Appendix M

Noise/quantum corrections

(G. Vattay)

HE GUTZWILLER TRACE FORMULA IS Only a good approximation to the quantum
T mechanics when is small. Can we improve the trace formula by addi
quantum corrections to the semiclassical terms? A similestjon can
be posed when the classical deterministic dynamics is riistlby some way
Gaussian white noise with strengih The deterministic dynamics then can be
considered as the weak noise libit— 0. The dfect of the noise can be taken
into account by adding noise corrections to the classieaktformula. A formal
analogy exists between the noise and the quantum probleis.afklogy allows
us to treat the noise and quantum corrections together.

M.1 Periodic orbitsasintegrable systems

From now on, we use the language of quantum mechanics, sirccenore con-
venient to visualize the results there. Where it is necgssar will discuss the
difference between noise and quantum cases.

First, we would like to introduce periodic orbits from an woal point of
view, which can convince you, that chaotic and integrablstesys are in fact
not as diferent from each other, than we might think. If we start orlitgshe
neighborhood of a periodic orbit and look at the picture om Boincaré section
we can see a regular picture. For stable periodic orbits thete form small
ellipses around the center and for unstable orbits they toyperbolas (See Fig.
M.1).

Figure M.1: Poincaré section close to a stable and an unstable peddulic
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The motion close to a periodic orbits is regular in both cagédss is due to
the fact, that we can linearize the Hamiltonian close to &it,cand linear systems
are always integrable. The linearized Hamilton’s equatiolose to the periodic
orbit (gp(t) + g, pp(t) + p) look like

+05qH(Ap(t), Pp(t)d + 95,H (A (1), Pp®) P, (M.1)
~0%H(@p(t). Po(0)d — 35,H(@p(t), Pp®) P, (M.2)

where the new coordinatesand p are relative to a periodic orbit. This linearized
equation can be regarded ad dimensional oscillator with time periodic frequen-
cies. These equations are representing the equation obmiate redundant way
since more than one combination @fp andt determines the same point of the
phase space. This can be cured by an extra restriction onatfiebles, a con-
straint the variables should fulfill. This constraint candeived from the time
independence or stationarity of the full Hamiltonian

AtH(gp(t) + g, pp(t) + p) = 0. (M.3)

Using the linearized form of this constraint we can eliméane of the linearized
equations. Itis very useful, although technicallffidult, to do one more transfor-
mation and to introduce a coordinate, which is parallel \tliga Hamiltonian flow
(%)) and others which are orthogonal. In the orthogonal dicestiwe again get
linear equations. These equations witidependent rescaling can be transformed
into normal coordinates, so that we get tiny oscillatorshe hew coordinates
with constant frequencies. This result has first been detiyePoincaré for equi-
librium points and later it was extended for periodic ortis V.I. Arnol'd and
co-workers. In the new coordinates, the Hamiltonian reads a

d-1
1 1
Ho(Xi. Bi- Xa. Pr) = 5PF +U0) + ) 5(9F £ ). (M.4)
n=1

which is the general form of the Hamiltonian in the neighloarth of a periodic
orbit. The+ sign denotes, that for stable modes the oscillator poteistiposi-
tive while for an unstable mode it is negative. For the urstabodesw is the
Lyapunov exponent of the orbit

wn=INApn/Tp, (M.5)

whereA,,, is the expanding eigenvalue of the Jacobi matrix. For thelestirec-
tions the eigenvalues of the Jacobi matrix are connectddawis

Apn = €7, (M.6)
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The Hamiltonian close to the periodic orbit is integrablel @an be quantized by
the Bohr-Sommerfeld rules. The result of the Bohr-Somniérfeiantization for
the oscillators gives the energy spectra

En

o1
fiwn (]n + E)for stable modes, (M.7)

En

1
—ihwn (jn + E)for unstable modes,

wherej, = 0,1,.... Itis convenient to introduce the index = 1 for stable and
s, = —i for unstable directions. The parallel mode can be quantizggicitly
trough the classical action function of the mode:

% § pdx; = %Sn(Em) = h(m+ %) (M.8)

wherem, is the topological index of the motion in the parallel difeot This
latter condition can be rewritten by a very useful trick itie equivalent form

(1 — &Si(Em)/a=impn/2y _ (M.9)

The eigen-energies of a semiclassically quantized periodiit are all the possi-
ble energies

d-1
E=En+ ) En (M.10)
n=1

This relation allows us to change in (M.®), with the full energy minus the
oscillator energie€, = E - ), En. All the possible eigenenergies of the periodic
orbit then are the zeroes of the expression

Ap(E) = n (1 — @SIE-Znlisn(int1/2))/h-impn/2) (M.11)

[tsesda-1
If we Taylor expand the action arouitglto first order
SH(E + 6) =~ S”(E) + T(E)E, (M12)

whereT (E) is the period of the orbit, and use the relationsand the eigenvalues
of the Jacobi matrix, we get the expression of the Selberdyato

m® =[] [1—7éSD(E)/h_imp”/2J. (M.13)

2+0n
JE Y [n A(Dﬂ )

gmnoise - 19jun2003 ChaosBook.org version13, Dec 31 2009

APPENDIX M. NOISEFQUANTUM CORRECTIONS 896

If we use the right convention for the square root we get éxdoe d dimensional
expression of the Selberg product formula we derived froem@utzwiller trace
formula in ? . Just here we derived it in afdrent way! The functiom\p(E) is

the semiclassical zeta function for one prime orbit.

Now, if we have many prime orbits and we would like to constraiéunction
which is zero, whenever the energy coincides with the BS tigeshenergy of one
of the periodic orbits, we have to take the product of thegerdenants:

A(E) = H Ap(E). (M.14)
P

The miracle of the semiclassical zeta function is, that iftale infinitely many
periodic orbits, the infinite product will have zeroes nattegse energies, but close
to the eigerenergies of the whole system !

So we learned, that both stable and unstable orbits areraitiegsystems and
can be individually quantized semiclassically by the oldhBSommerfeld rules.
So we almost completed the program of Sommerfeld to quagéperal systems
with the method of Bohr.Let us have a remark here. In addition to the Bohr-
Sommerfeld rules, we used the unjustified approximatiodiZM. Sommerfeld
would never do this ! At that point we loose some importantipien compared
to the BS rules and we get somewhat worse results than a sssil formula
is able to do. We will come back to this point later when wewdische quantum
corrections.To complete the program of full scale Bohr-Sommerfeld gizatibn
of chaotic systems we have to go beyond the linear approiamatround the
periodic orbit.

The Hamiltonian close to a periodic orbit in the parallel ammal coordi-
nates can be written as the *harmonic’ plus ‘anaharmonidupleation

H (X Py Xns Pn) = Ho(X> P> Xn, Pn) + HACX, X0, Pn), (M.15)

where the anaharmonic part can be written as a sum of homogsipelynomials
of X, and p, with x; dependent cd&cients:

Ha(K X B) = D HKOG, X, Pr) (M.16)
k=3

HE O X, ) = ) HE o )X (M.17)
D ln+ma=k

This classical Hamiltonian is hopeless from Sommerfeldgmpof view, since

it is non integrable. However, Birklibin 1927 introduced the concept of nor-
mal form, which helps us out from this problem by giving sussiee integrable
approximation to a non-integrable problem. Let’s learntarimre about it!

%It is really a pity, that in 1926 Schrodinger introduced thave mechanics and blocked the
development of Sommerfeld’s concept.
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M.2 TheBirkhoff normal form

Birkhoff studied the canonical perturbation theory close to an #jiuim point of

a Hamiltonian. Equilibrium point is where the potential lresinimumVU = 0

and small perturbations lead to oscillatory motion. We daedrize the prob-
lem and by introducing normal coordinatgsand conjugate momentunps the

quadratic part of the Hamiltonian will be a set of oscillator

d
Holn, Pr) = > 368 + 029, (M.18)
n=1

The full Hamiltonian can be rewritten with the new coordemat

H(%n, pn) = Ho(%n, Pn) + Ha(Xn, Pn), (M.19)

whereH, is the anaharmonic part of the potential in the new coordmafThe
anaharmonic part can be written as a series of homogenedursoptals

Halt, ) = > HI0, po), (M.20)
=3

Hi(, pn) = Z h X p™, (M.21)
I+mi=j

where hljm are real constants and we used the multi-indices (I4, ...,1q) with
definitions

_ iyl Jld
= Z:In,xI = x1><'2..4xd.

Birkhoff showed, that that by successive canonical transformatoescan in-
troduce new momentums and coordinates such, that in the oewlinates the
anaharmonic part of the Hamiltonian up to any givepolynomial will depend
only on the variable combination

1
Th= E(pﬁ + wdd), (M.22)

wherex, and p, are the new coordinates and momentums,dayis the original
frequency. This is called the Birklfionormal form of degreé\:

N
HO, pn) = D HI(1, .. 70), (M.23)
=
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whereH! are homogeneous degréepolynomials ofr-s. This is an integrable
Hamiltonian, the non-integrability is pushed into the rémdar, which consists of
polynomials of degree higher th&h We run into trouble only when the oscillator
frequencies are commensurate e.g. it is possible to find af setegersmy, such
that the linear combination

d
Z wnMp,
n=1

vanishes. This extra problem has been solved by Gustavsd®66 and we
call the object Birkh@-Gustavson normal form. The procedure of the succes-
sive canonical transformations can be computerized andeaarried out up to
high orders ¢ 20).

Of course, we pay a price for forcing the system to be intdgrap to degree
N. For a non-integrable system the high order terms behave gildly and the
series is not convergent. Therefore we have to use this tefuly. Now, we
learned how to approximate a non-integrable system witlyaesece of integrable
systems and we can go back and carry out the BS quantization.

M.3 Bohr-Sommerfeld quantization of periodic orbits

There is some dlierence between equilibrium points and periodic orbits. The
Hamiltonian (M.4) is not a sum of oscillators. One can transf the parallel
part, describing circulation along the orbit, into an dstidr Hamiltonian, but this
would make the problem extremelyflicult. Therefore, we carry out the canonical
transformations dictated by the Birkfigprocedure only in the orthogonal direc-
tions. Thex coordinate plays the role of a parameter. After the tramsédion up

to orderN the Hamiltonian (M.17) is

N
H(x, Py, 71, -..7d-1) = Ho(Xy, py» 71, ---»Td—l)+z Ul(x), 71, -.r Td-1),(M.24)
=

whereU! is a jth order homogeneous polynomial of with X, dependent co-
efficients. The orthogonal part can be BS quantized by quagtitie individual
oscillators, replacing-s as we did in (M.8). This leads to a one dimensional
effective potential indexed b, ..., jg-1

d-1
o 1 .
HOs Py 15 Ja-1) = Epﬁ+U(Xn)+ § hisnwn(jn +1/2) + (M.25)

n=1

N
+ > UK s (i + 1/2), hpwa(jz + 1/2), o hiSg-10g-1(ju-1 + 1/2)),
k=2
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where j, can be any non-negative integer. The term with inkléx proportional
with 7¥ due to the homogeneity of the polynomials.

The parallel mode now can be BS quantized for any given sgsof

So(E. 1. ja1) = 56 pdx = (M.26)

d-1
- 95 dx J E = > hiswn(in+ 1/2) = U, 1, - fa-2) = 2rh(m + mp/2),

n=1

whereU contains all thex; dependent terms of the Hamiltonian. The spectral
determinant becomes

Ap(E) = ]—l (1 — &Sp(Eftmna-1)/h-mpn/2) (M.27)

[ Jd-1

This expression completes the Sommerfeld method and &l®w to quan-
tize chaotic or general Hamiltonian systems. Unfortuyatghantum mechanics
postponed this nice formula until our book.

This formula has been derived with the help of the semiatas&ohr-Sommerfeld
quantization rule and the classical normal form theory.ebui if we expand,
in the exponent in the powers bf

N
Sp= ). #Sk,
k=0

we get more than just a constant and a linear term. This faralieady gives
us corrections to the semiclassical zeta function in all grevof7. There is a
very attracting feature of this semiclassical expansiann S, shows up only
in the combinatioris,wn(jn + 1/2). A term proportional withi can only be a
homogeneous expression of the oscillator energies(jn + 1/2). For example
in two dimensions there is only one possibility of the funotl form of the order
k term

Sk = &(E) - wX(j + 1/2)K,

wherecy(E) is the only function to be determined.

The corrections derived sofar ageubly semiclassical, since they give semi-
classical corrections to the semiclassical approximatidmat can quantum me-
chanics add to this ? As we have stressed in the previoussetiie exact quan-
tum mechanics is not invariant under canonical transfaonat In other context,
this phenomenon is called the operator ordering problemceSihe operatorg ~
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and g do not commute, we run into problems, when we would like tdevdiown
operators for classical quantities likép?. On the classical level the four possible
orderingsxpxp ppxx pxpxandxxppare equivalent, but they areftrent in
the quantum case. The expression for the energy (M.26) iexaatt. We have to
go back to the level of the Schrodinger equation if we woikld to get the exact
expression.

M.4 Quantum calculation of 7 corrections

The Gutzwiller trace formula has originally been derivednfr the saddle point
approximation of the Feynman path integral form of the pgater. The exact
trace is a path-sum for all closed paths of the system

TIG(x, X, t) = f dxG(x, x,t) = f DxSx0/N (M.28)

wherefDx denotes the discretization and summation for all pathswé tength
tin the limit of the infinite refinement an8(x, t) is the classical action calculated
along the path. The trace in the saddle point calculation dara for classical
periodic orbits and zero length orbits, since these are tireraa of the action
6S(x,t) = 0 for closed paths:

TG X 1) = go)) + f D @S0, (M.29)
pePO

wheregp(t) is the zero length orbit contribution. We introduced thevreordi-
nate&p with respect to the periodic orbity(t), X = &y + Xp(t). Now, each path
sumfZ)fp is computed in the vicinity of periodic orbits. Since the dizdpoints
are taken in the configuration space, only spatially distpeziodic orbits, the so
called prime periodic orbits, appear in the summation. Soéghing new has
been invented. If we continue the standard textbook calonlacheme, we have
to Taylor expand the action &, and keep the quadratic term in the exponent
while treating the higher order terms as corrections. Thencan compute the
path integrals with the help of Gaussian integrals. The l@gtphere is that we
don’t compute the path sum directly. We use the correspareléetween path
integrals and partial flierential equations. This idea comes from Maslov [M.5]
and a good summary is in ref. [M.6]. We search for that Scimget equation,
which leads to the path sum

f DS EHO/ (M.30)
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where the action around the periodic orbit is in a multi-disienal Taylor ex-
panded form:

S0 = > (X~ xp(0)"/n. (M.31)

The symboln = (ng,ny, ..., ng) denotes the multi index id dimensions,n! =
1%, n! the multi factorial and % — xp(0)" = T1%,(x — Xpi(E)", respectively.
The expansion cdgcients of the action can be determined from the Hamilton-
Jacobi equation

XS + %(VS)Z +U =0, (M.32)

in which the potential is expanded in a multidimensionalldageries around the
orbit

U = " tn(®)(x = Xp()"/n!. (M.33)
n
The Schrodinger equation

2
inow = Ay = _%M LUy, (M.34)

with this potential also can be expanded around the permiit. Using the WKB
ansatz

W = S/t (M.35)
we can construct a Schrddinger equation correspondinggivem order of the
Taylor expansion of the classical action. The Schrodiregpration induces the

Hamilton-Jacobi equation (M.32) for the phase and the pargquation of Maslov
and Fjedoriuk [M.7] for the amplitude:

1 in
O + VoVS + EnpAS - %Ago =0. (M.36)

This is the partial dferential equation, solved in the neighborhood of a peri-
odic orbit with the expanded action (M.31), which belongsh® local path-sum
(M.30).

If we know the Green’s functio,(¢, £’, ) corresponding to the local equa-
tion (M.36), then the local path sum can be converted backaritace:

f@é‘peﬁ/hZnSn(Xp(l).t)fg/n! _ Ter(g,.f’,t). (M.37)
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The saddle point expansion of the trace in terms of locaksdhen becomes

TIG(X, X, 1) = TrGw(x X, 1) + Y TiGy(&, £, 1), (M.38)
p

whereGw(x, X, t) denotes formally the Green’s function expanded around zer
length (non moving) periodic orbits, known as the Weyl tevhg]. Each Green’s
function can be Fourier-Laplace transformed indepengeatt by definition we
get in the energy domain:

TIG(x, X, E) = Go(E) + ) TiGp(¢, ¢, E). (M.39)
p

Note that we do not need here to take further saddle pointsrie, tsince we
are dealing with exact time and energy domain Green'’s fansti indexGreen’s
functionlenergy dependent

The spectral determinant is a function which has zeroeseagitien-energies
E,, of the Hamilton operatoH. Formally it is

A(E) = det € - H) = ]_[(E —Ep).
n
The logarithmic derivative of the spectral determinanthis trace of the energy
domain Green'’s function:

1 d
TrG(x, X, E) = ——— = —logA(E). M.40
(X B)= > g, = gg294®) (M.40)

We can define the spectral determinag(E) also for the local operators and we
can write

d
TIGp(¢. €. E) = 4z 10g Ap(E). (M.41)

Using (M.39) we can express the full spectral determinaré gsoduct for the
sub-determinants

A(E) = eV® ﬂ Ap(E),
p

whereW(E) = fE go(E’)dE’ is the term coming from the Weyl expansion.
The construction of the local spectral determinants candye ceasily. We

have to consider the stationary eigenvalue problem of tb& Bchrddinger prob-
lem and keep in mind, that we are in a coordinate system madeigether with
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the periodic orbit. If the classical energy of the periodibibcoincides with an
eigen-energ)E of the local Schrodinger equation around the periodictpthen
the corresponding stationary eigenfunction fulfills

l//p(fvt + Tp) = fdflep(fs ‘f,’t + Tp)l//p(fl»t) = eiiETp/hlvpp(f’ t)’ (M42)

whereT), is the period of the prime orbjp. If the classical energy of the periodic
orbit is not an eigeaenergy of the local Schrodinger equation, the non-statipn
eigenfunctions fulfill

WhEt+Tp) = f A/ Gp(é, &, t+ Tpwp(&'. 1) = e BT AL (B (1).(M.43)

wherel = (I3, 1, ...) is a multi-index of the possible quantum numbers of thelloca
Schrodinger equation. If the eigenvaluélg(E) are known the local functional
determinant can be written as

ApE) = | J@ - (E) (M.44)
|

sinceAp(E) is zero at the eigerenergies of the local Schrodinger problem. We
can insert the ansatz (M.35) and reformulate (M.43) as

er,s(twp) I L+ Tp) = e IETp/i )l (E)ef,S(t) | b(D)- (M.45)

The phase change is given by the action integral for one ¢p&(o+ T,) — S(t) =
fOT" L(t)dt. Using this and the identity for the acti@p(E) of the periodic orbit

.
Sp(E) = 9§pdq: f "Ldt+ ET,, (M.46)
0
we get
e SoE Lt +Tp) = AL(E)ph(t). (M.47)

Introducing the eigen-equation for the amplitude

@t + Tp) = Rip(E)ely(h). (M.48)

the local spectral determinant can be expressed as a priodtice quantum num-
bers of the local problem:

Ap(E) = [ (1= Rp(E)ei#®). (M.49)
|
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Sincer is a small parameter we can develop a perturbation serigbdaam-
plitudesgl(t) = ZWO('Z) @™ (t) which can be inserted into the equation (M.36)
and we get an iterative scheme starting with the semiclalssidutione'©:

1
30" ® + v Ovs 4+ ?p'(%s =0 (M.50)

oD 4 g mys 4 %gol(rml)AS WY

The eigenvalue can also be expanded in poweis/@f

Rp(E) = exp{Z(%’) C.(‘mp)} (M.51)
m=0
=expCNIL + %C&H(%)( C? + cl‘?g)+.... (M.52)

The eigenvalue equation (M.48) inexpanded form reads as
expCNe),
expCNP O + CRe (0],

AP+ Ty) = expCA0 + B0 + €3+ 5D

o0t +Tp)
o+ Tp)

and so on. These equations are the conditions selectingigeavectors and
eigenvalues and they hold for all

It is very convenient to expand the functiop'§")(x, t) in Taylor series around
the periodic orbit and to solve the equations (M.51) in thasib [M.10], since
only a couple of cofiicients should be computed to derive the first corrections.
This technical part we are going to publish elsewhere [M®he can derive in
general the zero order terti?o) = invp + 2 l(I + )up,i, whereup = logAp;
are the logarithms of the eigenvalues of the monodromy madj andv, is the
topological index of the periodic orbit. The first correctits given by the integral

10)
c® = f e O
»= J ,SO)(I)

When the theory is applied for billiard systems, the wavecfiom should
fulfill the Dirichlet boundary condition on hard walls, eigshould vanish on the
wall. The wave function determined from (M.36) behaves aiginuously when
the trajectoryxp(t) hits the wall. For the simplicity we consider a two dimemsib
billiard system here. The wave function on the wall before blounce t( o ) is
given by

Yin(X Y(X). 1) = (X, Y(¥), t_o)eSCYR L)/, (M.54)
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wherey(x) = Y2x2/2! + Yax3/3! + Y4x*/4! + ... is the parametrization of the wall
around the point of reflection (see Fig 1.). The wave functinrthe wall after the
bounce ;o) is

Wout(X, Y(X), 1) = (X, Y(X), t+0)eis(xvy(x)vt+0)/h‘ (M.55)

The sum of these wave functions should vanish on the hard Wait implies that
the incoming and the outgoing amplitudes and the phaseglated as

S(x,Y(x), t-0) = S(X, Y(%), t,0), (M.56)
and
@(X (%), t-0) = —o(x Y(X). t0)- (M.57)

The minus sign can be interpreted as the topological phaséengdrom the hard
wall.

Now we can reexpress the spectral determinant with the Eigehvalues:

AE) =@ ] Ja-RpE)e®). (M.58)
Pl

This expression is the quantum generalization of the sess@al Selberg-product
formula [M.11]. A similar decomposition has been found faragtum Baker
maps in ref. [M.12]. The functions

GE) = @ -RpE>E) (M.59)
P

are the generalizations of the Ruelle type [34.23] zetatfans. The trace formula
can be recovered from (M.40):

dlogR, p(E)) R, p(E)ei S

TIG(E) = Go(E)+ 1 Z(Tp<E) T o =
-Rp 7 =P

.(M.60)

We can rewrite the denominator as a sum of a geometric seribw/a get

d Iog R, p(E)

TIG(E) = () + = 3 (To(E) ~ i Rp(E)) ). (M.61)

p.rl

The new index can be interpreted as the repetition number of the primet orbi
p. This expression is the generalization of the semiclaksiaae formula for
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the exact quantum mechanics. We would like to stress heagthh perturbation
calculus introduced above is just one way to compute theneadees of the local
Schrodinger problems. Non-perturbative methods can ke s calculate the
local eigenvalues for stable, unstable and marginal orbitserefore, our trace
formula is not limited to integrable or hyperbolic systenitscan describe the
most general case of systems with mixed phase space.

The semiclassical trace formula can be recovered by drogpsub-leading
term—izidlog R p(E)/dE and using the semiclassical eigenvdRﬁ%(E) - =
e e Zilli+1/2upi - Summation for the indexdsyields the celebrated semiclas-
sical amplitude

©) - e*ipriT
Z(m,(E)) = Taao MY (M.62)

To have an impression about the improvement caused by thetuquacor-
rections we have developed a numerical code [M.13] whichutales the first
correctlonC for general two dimensional billiard systems . The first eotion
depends onIy on some basic data of the periodic orbit sucheaeigths of the
free flights between bounces, the angles of incidence arfitshéhree Taylor ex-
pansion cofficientsYa, Y3, Y4 of the wall in the point of incidence. To check that
our new local method gives the same result as the direct lesilon of the Feyn-
man integral, we computed the fisstorrectionC®) o for the periodic orbits of the
3-disk scattering system [M.14] where the quantum comestihave been We
have found agreement up to the fifth decimal digit, while o@timd generates
these numbers with any desired precision. Unfortunatély) t= O codficients
cannot be compared to ref. [M.15], since thgependence was not realized there
due to the lack of general formulas (M.58) and (M.59). Howgtlee | depen-
dence can be checked on the 2 disk scattering system [M.16]th©standard
example [M.14, M.15, M.16, M.18], when the distance of thatees R) is 6
times the disk radiusaj, we got

1
c® = ——_(-0.629° - 0.31252 + 1.4379 + 0.625
! \/ZE( )

Forl = 0 and 1 this has been confirmed by A. Wirzba [M.17], who was &ble
computecgl) from his exact quantum calculation. Our method makes itiposs
ble to utilize the symmetry reduction of Cvitanovic and Bakdt and to repeat
the fundamental domain cycle expansion calculation of[Mf18] with the first
quantum correction. We computed the correction to the fep@R6 prime peri-
odic orbits with 10 or less bounces in the fundamental doniEable I. shows the
numerical values of the exact quantum calculation [M.1&,semiclassical cycle
expansion [M.10] and our corrected calculation. One cantbeéthe error of the
corrected calculation vs. the error of the semiclassicllutation decreases with
the wave-number. Besides the improved results, a fast openee up to six dec-
imal digits can be observed, which is just three decimaltsligi the full domain
calculation [M.15].
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Figure M.2: A typical bounce on a billiard wall. The wall can be charaizted by the local
expansiony(x) = Y2x2/2! + Yax3/3! + Yux4 /41 + ...

Table M.1: Real part of the resonances (Ref the 3-disk scattering system at disk separation 6:1.
Semiclassical and first corrected cycle expansion versast egiantum calculation and the error of
the semiclassicalls c divided by the error of the first correctiafe,. The magnitude of the error in
the imaginary part of the resonances remains unchanged.

Quantum| Semiclassical First correction| dsc/dcorr
0.697995] 0.758313 0.585150 0.53
2.239601| 2.274278 2.222930 2.08
3.762686| 3.787876 3.756594 4.13
5.275666| 5.296067 5.272627 6.71
6.776066| 6.793636 6.774061 8.76
30.24130| 30.24555 30.24125 92.3
31.72739| 31.73148 31.72734 83.8
32.30110| 32.30391 32.30095 20.0
33.21053| 33.21446 33.21048 79.4
33.85222| 33.85493 33.85211 25.2
34.69157| 34.69534 34.69152 77.0
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