Chapter 7

Hamiltonian dynamics

Conservative mechanical systems have equations of mo-
tion that are symplectic and can be expressed in Hamilto-
nian form. The generic properties within the class of sym-
plectic vector fields are quite flierent from those within

the class of all smooth vector fields: the system always
has a first integral (“energy”) and a preserved volume, and
equilibrium points can never be asymptotically stable in
their energy level.

— John Guckenheimer

Rossler flow of figure 2.6 is of concern only to chemists omtédlical

engineers or the weathermen; physicists do Hamiltoniamuayes, right?
Now, that's full of chaos, too! While it is easier to visuaiaperiodic dynam-
ics when a flow is contracting onto a lower-dimensional atirg set, there are
plenty examples of chaotic flows that do preserve the full@gatic invariance of
Hamiltonian dynamics. The whole story started in fact withiriéaré’s restricted
3-body problem, a realization that chaos rules also in gérfgon-Hamiltonian)
flows came much later.

Y ou MIGHT THINK that the strangeness of contracting flows, flows such as the

Here we briefly review parts of classical dynamics that wd wnéed later
on; symplectic invariance, canonical transformationsl, stability of Hamiltonian
flows. If your eventual destination are applications suclclzsos in quantum
andor semiconductor systems, read this chapter. If you workdorascience
or fluid dynamics, skip this chapter, continue reading wité billiard dynamics
of chapter 8 which requires no incantations of symplecticspar loxodromic
guartets.

W fast track:
chapter 7, p. 121
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Figure 7.1: Phase plane of the unforced, undampe_| &/\j
Duffing oscillator. The trajectories lie on level sets o

the Hamiltonian (7.4).
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7.1 Hamiltonian flows

(P. Cvitanovi€ and L.V. Vela-Arevalo)

An important class of flows are Hamiltonian flows, given by antiltonian appendix B

H(q, p) together with the Hamilton’s equations of motion remark 2.1
. OH oH
o . 7.1
ql apl > pl 8q| > ( )

with the 2D phase space coordinat&ssplit into the configuration space coor-
dinates and the conjugate momenta of a Hamiltonian systemD@videgrees of
freedom (dof):

X=(q,p), g = (01, 0,-...dp), p = (p1. P2, PD)- (7.2)

The energy, or the value of the Hamiltonian function at tladesspace point =
(g, p) is constant along the trajectoryt),

d OH . oH .
d_tH(q(t)’ pt) = 6_qiq' t) + 6_pip' (1)
OHOH OH oH
_ OHoH oHoH _ 7.3
oq dpi  dpi 9q; (73)

so the trajectories lie on surfaces of constant energhgval setsof the Hamilto-
nian{(q, p) : H(g, p) = E}. For 1-dof Hamiltonian systems this is basically the
whole story.

Example 7.1 Unforced undamped Duffing oscillator: When the damping term
is removed from the Duffing oscillator (2.7), the system can be written in Hamiltonian
form with the Hamiltonian

2 2 4
Hmm=%—%+%. (7.4)

This is a 1-dof Hamiltonian system, with a 2-dimensional state space, the plane (q, p).
The Hamilton’s equations (7.1) are

a=p, p=9-¢. (7.5)
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Figure 7.2: A typical collinear helium trajectory in
the [r1,r2] plane; the trajectory enters along theaxis
and then, like almost every other trajectory, after a few
bounces escapes to infinity, in this case alongrthe
axis. r

For 1-dof systems, the ‘surfaces’ of constant energy (7.3) are simply curves in the
phase plane (q, p), and the dynamics is very simple: the curves of constant energy are
the trajectories, as shown in figure 7.1.

Thus all 1-dof systems aistegrable in the sense that the entire phase plane
is foliated by curves of constant energy, either periodics-isathe case for the
harmonic oscillator (a ‘bound state’)—or open (a ‘scattgiirajectory’). Add one example 6.1
more degree of freedom, and chaos breaks loose.

Example 7.2 Collinear helium: In the quantum chaos part of ChaosBook.org we
shall apply the periodic orbit theory to the quantization of helium. In particular, we will
study collinear helium, a doubly charged nucleus with two electrons arranged on a line,
an electron on each side of the nucleus. The Hamiltonian for this system is

1 1 2 2 1
H=Z-pi+>p3 :
2pl+22 I ) r{ +r1o

(7.6)

Collinear helium has 2 dof, and thus a 4-dimensional phase space M, which energy
conservation reduces to 3 dimensions. The dynamics can be projected onto the 2-
dimensional configuration plane, the (r1,r>), ri > 0 quadrant, figure 7.2. It looks messy,
and, indeed, it will turn out to be no less chaotic than a pinball bouncing between three
disks. As always, a Poincaré section will be more informative than this rather arbitrary
projection of the flow.

Note an important property of Hamiltonian flows: if the Hatoil equations
(7.1) are rewritten in the 2 phase space form = v;(X), the divergence of the
velocity field v vanishes, namely the flow is incompressible. The sympleaatic
variance requirements are actually more stringent tharhegphase space volume
conservation, as we shall see in the next section.

7.2 Stability of Hamiltonian flows

Hamiltonian flows dfer an illustration of the ways in which an invariance of equa-
tions of motion can fiect the dynamics. In the case at hand, shmplectic in-
variancewill reduce the number of independent Floquet multiplieysafactor of
2o0r4.
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7.2.1 Canonical transformations

The equations of motion for a time-independddtdof Hamiltonian (7.1) can be
written

Xizwinj(X), a)=( _OI IO), Hj(X):aa_XjH(X)a (7-7)

wherex = (g, p) € M is a phase space poirtty = dxH is the column vector of

partial derivatives of, | is the [DxD] unit matrix, andw the [2Dx2D] symplectic
form

' =-w, w?=-1. (7.8)

The evolution ofJ! (4.6) is again determined by the stability matAx(4.9):

dEtJt(x) = A(X)JY(X), Aij(X) = wik Hj(X) » (7.9)

where the matrix of second derivativelg, = dxonH is called theHessian matrix
From the symmetry oHyg it follows that

ATw +wA=0. (7.10)

This is the defining property for infinitesimal generatorswihplectiqor canoni-
cal) transformations, transformations which leave thegtic formew invariant.

Symplectic matrices are by definition linear transformagithat leave the (an-
tisymmetric) quadratic fornxwj;y; invariant. This immediately implies that any
symplectic matrix satisfies

Q'wQ = w, (7.11)

and — whenQ is close to the identityQ = 1 + 6tA — it follows that thatA must
satisfy (7.10).

Consider now a smooth nonlinear change of variables of fgranh;(x), and
define a new functioK(x) = H(h(x)). Under which conditions dods generate
a Hamiltonian flow? In what follows we will use the notatiép = d/dy;: by
employing the chain rule we have that

~ oh
wijoiK = wijalHa_le (7.12)
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Figure 7.3: Stability exponents of a Hamiltonian equi- @
Iibrium pOint, 2'd0f- generic center degenerate center

(Here, as elsewhere in this book, a repeated index impliesretion.) By virtue
of (7.1) 9O\ H = —wimym, SO that, again by employing the chain rule, we obtain

oh ohn, .
wij0iK = —wija—xjw.ma—;:xn (7.13)

The right hand side simplifies tq (yielding Hamiltonian structure) only if

oh oh
—wna—xzwlma—xf: = Gin (7.14)
or, in compact notation, by definingt);; = g—;‘;
—w(h)Tw@h) = 1 (7.15)

which is equivalent to the requirement th#t is symplectic. h is then called

a canonical transformation We care about canonical transformations for two
reasons. First (and this is a dark art), if the canonicalsfiamationh is very example 6.1
cleverly chosen, the flow in new coordinates might be comalulg simpler than

the original flow. Second, Hamiltonian flows themselves apeime example of
canonical transformations.

Example 7.3 Hamiltonian flows are canonical: For Hamiltonian flows it follows
from (7.10) that dﬁt (JTa)J) = 0, and since at the initial time JO(XO) = 1, Jacobian matrixis
a symplectic transformation (7.11). This equality is valid for all times, so a Hamilto-
nian flow fY(X) is a canonical transformation, with the linearization 0y f'(X) a symplectic
transformation (7.11): For notational brevity here we have suppressed the dependence
on time and the initial point, J = J'(Xo). By elementary properties of determinants it
follows from (7.11) that Hamiltonian flows are phase space volume preserving:

|detJ] = 1. (7.16)
Actually it turns out that for symplectic matrices (on any field) one always has detJ =

+1.
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7.2.2 Stability of equilibria of Hamiltonian flows

For an equilibrium pointx, the stability matrixA is constant. Its eigenvalues
describe the linear stability of the equilibrium poirk.is the matrix (7.10) with
real matrix elements, so its eigenvalues (the Floquet exqtsrof (4.31)) are either
real or come in complex pairs. In the case of Hamiltonian flan®llows from

(7.10) that the characteristic polynomial Affor an equilibriumxq satisfies section 4.3.1
exercise 7.4
exercise 7.5

detA-11) = det@ YA-11)w) = detwAw — A1)

det A" + 11) = det(A + A1). (7.17)

That is, the symplectic invariance implies in addition thHal is an eigenvalue,
then-21, A* and—-A* are also eigenvalues. Distinct symmetry classes of thauglog
exponents of an equilibrium point in a 2-dof system are digpdl in figure 7.3.
It is worth noting that while the linear stability of equitib in a Hamiltonian
system always respects this symmetry, the nonlinear gfabdn be completely
different.

7.3 Symplectic maps

A Floquet multiplierA = A(Xo, t) associated to a trajectory is an eigenvalue of the
Jacobian matrix]. AsJis symplectic, (7.11) implies that

Jt=—wiw, (7.18)
so the characteristic polynomial is reflexive, namely its$egs
det@" - A1) = det(wd w - Al)

det@ - A1) = det@ 1) det — AJ)
= APdet@-A11). (7.19)

det(@ - Al)

Hence ifA is an eigenvalue od, so are 1A, A* and JYA*. Real eigenvalues
always come paired a8, 1/A. The Liouville conservation of phase space vol-
umes (7.16) is an immediate consequence of this pairing @igehvalues. The
complex eigenvalues come in paiks A*, |A| = 1, or in loxodromic quartets,
1/A, A" and YA*. These possibilities are illustrated in figure 7.4.

Example 7.4 Hamiltonian H énon map, reversibility: By (4.54) the Hénon
map (3.19) for b = -1 value is the simplest 2 — dimensionalorientation preserving
area-preserving map, often studied to better understand topology and symmetries of
Poincaré sections of 2 dof Hamiltonian flows. We find it convenient to multiply (3.20)
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Figure 7.4: Stability of a symplectic map iR*. generic center degenerate center

by a and absorb the a factor into X in order to bring the Hénon map for the b = -1
parameter value into the form

X1+ X-g=a-x, i=1..,np, (7.20)
The 2-dimensional Hénon map for b = —1 parameter value

Xoi1 = a-X2—VYn
Vel = Xn. (7.22)

is Hamiltonian (symplectic) in the sense that it preserves area in the [X, Y] plane.

For definitiveness, in numerical calculations in examples to follow we shall fix
(arbitrarily) the stretching parameter value to a = 6, a value large enough to guarantee
that all roots of 0 = f"(X) — x (periodic points) are real. exercise 8.6

Example 7.5 2-dimensional symplectic maps: In the 2-dimensional case the
eigenvalues (5.6) depend only on tr Mt

Ao = % (tr M+ /(tr Mt = 2)(trM! + 2)) . (7.22)

The trajectory is elliptic if the stability residue |tr M!| — 2 < 0, with complex eigenvalues
A1 =€% Ay =A; =e'™ Ifitr M| - 2> 0, A is real, and the trajectory is either

hyperbolic Ar=et, A,=e or (7.23)
inverse hyperbolic Ay =—-€e, Ap,=-et, (7.24)
Example 7.6 Standard map. Given a smooth function g(X), the map
X+l = Xn Tt Yn+1
Yne1 = Yn+0(Xn) (7.25)
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Figure 7.5: Phase portrait for the standard map
for (a) k = 0: symbols denote periodic orbits, full
lines represent quasiperiodic orbits. (b)= 0.3,

k = 0.85 andk = 1.4: each plot consists of 20
random initial conditions, each iterated 400 times(a)

is an area-preserving map. The corresponding nth iterate Jacobian matrix (4.49) is

T(1+gx0 1
M"(Xo, = , . 7.26
ooy =[] 459 1) (7.26
The map preserves areas, detM = 1, and one can easily check that M is symplectic.
In particular, one can consider x on the unit circle, and y as the conjugate angular
momentum, with a function g periodic with period 1. The phase space of the map is
thus the cylinder S; x R (Sy stands for the 1-torus, which is fancy way to say “circle”):
by taking (7.25) mod1 the map can be reduced on the 2-torus S,.

The standard map corresponds to the choice g(X) = k/2r sin(2rx). Whenk = 0,
Vn+1 = Yn = Yo, SO that angular momentum is conserved, and the angle X rotates with
uniform velocity

X1 = Xn+Yo =X +(N+1)yo  mod1l.

The choice of yy determines the nature of the motion (in the sense of sect. 2.1.1): for
Yo = 0 we have that every point on the yo = 0 line is stationary, for yo = p/q the motion
is periodic, and for irrational yo any choice of Xy leads to a quasiperiodic motion (see
figure 7.5 (a)).

Despite the simple structure of the standard map, a complete description of its
dynamics for arbitrary values of the nonlinear parameter K is fairly complex: this can
be appreciated by looking at phase portraits of the map for different k values: when
k is very small the phase space looks very much like a slightly distorted version of
figure 7.5 (a), while, when Kk is sufficiently large, single trajectories wander erratically on
a large fraction of the phase space, as in figure 7.5 (b).

This gives a glimpse of the typical scenario of transition to chaos for Hamilto-
nian systems.

Note that the map (7.25) provides a stroboscopic view of the flow generated by
a (time-dependent) Hamiltonian

HOGYD) = 2+ G(9ai(t) (7.27)

where 61 denotes the periodic delta function

o

s1(t) = Z S(t—m) (7.28)
and
G'(¥) =-9(x). (7.29)

Important features of this map, including transition to global chaos (destruction
of the last invariant torus), may be tackled by detailed investigation of the stability of
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periodic orbits. A family of periodic orbits of period Q already present in the kK = 0
rotation maps can be labeled by its winding number P/Q The Greene residue describes
the stability of a P/Q-cycle:

1
Rp/q = 2 (2—1trMpyq) . (7.30)

If Rpjq € (0,1) the orbit is elliptic, for Rejq > 1 the orbit is hyperbolic orbits, and for
Re/q < 0 inverse hyperbolic.

For k = 0 all points on the yo = P/Q line are periodic with period Q, winding
number P/Q and marginal stability Rejg = 0. As soon as k > 0, only a 2Q of such
orbits survive, according to Poincaré-Birkhoff theorem: half of them elliptic, and half
hyperbolic. If we further vary K in such a way that the residue of the elliptic Q-cycle
goes through 1, a bifurcation takes place, and two or more periodic orbits of higher

period are generated.

7.4 Poincalé invariants

Let C be a region in phase space aviD) its volume. Denoting the flow of the
Hamiltonian system by!(x), the volume ofC after a timet is V(t) = f'(C), and
using (7.16) we derive thieiouville theorem

_ _ afi(x)
V() = j;(c)dx_fcdet 5| 9%
f det@)dX = f dx = V(0), (7.31)
C C

Hamiltonian flows preserve phase space volumes.

The symplectic structure of Hamilton’s equations buys uimonore than
the ‘incompressibility, or the phase space volume coretgow. Consider the
symplectic product of two infinitesimal vectors

(6%, 6%) = 6X wék = 6pidt — 6qiopi
D
= Z {oriented area in they(, p;) plang . (7.32)

i=1
Timet later we have
(6X,6%) = 6x" ITwIs% = 56X woK.

This has the following geometrical meaning. We imagine ghisra reference
phase space point. We then define two other points infiniedhinslose so that
the vectorssx andéX describe their displacements relative to the referencetpoi
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Under the dynamics, the three points are mapped to three nawspvhich are
still infinitesimally close to one another. The meaning @& #bove expression is
that the area of the parallelopiped spanned by the threedaiats is the same as
that spanned by the initial points. The integral (Stokesii®) version of this
infinitesimal area invariance states that for Hamiltoniamw8 theD oriented areas
Vi bounded byD loopsQV;, one per eachy, p;) plane, are separately conserved:

f dpAa dqzsg p - dg = invariant. (7.33)
v Qv

Morally a Hamiltonian flow is reallyD-dimensional, even though its phase space
is 2D-dimensional. Hence for Hamiltonian flows one emphasizethe number
of the degrees of freedom.

F in depth:
3 appendix B.4, p. 763
Commentary

Remark 7.1 Hamiltonian dynamics literature.  If you are reading this book, in the-
ory you already know everything that is in this chapter. lagtice you do not. Try this:
Put your right hand on your heart and say: “l| understand whynegprefers symplectic
geometry.” Honest? Out there there are about 2 centuriesafmaulated literature on
Hamilton, Lagrange, Jacobi etc. formulation of mecharsosne of it excellent. In con-
text of what we will need here, we make a very subjective rebemdation—we enjoyed
reading Percival and Richards [7.1] and Ozorio de Almeida][7

Remark 7.2 Symplectic. The term symplectic —Greek for twining or plaiting together
was introduced into mathematics by Hermann Weyl. ‘Candnlgseage is church-
doctrinal: Greek ‘kanon, referring to a reed used for meament, came to mean in
Latin a rule or a standard.

Remark 7.3 The sign convention of w. The overall sign ofv, the symplectic invari-
ant in (7.7), is set by the convention that the Hamilton'sipipal function (for energy

conserving flows) is given bR(q, q',t) = qu/ pidg — Et. With this sign convention the
action along a classical path is minimal, and the kineticgyef a free particle is positive.

Remark 7.4 Symmetries of the symbol square.  For a more detailed discussion of
symmetry lines see refs. [7.3, 7.4, 7.5, 7.6, 7.7]. It is aaroguestion (see remark 21.2)
as to how time reversal symmetry can be exploited for redustof cycle expansions. For
example, the fundamental domain symbolic dynamics forcfla symmetric systems

is discussed in some detail in sect. 21.5, but how does ormaleetom time-reversal

symmetric symbol sequences to desymmetriz@dsfiate space symbols?
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Remark 7.5 Standard map. Standard maps model free rotators under the influence
of short periodic pulses, as can be physically implemerfadnstance, by pulsed op-
tical lattices in cold atoms physics. On the theoreticaksistandard maps exhibit a
number of important features: smdlvalues provide an example &AM perturba-
tive regime (see ref. [7.10]), while for largér chaotic deterministic transport is ob-
served [7.8, 7.9]; the transition to global chaos also presseemarkable universality
features [7.3, 7.11, 7.6]. Also the quantum counterparhaf inodel has been widely
investigated, being the first example where phenomena likeiym dynamical localiza-
tion have been observed [7.12]. Stability residue was thtoed by Greene [7.11]. For
some hands-on experience of the standard map, download Bigisilation code [7.13].

Remark 7.6 Loxodromic quartets. For symplectic flows, real eigenvalues always
come paired ag,, 1/A, and complex eigenvalues come eitheAinA* pairs,|A| = 1, or

A, 1/A, A*, 1/A* loxodromic quartets. As most maps studied in introductamglimear
dynamics are @, you have perhaps never seen a loxodromic quartet. Howy lédel we to
run into such things in higher dimensions? According to § esitensive study of periodic
orbits of a driven billiard with a four dimensional phase epacarried in ref. [7.17], the
three kinds of eigenvalues occur with about the same likelih
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Exercises

7.1. Complex nonlinear Schiodinger equation. Con-

sider the complex nonlinear Schrodinger equation in one

spatial dimension [7.15]:

2
i%—‘f + % +Bplgl> =0, pB#0.

(&) Show that the functiop : R — C defining the
traveling wave solutiog(x, t) = y(x—ct) forc > 0
satisfies a second-order complef@iential equa-
tion equivalent to a Hamiltonian systemii rel-
ative to the noncanonical symplectic form whose
matrix is given by

0O 0 1 O

w 0O 0 0 1
¢l -1 0 0 -c
0O -1 ¢ O

(b) Analyze the equilibria of the resulting Ha-
miltonian system irR* and determine their linear
stability properties.

(c) Lety(s) = €°2a(s) for a real functiona(s) and
determine a second order equationd¢s). Show
that the resulting equation is Hamiltonian and has
heteroclinic orbits foB < 0. Find them.

(d) Find ‘soliton’ solutions for the complex nonlinear
Schrodinger equation.
(Luz V. Vela-Arevalo)

7.2. Symplectic groupg/algebra

Show that if a matrixC satisfies (7.10), then exgC) is
a symplectic matrix.

7.3. When is a linear transformation canonical?

(@) LetA be af x i invertible matrix. Show that
the mapg : R™ — R given by @,p) —
(Ag, (A1) Tp) is a canonical transformation.

(b) If Ris arotation ink3, show that the magm(p) —
(Rg,Rp) is a canonical transformation.

(Luz V. Vela-Arevalo)

refsNewt - 3apr2009

7.4. Determinants of symplectic matrices.
the determinant of a symplectic matrix4d., by going
through the following steps:

Show that

(a) use (7.19) to prove that for eigenvalue pairs each
member has the same multiplicity (the same holds
for quartet members),

(b) prove that thgoint multiplicity of A = +1 is even,

(c) show that the multiplicities of = 1 and1 = -1
cannot be both odd. (Hint: write

P() = (1= 1™+ 1)*7Q(1)
and show tha@Q(1) = 0).

7.5. Cherry's example. What follows refs. [7.14, 7.16] is
mostly a reading exercise, about a Hamiltonian system
that islinearly stablebutnonlinearly unstableConsider
the Hamiltonian system aR* given by

1 1
H = 3(a7 + p}) = (6 + P2) + 5 Pa(Pi - o) — CuoPr.

(&) Show that this system has an equilibrium at the
origin, which is linearly stable. (The linearized
system consists of two uncoupled oscillators with
frequencies in ratios 2:1).

(b) Convince yourself that the following is a family of
solutions parameterize by a constant

q1=—\/§COS¢_T), :COSZC—T)’
_ t—71 _t—‘r

pl:\/Esm(t—r)’ p2:5|n2(t—r).
t—71 t—71

These solutions clearly blow up in finite time;
however they start a = 0 at a distanceV3/r
from the origin, so by choosing large, we can
find solutions starting arbitrarily close to the ori-
gin, yet going to infinity in a finite time, so the
origin is nonlinearly unstable

(Luz V. Vela-Arevalo)
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