Chapter 31

Quantum mechanics, briefly

E START WITH @ review of standard quantum mechanical concepts prereg-
uisite to the derivation of the semiclassical trace formula

In coordinate representation the time evolution of a quantuechanical wave
function is governed by the Schrodinger equation

0 ~ ho

where the Hamilton operatdi (g, —ihdyg) is obtained from the classical Hamilto-
nian by substitutiorp — —izdy. Most of the Hamiltonians we shall consider here
are of form

H(@ p) =T(p)+V(@).,  T(p)=p?*/2m, (31.2)

describing dynamics of a particle in@-dimensional potential/(g). For time
independent Hamiltonians we are interested in findingataty solutions of the
Schrodinger equation of the form

Un(a,t) = €5 gn(0), (31.3)
whereE, are the eigenenergies of the time-independent Schrodameation
He() = E¢(q). (31.4)

If the kinetic term can be separated out as in (31.2), the-tmdependent Schrodinger
equation

",
~5m0 (@) + V(A4 = E¢(a) (31.5)
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can be rewritten in terms of a local wavenumber

@ +K@)¢ =0,  nk(g) = v2m(E - V(). (31.6)

For bound systems the spectrum is discrete and the eigditnadorm an
orthonormal,

| dasu(@s@ = oo (31.7)
and complete,
D on(@en(@) = 6 - 1), (31.8)

set of functions in a Hilbert space. Here and throughoutekg t

qu:quldqz...qu. (31.9)

For simplicity we will assume that the system is bound, altifo most of the
results will be applicable to open systems, where one hagpleontesonanceschapter 35
instead of real energies, and the spectrum has continucops@wents.

A given wave function can be expanded in the energy eigesbasi

(@ 1) = ) cae 5 (), (31.10)

where the expansion cfigient ¢, is given by the projection of the initial wave
functiony/(q, 0) onto thenth eigenstate

G = f dq (A (@ 0). (31.11)

By substituting (31.11) into (31.10), we can cast the evofubf a wave function
into a multiplicative form

s = f dorK(a. . U (. 0).
with the kernel
K(a.d,t) = )" én(@) e &V g1() (31.12)
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called the quantum evolution operator, or fitepagator. Applied twice, first for
time t; and then for timds, it propagates the initial wave function frogito q”,
and then frony” toq

K(a.q,t1 + 1) = f dg” K(a.q",t2)K(q".q', t1) (31.13)

forward in time, hence the name “propagator.” In non-rglatic quantum me-
chanics the range af’ is infinite, meaning that the wave can propagate at any
speed; in relativistic quantum mechanics this is rectifigddstricting the propa-
gation to the forward light cone.

Since the propagator is a linear combination of the eigestfons of the
Schrodinger equation, it also satisfies the Schrodingaaton

1 K@ d - A K

and is thus a wave function defined for> 0; from the completeness relation
(31.8) we obtain the boundary conditiontat O:

lim K(a.q, 1) = 6@-q). (31.15)

The propagator thus represents the time evolution of a waekgh which starts
out as a configuration space delta-function localized inpihiat g’ at the initial
timet = 0.

For time independent Hamiltonians the time dependenceeofvdive func-
tions is known as soon as the eigenener@igand eigenfunctiong,, have been
determined. With time dependence rendered “trivial,” itkessense to focus on
the Green's function, the Laplace transformation of the propagator

$n(Dén(9)

—. (31.16
- E—-En+ie ( )

G(q,q’,E+ie)=%f0 dtetE- K (a. o, 1) =

Here e is a small positive number, ensuring the existence of thegmnal. The
eigenenergies show up as poles in the Green'’s function edidues correspond-
ing to the wave function amplitudes. If one is only interestethe spectrum, one
may restrict the considerations to the (formal) trace of@neen’s function,

/ 1
trG(a.q',E) = quG(q, q.E) = § E_E (31.17)
n n

whereE is complex, with a positive imaginary part, and we have usedeigen-
function orthonormality (31.7). This trace is formal, sinas it stands, the sum
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Figure 31.1: Schematic picture o) the density d{E)
of statesd(E), andb) the spectral staircase func-
tion N(E). The dashed lines denote the mean der
sity of statesl(E) and the average number of states
N(E) discussed in more detail in sect. 34.1.1.

in (31.17) is often divergent. We shall return to this poimtsiects. 34.1.1 and
34.1.2.

A useful characterization of the set of eigenvalues is giveterms of the
density of states, with a delta function peak at each eigenenergy, figure 2,1 (

d(E) = Z S(E - Ep). (31.18)
n
Using the identity exercise 31.1
6(E-Ep) =- lim }Im ! (31.19)

e»+0mr E-E,+ie

we can express the density of states in terms of the traceedbthen’s function,
that is

d(E) = Zé(E - En) = —li_r%%lmtrG(q, q,E +ie). (31.20)
" section 34.1.1

As we shall see after "some” work, a semiclassical formutaifght hand side of
this relation will yield the quantum spectrum in terms ofipdic orbits.

The density of states can be written as the derivati#e) = dN(E)/dE of the
spectral staircase function

N(E) = Z O(E - Ey) (31.21)

which counts the number of eigenenergies beloviigure 31.1 (b). Her® is the
Heaviside function

O(x)=1 ifx>0;, O(X)=0 ifx<O. (31.22)

The spectral staircase is a useful quantity in many contbrth experimental
and theoretical. This completes our lightning review of mfuan mechanics.
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Exercises

31.1. Dirac delta function, Lorentzian representation. 31.2. Green'’s function.

exerQmech - 26jan2004

Derive the representation (31.19)
1 1
B = I M ETE e
of a delta function as imaginary part of 4

(Hint: read up on principal parts, positive and negative
frequency part of the delta function, the Cauchy theorem
in a good quantum mechanics textbook).

Verify Green'’s function Laplace
transform (31.16),

G(a.q, E +ig) % j; dt e%E‘—itK(q, q.t)

) (eP)
E-E,+ie

argue that positive is needed (hint: read a good quan-
tum mechanics textbook).
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