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Figure 4.1: A swarm of neighboring points of(t) is
instantaneously sheared by the action of the stabiliy
matrix A - a bit hard to draw.

expanding to linear order

Chapter 4

0
X + 6% = Vi(X+ 6X) ~ v,(x)+Z V'dxJ

Local stability

The infinitesimal displacemeni is thus transported along the trajectoto, t),
with time variation given by

(R. Mainieri and P. Cvitanovit) 6x.(x0, )= 2 —(X) 6%j(Xo, 1) . (4.1)
X=X(X0.)
FAR We have concentrated on description of the trajectory ohglsiinitial As both the displacement and the trajectory depend on thielipbint x, and the
point. Our next task is to define aqd determine the .S|zem§|ghborhood timet, we shall often abbreviate the notationxo,t) — X(t) — X, 6%(Xo,t) —
of x(t). We shall do this by assuming that the flow is locally smoatf 5x(t) - 6xin what follows. Taken together, the set of equations

describe the local geometry of the neighborhood by studfiegflow linearized

aroundx(t). Nearby points aligned along the stable (contractinggalions re- .

main in the neighborhood of the trajectaxft) = f'(xo); the ones to keep an eye X% =vi(x), ox = ZAij(X)5Xj (4.2)
on are the points which leave the neighborhood along theahlestlirections. As ]

we shall demonstrate in chapter 18, in hyperbolic systemat wiatters are the

expanding directions. The repercussion are far-reachAglong as the num- governs the dynamics in the tangent bundlgsk) € T M obtained by adjoining
ber of unstable directions is finite, the same theory appidmite-dimensional the d-dimensional tangent spaée € T My to every pointx € M in the d-dim-
ODEs, state space volume preserving Hamiltonian flows, @sipative, volume ensional state spackl c RY. The stability matrix (velocity gradients matrix)

contracting infinite-dimensional PDEs.

A9 = T (43)
4.1 Flows transport neighborhoods o N '
% \

As a swarm of representative points moves along, it carfiesgaand distorts Q describes the instantaneous rate of shearing of the irdimiteé neighborhood of
neighborhoods. The deformation of an infinitesimal neighbod is best un- X(t) by the flow, figure 4.1.
derstood by considering a trajectory originating negr= x(0) with an initial
infinitesimal diSpricememx(O)' antd letting the flow transport the displacement Example 4.1 Réssler and Lorenz flows, linearized: (continued from example 3.6) For
Jx(t) along the trajectork(xo, t) = f'(xo). the Réssler (2.17) and Lorenz (2.12) flows the stability matrices are, respectively

0o -1 -1 - o 0

Aross=| 1 a 0 s AL =[p—Z -1 x]. (4.4)

4.1.1 Instantaneous shear oss [ 7 0 x-c ) or y  x -b
The system of lineaequations of variationfor the displacement of the infinites- (continued in example 4.6)

imally close neighborx + ¢x follows from the flow equations (2.6) by Taylor
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Figure 4.2: The Jacobian matrid' maps an infinitesi-
mal displacement ag, into a displacement rotated an
sheared by the linearized flow Jacobian matfifx)
finite timet later.

4.1.2 Linearized flow
Taylor expanding dinite timeflow to linear order,

aft
i (o) sx
(9)(0]

(0 + %) = (x0) + )| i+ (4.5)
i

one finds that the linearized neighborhood is transported by

ox(®) = J0)oxo,  I(x0) = 9% (t)

(9Xj (4-6)

X=Xo

This Jacobian matrix is sometimes referred to adtinelamental solution matrix

or simply fundamental matrixa name inherited from the theory of linear ODEs.
It is also sometimes called tti@échet derivativeof the nonlinear mapping‘(x).

It is often denoted f, but for our needs (we shall have to sort through a plethora
of related Jacobian matrices) matrix notatidms more economicalJ describes
the deformation of an infinitesimal neighborhood at finitedi in the co-moving
frame of x(t).

As this is a deformation in the linear approximation, one t#nk of it as
a deformation of an infinitesimal sphere envelopiginto an ellipsoid around
x(t), described by the eigenvectors and eigenvalues of thébizacmatrix of the
linearized flow, figure 4.2. Nearby trajectories separab@@ltheunstable direc-
tions, approach each other along tsble directionsand change their distance
along themarginal directionsat a rate slower than exponential, corresponding to
the eigenvalues of the Jacobian matrix with magnitude fatwgn, smaller than,
or equal 1. In the literature adjectivesutral or indifferentare often used instead
of ‘marginal,’ (attracting) stable directions are sometsrcalled ‘asymptotically
stable,” and so on.

One of the preferred directions is what one might expectdthection of the
flow itself. To see that, consider two initial points alongrajectory separated
by infinitesimal flight timest: 6xo = f%(xg) — Xo = V(Xo)ét. By the semigroup
property of the flow,ft*t = fot where

£ (x0) = j: t+;jr V(X(7)) = stv(x(t)) + F(xo).
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Figure 4.3: Any two points along a periodic orbit

p are mapped into themselves after one cycle period
T, hence a longitudinal displacement = v(xo)dt is
mapped into itself by the cycle Jacobian matfjx

oxa

Expanding both sides of'(f%(xp)) = o(f'(x)), keeping the leading term in
t, and using the definition of the Jacobian matrix (4.6), weeolss thatJ'(xo)
transports the velocity vector & to the velocity vector ax(t) at timet:

V(X(1) = J'(%0) V(o) - (4.7)

In nomenclature of page 71, the Jacobian matrix maps thialjnitagrangian
coordinate frame into the current, Eulerian coordinatenfra

The velocity at poin(t) in general does not point in the same direction as the
velocity at pointxg, so this is not an eigenvalue condition fdr the Jacobian ma-
trix computed for an arbitrary segment of an arbitrary tcéjey has no invariant
meaning.

As the eigenvalues of finite tim@ have invariant meaning only for periodic
orbits, we postpone their interpretation to chapter 5. H@uealready at this
stage we see that if the orbit is periodi{T,) = x(0), at any point along cycle
p the velocityv is an eigenvector of the Jacobian matdix = J'» with a unit
eigenvalue,

Jp()V(X) = V(X), XeMp. (4.8)

Two successive points along the cycle separate@xpyave the same separation
after a completed perioék(Tp) = dxo, see figure 4.3, hence eigenvalue 1.

As we started by assuming that we know the equations of mdiiom (4.3)
we also know stability matri, the instantaneous rate of shear of an infinitesimal
neighborhoodsx;(t) of the trajectoryx(t). What we do not know is the finite time
deformation (4.6).

Our next task is to relate the stability matrixto Jacobian matrix. On the

level of differential equations the relation follows by taking the tineeihtive of
(4.6) and replacingx by (4.2)

ox(t) = J3'6x0 = Adx(t) = Al 6xo.
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Hence thed? matrix elements of Jacobian matrix satisfy the linearizgdagion
(4.1)

dEtJ‘(x) = A(X) J'(x), initial condition J°(x) = 1. (4.9)

Given a numerical routine for integrating the equations otion, evaluation of
the Jacobian matrix requires minimal additional programgreffort; one simply
extends thed-dimensional integration routine and integrates conaulyewith
f{(x) thed? elements ofl'(x).

The qualifier ‘simply’ is perhaps too glib. Integration wiork for short finite
times, but for exponentially unstable flows one quickly rimte numerical over-
andor underflow problems, so further thought will have to go iimglementation
this calculation.

So now we know how to compute Jacobian maffigiven the stability matrix
A, at least when the? extra equations are not too expensive to compute. Mission
accomplished.

fast track:
@ chapter 7, p. 121

And yet... there are mopping up operations left to do. Weigensitil we de-
rive the integral formula (4.43) for the Jacobian matrix,aamalogue of the finite-
time “Green function” or “path integral” solutions of othkmear problems.

We are interested in smooth,fidirentiable flows. If a flow is smooth, in a
suficiently small neighborhood it is essentially linear. Herlee next section,
which might seem an embarrassment (what is a sectiolinear flows doing
in a book onnorlinear dynamics?), féers a firm stepping stone on the way to
understanding nonlinear flows. If you know your eigenvalead eigenvectors,
you may prefer to fast forward here.

fast track:
W sect. 4.3, p. 79
4.2 Linear flows

Diagonalizing the matrix: that's the key to the whole thing.
— Governor Arnold Schwarzenegger

Linear fields are the simplest vector fields, described bgdirdiferential equa-
tions which can be solved explicitly, with solutions thaé good for all times.
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The state space for linearftiirential equations i34 = RY, and the equations of
motion (2.6) are written in terms of a vecteand a constant stability matri as

X =V(X) = AX. (4.10)
Solving this equation means finding the state space trajecto
X(t) = (xa(®), %), .., Xa(t))

passing through the poing. If x(t) is a solution withx(0) = X andy(t) another
solution withy(0) = yo, then the linear combinatioax(t) + by(t) with a,b € R is

also a solution, but now starting at the paoing + byp. At any instant in time, the
space of solutions is@dimensional vector space, which means that one can find
a basis ofd linearly independent solutions.

How do we solve the linear fierential equation (4.10)? If instead of a matrix
equation we have a scalar ones Ax, the solution is

x(t) = €. (4.11)
In order to solve thel-dimensional matrix case, it is helpful to rederive the solu
tion (4.11) by studying what happens for a short time stepf at timet = O the

position isx(0), then

x(6t) — x(0)

5 =X0), (4.12)

which we iteratemtimes to obtain Euler’s formula for compounding interest
t m
X(t) ~ (1 + E/l) X(0). (4.13)

The term in parentheses acts on the initial conditi®) and evolves it to(t) by
takingmsmall time stepst = t/m. Asm — oo, the term in parentheses converges
to é*. Consider now the matrix version of equation (4.12):

M = AX0). (4.14)

A representative poink is now a vector inRY acted on by the matri®, as in
(4.10). Denoting byl the identity matrix, and repeating the steps (4.12) and3|4.1
we obtain Euler’s formula for the exponential of a matrix:

x(t) = I'%(0), J=e?= lim (1 + n%A)m ) (4.15)
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CHAPTER 4. LOCAL STABILITY 77

4.2.1 Eigenvalues, multipliers - a notational interlude

Throughout this text the symbaly will always denote thekth eigenvalue(in
literature sometimes referred to as thriltiplier or Floquet multiplie) of the
finite time Jacobian matrig'. SymbolA® will be reserved for théth Floquetor
characteristicexponent, ocharacteristic valugwith real pariu® and phase)®:

Ag = = ge+io®) (4.19)

J{(xo) depends on the initial poing and the elapsed tinte For notational brevity
we tend to omit this dependence, but in general

A = A= A0, 1), 1= AW (x0,1), w=w®(x0,1),- - etc.,

depend on both the trajectory traversed and the choice atlcwdes.

However, as we shall see in sect. 5.2, if the stability maArx the Jacobian
matrix J is computed on a flow-invariant s@lp, such as an equilibriumy or a
periodic orbitp of periodTp,

Ag=A). () =J3"(x), xeM,, (4.20)
(xis any point on the cycle) its eigenvalues
AP = 290) . Apk = Ak Tp)

are flow-invariant, independent of the choice of coordisated the initial point
in the cyclep, so we label them by theg or p label.

We number eigenvaluesy in order of decreasing magnitude
A1l = [Ag > ... > |Agl. (4.21)
SincelAj| = & this is the same as labeling by
u @ @ (4.22)

In dynamics the expanding directionge > 1, have to be taken care of first,
while the contracting directiong\¢| < 1 tend to take care of themselves, hence
the ordering by decreasing magnitude is the natural one.

fast track:
W sect. 4.3, p. 79
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4.2.2 Yes, but how do you really do it?

Economical description of neighborhoods of equilibria gediodic orbits is af-
forded by projection operators

M — a1
P = ]J] 0 (4.23)

where matrixM is typically either equilibrium stability matriAd, or periodic orbit
Jacobian matrixJ restricted to a Poincaré section, as in (4.56). While ugual
not phrased in language of projection operators, the réguisear algebra is
standard, and relegated here to appendix B.

Once the distinct non-zero eigenvalua&)} are computed, projection opera-

tors are polynomials il which need no further diagonalizations or orthogonal-
izations. For each distinct eigenvala® of M, the columgrows of P;

M -a01)P; = PjM - V1) = 0, (4.24)

are the righfieft eigenvectore®, ey of M which (providedM is not of Jordan
type) span the corresponding linearized subspace, and @avanient starting
seed for tracing out the global unstaistable manifolds.

MatricesP; areorthogonalandcomplete
r

PiPj = 6ijPj, (nosum onj), Z Pi=1. (4.25)
i=1

with the dimension of théth subspace given by = tr P; . Completeness relation
substituted intdM = M 1 yields

M = APy + AP, 1 ... 4 A0P, (4.26)

As any matrix functionf(M) takes the scalar valu&(4®) on theP; subspace,
fM)P; = f(AD)P; , it is easily evaluated through ispectral decomposition

f(M) = > 0P, (4.27)

As M has only real entries, it will in general have either realesigalues
(over-damped oscillator, for example), or complex confagzairs of eigenvalues
(under-damped oscillator, for example). That is not ssipg, but also the cor-
responding eigenvectors can be either real or complex. @drdinates used in
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CHAPTER 4. LOCAL STABILITY 79

defining the flow are real numbers, so what is the meaning exfraplexeigen-
vector?

If two eigenvalues form a complex conjugate paifd, A& D} = (u + jw, u —
iw}, they are in a sense degenerate: while a tékcharacterizes a motion along
aline, a complexa® characterizes a spiralling motion in a plane. We determine
this plane by replacing the corresponding complex eigeovedy their real and
imaginary parts{e®, ek} — (Ree, Im e}, or, in terms of projection opera-
tors:

1 . "
Py = E(RHQ), Pt = Py,

whereR = Py + Py,1 is the subspace decomposed by ktrecomplex eigenvalue
pair, andQ = (Px — Px+1)/i, both matrices with real elements. Substitution

(o) =201 S)(Q):

brings theA® P, + A&+Dp, ., complex eigenvalue pair in the spectral decomposi-
tion (4.26) into the real form,

oy L) ot YE). e

where we have dropped the superscfpfor notational brevity.

To summarize, spectrally decomposed mawix(4.26) acts along lines on
subspaces corresponding to real eigenvalues, and aarf@ation in a plane on
subspaces corresponding to complex eigenvalue pairs.

Now that we have some feeling for the qualitative behavioeigenvectors
and eigenvalues of linear flows, we are ready to return to timdimear case.

4.3 Stability of flows A
XX
How do you determine the eigenvalues of the finite time loedbanationJ! for

a general nonlinear smooth flow? The Jacobian matrix is coedoy integrating
the equations of variations (4.2)

X®) = f'(x0), 0X(x0,1) = J'(X0) 6X(X0,0). (4.29)

The equations are linear, so we should be able to integrate-thut in order to
make sense of the answer, we derive this integral step by step
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4.3.1 Stability of equilibria

For a start, consider the case wherés an equilibrium point (2.8). Expanding
around the equilibrium pointg, using the fact that the stability matr = A(xq)
in (4.2) is constant, and integrating,

1) = xq + M(X=—Xg) + -+, (4.30)

we verify that the simple formula (4.15) applies also to theabian matrix of an
equilibrium point,

Fg) =M, Ag=Axg). (4.31)
Example 4.5 In-out spirals. Consider an equilibrium whose Floquet exponents
(AW, 2@y = {y + iw, u — iw} form a complex conjugate pair. The corresponding com-

plex eigenvectors can be replaced by their real and imaginary parts, (e®, ey —
(Ree), Im M)}, The 2-dimensional real representation (4.28),

(5 )=ulo 2)+el? o)

consists of the identity and the generator of SO(2) rotations in the {Ree), Im &)} plane.
Trajectories x(t) = J'x(0), where (omitting €, &4, - . . eigen-directions)

J‘:g%lze‘ﬂ(cf)s“'t —smwt)y (4.32)
sinwt  coswt

spiral in/out around (x,y) = (0,0), see figure 4.4, with the rotation period T, and con-
traction/expansion radially by the multiplier Aragial, and by the multiplier A along the
el eigen-direction per a turn of the spiral: exercise B.1

T=2nw, Aradial = e s Aj= eT“(l) . (4.33)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(xy) = (0,0) is of order ~ T (and not, let us say, 1000T, or 102T). A j multipliers
give us estimates of strange-set thickness in eigen-directions transverse to the rotation
plane.

Example 4.6 Stability of equilibria of the R  dssler flow. (continued from ex-
ample 4.1)  The Résler system (2.17) has two equilibrium points (2.18), thedxmeise 4.4
equilibrium (x_,y-,z-), and the outer equilibrium point (x*,y",z"). Together wittexbeise 2.8
exponents (eigenvalues of the stability matrix) the two equilibria yield quite detailed
information about the flow. Figure 4.6 shows two trajectories which start in the neigh-
borhood of the outer '+’ equilibrium. Trajectories to the right of the equilibrium point +’
escape, and those to the left spiral toward the inner equilibrium point -, where they
seem to wander chaotically for all times. The stable manifold of outer equilibrium point
thus serves as the attraction basin boundary. Consider now the numerical values for
eigenvalues of the two equilibria
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CHAPTER 4. LOCAL STABILITY 83

Example 4.8 Lorenz flow: Global portrait. (continued from example 4.7) As the
EQ, unstable manifold spirals out, the strip that starts out in the section above EQ in
figure 3.7 cuts across the z-axis invariant subspace. This strip necessarily contains a
heteroclinic orbit that hits the z-axis head on, and in infinite time (but exponentially fast)
descends all the way to E Q.

How? As in the neighborhood of the EQy equilibrium the dynamics is linear
(see figure 4.7 (a)), there is no need to integrate numerically the final segment of the
heteroclinic connection - it is sufficient to bring a trajectory a small distance away from
EQu, continue analytically to a small distance beyond EQy, then resume the numerical
integration.

What happens next? Trajectories to the left of z-axis shoot off along the el
direction, and those to the right along —eV). As along the &V direction xy > 0, the
nonlinear term in the z equation (2.12) bends both branches of the EQ, unstable man-
ifold W!(EQp) upwards. Then ... - never mind. Best to postpone the completion of
this narrative to example 9.10, where the discrete symmetry of Lorenz flow will help us
streamline the analysis. As we shall show, what we already know about the 3 equilib-
ria and their stable/unstable manifolds suffices to completely pin down the topology of
Lorenz flow. (continued in example 9.10)

(E. Siminos and J. Halcrow)

4.3.2 Stability of trajectories

Next, consider the case of a general, non-stationary taje&(t). The exponen-
tial of a constant matrix can be defined either by its Tayloieseexpansion, or in
terms of the Euler limit (4.15):

o
A _ k
er = §HA (4.40)
k=0
. t \m
= lim (1+_A) . (4.41)
m—oo m

Taylor expanding is fine ifA is a constant matrix. However, only the second,
tax-accountant’s discrete step definition of an exponkigtiappropriate for the
task at hand, as for a dynamical system the local rate of heitjlood distortion
A(X) depends on where we are along the trajectory. The linehneégghborhood

is multiplicatively deformed along the flow, and thediscrete time step approx-
imation to J is therefore given by a generalization of the Euler proddc#):

1 1
t o — i it A(%n)
3= lim D (L+5tA() = lim n:]_lé5 (4.42)

= lim eo‘l A(xn)eo't AlXm-1) . .. eo‘l A(xz)eo't A(x1) ,
m-oo

whereédt = (t—to)/m, andx, = X(tp + ndt). Slightly perverse indexing of the
products indicates that the successive infinitesimal dedtion are applied by
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multiplying from the left. The two formulas fod' agree to leading order ift,
and them — oo limit of this procedure is the integral

Jitj(xo) _ [Tefo‘ drA(x(‘r))] i (4.43)

ij
whereT stands for time-ordered integratioefinedas the continuum limit of the
successive left multiplications (4.42).  This integralrfarda for J is the main exercise 4.5

conceptual result of this chapter.

It makes evident important properties of Jacobian matrisesh as that they
are multiplicative along the flow,

I () = ' (X)),  wherex = f{(x), (4.44)

an immediate consequence of time-ordered product steicu{4.42). However,
in practiceJ is evaluated by integrating (4.9) along with the ODEs thdindea
particular flow.

in depth:
Q sect. 17.3, p. 339

4.4 Neighborhood volume

Consider a small state space volu¥é = d9x centered around the poing at

timet = 0. The volumeAV’ around the poink’ = x(t) timet later is rma,k 173
AV’ ox
AV = —— AV = [det——|AV = ! :
N ‘det iy |det I()]| AV, (4.45)

so the|detJ| is the ratio of the initial and the final volumes. The deteramin

detJ'(xo) = [‘[?=1 Ai(Xo, 1) is the product of the Floquet multipliers. We shall refer

to this determinant as thiacobianof the flow. This Jacobian is easily evaluateéxercise 4.1
Take the time derivative, use tleevolution equation (4.9) and the matrix identity

IndetJ =trinJ:

d d d 1.
d—tInAV(t)_d—tlndetJ_trd—tan_ter_trA_a,v..

(Here, as elsewhere in this book, a repeated index impliesration.) Integrate
both sides to obtain the time evolution of an infinitesimelmoe

detJ(xp) = exp[f‘ drtr A(x(r)) | = exp fl draivi(x(r))} . (4.46)
o 0
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As the divergencé,v; is a scalar quantity, the integral in the exponent (4.43}isee
no time ordering So all we need to do is evaluate the time average

= gy [ o D Aee)

d
[ JAito.n
i=1

along the trajectory. If the flow is not singular (for examplee trajectory does
not run head-on into the Coulombrlsingularity), the stability matrix elements
are bounded everywher@j| < M, and so is the tracg; Aj. The time integral

in (4.46) grows at most linearly with henced;v; is bounded for all times, and
numerical estimates of tite— oo limit in (4.47) are not marred by any blowups.

d
= > A000,1) (4.47)

1
=1 In
i=1

Example 4.9 Lorenz flow state space contraction: (continued from exam-
ple 4.7) It follows from (4.4) and (4.47) that Lorenz flow is volume contracting,

3
avi= > A0 =-c-b-1, (4.48)
i=1
at a constant, coordinate- and p-independent rate, set by Lorenz to d;v; = —13.66. As
for periodic orbits and for long time averages there is no contraction/expansion along
the flow, A = 0, and the sum of A is constant by (4.48), there is only one independent
exponent A" to compute. (continued in example 4.8)

Even if we were to insist on extractingv; from (4.42) by first multiplying
Jacobian matrices along the flow, and then taking the Idgaritve can avoid ex-
ponential blowups it by using the multiplicative structure (4.44), d&tt(xg) =
detJ' (x) detJ'(xo) to restart withJ°(x’) = 1 whenever the eigenvalues #f{xo)
start getting out of hand. In numerical evaluations of Lyapuexponentsq; = section 17.3
iMoo @ (xo, t), the sum rule (4.47) can serve as a helpful check on the acyur
of the computation.

The divergencd;v; characterizes the behavior of a state space volume in the
infinitesimal neighborhood of the trajectory. dfv; < 0, the flow islocally con-
tracting, and the trajectory might be falling into an attractor. dj¥;(x) < 0, for
all x e M, the flow isglobally contracting, and the dimension of the attractor is
necessarily smaller than the dimension of state spelcelf d;v; = 0, the flow
preserves state space volume anddet 1. A flow with this property is called
incompressible  An important class of such flows are the Hamiltonian flows
considered in sect. 7.2.

But before we can get to that, Henri Roux, the perfect student always
alert, pipes up. He does not like our definition of the Jacolpiatrix in terms of
the time-ordered exponential (4.43). Depending on thessigmultipliers, the
left hand side of (4.46) can be either positive or negativet tBe right hand side
is an exponential of a real number, and that can only be pesihat gives? As
we shall see much later on in this text, in discussion of togichl indices arising
in semiclassical quantization, this is not at all a dumb tjoes

stability - 25mar2009 ChaosBook.org version13, Dec 31 2009

CHAPTER 4. LOCAL STABILITY 86

Figure 4.8: A unimodal map, together with fixed
points 0, 1, 2-cycle 01 and 3-cycle 011.

4.5 Stability of maps

The transformation of an infinitesimal neighborhood of girtory under the iter-
ation of a map follows from Taylor expanding the iterated piag at finite time
n to linear order, as in (4.5). The linearized neighborhoottassported by the
Jacobian matrix evaluated at a discrete set of timesL, 2,.. .,

dtN(x)
0Xj

M (x0) =

ij (4.49)

X=Xo

In case of a periodic orbitf"(x) = x, we shall refer to this Jacobian matrix as
the monodromymatrix. Derivative notatiorM'(xg) — Df!(xo) is frequently em-
ployed in the literature. As in the continuous case, we dehgi\y the kth eigen-
valueor multiplier of the finite time Jacobian matrd"(x), and byu® the real
part ofkth eigen-exponent

Ay =@l A= e

For complex eigenvalue pairs the phaselescribes the rotation velocity in the
plane defined by the corresponding pair of eigenvectord) e period of rota-
tion given by

T=21/w. (4.50)

Example 4.10 Stability of a 1-dimensional map: Consider the orbit{. . ., X_1, Xo, X1, X2, . . .}
of a 1-dimensional map xn.1 = f(Xn). Since point X, is carried into point Xn.1, in study-

ing linear stability (and higher derivatives) of the map it is often convenient to deploy

a local coordinate systems z, centered on the orbit points Xa, together with a notation

for the map, its derivative, and, by the chain rule, the derivative of the kth iterate fX
evaluated at the point X,,

X = XatZa, fa(za)="f(xa+2)
fa f'(%a)
Ao, K) = ¥ =1 fafl,  k=2. (4.51)
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Here a is the label of point x,, and the label a+ 1 is a shorthand for the next point b on
the orbit of Xa, Xo = Xar1 = f(Xa). For example, a period-3 periodic point in figure 4.8
might have label a = 011, and by X110 = f(Xo11) the next point label is b = 110,

The 1-step product formula for the stability of théh iterate of ad-dimens-
ional map

M) = M(na) - MOQM(K).
MOu = %fk(x), X = 17(50) (4.52)

follows from the chain rule for matrix derivatives
9 ) P
—f(f(¥) = ) —fj ‘ —fk(X).
3 1100 k§:1 oy 1O

If you prefer to think of a discrete time dynamics as a seqe@fdoincaré sec-
tion returns, then (4.52) follows from (4.44): Jacobian mcas are multiplicative

along the flow. exercise 17.1

Example 4.11 Hénon map Jacobian matrix: For the Hénon map (3.19) the Jaco-
bian matrix for the nth iterate of the map is

1
woo=[[( 75 5. x= e, (453)

m=n

The determinant of the Hénon one time step Jacobian matrix (4.53) is constant,
detM = AjA, = —b (4.54)

so in this case only one eigenvalue A1 = —b/A, needs to be determined. This is not
an accident; a constant Jacobian was one of desiderata that led Hénon to construct a
map of this particular form.

fast track:
@ chapter 7, p. 121
4.5.1 Stability of Poincaé return maps

(R. PaSkauskas and P. Cvitanovit)

We now relate the linear stability of the Poincaré returrprRa £ — P defined
in sect. 3.1 to the stability of the continuous time flow in thi state space.
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=

U(x)=0

Figure 4.9: If x(t) intersects the Poincaré section
P at timer, the nearbyx(t) + 6x(t) trajectory inter-
sects it timer + 6t later. As (U’ - Vét) = —(U’ -

RESS
J6x), the diference in arrival times is given hjt = X
—(U"-J6x)/(U" - V). X(t)+3x(t)

The hypersurface can be specified implicitly through a functids(x) that
is zero whenever a pointis on the Poincaré section. A nearby paint 6x is in
the hypersurfac® if U(x + 6x) = 0, and the same is true for variations around
the first return poin’ = x(r), so expandindJ(X') to linear order in variatiodx
restricted to the Poincaré section leads to the condition

d+1 aU(X,) d_){
ax  dx

=0. (4.55)
1)

i=1

In what followsU; = 9;U is the gradient ot defined in (3.3), unprimed quantities
refer to the starting poink = xp € P, v = V(Xp), and the primed quantities to the
first return: X' = x(7), V. = v(X'), U’ = U(X). For brevity we shall also denote
the full state space Jacobian matrix at the first returd byJ"(Xp). Both the first
return X' and the time of flight to the next Poincaré sectidm) depend on the
starting pointx, so the Jacobian matrix

N d
J(X)ij = d_fJL (4.56)

with both initial and the final variation constrained to theiritaré section hyper-
surfacep is related to the continuous flow Jacobian matrix by

_ c')Xi' d){ dr dr

LT T arag s N tVEy

dx
o

The return time variatiomlr/dx, figure 4.9, is eliminated by substituting this ex-
pression into the constraint (4.55),

OzaiU/Jij +(\/-6U’)%,
]

yielding the projection of the full space 1)-dimensional Jacobian matrix to the
Poincaré mapl-dimensional Jacobian matrix:

(4.57)
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Substituting (4.7) we verify that the initial velocityx) is a zero-eigenvector of
Jv=0, (4.58)

so the Poincaré section eliminates variations paralle] émdJ is a rankd matrix,
i.e., one less than the dimension of the continuous time flow.

Résum é

A neighborhood of a trajectory deforms as it is transportgdakflow. In the
linear approximation, the stability matri describes the shearift@mpressiofi
expansion of an infinitesimal neighborhood in an infinitesdirime step. The
deformation after a finite timeis described by the Jacobian matrix

M) =T el OrAG)

whereT stands for the time-ordered integration, defined multgiliely along
the trajectory. For discrete time maps this is multiplioatby time step Jacobian
matrix M along then pointsxg, Xi, X2, . . ., Xn—1 On the trajectory ok,

M"(x0) = M(X-1)M(X-2) - - - M(x))M (X0) ,

with M(X) the single discrete time step Jacobian matrix. In ChaokBqalenotes
the kth eigenvalueof the finite time Jacobian matri¥(xo), andu® the real part
of kth eigen-exponent

Al = €™, A, = o)

For complex eigenvalue pairs the ‘angular velocitytlescribes rotational motion
in the plane spanned by the real and imaginary parts of threggonding pair of
eigenvectors.

The eigenvalues and eigen-directions of the Jacobianxagscribe the de-
formation of an initial infinitesimal cloud of neighboringafectories into a dis-

torted cloud a finite time later. Nearby trajectories separate exponentially along

unstable eigen-directions, approach each other alongesiabctions, and change
slowly (algebraically) their distance along marginal difens. The Jacobian ma-
trix J'is in general neither symmetric, nor diagonalizable by atioh, nor do its
(left or right) eigenvectors define an orthonormal coortirigame. Furthermore,
although the Jacobian matrices are multiplicative aloregftbw, in dimensions
higher than one their eigenvalues in general are not. Thisddmultiplicativity
has important repercussions for both classical and quadguramics.
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Commentary

Remark 4.1 Linear flows. The subject of linear algebra generates innumerable tomes
of its own; in sect. 4.2 we only sketch, and in appendix B réagte a few facts that our
narrative relies on: a useful reference book is [4.1]. The&dfacts are presented at length
in many textbooks. The standard references that exhalysémemerate and explain all
possible cases are Hirsch and Smale [4.2] and Arnol'd [A3juick overview is given by
I1zhikevich [4.4]; for diferent notions of orbit stability see Holmes and Shea-BroWb][
For ChaosBook purposes, we enjoyed the discussion in ahapteiss [4.6], chapter 1
of Perko [4.7] and chapters 3 and 5 of Glendinning [4.8] thesmo

The construction of projection operators given here is iakem refs. [4.9, 4.10].
Who wrote this down first we do not know, lineage certainly gadl the way back to
Lagrange polynomials [4.11], but projection operatorsitemget drowned in sea of al-
gebraic details. Halmos [4.12] is a good early referencet-wailike Harter’s exposi-
tion [4.13, 4.14, 4.15] best, for its multitude of specificaexples and physical illustra-
tions.

The nomenclature tends to be a bit confusing. In referringefocity gradients ma-
trix) A defined in (4.3) as the “stability matrix” we follow Tabor 4]. Sometimes,
which describes the instantaneous shear of the trajectny x(xo, t) is referred to as the
‘Jacobian matrix,’ a particularly unfortunate usage whee considers linearized stabil-
ity of an equilibrium point (4.31). What Jacobi had in mindhis 1841 fundamental pa-
per [4.17] on the determinants today known as ‘jacobiansevtiansformations between
different coordinate frames. These are dimensionless qesntithile dimensionally;
is 1/[time]. More unfortunate still is referring t = & as an ‘evolution operator, which
here (see sect. 17.2) refers to something altogettiardnt. In this book Jacobian ma-
trix J' always refers to (4.6), the linearized deformation aftenéditimet, either for a
continuous time flow, or a discrete time mapping.

Remark 4.2 Matrix decompositions of Jacobian matrix. Though singular values de-
composition provides geometrical insights into how tarigigmamics acts, many popular
algorithms for asymptotic stability analysis (recoverlnyg@punov spectrum) employ an-
other standard matrix decomposition: the QR scheme [hdugh which a nonsingular
matrix Ais (uniquely) written as a product of an orthogonal and arempangular matrix

A = QR This can be thought as a Gram-Schmidt decomposition ofdhexm vectors
of A (which are linearly independent @sis nonsingular). The geometric meaning of
QRdecomposition is that the volume of tHedimensional parallelepiped spanned by the
column vectors ofA has a volume coinciding with the product of the diagonal elets
of the triangular matrix®, whose role is thus pivotal in algorithms computing Lyapuno
spectra [4.20, 4.21, 4.22].

Remark 4.3 Routh-Hurwitz criterion for stability of a fixed point. For a criterion that
matrix has roots with negative real parts, see Routh-Huarariterion [4.18, 4.19] on the
cosdficients of the characteristic polynomial. The criterionypdes a necessary condition
that a fixed point is stable, and determines the numbers blatastable eigenvalues of
a fixed point.
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Exercises

4.1. Trace-log of a matrix. Prove that

detM = glf M

for an arbitrary nonsingular finite dimensional mathil
detM # 0.

4.2. Stability, diagonal case. Verify the relation (4.17)
F=et=UtdU, Ap=UAUT.

4.3. State space volume contraction.

(a) Compute the Rdssler flow volume contraction rate

at the equilibria.

(b) Study numerically the instantaneodis; along a
typical trajectory on the Rossler attractor; color-
code the points on the trajectory by the sign (and
perhaps the magnitude) 8. If you see regions

of local expansion, explain them.

(c) (optional) color-code the points on the trajectory

by the sign (and perhaps the magnitudeyiof —
l')iVi.

(d) Compute numerically the average contraction rate
(4.47) along a typical trajectory on the Rossler at-

tractor. Plot it as a function of time.

(e) Argue on basis of your results that this attractor is

of dimension smaller than the state spdce 3.

(f) (optional) Start some trajectories on the escape
side of the outer equilibrium, color-code the points
on the trajectory. Is the flow volume contracting?

(continued in exercise 20.12)

4.4. Topology of the Rossler flow. (continuation of exer-

cise 3.1)

(a) Show that equatiojdet (A — A1)| = O for Rossler
flow in the notation of exercise 2.8 can be written

as

(b) Solve (4.59) for eigenvalues™ for each equilib-
rium as an expansion in powerseofDerive

A7 = —C+ec/(c? + 1)+ 0(e)

A5 = ec/[2(* +1)] + o(e?)

6, = 1+ €/[2(c? + 1)] + 0(e)
Pocl-gro) | @460

A = —€°c%/2 + 0(e)

03 = VI+1/e(1+0(e))

Compare with exact eigenvalues. What are dy-
namical implications of the extravagant value of
4;? (continued as exercise 13.10)

(R. Paskauskas)

Time-ordered exponentials. Given a time dependent
matrix V() check that the time-ordered exponential

U() = Teh VO

may be written as

mn:i fo it fo b fo " V() Vit
m=0

and verify, by using this representation, tid(t) satis-
fies the equation

U = VOU,
with the initial conditionZ/(0) = 1.

A contracting baker's map.  Consider a contracting
(or ‘dissipative’) baker's map, acting on a unit square
[0,1]% = [0, 1] x [0, 1], defined by

()] e

Xowt | _ [ %o/3+1/2
(ynfl)‘( -1 ) Vo> 172

This map shrinks strips by a factor of3Lin the x-
direction, and then stretches (and folds) them by a factor
of 2 in they-direction.

By how much does the state space volume contract for

22+.2%0 (P —€)+A(p*/e+1-CPep”)Fc VD = 0(4.59)one iteration of the map?
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