Chapter 7

Hamiltonian dynamics

Conservative mechanical systems have equations of mo-
tion that are symplectic and can be expressed in Hamilto-
nian form. The generic properties within the class of sym-
plectic vector fields are quite fiiérent from those within

the class of all smooth vector fields: the system always
has afirst integral (“energy”) and a preserved volume, and
equilibrium points can never be asymptotically stable in
their energy level.

— John Guckenheimer

Rossler flow of figure 2.6 is of concern only to chemists omféalical

engineers or the weathermen; physicists do Hamiltoniaruayes, right?
Now, that's full of chaos, too! While it is easier to visuaiaperiodic dynam-
ics when a flow is contracting onto a lower-dimensional atire set, there are
plenty examples of chaotic flows that do preserve the fullggetic invariance of
Hamiltonian dynamics. The whole story started in fact withrfearé’s restricted
3-body problem, a realization that chaos rules also in ggrfaon-Hamiltonian)
flows came much later.

Y ou MIGHT THINK that the strangeness of contracting flows, flows such as the

Here we briefly review parts of classical dynamics that wd wnéed later
on; symplectic invariance, canonical transformationsl, stability of Hamiltonian
flows. If your eventual destination are applications suclcleos in quantum
andor semiconductor systems, read this chapter. If you workdaroscience
or fluid dynamics, skip this chapter, continue reading wfité billiard dynamics
of chapter 8 which requires no incantations of symplectizspar loxodromic
quartets.

W fast track:
chapter 7, p. 121
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CHAPTER 7. HAMILTONIAN DYNAMICS 122

P
Figure 7.1: Phase plane of the unforced, undampe \/

Duffing oscillator. The trajectories lie on level sets o
the Hamiltonian (7.4). o =+ 5 A 3

7.1 Hamiltonian flows

(P. Cvitanovic and L.V. Vela-Arevalo)

An important class of flows are Hamiltonian flows, given by antiltonian appendix B

H(q, p) together with the Hamilton's equations of motion remark 2.1
. OH . oH
=2 = -2 7.1
4= b= (7.1

with the 2D phase space coordinatessplit into the configuration space coor-
dinates and the conjugate momenta of a Hamiltonian systémDvidegrees of
freedom (dof):

x=(,p), q=(01,02,...,0p) p = (P, P2,-.- Pp)- (7.2)

The energy, or the value of the Hamiltonian function at tleesspace point =
(g, p) is constant along the trajectoxryt),

d oH . oH .

i1 @®.p@) g0 ®) + an P ®
oHOH oHoH
——— —_—_— =0, 7.3
adi opi dpi 94 73)
so the trajectories lie on surfaces of constant energleval setf the Hamilto-
nian{(qg, p) : H(g. p) = E}. For 1-dof Hamiltonian systems this is basically the
whole story.

Example 7.1 Unforced undamped Duffing oscillator: When the damping term
is removed from the Duffing oscillator (2.7), the system can be written in Hamiltonian
form with the Hamiltonian
2 2 4
S |
H == - =+ —. 7.4
@n=%-5+ (7.4)

This is a 1-dof Hamiltonian system, with a 2-dimensional state space, the plane (g, p).
The Hamilton's equations (7.1) are

a=p, p=9-¢. (7.5)
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Figure 7.2: A typical collinear helium trajectory in
the [r1, r2] plane; the trajectory enters along theaxis
and then, like almost every other trajectory, after a few
bounces escapes to infinity, in this case alongrthe
axis. r

For 1-dof systems, the ‘surfaces’ of constant energy (7.3) are simply curves in the
phase plane (q, p), and the dynamics is very simple: the curves of constant energy are
the trajectories, as shown in figure 7.1.

Thus all 1-dof systems aiategrable in the sense that the entire phase plane

is foliated by curves of constant energy, either periodics-sathe case for the
harmonic oscillator (a ‘bound state’)—or open (a ‘scatigfirajectory’). Add one example 6.1
more degree of freedom, and chaos breaks loose.

Example 7.2 Collinear helium: In the quantum chaos part of ChaosBook.org we
shall apply the periodic orbit theory to the quantization of helium. In particular, we will
study collinear helium, a doubly charged nucleus with two electrons arranged on a line,
an electron on each side of the nucleus. The Hamiltonian for this system is

1 1 2 2 1
H=Zp?+Zpi-—-= .
2p1+2p2 ry r2+r1+r2

(7.6)

Collinear helium has 2 dof, and thus a 4-dimensional phase space M, which energy
conservation reduces to 3 dimensions. The dynamics can be projected onto the 2-
dimensional configuration plane, the (r1,r2), ri > 0 quadrant, figure 7.2. It looks messy,
and, indeed, it will turn out to be no less chaotic than a pinball bouncing between three
disks. As always, a Poincaré section will be more informative than this rather arbitrary
projection of the flow.

Note an important property of Hamiltonian flows: if the Hatmil equations

(7.1) are rewritten in the @ phase space form = vij(X), the divergence of the

velocity field v vanishes, namely the flow is incompressible. The sympléatic
variance requirements are actually more stringent tharthegphase space volume
conservation, as we shall see in the next section.

7.2 Stability of Hamiltonian flows

Hamiltonian flows @er an illustration of the ways in which an invariance of equa-
tions of motion can @iect the dynamics. In the case at hand, shmplectic in-
variancewill reduce the number of independent Floquet multiplieysalfactor of
2o0r4.
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7.2.1 Canonical transformations

The equations of motion for a time-independddtdof Hamiltonian (7.1) can be
written

wmo0. w=( 5 5], me = e, @.7)

wherex = (g, p) € M is a phase space poirty = dxH is the column vector of
partial derivatives of, | is the [DxD] unit matrix, andw the [2Dx2D] symplectic
form

W =-w, w?=-1. (7.8)

The evolution ofJt (4.6) is again determined by the stability matAix(4.9):

S =ARIM, AR = ox ), 79

where the matrix of second derivatively, = dkdnH is called theHessian matrix
From the symmetry oHy, it follows that

Alw+wA=0. (7.10)
This is the defining property for infinitesimal generatorswplectiqor canoni-
cal) transformations, transformations which leave theggatic formew invariant.

Symplectic matrices are by definition linear transformagithat leave the (an-

tisymmetric) quadratic fornx wijy; invariant. This immediately implies that any
symplectic matrix satisfies

Q"wQ = w, (7.11)

and — whenQ is close to the identityQ = 1 + 6tA — it follows that thatA must
satisfy (7.10).

Consider now a smooth nonlinear change of variables of fpranh;(x), and
define a new functiofK (x) = H(h(x)). Under which conditions dods generate
a Hamiltonian flow? In what follows we will use the notatién = /dy;: by
employing the chain rule we have that

~  oh
wjdiK = wijﬁ|Ha—X: (7.12)
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complex saddle saddle-center

* .3

degenerate saddle real saddle

@

Figure 7.3: Stability exponents of a Hamiltonian equi-
librium point, 2-dof. generic center degenerate center

(Here, as elsewhere in this book, a repeated index impliesretion.) By virtue
of (7.1)9|H = —wimym, SO that, again by employing the chain rule, we obtain

oh Ohm .
wijdiK = —wjj a_m”'ma_xr:x“ (7.13)

The right hand side simplifies tq (yielding Hamiltonian structure) only if

ohy oh,
—wija_)(;wlma_xl: = Gin (7.14)

or, in compact notation, by defininglf); = %

—w(@n)Tw(@dh) = 1 (7.15)

which is equivalent to the requirement thét is symplectic. h is then called

a canonical transformation We care about canonical transformations for two
reasons. First (and this is a dark art), if the canonicalsfiemationh is very example 6.1
cleverly chosen, the flow in new coordinates might be comalalg simpler than

the original flow. Second, Hamiltonian flows themselves apeime example of
canonical transformations.

Example 7.3 Hamiltonian flows are canonical: For Hamiltonian flows it follows
from (7.10) that c% (JTwJ) = 0, and since at the initial time J°(xo) = 1, Jacobian matrixis
a symplectic transformation (7.11). This equality is valid for all times, so a Hamilto-
nian flow f'(x) is a canonical transformation, with the linearization dy f'(x) a symplectic
transformation (7.11): For notational brevity here we have suppressed the dependence
on time and the initial point, J = J'(xo). By elementary properties of determinants it
follows from (7.11) that Hamiltonian flows are phase space volume preserving:

|detd| = 1. (7.16)
Actually it turns out that for symplectic matrices (on any field) one always has detJ =

+1.
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7.2.2 Stability of equilibria of Hamiltonian flows

For an equilibrium pointx, the stability matrixA is constant. Its eigenvalues
describe the linear stability of the equilibrium poird is the matrix (7.10) with
real matrix elements, so its eigenvalues (the Floquet exmisrof (4.31)) are either
real or come in complex pairs. In the case of Hamiltonian flatw®Illows from

(7.10) that the characteristic polynomial Affor an equilibriumx, satisfies section 4.3.1
exercise 7.4
exercise 7.5

detA—11) = det@ (A-11)w) = det(wAw — 1)
detAT + 1) = det(A+ 11). (7.17)

That is, the symplectic invariance implies in addition that is an eigenvalue,
then—4, 1* and-1* are also eigenvalues. Distinct symmetry classes of theu€log
exponents of an equilibrium point in a 2-dof system are aigpdl in figure 7.3.
It is worth noting that while the linear stability of equifie in a Hamiltonian
system always respects this symmetry, the nonlinear gjabdn be completely
different.

7.3 Symplectic maps

A Floquet multiplierA = A(Xo, t) associated to a trajectory is an eigenvalue of the
Jacobian matrix. AsJis symplectic, (7.11) implies that

Jlt=—wiw, (7.18)
so the characteristic polynomial is reflexive, namely its$s
det@-Al) = det@" —Al) = det(-wl w - Al)

det@ - Al) = det@ ) det( — AJ)
AP det@ - A1) (7.19)

Hence ifA is an eigenvalue o, so are 1A, A* and JA*. Real eigenvalues
always come paired as, 1/A. The Liouville conservation of phase space vol-
umes (7.16) is an immediate consequence of this pairing @igehvalues. The
complex eigenvalues come in paiks A*, |A| = 1, or in loxodromic quartets,
1/A, A* and YA*. These possibilities are illustrated in figure 7.4.

Example 7.4 Hamiltonian H énon map, reversibility: By (4.54) the Hénon
map (3.19) for b = -1 value is the simplest 2 — dimensionalorientation preserving
area-preserving map, often studied to better understand topology and symmetries of
Poincaré sections of 2 dof Hamiltonian flows. We find it convenient to multiply (3.20)
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periodic orbits. A family of periodic orbits of period Q already present in the k = 0
rotation maps can be labeled by its winding number P/Q The Greene residue describes
the stability of a P/Q-cycle:

1
Rerg = 7 (2-1trMerg) . (7.30)

If Rejq € (0, 1) the orbit is elliptic, for Rpyq > 1 the orbit is hyperbolic orbits, and for
Rep/q < 0 inverse hyperbolic.

For k = 0 all points on the yo = P/Q line are periodic with period Q, winding
number P/Q and marginal stability Rpjq = 0. As soon as k > 0O, only a 2Q of such
orbits survive, according to Poincaré-Birkhoff theorem: half of them elliptic, and half
hyperbolic.  If we further vary k in such a way that the residue of the elliptic Q-cycle
goes through 1, a bifurcation takes place, and two or more periodic orbits of higher

period are generated.

7.4 Poincag invariants

Let C be a region in phase space avifD) its volume. Denoting the flow of the
Hamiltonian system by!(x), the volume ofC after a timet is V(t) = f'(C), and
using (7.16) we derive theiouville theorem

_ _ aft(x)
V() = ffl(c)dx—j;det X dx
fdet(J)dX:de:V(O), (7.31)
c c

Hamiltonian flows preserve phase space volumes.
The symplectic structure of Hamilton's equations buys usimonore than

the ‘incompressibility, or the phase space volume coretézn. Consider the
symplectic product of two infinitesimal vectors

(6%,6%) = X wok = opisti — 606 P

D
Z {oriented area in theg(, p;) plang . (7.32)
i=1

Timet later we have
(6X,6%) = X1 ITwIs% = 6X wok.

This has the following geometrical meaning. We imagine ehisra reference
phase space point. We then define two other points infiniedsinclose so that
the vectorssx ands X describe their displacements relative to the referencetpoi

newton - 3apr2009 ChaosBook.org version13, Dec 31 2009
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Under the dynamics, the three points are mapped to three nawspvhich are
still infinitesimally close to one another. The meaning & &bove expression is
that the area of the parallelopiped spanned by the threefoiats is the same as
that spanned by the initial points. The integral (Stokest) version of this
infinitesimal area invariance states that for Hamiltoniaw8 theD oriented areas
V; bounded byD loopsQV;, one per eachy, p;) plane, are separately conserved:

f dpAadg= 56 p-dg = invariant. (7.33)
v Qv

Morally a Hamiltonian flow is reallyD-dimensional, even though its phase space
is 2D-dimensional. Hence for Hamiltonian flows one emphasizethe number
of the degrees of freedom.

in depth:
” appendix B.4, p. 763

Commentary

Remark 7.1 Hamiltonian dynamics literature.  If you are reading this book, in the-
ory you already know everything that is in this chapter. lagtice you do not. Try this:
Put your right hand on your heart and say: “I understand wtiynegprefers symplectic
geometry.” Honest? Out there there are about 2 centuriesafmaulated literature on
Hamilton, Lagrange, Jacobi etc. formulation of mecharsespe of it excellent. In con-
text of what we will need here, we make a very subjective revemdation—we enjoyed
reading Percival and Richards [7.1] and Ozorio de Almeida][7

Remark 7.2 Symplectic. The term symplectic —Greek for twining or plaiting together
was introduced into mathematics by Hermann Weyl. ‘Candnlseeage is church-
doctrinal: Greek ‘kanon, referring to a reed used for meament, came to mean in
Latin a rule or a standard.

Remark 7.3 The sign convention of w. The overall sign ofv, the symplectic invari-
ant in (7.7), is set by the convention that the Hamilton'sipipal function (for energy
conserving flows) is given bR(q, d',t) = qu/ pidg — Et. With this sign convention the
action along a classical path is minimal, and the kineticgyef a free particle is positive.

Remark 7.4 Symmetries of the symbol square.  For a more detailed discussion of
symmetry lines see refs. [7.3, 7.4, 7.5, 7.6, 7.7]. It is aeroguestion (see remark 21.2)
as to how time reversal symmetry can be exploited for reduastof cycle expansions. For
example, the fundamental domain symbolic dynamics forcegfla symmetric systems

is discussed in some detail in sect. 21.5, but how does ormleeftom time-reversal

symmetric symbol sequences to desymmetriz@dsiate space symbols?
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Remark 7.5 Standard map. Standard maps model free rotators under the influence
of short periodic pulses, as can be physically implemerfadnstance, by pulsed op-
tical lattices in cold atoms physics. On the theoreticaksistandard maps exhibit a
number of important features: smdllvalues provide an example &AM perturba-
tive regime (see ref. [7.10]), while for largér chaotic deterministic transport is ob-
served [7.8, 7.9]; the transition to global chaos also presseemarkable universality
features [7.3, 7.11, 7.6]. Also the quantum counterparhaf model has been widely
investigated, being the first example where phenomena lieaym dynamical localiza-
tion have been observed [7.12]. Stability residue was thtoed by Greene [7.11]. For
some hands-on experience of the standard map, download igislation code [7.13].

Remark 7.6 Loxodromic quartets. For symplectic flows, real eigenvalues always
come paired as, 1/A, and complex eigenvalues come eitheAinA* pairs,|A| = 1, or

A, 1/A, A*, 1/A* loxodromic quartets. As most maps studied in introductarglimear
dynamics are @ you have perhaps never seen a loxodromic quartet. Howyldeel we to
run into such things in higher dimensions? According to  esttensive study of periodic
orbits of a driven billiard with a four dimensional phase spacarried in ref. [7.17], the
three kinds of eigenvalues occur with about the same likelh
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Exercises

7.1. Complex nonlinear Schiddinger equation. Con-  7.4. Determinants of symplectic matrices. ~ Show the

sider the complex nonlinear Schrodinger equation in one

spatial dimension [7.15]:

2
ig—f + % +Belpl> =0, B#0.

(a) Show that the functiop : R — C defining the
traveling wave solutiog(x, t) = y(x—ct) forc > 0
satisfies a second-order complefeliential equa-
tion equivalent to a Hamiltonian systemiirt rel-
ative to the noncanonical symplectic form whose
matrix is given by

the determinant of a symplectic matrix+d, by goin
through the following steps:

(a) use (7.19) to prove that for eigenvalue pairs
member has the same multiplicity (the same |
for quartet members),

(b) prove that thgoint multiplicity of 1 = +1 is evel

(c) show that the multiplicities of = 1 andA = -1
cannot be both odd. (Hint: write

P() = (A= 1™+ 177Q(1)
and show thaQ(1) = 0).

0 0 1 0
We _01 8 8 _i 7.5. Cherry’'s example. What follows refs. [7.14, 7.16]
0 -1 ¢ O mostly a reading exercise, about a Hamiltonian sy
that islinearly stablebutnonlinearly unstableConside
(b) Analyze the equilibria of the resulting Ha- the Hamiltonian system aR? given by
miltonian system irk* and determine their linear 1 1
stability properties. H = (6 + ) — (@ + p3) + 5 pa(P} — &) —
(c) Lety(s) = €°5/2a(s) for a real functiona(s) and
determine a second order equation#s). Show (a) Show that this system has an equilibrium a
that the resulting equation is Hamiltonian and has origin, which is linearly stable. (The lineari:
heteroclinic orbits fop < 0. Find them. system consists of two uncoupled oscillators
(d) Find ‘soliton’ solutions for the complex nonlinear frequencies in ratios 2:1).
Schrodinger equation. (b) Convince yourself that the following is a family
solutions parameterize by a constant
(Luz V. Vela-Arevalo)
7.2. Symplectic group/algebra \rCO‘S( -7 cos 2¢ -
Show that if a matrixC satisfies (7.10), then exg() is t=-V2—— ®=—
a symplectic matrix. sint -7 sin 2 -
yme pL= ﬁ%» p2 = T¢
7.3. When is a linear transformation canonical? -7 -
. . . These solutions clearly blow up in finite tir
(@) LetA be a (‘ Xg |nven|k2)r!e matrix.  Show that however they start at = 0 at a distancev3/
the méEEﬁ : _R - R given by q’_p) = from the origin, so by choosing large, we ce
(Ag. (A7) "p) is a canonical transformation. find solutions starting arbitrarily close to the
(b) If Ris arotation irk3, show that the mam( p) — gin, yet going to infinity in a finite time, so 1
(R g, R p) is a canonical transformation. origin is nonlinearly unstable
(Luz V. Vela-Arevalo) (Luz V. Vela-Arevalo
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