvalue pair tells us that neighbor-
hood of the - equilibrium point rotates with angular period T_ ~ [2r/0?| = 6.313
slightly faster than the harmonic oscillator estimate in (2.14). The multiplier by which
a trajectory that starts near the ‘-’ equilibrium point spirals away per one rotation is
Aradial = exp(u(_z)T_) = 1.84. The u(_l) eigenvalue is essentially the z expansion cor-
recting parameter c introduced in (2.16). For each Poincaré section return, the trajec-
tory is contracted into the stable manifold by the amazing factor of A1 = exp(u(,l)T_) =

107156 (1)

Suppose you start with a 1 mm interval pointing in the A1 eigen-direction. Af-
ter one Poincaré return the interval is of order of 107* fermi, the furthest we will get
into subnuclear structure in this book. Of course, from the mathematical point of view,
the flow is reversible, and the Poincaré return map is invertible. (continued in exam-

ple 11.3) (R.
Paskauskas)
Example 4.7 Stability of Lorenz flow equilibria: (continued from example 4.1) A

glance at figure 3.7 suggests that the flow is organized by its 3 equilibria, so lets have
a closer look at their stable/unstable manifolds.

The EQy equilibrium stability matrix (4.4) evaluated at Xeq, = (0,0, 0) is block-
diagonal. The z-axis is an eigenvector with a contracting eigenvalue 1® = —b. rEnsark 9.10
(4.48) it follows that all [x,y] areas shrink at rate —(o- + 1). Indeed, the [X, y] submatrix

A =( ‘p(’ f’l ) (4.35)

has a real expanding/contracting eigenvalue pair A3 = —(o+1)/2+ /(o — 1)2/4 + por,
with the right eigenvectors €1, €3 in the [x,y] plane, given by (either) column of the
projection operator

A -1 1 (_a_w) o

W0 0| p  -1-a0 ) '#ietl3). (4.36)
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V4
Figure 4.7: (a) A perspective view of the lin- A
earized Lorenz flow ned Q, equilibrium, see fig-
ure 3.7(a). The unstable eigenplane B, is 1
spanned by ReM and Ime®. The stable eigen-
vectore®, (b) Lorenz flow near th€eQ, equi- 3
librium: unstable eigenvectog®, stable eigen- o
vectorse®, €. Trajectories initiated at distances —

108 ... 102, 10 away from thez-axis exit fi-
nite distance fronEQ, along the €V, &?) eigen-
vectors plane. Due to the stron} expansion, the
EQ equilibrium is, for all practical purposes, un-

102 ]
L —
reachable, and thEQ, — EQ, heteroclinic con-

ot X
; i : - y ‘b»_—— 10712
nection never observed in simulations such as fig- ¢ EQ b

ure 2.5. (E. Siminos; continued in figure 11.8.) (@) Im ¢ (b) 0%

E Q2 equilibria have no symmetry, so their eigenvalues are given by the roots
of a cubic equation, the secular determinant det (A — A1) = O:

B+ 220 +b+1)+ Ab(o +p) + 20b(p — 1) = 0. (4.37)

For p > 24.74, EQy 2 have one stable real eigenvalue and one unstable complex con-
jugate pair, leading to a spiral-out instability and the strange attractor depicted in fig-
ure 2.5.

As all numerical plots of the Lorenz flow are here carried out for the Lorenz
parameter choice o = 10,b = 8/3,p = 28, we note the values of these eigenvalues for
future reference,

EQ: (1M, 1@, 1) (1183, —2.666 -2283) (4.38)
EQ: (u®+iw® 2®) = (0.094+i1019, -1385), '

as well as the rotation period_ Teg = 2_7r/a)(1) about EQy, and the associated expan-
sion/contraction multipliers A© = expuTeq,) per a spiral-out turn:

Teg = 06163, (AW, A®) =(1.060,1.957x 107%). (4.39)

We learn that the typical turnover time scale in this problem is of order T = Tgg, = 1
(and not, let us say, 1000, or 10-2). Combined with the contraction rate (4.48), this tells
us that the Lorenz flow strongly contracts state space volumes, by factor of ~ 107* per
mean turnover time.

In the EQ, neighborhood the unstable manifold trajectories slowly spiral out,
with very small radial per-turn expansion multiplier A ~ 1.06, and very strong con-
traction multiplier A® ~ 10~ onto the unstable manifold, figure 4.7 (a). This contraction
confines, for all practical purposes, the Lorenz attractor to a 2-dimensional surface evi-
dent in the section figure 3.7.

In the xgq, = (0,0, 0) equilibrium neighborhood the extremely strong A® =~
—23 contraction along the €2 direction confines the hyperbolic dynamics near EQ to
the plane spanned by the unstable eigenvector b, with A® ~ 12, and the slowest
contraction rate eigenvector €2 along the z-axis, with A?) ~ 3. In this plane the strong
expansion along eV overwhelms the slow 1?) ~ -3 contraction down the z-axis, making
it extremely unlikely for a random trajectory to approach EQy, figure 4.7 (b). Thus
linearization suffices to describe analytically the singular dip in the Poincaré sections
of figure 3.7, and the empirical scarcity of trajectories close to EQy. (continued in
example 4.9)

(E. Siminos and J. Halcrow)
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Example 4.8 Lorenz flow: Global portrait. (continued from example 4.7) As the
E Q1 unstable manifold spirals out, the strip that starts out in the section above EQ in
figure 3.7 cuts across the z-axis invariant subspace. This strip necessarily contains a
heteroclinic orbit that hits the z-axis head on, and in infinite time (but exponentially fast)
descends all the way to E Q.

How? As in the neighborhood of the EQy equilibrium the dynamics is linear
(see figure 4.7 (a)), there is no need to integrate numerically the final segment of the
heteroclinic connection - it is sufficient to bring a trajectory a small distance away from
EQu, continue analytically to a small distance beyond E Qy, then resume the numerical
integration.

What happens next? Trajectories to the left of z-axis shoot off along the e)
direction, and those to the right along —elY). As along the eV direction xy > 0, the
nonlinear term in the z equation (2.12) bends both branches of the EQy unstable man-
ifold WY(E Q) upwards. Then ... - never mind. Best to postpone the completion of
this narrative to example 9.10, where the discrete symmetry of Lorenz flow will help us
streamline the analysis. As we shall show, what we already know about the 3 equilib-
ria and their stable/unstable manifolds suffices to completely pin down the topology of
Lorenz flow. (continued in example 9.10)

(E. Siminos and J. Halcrow)

4.3.2 Stability of trajectories

Next, consider the case of a general, non-stationary ta@jeg(t). The exponen-
tial of a constant matrix can be defined either by its Tayloieseexpansion, or in
terms of the Euler limit (4.15):

A _ k
¢ = YA (4.40)
k=0
. £ m
~ Jim (1+—A) . (4.41)
m—oo m

Taylor expanding is fine ifA is a constant matrix. However, only the second,
tax-accountant’s discrete step definition of an exponkigiappropriate for the
task at hand, as for a dynamical system the local rate of heitjood distortion
A(X) depends on where we are along the trajectory. The linerizégghborhood

is multiplicatively deformed along the flow, and thediscrete time step approx-
imation to J! is therefore given by a generalization of the Euler proddct):

1 1
b= i = i tA(Xn)
J lim l:nL (1+ StA() = lim r];[neﬁ (4.42)
= M LA Pt ACm-1) . . . htACR) HtAML)

whereét = (t—tg)/m, andx, = X(tp + nét). Slightly perverse indexing of the
products indicates that the successive infinitesimal dedtion are applied by
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multiplying from the left. The two formulas fod' agree to leading order ift,
and them — oo limit of this procedure is the integral

3 () = [Tefo‘ dTA(x(r»] , (4.43)

i
whereT stands for time-ordered integratiotefinedas the continuum limit of the

successive left multiplications (4.42).  This integralnfora for J is the main exercise 4.5
conceptual result of this chapter.

It makes evident important properties of Jacobian matrisesh as that they
are multiplicative along the flow,

() =I'(X)Mx),  wherex = fi(x), (4.44)

an immediate consequence of time-ordered product steicfui4.42). However,
in practiceJ is evaluated by integrating (4.9) along with the ODEs thdingea
particular flow.

- in depth:
3 sect. 17.3, p. 339

4.4 Neighborhood volume

Consider a small state space volumé = d9x centered around the poing at

timet = 0. The volumeAV’ around the poink’ = X(t) timet later is remark 17.3
AV’ ox
AV’ = —— AV = |det—| AV = |det J(xo)'| AV 4.45
oAV = [det=X AV = [det o)AV (4.45)

so the|detJ] is the ratio of the initial and the final volumes. The deteramin

detJ'(xg) = Hﬁzl Aj(Xo, 1) is the product of the Floquet multipliers. We shall refer

to this determinant as thiacobianof the flow. This Jacobian is easily evaluateéxercise 4.1
Take the time derivative, use tldeevolution equation (4.9) and the matrix identity

IndetJ =trInJ:

d d d 1.
aInAV(t) = E[lndet\] —tl’&ln\] —trj\]—trA—aiVi.

(Here, as elsewhere in this book, a repeated index impligsr&tion.) Integrate
both sides to obtain the time evolution of an infinitesimdlvee

detJ'(xo) = exp[ft thrA(x(T))] = exp[ft draivi(x(r))] . (4.46)
0 0
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As the divergencé;v; is a scalar quantity, the integral in the exponent (4.43})igee
no time ordering So all we need to do is evaluate the time average

_ o1t 8
v = lim > fo dT;Aii(X(T))
d
nAi(Xo,t)
i=1

along the trajectory. If the flow is not singular (for examplee trajectory does
not run head-on into the Coulombrlsingularity), the stability matrix elements
are bounded everywhergj| < M, and so is the tracg}; Aij. The time integral

in (4.46) grows at most linearly with henced;v; is bounded for all times, and
numerical estimates of thte— oo limit in (4.47) are not marred by any blowups.

1
—In
t

d
= > 190, 1) (4.47)
i=1

Example 4.9 Lorenz flow state space contraction: (continued from exam-
ple 4.7) It follows from (4.4) and (4.47) that Lorenz flow is volume contracting,

3
AV = Z A(xt)=-oc-b-1, (4.48)
i1
at a constant, coordinate- and p-independent rate, set by Lorenz to d;v; = —-13.66. As
for periodic orbits and for long time averages there is no contraction/expansion along
the flow, A = 0, and the sum of A¥) is constant by (4.48), there is only one independent
exponent AV to compute. (continued in example 4.8)

Even if we were to insist on extractingv; from (4.42) by first multiplying
Jacobian matrices along the flow, and then taking the |dgaritve can avoid ex-
ponential blowups il by using the multiplicative structure (4.44), d&tt(xg) =
detJ' (x') detJ'(xo) to restart withJ°(x') = 1 whenever the eigenvalues #fxo)
start getting out of hand. In numerical evaluations of Lyapuexponentsy; = section 17.3
lim_. 1™ (X0, 1), the sum rule (4.47) can serve as a helpful check on the acgur
of the computation.

The divergencé,;v; characterizes the behavior of a state space volume in the
infinitesimal neighborhood of the trajectory. dfv; < 0, the flow islocally con-
tracting, and the trajectory might be falling into an attractor. 9j¥;(x) < 0, for
all x e M, the flow isglobally contracting, and the dimension of the attractor is
necessarily smaller than the dimension of state specelf div; = 0, the flow
preserves state space volume anddet 1. A flow with this property is called
incompressible  An important class of such flows are the Hamiltonian flows
considered in sect. 7.2.

But before we can get to that, Henri Roux, the perfect student always
alert, pipes up. He does not like our definition of the Jacolomatrix in terms of
the time-ordered exponential (4.43). Depending on thessugmultipliers, the
left hand side of (4.46) can be either positive or negativeat tBe right hand side
is an exponential of a real number, and that can only be pesihat gives? As
we shall see much later on in this text, in discussion of togichl indices arising
in semiclassical quantization, this is not at all a dumb tjaes
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Figure 4.8: A unimodal map, together with fixed
points 0, 1, 2-cycle 01 and 3-cycle 011.

4.5 Stability of maps .

The transformation of an infinitesimal neighborhood of gectory under the iter-
ation of a map follows from Taylor expanding the iterated piag at finite time
n to linear order, as in (4.5). The linearized neighborhoottaasported by the
Jacobian matrix evaluated at a discrete set of timesl, 2, .. .,

ofn
M () =

100 = =5 (4.49)

X=Xo

In case of a periodic orbitf"(x) = x, we shall refer to this Jacobian matrix as
the monodromymatrix. Derivative notatiorM!(xp) — Df!(xo) is frequently em-
ployed in the literature. As in the continuous case, we dehgi\y the kth eigen-
valueor multiplier of the finite time Jacobian matriM"(xg), and byu® the real
part ofkth eigen-exponent

A, = @) IA| = €™,

For complex eigenvalue pairs the phasealescribes the rotation velocity in the
plane defined by the corresponding pair of eigenvectors) arie period of rota-
tion given by

T=2/w. (4.50)

Example 4.10 Stability of a 1-dimensional map: Consider the orbit{. .., X_1, Xo, X1, Xo, . .

of a 1-dimensional map xn+1 = f(X,). Since point X is carried into point X,.1, in study-
ing linear stability (and higher derivatives) of the map it is often convenient to deploy
a local coordinate systems z, centered on the orbit points X5, together with a notation
for the map, its derivative, and, by the chain rule, the derivative of the kth iterate fk
evaluated at the point Xa,

X = Xa+Z, fa(za)="f(Xa+2z)
o= ()
Axo.K) = £ =1 fafl, k=2 (4.51)
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Here a is the label of point X, and the label a+ 1 is a shorthand for the next point b on
the orbit of X4, X = Xay1 = f(Xa). For example, a period-3 periodic point in figure 4.8
might have label a = 011, and by X110 = f(Xo11) the next point label is b = 110.

The 1-step product formula for the stability of thth iterate of ad-dimens-
ional map

M"(xo) M(Xn-1) - - - M(X1)M(Xo) ,

M = %fk(x), Xen = (%) (4.52)

follows from the chain rule for matrix derivatives

52 (00 = Z 1) f(ﬁfk(x)
y=f(X

If you prefer to think of a discrete time dynamics as a sege@idoincaré sec-
tion returns, then (4.52) follows from (4.44): Jacobian meas are multiplicative
along the flow. exercise 17.1

Example 4.11 Hénon map Jacobian matrix: For the Hénon map (3.19) the Jaco-
bian matrix for the nth iterate of the map is

1
M"(x0) = ]_[( _ZTX‘“ E’, ) Xm = 1"(0. Yo) - (4.53)

m=n

The determinant of the Hénon one time step Jacobian matrix (4.53) is constant,
detM = Ao = -b (454)

so in this case only one eigenvalue A; = —b/A, needs to be determined. This is not
an accident; a constant Jacobian was one of desiderata that led Hénon to construct a
map of this particular form.

W fast track:
chapter 7, p. 121

4.5.1 Stability of Poincare return maps

O3

(R. PaSkauskas and P. Cvitanovit)

We now relate the linear stability of the Poincaré returmpria £ — P defined
in sect. 3.1 to the stability of the continuous time flow in thk state space.
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U(x)=0 U

Figure 4.9: If x(t) intersects the Poincaré section
P at timer, the nearbyx(t) + 6x(t) trajectory inter-
sects it timer + 6t later. As U’ - Vvét) = —(U’ -

Jawy Vv
J6x), the diference in arrival times is given bjt = X(®
—(U"-J6x)/(U"-V). X()+3x(t)

The hypersurfac& can be specified implicitly through a functiah(x) that
is zero whenever a pointis on the Poincaré section. A nearby paint §x is in
the hypersurfac if U(x + 6x) = 0, and the same is true for variations around
the first return point’ = x(r), so expandindJ(x’) to linear order in variatiodx
restricted to the Poincaré section leads to the condition

di Ju(x) dx

=0. 4.55
0% de ( )

P

i=1

In what followsU; = ;U is the gradient o) defined in (3.3), unprimed quantities
refer to the starting point = xg € P, v = V(Xp), and the primed quantities to the
first return: X' = x(r), V. = v(X), U’ = U(X). For brevity we shall also denote
the full state space Jacobian matrix at the first returid byJ"(Xg). Both the first
return X' and the time of flight to the next Poincaré sectiq®) depend on the
starting pointx, so the Jacobian matrix

- ax
J(Xij = d_f, (4.56)

P

with both initial and the final variation constrained to thaiftaré section hyper-
surfacep is related to the continuous flow Jacobian matrix by

%

ax  dX dr dr
=—+
de

- i B I, SRV i
P an dr de g * Ide

The return time variatiomlr/dx, figure 4.9, is eliminated by substituting this ex-
pression into the constraint (4.55),

a0

0=8iU'Jij +(V .aU,)dX' ,
]

yielding the projection of the full space ¢ 1)-dimensional Jacobian matrix to the
Poincaré majpl-dimensional Jacobian matrix:

. VU’
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Substituting (4.7) we verify that the initial velocitx) is a zero-eigenvector of
Jv=0, (4.58)

so the Poincaré section eliminates variations paralle] &mdJ is a rankd matrix,
i.e., one less than the dimension of the continuous time flow.

Résum é

A neighborhood of a trajectory deforms as it is transportgdabflow. In the
linear approximation, the stability matri describes the shearifpmpressiofi
expansion of an infinitesimal neighborhood in an infinitesdirtime step. The
deformation after a finite timeis described by the Jacobian matrix

I(xg) = Teh IrAKD)

where T stands for the time-ordered integration, defined multaliely along
the trajectory. For discrete time maps this is multiplioatby time step Jacobian
matrix M along then pointsxg, X1, X2, . .., X1 ON the trajectory okg,

M"(x0) = M(Xn-1)M(Xn-2) - - - M(x1) M(X0) ,

with M(X) the single discrete time step Jacobian matrix. In ChaokBqalenotes
the kth eigenvalueof the finite time Jacobian matri¥X(xo), andu® the real part
of kth eigen-exponent

IA| = €™, A, = gEie)

For complex eigenvalue pairs the ‘angular velocitydescribes rotational motion
in the plane spanned by the real and imaginary parts of thesgmonding pair of
eigenvectors.

The eigenvalues and eigen-directions of the Jacobianxrdgscribe the de-
formation of an initial infinitesimal cloud of neighboringajectories into a dis-
torted cloud a finite time later. Nearby trajectories separate exponentially along
unstable eigen-directions, approach each other alontgstabctions, and change
slowly (algebraically) their distance along marginal ditens. The Jacobian ma-
trix J'is in general neither symmetric, nor diagonalizable by atioh, nor do its
(left or right) eigenvectors define an orthonormal coorténfaame. Furthermore,
although the Jacobian matrices are multiplicative alorggftbw, in dimensions
higher than one their eigenvalues in general are not. Thisddmultiplicativity
has important repercussions for both classical and quadiumamics.
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Commentary

Remark 4.1 Linear flows. The subject of linear algebra generates innumerable tomes
of its own; in sect. 4.2 we only sketch, and in appendix B réotgie a few facts that our
narrative relies on: a useful reference book is [4.1]. Thedfacts are presented at length

in many textbooks. The standard references that exhalysémeimerate and explain all
possible cases are Hirsch and Smale [4.2] and Arnol'd [AZjuick overview is given by
Izhikevich [4.4]; for diferent notions of orbit stability see Holmes and Shea-Brows][

For ChaosBook purposes, we enjoyed the discussion in ahapteiss [4.6], chapter 1

of Perko [4.7] and chapters 3 and 5 of Glendinning [4.8] thesino

The construction of projection operators given here is rtalkem refs. [4.9, 4.10].
Who wrote this down first we do not know, lineage certainly @8 the way back to
Lagrange polynomials [4.11], but projection operatorsitémget drowned in sea of al-
gebraic details. Halmos [4.12] is a good early referencet-wailike Harter’'s exposi-
tion [4.13, 4.14, 4.15] best, for its multitude of specificaexples and physical illustra-
tions.

The nomenclature tends to be a bit confusing. In referringelocity gradients ma-
trix) A defined in (4.3) as the “stability matrix” we follow Tabor [&]. Sometime®,
which describes the instantaneous shear of the trajectony x(Xo, t) is referred to as the
‘Jacobian matrix, a particularly unfortunate usage whee oonsiders linearized stabil-
ity of an equilibrium point (4.31). What Jacobi had in mindhis 1841 fundamental pa-
per [4.17] on the determinants today known as ‘jacobianseviiansformations between
different coordinate frames. These are dimensionless qeantithile dimensionally;
is 1/[time]. More unfortunate still is referring td' = € as an ‘evolution operator, which
here (see sect. 17.2) refers to something altogetiardint. In this book Jacobian ma-
trix J' always refers to (4.6), the linearized deformation aftenaditimet, either for a
continuous time flow, or a discrete time mapping.

Remark 4.2 Matrix decompositions of Jacobian matrix. Though singular values de-
composition provides geometrical insights into how tarigigmamics acts, many popular
algorithms for asymptotic stability analysis (recoverlnygpunov spectrum) employ an-
other standard matrix decomposition: the QR scheme [hddugh which a nonsingular
matrix Ais (uniquely) written as a product of an orthogonal and areujjangular matrix

A = QR This can be thought as a Gram-Schmidt decomposition ofdherm vectors
of A (which are linearly independent @sis nonsingular). The geometric meaning of
QRdecomposition is that the volume of tbedimensional parallelepiped spanned by the
column vectors ofA has a volume coinciding with the product of the diagonal eletn
of the triangular matrixR, whose role is thus pivotal in algorithms computing Lyapuno
spectra [4.20, 4.21, 4.22].

Remark 4.3 Routh-Hurwitz criterion for stability of a fixed point.  For a criterion that
matrix has roots with negative real parts, see Routh-Huareriterion [4.18, 4.19] on the
codficients of the characteristic polynomial. The criterionydes a necessary condition
that a fixed point is stable, and determines the numbers bleaiastable eigenvalues of
a fixed point.
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Exercises

4.1. Trace-log of a matrix. Prove that

detM = elf "M

for an arbitrary nonsingular finite dimensional matikil
detM # 0.

4.2. Stability, diagonal case. Verify the relation (4.17)
J=d?=UteU, Ap=UAUT".

4.3. State space volume contraction.

(&) Compute the Rossler flow volume contraction rate4 5
at the equilibria. :

(b) Study numerically the instantaneodis; along a
typical trajectory on the Rossler attractor; color-
code the points on the trajectory by the sign (and
perhaps the magnitude) 8fv;. If you see regions
of local expansion, explain them.

(c) (optional) color-code the points on the trajectory
by the sign (and perhaps the magnitudepef —
6iVi-

(d) Compute numerically the average contraction rate

(4.47) along a typical trajectory on the Rossler at-
tractor. Plot it as a function of time.

(e) Argue on basis of your results that this attractor is
of dimension smaller than the state spdce 3. 4.6.

() (optional) Start some trajectories on the escape
side of the outer equilibrium, color-code the points
on the trajectory. Is the flow volume contracting?

(continued in exercise 20.12)

4.4. Topology of the Rossler flow.  (continuation of exer-
cise 3.1)

(@) Show that equatiojaet (A — A1)| = 0 for Rdssler
flow in the notation of exercise 2.8 can be written
as

(b) Solve (4.59) for eigenvalues: for each equilib-
rium as an expansion in powerseofDerive
A7 = —C+€c/(c? + 1) + 0(e)
A, = eC3/[2(c* + 1)] + o(€?)

6 ;1+ /[2(c? + 1)] + o(€)
L= s o) (4.60)
3= —-€5¢2/2 + 0(€%)

05 = V1+1/e(1+ o(e)

Compare with exact eigenvalues. What are dy-
namical implications of the extravagant value of
A7? (continued as exercise 13.10)

(R. Paskauskas)

. Time-ordered exponentials. Given a time dependent

matrix V(t) check that the time-ordered exponential
U(t) = Teb 4VE)

may be written as

00 t g tm-1
m=0+0 0 0

and verify, by using this representation, tHdt) satis-
fies the equation

UM) = VOUCQ),
with the initial conditionZ/(0) = 1.

A contracting baker's map.  Consider a contracting
(or ‘dissipative’) baker’'s map, acting on a unit square
[0,1]? = [0, 1] x [0, 1], defined by

[ )=(5) =2

Xne1 | _ [ Xn/3+1/2
(Yn+1)_( 2yn -1 ) Yo > 1/2.

This map shrinks strips by a factor of3Lin the x-
direction, and then stretches (and folds) them by a factor
of 2 in they-direction.

By how much does the state space volume contract for

A3+2%c(p*—€)+A(p* /e+1-c?ep™)Fc VD = 0(4.59)one iteration of the map?
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