Chapter 12

Stretch, fold, prune

1.1. Introduction to conjugacy problems for diffeomor-
phisms. This is a survey article on the area of global anal-
ysis defined by dferentiable dynamical systems or equiv-
alently the action (dferentiable) of a Lie grouf® on a
manifold M. Here Dif(M) is the group of all dfeomor-
phisms ofM and a difeomorphism is a diierentiable map
with a differentiable inverse. (.) Our problem is to study
the global structure, i.e., all of the orbits bf.

—Stephen Smal®ifferentiable Dynamical Systems

turn maps that we found were disquieting — figure 3.6 did npeap to

be a one-to-one map. This apparent loss of invertibilitynisgifact of
projection of higher-dimensional return maps onto thewdodimensional sub-
spaces. As the choice of a lower-dimensional subspace itsaaybthe resulting
snapshots of return maps look rather arbitrary, too. Susleations beg a ques-
tion: Does there exist a natural, intrinsic coordinate eystn which we should
plot a return map?

WE HAVE LEARNED that the Rossler attractor is very thin, but otherwise the r

We shall argue in sect. 12.1 that the answer is yes: The $itrcoordinates
are given by the stablenstable manifolds, and a return map should be plotted as
a map from the unstable manifold back onto the immediatehheigood of the
unstable manifold. In chapter 5 we established that Floouetipliers of periodic
orbits are (local) dynamical invariants. Here we shall stioat every equilibrium
point and every periodic orbit carries with it stable andtabke manifolds which
provide topologically invarianglobal foliation of the state space. They will en-
able us to partition the state space in a dynamically inmanegay, and assign
symbolic dynamics itineraries to trajectories.

The topology of stretching and folding fixes the relativetgp@rdering of tra-
jectories, and separates the admissible and inadmissiéearies. We illustrate
how this works on Hénon map example 12.3. Determining wisigimbol se-
guences are absent, or ‘pruned’ is a formidable problem wieaed in the state
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space, 1, X2, ..., Xg] coordinates. It is equivalent to the problem of deternmgnin
the location of all homoclinic tangencies, or all turningrgs of the Hénon attrac-
tor. They are dense on the attractor, and show no self-gistilacture in the state
space coordinates. However, in the ‘danish pastry’ reptesen of sect. 12.3
(and the ‘pruned danish,” in American vernacular, of se2t4}), the pruning prob-
lem is visualized as crisply as the New York subway map; aimgtiary which
strays into the ‘pruned region’ is banned.

The level is distinctly cyclist, in distinction to the petiésn tempo of the
preceding chapter. Skip most of this chapter unless youyreakd to get into
nitty-gritty details of symbolic dynamics.

fast track:
W chapter 13, p. 249
12.1 Going global: stablgunstable manifolds

The complexity of this figure will be striking, and | shall
not even try to draw it.

— H. Poincaré, on his discovery of homoclinic tan-
gles,Les méthodes nouvelles de la méchanique céleste

The Jacobian matrid' transports an infinitesimal neighborhood, its eigenvalues
and eigen-directions describing deformation of an initiinitesimal sphere of

neighboring trajectories into an ellipsoid tirmkater, as in figure 4.2.
Nearby trajectories separate exponentially along theabhestdirections, approach
each other along the stable directions, and creep along angimal directions.

The fixed pointq Jacobian matrixJ(x) eigenvectors (5.12) form a rectilinear
coordinate frame in which the flow into, out of, or encirclitfie fixed point is

linear in the sense of sect. 4

The continuations of the span of the local stable, unstagénedirections into
global curvilinear invariant manifolds are called thiable respectivelyunstable
manifolds They consist of all points which march into the fixed pointward,
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respectively backward in time

WS = {xeM: f‘(x)—xq—>0ast—>oo}
wu {[xe M: £7(x) - xg > Oast — oo} . (12.1)

Eigenvectore®) of the monodromy matrixJ(x) play a special role - on them the
action of the dynamics is the linear multiplication hy (for a real eigenvector)
along 1- dimensionainvariant curveWLi‘iS or spiral ifout action in a 2B surface
(for a complex pair). Fot — +oco a finite segment oM/(SC), respectivelyW,
converges to the linearized map eigenvea®, respectivelye®, where©, 8
stand respectively for ‘contracting,’” ‘expanding.” Inshsense each eigenvector
defines a (curvilinear) axis of the stable, respectivelytalrle manifold.

Actual construction of these manifolds is the converse eif tefinition (12.1):
one starts with an arbitrarily small segment of a fixed poigeevector and lets
evolution stretch it into a finite segment of the associatedifold. As a periodic
pointx on cyclepis a fixed point off Tp(x), the fixed point discussion that follows
applies equally well to equilibria and periodic orbits.

Expanding real and positive Floquet multiplier. Consideiith expanding eigen-
value, eigenvector pairA(, e)) computed fromJ = Jp(X) evaluated at a fixed
point x,

IV = AeV(x), xeMp, Ai>1. (12.2)

Take an infinitesimal eigenvectef)(x), le)(x)|| = ¢ < 1, and its returm; el (x)
after one periodrp. Sprinkle the straight interval betwees Aig] W(‘ﬁ) with a
large number of points®, for example equidistantly spaced on logarithmic scale
between I and InA; + Ine. The successive returns of these poiits(x4),
£2To(x®), - .., fMTo(x¥) trace out the d curveW) within the unstable manifold.
As separations between points tend to grow exponentiallgryeso often one
needs to interpolate new starting points between the rdrdiges. Repeat for

—e(x).

Contracting real and positive Floquet multiplier. Reverse the action of the
map backwards in time. This turns a contracting directidn an expanding one,
tracing out the curvilinear stable manifol}) as a continuation of),

Expanding/contracting real negative Floquet multiplier. As above, but every
even iteratef2To(x®), £4Te(x), £6To(x¥) continues in the directioe®, every
odd one in the directiore®.

Complex Floquet multiplier pair, expanding/contracting. The complex Flo-
quet multiplier pair(Aj, Aj;1 = A} has Floguet exponents (5.9) of forafl) =
1 +iw), with the sign ofu®) # 0 determining whether the linear neighborhood
is out/ in spiralling. The orthogonal pair of real eigenvect¢reel)), Im eli)}
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Figure 12.1: A 2d unstable manifold obtained by
continuation from the linearized neighborhood of :
complex eigenvalue pair of an unstable equilibriur
of plane Couette flow, a projection from a 61,506
dimensional state space ODE truncation of the (
dimensional) Navier-Stokes PDE. (J.F. Gibson,
Nov. 2005 blog entry [12.62])

spans a plane, as in (4.28). = 2r/w() is the time of one turn of the spiral,
JTReel)(x) = |AjIRee)(x). As in the real cases above, sprinkle the straight in-
terval betweend, |A j|e] along Regt)(x) with a large number of points®. The
flow will now trace out the @ invariant manifold as an oytin spiralling strip.
Two low-dimensional examples are the unstable manifoldthefLorenz flow,
figure 11.8 (a), and the Rossler flow, figure 11.10 (a). Forghlii non-trivial
example, see figure 12.1.

The unstable manifolds of a flow adg-dimensional. Taken together with the
marginally stable direction along the flow, they are rathardhto visualize. A
more insightful visualization isféered by @l— 1)-dimensional Poincaré sections
(3.2) with the marginal flow direction eliminated (see alsots 3.1.1). Stable,
unstable manifolds for maps are defined by

We {xeP:P”(x)—xq—>0asn—>oo]
WY = {xe®:P(x) - xg— 0asn — oo , (12.3)

whereP(X) is the @-1)-dimensional return map (3.1). In what follows, all invar
ant manifoldsW", WS will be restricted to their Poincaré sectiong', Ws.

Example 12.1 A section at a fixed point with a complex Floquet multiplier pa ir:
(continued from example 3.1) The simplest choice of a Poincaré section for a fixed (or
periodic) point Xq with a complex Floquet multiplier pair is the plane P specified by the
fixed point (located at the tip of the vector xy) and the eigenvector Im e perpendicular
to the plane. A point X is in the section P if it satisfies the condition

(Xx—xg) - Ime® = 0. (12.4)

In the neighborhood of xq the spiral out/in motion is in the {Ree®, Ime®} plane, and
thus guaranteed to be cut by the Poincaré section ¥ normal to €¥.

In general the full state space eigenvectors do not lie iniladacé section; the
eigenvector€(l) tangent to the section are given by (5.20). Furthermorelenhi
the linear neighborhood of fixed poirtthe trajectories return with approximate
periodicity Ty, this is not the case for the globally continued manifolel), or
the first return times (3.1) ffer, and thaf\/a.) restricted to the Poincaré section is
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obtained by continuing trajectories of the points from thé $tate space curve
W(“J.) to the sectiorf.

For long times the unstable manifolds wander throughoutctirmected er-
godic component, and are no more informative than an ergiadjectory. For
example, the line with equitemporal knots in figure 12.1tstaut on a smoothly
curved neighborhood of the equilibrium, but after a ‘tudntl episode decays
into an attractive equilibrium point. The trick is to stopntimuing an invariant
manifold while the going is still good.

fast track:
W sect. 12.2, p. 230
Learning where to stop is a bit of a technical exercise, thdee might prefer
to skip next section on the first reading.

12.1.1 Parametrization of invariant manifolds

§
J As the flow is nonlinear, there is no ‘natural’ linear basisdpresent it.
Wistful hopes like ‘POD modes,” ‘Karhunen-Loéve,” and ettinear changes of
bases do not cut it. The invariant manifolds are curved, hei toordinatizations
are of necessity curvilinear, just as the maps of our globelart infinitely foliated
and thus much harder to chart.

Let usillustrate this by parameterizing d dlice of an unstable manifold by its
arclength. Sprinkle evenly pointsd?, x@), ... x(N-D} petween the equilibrium
point xg = X% and pointx = x), along the # unstable manifold continuation
x® e W, of the unstablel) eigendirection (we shall omit the eigendirection

label j, in what follows). Then the arclength from equilibrium poiat = x© to
x = xN) is given by

N
= im > o P, b0 =B . w29)
k=1

For the lack of a better idea (perhaps the dynamically détesdg = J7J would
be a more natural metric?) let us measure arclength in thidi&rc metric,g;j =
dij, SO

N 12
s= Nlian[z (d%k))z] . (12.6)

k=1

By definition f™¥(x) e \iv(uj), so fi(x) induces a @ maps(so, 7) = S(f7%)(xp)).
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Turning pointsare points on the unstable manifold for which the local un-
stable manifold curvature diverges for forward iterateshef map, i.e., points at
which the manifold folds back onto itself arbitrarily shirpFor our purposes,
approximate turning points fiice. The d curveVAVE’j) starts out linear axq, then
gently curves until —under the influence of other unstabldiligia andor peri-
odic orbits— it folds back sharply at ‘turning points’ anéthnearly retraces itself.
This is likely to happen if there is only one unstable direcfias we saw in the
Rossler attractor example 11.3, but if there are several;ttirning point’ might
get stretched out in the non-leading expanding directions.

The trick is to figure out a goolase segmertb the nearest turning point
L = [0, s], and after the foldback assign &fx,t) > s, the nearest poing on
the base segment. If the stable manifold contraction isgtrthe 2nd coordinate
connectings(x, t) — scan be neglected. We saw in example 11.3 how this works.
You might, by nature and temperament, take the dark viewssikRd has helpful
properties, namely insanely strong contraction along arledsional stable direc-
tion, that are not present in real problems, such as turbeléma plane Couette
flow, and thus the lessons of chapter 11 of no use when it come=at plumb-
ing. For this reason, both of the training examples to coime hilliards and the
Hénon map are of Hamiltonian, phase space preserving &yykthus as far from
being insanely contracting as possible. Yet, to a thougintfader, they unfold
themselves as pages of a book.

Assign to eachd-dimensional poink € Lq a coordinates = s(X) whose value
is the Euclidean arclength (12.5) xg measured along the 1-dimensiom) sec-
tion of the x4 unstable manifold. Next, for a nearby poirf & L determine
the pointxy € Lq which minimizes the Euclidean distance %)%, and as-
sign arc length coordinate vallg = s(%;) to %. In this way, an approximate
1-dimensional intrinsic coordinate system is built alohg unstable manifold.
This parametrization is useful if the non—-wandering setifidently thin that its
perpendicular extent can be neglected, with every poinhembn—wandering set
assigned the nearest point on the base segment

Armed with this intrinsic curvilinear coordinate parameation, we are now
in a position to construct a 1-dimensional model of the dyicanon the non—
wandering set. 1% is thenth Poincaré section of a trajectory in neighborhood of
Xg, ands, is the corresponding curvilinear coordinate, thesm = f™(s,) models
the full state space dynamiocg = %n.1. We approximatef(s,) by a smooth,
continuous 1-dimensional map: Lq — Lq by taking%, € Lq, and assigning to
fnt1 the nearest base segment pant = S(Xn+1)-

12.2 Horseshoes

If you find yourself mystified by Smale’s article abstract tetbon page 230,
about ‘the action (dferentiable) of a Lie grougs on a manifoldM,’ time has
come to bring Smale to everyman. If you still remain mystifiedthe end of
this chapter, reading chapter 16 might help; for example Ltlouville operators
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Figure 12.4: The Hénon map (12.8) far= 6,b = e
~1: fixed point0 with segments of its stable, unsta-

ble manifoldsws, W, and fixed pointl. (a) Their
intersection bounds the regiovl. = OBCDwhich
contains the non-wandering €@t (b) The inter- 0.0
section of the forward imagé(M ) with M. con-

sists of two (future) strips\,, My, with points

BCD brought closer to fixed poin by the sta-

ble manifold contraction. (c) The intersection of(a)—w A
the forward imagef (M) with the backward back-

ward f~*(M)) is a four-region cover of. (d) The
intersection of the twice-folded forward horseshoe
f2(M) with backward horseshoé=*(M). (e)

The intersection of 2(M) with f-2(M) is a 16- 1.0

region cover ofQ. lIteration yields the complete /

Smale horseshoe non-wandering €eti.e., the / /
union of all non-wandering points df, with ev- / /

ery forward fold intersecting every backward fold. Z:f -
(P. Cvitanovi¢ and Y. Matsuoka) (c)© —

Iterated one step backwards, the region M_ is again stretched and folded into
a horseshoe, figure 12.4(c). As stability and instability are interchanged under time
reversal, this horseshoe is transverse to the forward one. Again the points in the horse-
shoe bend wander off to infinity as n — —co, and we are left with the two (past) strips
Mo, M . Iterating two steps forward we obtain the four strips Mu1, Mo1, Moo, Mia,
and iterating backwards we obtain the four strips M oo, M 01, M 11, M 10 transverse to
the forward ones just as for 3-disk pinball game figure 12.2. Iterating three steps for-
ward we get an 8 strips, and so on ad infinitum. (continued in example 12.4)

What is the significance of the subscript suchpagswhich labels theM p11
future strip? The two strips\V o, M 1 partition the state space into two regions
labeled by the two-letter alphabét = {0,1}. S* = .011 is thefuture itinerary
for all x € Mo11. Likewise, for the past strips all € Mg ..s ;5. have thepast
itinerary S = s ---s.1% . Which partition we use to present pictorially the
regions that do not escape i iterations is a matter of taste, as the backward
strips are the preimages of the forward ones

Mo, = (M), My = f(My).

Q, the non—-wandering set (2.2) of(, is the union of all points whose forward
and backward trajectories remain trapped for all time, wilsg the intersections
of all images and preimages 8l

Q- {x ixe im_ M) f-"(M,)} . (12.10)

Two important properties of the Smale horseshoe are thastatomplete
binary symbolic dynamicand that it isstructurally stable

For acompleteSmale horseshoe every forward fdit M) intersects transver-
sally every backward fold ~™(M), so a unique bi-infinite binary sequence can be
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Figure 12.5: Kneading orientation preserving danish

pastry: mimic the horsheshoe dynamics of figure 12.6 m

by: (1) squash the unit square by factg,1(2) stretch
it by factor 2, and (3) fold the right half back over the A B

left half.

associated to every element of the non—wandering set. A poinQ is labeled
by the intersection of its past and future itinerarf¥x) = --- s 25.1%.91% -+,
where sy=s if f"(x)e Ms ,se{0,1}andneZ. remark A.1

The system is said to kstructurally stableif all intersections of forward and
backward iterates o remain transverse for fliciently small perturbation$ —
f + ¢ of the flow, for example, for slight displacements of the digkthe pinball
problem, or sticiently small variations of the Hénon map parametets While section 1.8
structural stability is exceedingly desirable, it is alseeedingly rare. About this,
more later. section 25.2

12.3 Symbol plane

Consider a system for which you have succeeded in constguattovering sym-

bolic dynamics, such as a well-separated 3-disk system. $tart moving the

disks toward each other. At some critical separation a digkstart blocking

families of trajectories traversing the other two disks. eTrder in which trajec-

tories disappear is determined by their relative orderinggace; the ones closest

to the intervening disk will be pruned first. Determining dmaissible itineraries

requires that we relate the spatial ordering of trajectoti their time ordered
itineraries. exercise 12.7

So far we have rules that, given a state space partition rgenatemporally
ordered itinerary for a given trajectory. Our next task is ttonverse: given a
set of itineraries, what is thspatial ordering of corresponding points along the
trajectories? In answering this question we will be aide®hyale’s visualization
of the relation between the topology of a flow and its symbdyicamics by means
of ‘horseshoes,’ such as figure 12.4.

12.3.1 Kneading danish pastry

The danish pastry transformation, the simplest bakenssfaamation appropriate
to Hénon type mappings, yields a binary coordinatizatiballgpossible periodic
points.
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Figure 12.6: The dynamics maps two (past) strips
strips Mo, M into two (future) stripsMo, M;.

The corners are labeled to aid visualization. Note o
that theBCGH strip is rotated by 180 degrees. (P.
Cvitanovic and Y. Matsuoka) (e)

The symbolic dynamics of once-folding map is given by theistapastry
transformation. This generates both the longitudinal aadsiverse alternating
binary tree. The longitudinal coordinate is given by thechefa symbolic se-
guence; the transverse coordinate is given by the tail ofymebolic sequence.
The dynamics on this space is given by symbol shift permarati volume pre-
serving, with 2 expansion ang2lcontraction.

For a better visualization of 2-dimensional non—-wandesats, fatten the in-
tersection regions until they completely cover a unit squas in figure 12.7. We
shall refer to such a ‘map’ of the topology of a given ‘stretold’ dynami-
cal system as theymbol square The symbol square is a topologically accurate
representation of the non—wandering set and serves azastap for labeling its
pieces. Finite memory ofisteps and finite foresight ofsteps partitions the sym-
bol square inteectangleds-m1--- S.-%1S2 - - - S, such as those of figure 12.6. In
the binary dynamics symbol square the size of such rectam@é" x 27"; it cor-
responds to a region of the dynamical state space whichiosrad points that
share common future andm past symbols. This region maps in a nontrivial way
in the state space, but in the symbol square its dynamiczeeelingly simple; all

of its points are mapped by the decimal point shift (11.20) exercise 12.2
exercise 12.3

(82819919 7) = S 25195193, (12.11)

Example 12.4 A Hénon repeller subshift: (continued from example 12.3) The
Hénon map acts on the binary partition as a shift map. Figure 12.6 illustrates ac-
tion f(Myp) = Mo. The square [01.01] gets mapped into the rectangles o[01.01] =
[10.1] = {[10.10],[10.11]}, see figure 12.4 (e). Further examples can be gleaned from
figure 12.4.

As the horseshoe mapping is a simple repetitive operatierexpect a simple
relation between the symbolic dynamics labeling of the éstise strips, and their
relative placement. The symbol square poiytS*) with future itineraryS* are
constructed by converting the sequences{s into a binary number by the algo-
rithm (11.9). This follows by inspection from figure 12.9. drder to understand
this relation between the topology of horseshoes and thgibslic dynamics, it
might be helpful to backtrace to sect. 11.4 and work throuyt wnderstand first
the symbolic dynamics of 1-dimensional unimodal mappings.
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Figure 12.7: Kneading danish pastry: symbol
square representation of an orientation preserving
once-folding map obtained by fattening the Smale
horseshoe intersections of (a) figure 12.6 (b) fig- (),
ure 12.4 into a unit square. Also indicated: the
fixed points0, 1 and the 2-cycle point®1,10}. In
the symbol square the dynamics maps rectangles
into rectangles by a decimal point shift. (a)

Figure 12.8: Kneading orientation preserving
danish pastry: symbol square representation of ap
orientation preserving once-folding map obtained
by fattening the intersections of two forward iter-
ates/ two backward iterates of Smale horseshoe

into a unit square. l 4 .00 .01 .11 .1C

Under backward iteration the roles of 0 and 1 symbols arerzdhtmged;/\/(g1
has the same orientation A4, while Mil has the opposite orientation. We assiggercise 12.4
to anorientation preservingonce-folding map theast topological coordinate
¢ = 6(S7) by the algorithm:

_ Wy ifs,=0 _
W1 = {1—wn ifsy=1° Wo = o
5(S) = OWW_iW_p...= Zwl_n/zn‘ (12.12)
n=1

Such formulas are best derived by solitary contemplaticch@gction of a folding
map, in the same way we derived the future topological coatei (11.9).

The coordinate pair§(y) associates a poin(y) in the state space Cantor
set of figure 12.4 to a point in the symbol square of figure 1@rBserving the

001,
101.
111.

Figure 12.9: Kneading danish pastry: symbol squar@11.|
representation of an orientation preserving once:
folding map obtained by fattening the Smale horse-
shoe intersections of figure 12.4 (e) into a unit squaré10.| -
Also indicated: the fixed point§, 1, and the 3-cycle 1qq,
points{011110,101}. In the symbol square the dynam-

ics maps rectangles into rectangles by a decimal pol

shift.
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topological ordering. The symbol squa®f] serves as a topologically faithful
representation of the non—wandering set of any once-foldiap, and aids us in
partitioning the set and ordering the partitions for any flaithis type.

fast track:
W chapter 13, p. 249
12.4  Prune danish

Anyone know where | can get a good prune danish in
Charlotte? | mean a real NY Jewish bakery kind of prune
danish!

— Googled

In general, not all possible symbol sequences are realgethysical trajectories.
Trying to get from ‘here’ to ‘there’ we might find that a showth is excluded by
some obstacle, such as a disk that blocks the path, or a btéshge. In order to
enumerate orbits correctly, we needpnunethe inadmissible symbol sequences,
i.e., describe the grammar of the admissible itineraries.

The complete Smale horseshoe dynamics discussed so fahés straight-
forward, and sets the stage for situations that resembles the real life. A
generic once-folding map does not yield a complete horsestwme of the horse-
shoe pieces might bgruned i.e., not realized for particular parameter values of
the mapping. In 1 dimension, the criterion for whether a gisgmbolic sequence
is realized by a given unimodal map is easily formulated; aryjt that strays
to the right of the value computable from theeading sequencghe orbit of
the critical point (11.13)) is pruned. This is a topologicshtement, indepen-
dent of a particular unimodal map. Our objective is to gelimgahis notion to
2 — dimensionabnce-folding maps.

Adjust the parameters of a once-folding map so that thedattion of the
backward and forward folds is still transverse, but no longemplete, as in fig-
ure 12.10(a). The utility of the symbol square lies in the that the surviving,
admissible itineraries still maintain the same relativatip ordering as for the
complete case.

In the example of figure 12.10 the rectangles.110[11.1] have been pruned,
and consequentlgnytrajectory containing blockb; = 101,b, = 111 is pruned,
the symbol dynamics is a subshift of finite type (11.24). Weméo the border
of this primary pruned region as tipeuning front another example of a pruning
front is drawn in figure 12.11 (b). We call it a ‘front’ as it cée visualized as a
border between admissible and inadmissible; any trajgatdtose points would
fall to the right of the front in figure 12.11 is inadmissiblieg., pruned. The
pruning front is a complete description of the symbolic dyies of once-folding
maps.For now we need this only as a concrete illustrationoaf pruning rules
arise.
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o
=

11. 111

10. 10.1

Figure 12.10: (a) An incomplete Smale horse- =
shoe: the inner forward fold does not intersect the
outer backward fold. (b) The primary pruned re-
gion in the symbol square and the corresponding
forbidden binary blocks.

o
©

Figure 12.11:(a) Anincomplete Smale horseshoe
which illustrates (b) the monotonicity of the prun- =
ing front: the thick line which delineates the left &
border of the primary pruned region is monotone
on each half of the symbol square. The backwar‘(
folding in this figure and figure 12.10 is schematic
- in invertible mappings there are further miss-
ing intersections, all obtained by the forward anc
backward iterations of the primary pruned region.

M. —ioeio

- - 101

]

i — 10110

In the example at hand there are total of two forbidden blddds, 111, so
For now we concentrate on this kind of pruning because it itiqudarly clean
and simple.

fast track:
W chapter 13, p. 249
Though a useful tool, Markov partitioning is not without dzacks. One glar-
ing shortcoming is that Markov partitions are not uniquey ahmany diferent
partitions might do the job. Th€,- andD3- equivariant systems that we discuss

next dfers a simple illustration of éierent Markov partitioning strategies for the
same dynamical system.

12.5 Recoding, symmetries, tilings

§
J In chapter 9 we made a claim that if there is a symmetry of dycsmve
must use it. Here we shall show how to use it, on two concregengles, and in
chapter 21 we shall be handsomely rewarded for our labonst, Fhe simplest
example of equivariance, a single ‘reflecti@y group of example 9.13.

Example 12.5 C, recoded: Assume that each orbit is uniquely labeled byeaite 9.6
infinite string {s}, s € {+, —} and that the dynamics is C,-equivariant under the + < —
interchange. Periodic orbits separate into two classes, the self-dual configurations +—,

++——, +++———, +——+—++—, - -, with multiplicity my = 1, and the pairs +, —, ++—,
— — +, -+, with multiplicity my, = 2. For example, as there is no absolute distinction
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Table 12.1: Correspondence between tBg symmetry reduced cyclgs and the full state space
periodic orbitsp, together with their multiplicitiesn,. Also listed are the two shortest cycles
(length 6) related by time reversal, but distinct un@er

p p M
1 + 2
0 -+ 1
01 —— ++ 1
001 -+ 4+ 2
011 ——— +++ 1
0001 —+—— +—++ 1
0011 -+ ++ 2
0111 ———— e+t 1
00001 -—+-+- 2
00011 —+-—— +—+++ 1
00101 —++-— +——++ 1
00111 —+-—— +—+++ 1
01011 - -+++ 2
01111 - -—--- + 4+ ++ 1
001011 - ++-—-—-+—-——+++ 1
001101 —-+++--+-—-—-++ 1

between the ‘left’ or the ‘right’ lobe of the Lorenz attractor, figure 3.7 (a), the Floquet
multipliers satisfy Ay = A—, Ay+— = As—_, and so on. exercise 21.5

The symmetry reduced labeling pi € {0,1} is related to the full state space
labeling s € {+,—} by

If s = s.1 then pi=1

If s # s.1 then pi=0 (12.13)
For example, the fixed point¥ = --- + + + +--- maps into - --111--- = 1, and so does
the fixed point=. The 2-cycle =+ = --- — + — +--- maps into fixed point---000- - - = 0,
and the 4-cycle =+ += =---——++ ——+ +--- maps into 2-cycle ---0101--- = 01 A

list of such reductions is given in table 12.1.

Next, let us take the old pinball game and ‘quotient’ theestgiace by the
symmetry, or ‘desymmetrize.” As the three disks are eqtadiy spaced, our
game of pinball has a sixfold symmetry. For instance, théesyt2, 23, andl3 in
figure 12.12 are related to each other by rotationty/3 or, equivalently, by a

relabeling of the disks. We exploit this symmetry by recgglias in (12.7). exercise 11.1
exercise 12.6

Example 12.6 Recoding ternary symbolic dynamics in binary: Given a ternary
sequence and labels of 2 preceding disks, rule (12.7) fixes the subsequent binary sym-
bols. Here we list an arbitrary ternary itinerary, and the corresponding binary sequence:

ternary : 3121312321231323
binary : -10101101011010 (12.14)

The first 2 disks initialize the trajectory and its direction; 3 +— 1 +— 2 + ---. Due to
the 3-disk symmetry the six distinct 3-disk sequences initialized by 12, 13, 21, 23, 31,
32 respectively have the same weights, the same size state space partitions, and are
coded by a single binary sequence. (continued in example 12.7)
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Figure 12.12:The 3-disk game of pinball with the
disk radius : center separation ratio a=R1:2.5.

(a) 2-cyclesi?, 13,23, and 3-cycled23 andl32

(not drawn). (b) The fundamental domain, i.e., the
small ¥6th wedge indicated in (a), consisting of a
section of a disk, two segments of symmetry axes
acting as straight mirror walls, and an escape gap.
The above five cycles restricted to the fundamental
domain are the two fixed poinGs 1. See figure 9.6

for cycle 10 and further examples. (@)

exercise 12.7
exercise 14.2

Binary symbolic dynamics has two immediate advantages thestternary
one; the prohibition of self-bounces is automatic, and thairgy utilizes the sym-
metry of the 3-disk pinball game in an elegant manner. exercise 11.2

The 3-disk game of pinball is tiled by six copies of fa@damental domaira
one-sixth slice of the full 3-disk system, with the symmaetres acting as reflect-
ing mirrors, see figure 12.12 (b). Every global 3-disk trépeg has a correspond-
ing fundamental domain mirror trajectory obtained by repig every crossing
of a symmetry axis by a reflection. Depending on the symmeéitithefull state
space trajectory, a repeating binary alphabet block cpomds either to the full
periodic orbit or to a relative periodic orbit (examples at®wn in figure 12.12
and table 12.2). A relative periodic orbit corresponds toedqalic orbit in the
fundamental domain.

Table 12.2 lists some of the shortest binary periodic orlitgether with the
corresponding full 3-disk symbol sequences and orbit sytriese For a number
of deep reasons that will be elucidated in chapter 21, lifmigh simpler in the
fundamental domain than in the full system, so wheneverilplessur computa-
tions will be carried out in the fundamental domain.

Example 12.7 D3 recoded - 3-disk game of pinball: (continued from exam-
ple 12.6) The D3 recoding can be worked out by a glance at figure 12.12 (a) (con-
tinuation of example 9.14). For the symmetric 3-disk game of pinball the fundamental
domain is bounded by a disk segment and the two adjacent sections of the symme-
try axes that act as mirrors (see figure 12.12(b)). The three symmetry axes divide
the space into six copies of the fundamental domain. Any trajectory on the full space
can be pieced together from bounces in the fundamental domain, with symmetry axes
replaced by flat mirror reflections. The binary {0, 1} reduction of the ternary three disk
{1, 2, 3} labels has a simple geometric interpretation, figure 12.2: a collision of type O re-
flects the projectile to the disk it comes from (back—scatter), whereas after a collision of
type 1 projectile continues to the third disk. For example, 23 = - -- 232323 - - maps into
-+-000- -- = 0 (and so do 12 and 13), 123= ---12312--- maps into - - - 111--- = 1 (and
so does 132), and so forth. Such reductions for short cycles are given in table 12.2,
figure 12.12 and figure 9.7.
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Table 12.2: D3 correspondence between the binary labeled fundamentahidgonime
cyclesp'and the full 3-disk ternary labeled cyclestogether with theéd; transformation
that maps the end point of thecycle into the irreducible segment of thpecycle, see
sect. 9.12. Breaks in the above ternary sequences markisegehe irreducible segment;
for example, the full space 12-cycle 121231312323 coneisi®12 and its symmetry
related segments 3131, 2323. The multiplicitypofycle ism, = 6nz/np. The shortest
pair of fundamental domain cycles related by time reveisat (0 spatial symmetry) are
the 6-cycle01011 and®01101.

p p 9 p p 9
0 12 o1, 000001 121212131313 )
1 123 C 000011 121212313131232323 C2
01 1213 023 000101 121213 e
001 121232313 C 000111 121213212123 012
011 121323 o1z 001011 121232131323 023
0001 12121313 023 001101 121231323213 013
0011 121231312323 C?2 001111 121231232312313123 C
0111 12132123 o1z 010111  121312313231232123 C?
00001 121212323231313C 011111 121321323123 13
00011 1212132323 o1z 0000001 121212123232323131318
00101 1212321213 012 0000011 12121213232323 013
00111 12123 e 0000101 12121232121213 012
01011 121312321231323C 0000111 1212123 e
01111 1213213123 o2 e . -
Résum é

In the preceding and this chapter we start with-dimensional state space and
end with a 1-dimensional return map description of the dyicanThe arc-length
parametrization of the unstable manifold maintains the-1-telation of thefull
d-dimensional state space dynamics and its 1-dimensionahrenap representa-
tion. To high accuracyo information about the flow is losly its 1-dimensional
return map description. We explain why Lorenz equilibri@ &eteroclinically
connected (it is not due to the symmetry), and how to genelbperiodic orbits
of Lorenz flow up to given length. This we do, in contrast to tést of the thesis,
without any group-theoretical jargon to blind you with.

For 1-dimensional maps the folding point is the critical rgpiand easy to
determine. In higher dimensions, the situation is not sarcleone can attempt
to determine the (fractal set of) folding points by lookintlzeir higher iterates
- due to the contraction along stable manifolds, the fold getbe exponentially
sharper at each iterate. In practice this set is essentialépntrollable for the
same reason the flow itself is chaotic - exponential growtérairs. We prefer to
determine a folding point by bracketing it by longer and lengycles which can
be determined accurately using variational methods of ten&9, irrespective of
their period.

For a generic dynamical system a subshift of finite type istt@eption rather
than the rule. Its symbolic dynamics can be arbitrarily cempeven for the lo-
gistic map the grammar is finite only for special parametduas Only some
repelling sets (like our game of pinball) and a few purely meatatical con-
structs (called Anosov flows) are structurally stable - farstnsystems of inter-
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est an infinitesimal perturbation of the flow destroys/andreates an infinity of
trajectories, and specification of the grammar requiresrd@hation of pruning
blocks of arbitrary length. The repercussions are draniit counterintuitive;
for example, the transport cigients such as the deterministidfdsion constant
of sect. 25.2 are emphaticallyot smooth functions of the system parameters.

Importance of symbolic dynamics is often grossly unapptted; as we shall seeection 25.2

in chapters 20 and 23, the existence of a finite grammar isrtieéat prerequisite
for construction of zeta functions with nice analyticityoperties. This generic
lack of structural stability is what makes nonlinear dynesrso hard.

The conceptually simpler finite subshift Smale horseshoffigs to motivate
most of the key concepts that we shall need for time being. dbrategy is akin
to bounding a real number by a sequence of rational approxanae converge
toward the non—wandering set under investigation by a semguef self-similar
Cantor sets. The rule that everything to one side of the pgufront is forbidden
might is striking in its simplicity: instead of pruning a Ganset embedded within
some larger Cantor set, the pruning front cleanly cuts adrapactregion in the
symbol square, and that is all - there are no additional pgimules. A ‘self-
similar’ Cantor set (in the sense in which we use the word )hisra Cantor set
equipped with asubshift of finite typsymbol dynamics, i.e., the corresponding
grammar can be stated as a finite number of pruning rules,feduildding a finite
subsequences; s, ... s,-. Here the notations; s, ... s, stands fom consecutive
symbolss;1, s, .. ., S, preceded and followed by arbitrary symbol strings.

The symbol square is a useful tool in transforming topolalruning into
pruning rules for inadmissible sequences; those are imgaiéaal by constructing
transition matrices aridr graphs, see chapters 14 and 15.

Commentary

Remark 12.1 Stable/unstable manifolds. For pretty hand-drawn pictures of invariant
manifolds, see Abraham and Shaw [9.10]. Construction odiriant manifolds by map
iteration is described in Simo [12.35]. Fixed point stablestable manifolds and their
homoclinic and heteroclinic intersections can be computgdg DsTool [12.59, 12.60,
12.61]. Unstable manifold turning points were utilized éfis. [12.13, 22.2, 12.32, 12.33,
12.34] to partition state space and prune inadmissible sysdgrjuences. The arclength
parameterized return maps were introduced by Christiaeser. [12.63], and utilized
in ref. [12.37]. Even though no dynamical system has beetiesfumore exhaustively
than the Lorenz equations, the analysis of sect. 11.2 is i&e.desymmetrization fol-
lows Gilmore and Lettelier [9.13], but the key new idea iselakrom Christianseret
al. [12.63]: the arc-length parametrization of the unstablaifioédd maintains the 1-to-1
relation of thefull d-dimensional state space dynamics and its 1-dimensionahrenap
representation, in contrast to 1-dimensiom@ljectionsof the (d-1)-dimensional Poincaré
section return maps previously deployed in the literaturether words, to high accuracy
no information about the flow is lobly its 1-dimensional return map description.

Remark 12.2 Smale horseshoe. S. Smale understood clearly that the crucial ingre-
dient in the description of a chaotic flow is the topology sfiibn—wandering set, and he
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provided us with the simplest visualization of such setsgrsections of Smale horse-
shoes. In retrospect, much of the material covered here loamdy be found in Smale’s
fundamental paper [1.27], but an engineer or a scientist néorun into a chaotic time
series in his laboratory might not know that he is investigathe action (dierentiable)
of a Lie groupG on a manifoldM, and that the Lefschetz trace formula is the way to go.

Remark 12.3 Pruning fronts. The ‘partition conjecture’ is due to Grassberger and
Kantz [29.3]. The notion of a pruning front and the ‘prunifignt conjecture’ was for-
mulated by Cvitanovit al. [12.13], and developed by K.T. Hansen for a number of
dynamical systems in his Ph.D. thesis [12.20] and a seripaérs [12.21]-[12.25]. The
‘multimodal map approximation’is described in the K.T. i4an thesis [12.20]. Hansen’s
thesis is still the most accessible exposition of the prgifireory and its applications. De-
tailed studies of pruning fronts are carried out in refs..J¥#2 12.16, 12.15]; ref. [29.5] is
the most detailed study carried out so far. The rigorousrthebpruning fronts has been
developed by Y. Ishii [12.17, 12.18] for the Lozi map, and A @harvalho [12.19] in a very
general setting. Beyond the orbit pruning and its infinityadfissible unstable orbits, an
attractor of Henon type may also own an infinity of attragtorbits coexisting with the
strange attractor [12.64, 12.65]. Wer heuristic arguments and numerical evidence that
the coexistence of attractive orbits does not destroy tlamge attractgrepeller, which is
also in this case described by the 2imensionabanish pastry plot.
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Exercises

12.1. A Smale horseshoe. The Hénon map of example 3.7

X

1-ax +by
y X

maps the %, y] plane into itself - it was constructed

(12.15)

by Hénon [3.6] in order to mimic the Poincaré section
of once-folding map induced by a flow like the one

sketched in figure 11.10. For definitiveness fix the pa2 3.

rametersta=6,b=-1.

a) Draw a rectangle in thex(y) plane such that its

nth iterate by the H&non map intersects the rectan-

gle 2" times.
b) Construct the inverse of the (12.15).

c) Iterate the rectangle back in the time; how many

intersections are there between théorward and 12.4.

m backward iterates of the rectangle?

d) Use the above information about the intersections

to guess thex,y) coordinates for the two fixed

points, a 2-periodic point, and points on the two
distinct 3-cycles from table 15.1. The exact peri-

odic points are computed in exercise 13.13.

12.2. Kneading Danish pastry. Write down the & y) —

(%, y) mapping that implements the baker's map

S
cuT
—
LEFTEO /,’\{v:mwn
P RN

o
o tied pi

o

o

FIG. 4. Tierative construction of the symbal plane.

Figure: Kneading danish pastry: symbol square repre-
sentation of an orientation reversing once-folding map
obtained by fattening the Smale horseshoe intersections

exerSmale - 20nov2009

. Infinite symbolic dynamics.

of figure 12.4 into a unit square. In the symbol sq
the dynamics maps rectangles into rectangles by ¢
imal point shift. together with the inverse mappi

Sketch a few rectangles in symbol square and the
ward and backward images. (Hint: the mapping is
much like the tent map (11.4)).

Kneading danish without flipping.  The baker’'s me
of exercise 12.2 includes a flip - a map of this tyf
called an orientation reversing once-folding map.
down the &y) — (xy) mapping that implements
orientation preserving baker's map (no flip; Jacobia
terminant= 1). Sketch and label the first few folds of
symbol square.

Orientation reversing once-folding map. By addin
areflection around the vertical axis to the horsesho
g we get the orientation reversing mgmsfown in th
second Figure abové&), andQ; are oriented ago an
Qu, so the definition of the future topological coo
natey is identical to they for the orientation preservi
horseshoe. The inverse intersectids" and Q;* ar
oriented so thaQ;* is opposite toQ, while Q;* has th
same orientation aQ. Check that the past topolog
coordinate’ is given by

1-w, i

- f s -
Wh-1 = {Wn ifS'l 5 Wo = S

Wi_n/2"(12.16

e o

6(X) = OWoW_iW.p...=

S
m
i

Let o be a func
tion that returns zero or one for every infinite bir
string: o : {0,1}" — {0,1}. Its value is represen
by o(e1, €2, . ..) where thee are either 0 or 1. We w
now define an operatdr that acts on observables on
space of binary strings. A functiamis an observable
it has bounded variation, that is, if

llall = supla(ey, €z, . . .)| < o

{a}
For these functions

Tale, e,...) = a0e,e,..)00e€,e,...)
+a(l, e, €,.. )01, e, e,..

ChaosBook.org version13, Dec 31 2009



REFERENCES

(a) (easy) Consider a finite versidp of the operator
T

Tha(es, €, .., €1n) =
a0, e, e,....e-1)00, €1, €,..., 1) +
a(le,e,....a1)0(l e, e,...,61).

Show thatT, is a 2' x 2" matrix. Show that its
trace is bounded by a number independent.of

(b) (medium) With the operator norm induced by the
function norm, show thart” is a bounded operator.

(c) (hard) Show thaf™ is not trace class.

12.6. 3-disk fundamental domain cycles. (continued

References

7. 3-disk pruning.
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in the fundamental domain, and interpret the symbols
{0, 1} by relating them to topologically distinct types of
collisions. Compare with table 12.2. Then try to sketch
the location of periodic points in the Poincaré section of
the billiard flow. The point of this exercise is that while
in the configuration space longer cycles look like a hope-
less jumble, in the Poincaré section they are clearly and
logically ordered. The Poincaré section is always to be
preferred to projections of a flow onto the configuration
space coordinates, or any other subset of state space cc
ordinates which does not respect the topological organi-
zation of the flow.

(Not easy) Show that for 3-disk
game of pinball the pruning of orbits startsRt: a =
2.04821419. ., figure 11.6. (K.T. Hansen)
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