CHAPTER 16. TRANSPORTING DENSITIES

Gl

Figure 16.1: (a) First level of partitioning: A
coarse partition ofM into regionsM,, M,, and
Chapter 16 Ma. (b) n = 2 level of partitioning: A refinement
of the above partition, with each regiovi; subdi-
vided into Mo, Mz, and Mi,. () (b)

Transporting densities

Paulina: I'll draw the curtain:
My lord’s almost so far transported that
He'll think anon it lives.

—W. Shakespearéhe Winter's Tale

(P. Cvitanovi¢, R. Artuso, L. Rondoni, and E.A. Spiegel)

saw that such a trajectory can be very complicated. In chaptee stud-

ied a small neighborhood of a trajectory and learned that sighborhood
can grow exponentially with time, making the concept of kiag an individual
trajectory for long times a purely mathematical idealiaati

I N cHAPTERS 2, 3, 7 and 8 we learned how to track an individual trajectand

While the trajectory of an individual representative paimy be highly con-
voluted, as we shall see, the density of these points migit@wn a manner that
is relatively smooth. The evolution of the density of rejgrstive points is for
this reason (and other that will emerge in due course) oftgrearest. So are
the behaviors of other properties carried by the evolvingrswof representative
points.

We shall now show that the global evolution of the densityegfresentative
points is conveniently formulated in terms of linear actafrevolution operators.
We shall also show that the important, long-time “naturalariant densities are
unspeakably unfriendly and essentially uncomputableysweere singular func-
tions with support on fractal sets. Hence, in chapter 17 whénk what is it that
the theory needs to predict (“expectation values” of “obables”), relate these
to the eigenvalues of evolution operators, and in chapt@r® 20 show how to
compute these without ever having to compute a “naturaliiiant densityg.

309

16.1 Measures

Do | then measure, O my God, and know not what | mea-
sure?
—St. AugustineThe confessions of Saint Augustine

A fundamental concept in the description of dynamics of atihasystem is that
of measurewhich we denote bgu(x) = p(X)dx. An intuitive way to define and
construct a physically meaningful measure is by a procesafse-graining
Consider a sequence 1, 2, n.,.. of increasingly refined partitions of state space,
figure 16.1, into regiongy{; defined by the characteristic function

a1 ifxeM,
xi( ‘{ 0 otherwise (16.1)

A coarse-grained measure is obtained by assigning the ‘trasthe fraction of
trajectories contained in thigh region M; c M at thenth level of partitioning of
the state space:

s [ a9 = [ 9= [ axot. (16.2)

The functionp(X) = p(x,t) denotes thelensityof representative points in state
space at timé. This density can be (and in chaotic dynamics, often is) an ar
bitrarily ugly function, and it may display remarkable sitgrities; for instance,
there may exist directions along which the measure is samguith respect to the
Lebesgue measure (namely the uniform measure on the state)spWe shall
assume that the measure is normalized

()
DiAui=1, (16.3)
i

where the sum is over subregionat thenth level of partitioning. The infinites-
imal measure(x) dx can be thought of as an infinitely refined patrtition limit of
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Figure 16.2: The evolution rulef'can be used to map /§ (M)
a regionM; of the state space into the regid{{M;).

Api = IMilp(%), % € M;, with normalization

f dxp(x) = 1. (16.4)
M

Here|M;| is the volume of regionM;, and all|Mi| — 0 asn — oo.

So far, any arbitrary sequence of partitions will do. What atelligent ways
of partitioning state space? We already know the answer frioapter 11, but let
us anyway develope some intuition about how the dynamicsparts densities. chapter 11

16.2 Perron-Frobenius operator

Given a density, the question arises as to what it might evoito with time.
Consider a swarm of representative points making up the imeasntained in a
region M; at timet = 0. As the flow evolves, this region is carried intqM;),
as in figure 16.2. No trajectory is created or destroyed, soctinservation of
representative points requires that

f pr(x,t)=f d% (%, 0).
M) M

Transform the integration variable in the expression onléfiehand side to the
initial points xo = f~Y(x),

| drontri0jdetdv0)] = [ dxope0).
Mi Mi

The density changes with time as the inverse of the JacoBids)(

£(%0,0)

m s X= f‘(xo) s (165)

p(x1) =

which makes sense: the density varies inversely with thaitefimal volume
occupied by the trajectories of the flow.
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Figure 16.3: A piecewise-linear skew ‘full tent map’
(16.11) (Ao = 4/3, A1 = -4). 02 04 06 08 1

The relation (16.5) is linear ip, so the manner in which a flow transports
densities may be recast into the language of operators, itipgvr exercise 16.1

9] = tO) = —ft 9] . .
o) = (£20)09 = [ drod(x= 1'00)o00.0) (16.6)

Let us check this formula. As long as the zero is not smack erbtrder ofd M,
integrating Dirac delta functions is easﬁ/\:/( dxé(x) = 1if 0 € M, zero otherwise.
The integral over a 1-dimensional Dirac delta function piak the Jacobian of its
argument evaluated at all of its zeros:

f dxs(h(x) = Z ﬁ (16.7)

{x:h(x)=0}

and ind dimensions the denominator is replaced by

(x=x)h'(x )
h(x),
fdxé(h(x)) = & X (16.8)
= f dxs(h()) = >’ %(x)
T IM {xh(x)=0} 'dEIW
Now you can check that (16.6) is just a rewrite of (16.5): exercise 16.2
(£L'op) 0 fpl(_xw (1-dimensional)
%o oo 1T C0)l
(%) : :
= —_— (d-dimensional) (16.9)
. ;m det (o)

For a deterministic, invertible flow has only one preimage); allowing for mul-
tiple preimages also takes account of noninvertible maygpauch as the ‘stretch
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& fold’ maps of the interval, to be discussed briefly in the hexample, and in
more detail in sect. 11.3.

We shall refer to the integral operator with singular kel d€l.6) as théerron-

Frobenius operatar exercise 16.3
example 23.7

L'(xy) = 5(x- ') . (16.10)

If you do not like the word “kernel” you might prefer to think «'(x, y) as a ma-

trix with indices x, y, and index summation in matrix multiplication replaced by

an integral ovey, (L o p)(X) = fdy[jt(x, y)p(y) . (In the next example Perronremark 19.4
Frobenius operator is a matrix, and (16.14) illustrates drimapproximation

to the Perron-Frobenius operator.) The Perron-Froberpasator assembles the
densityp(x, t) at timet by going back in time to the densifyXo, 0) at timet = 0.

Example 16.1 Perron-Frobenius operator for a piecewise-linear map: Assume
the expanding 1 — dimensionalmap f(X) of figure 16.3, a piecewise-linear 2—branch
map with slopes Ao > 1 and A1 = —Ag/(Ag— 1)< -1: exercise 16.7
_ fg(X) = AoX, Xe Mo= [0, 1/1\0)
f69= { 500 = As-%,  xe My = (L/Andl. (16.11)

Both f(Mo) and f(M,) map onto the entire unit interval M = [0, 1]. We shall refer to
any unimodal map whose critical point maps onto the “left” unstable fixed point Xy as
the “Ulam” map. Assume a piecewise constant density

_J po ifxe Mo
p()()—{ £ xe M - (16.12)

As can be easily checked using (16.9), the Perron-Frobenius operator acts on this
piecewise constant function as a [2x2] Markov matrix L with matrix elements  exercise 16.1
exercise 16.5

(-l £

P1 ol 1Al P1

stretching both pg and p1 over the whole unit interval A. In this example the density is
constant after one iteration, so L has only a unit eigenvalue e® = 1/|Ag| + 1/|A4] = 1,
with constant density eigenvector po = p1. The quantities 1/|Ao|, 1/|A4| are, respec-
tively, the fractions of state space taken up by the |[Mo|, |M4| intervals. This simple
explicit matrix representation of the Perron-Frobenius operator is a consequence of the
piecewise linearity of f, and the restriction of the densities p to the space of piece-
wise constant functions. The example gives a flavor of the enterprize upon which we
are about to embark in this book, but the full story is much subtler: in general, there
will exist no such finite-dimensional representation for the Perron-Frobenius operator.
(continued in example 17.4)

fast track:
W sect. 16.4, p. 316
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16.3 Why not just leave it to a computer?

Another subtlety in the [dynamical systems ] theory is that
topological and measure-theoretic concepts of genericity
lead to diferent results.

— John Guckenheimer
(R. Artuso and P. Cvitanovit)

To a student with a practical bent the above Example 16.1esig@ strategy for, &)
constructing evolution operators for smooth maps, as $imftpartitions of state

space into regiond;, with a piecewise-linear approximatiorfsto the dynamics

in each region, but that would be too naive; much of the plafsidnteresting
spectrum would be missed. As we shall see, the choice ofitmspace fop is chapter 23
crucial, and the physically motivated choice is a space afatmfunctions, rather

than the space of piecewise constant functions.

All of the insight gained in this chapter and in what is to ée¥ is nothing but
an elegant way of thinking of the evolution operat6r,as a matrix (this point of
view will be further elaborated in chapter 23). There are yn@xtbook methods
of approximating an operataf by sequences of finite matrix approximatiafis
but in what follows the great achievement will be that we khabid construct-
ing any matrix approximation ta altogether. Why a new method? Why not
just run it on a computer, as many do with such relish in diadjeimg quantum
Hamiltonians?

The simplest possible way of introducing a state space etigation, fig-
ure 16.4, is to partition the state spas¢ with a non-overlapping collection of
setsMi, i = 1,...,N, and to consider densities (16.2) piecewise constant dm eac
MiZ

p(¥) = ZN: p'@
2 IM|

wherey;i(x) is the characteristic function (16.1) of the skf;. This piecewise
constant density is a coarse grained presentation of a faiaegt density(X),
with (16.2)

o = fM i

The Perron-Frobenius operator does not preserve the pigeeanstant form, but
we may reapply coarse graining to the evolved measure

ol = fM Ax(Lop09)

Pi
= IMil Im

dx fM dys(x— 1(y)) .
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BRUTO INSERSITIVO METHoD :

cigenshite. ]_,.Lj =2

eignvalue  det (1-2zL)=0

s A
= zt=agay;

25"
i
N @w
Figure 16.4: State space discretization approach t
computing averages. exach spechum Doy Riydey By, o

w

w (7

or
N -1
, IMjn 2 (M)
Pi = ;pl ‘Mjl
In this way
M0 M,
Lij = M o =pL (16.14)

IMil

is a matrix approximation to the Perron-Frobenius operaind its leading left
eigenvector is a piecewise constant approximation to tverient measure. Itis
an old idea of Ulam that such an approximation for the PeFmbenius operator
is a meaningful one. remark 16.3

The problem with such state space discretization apprsaichthat they are
blind, the grid knows not what parts of the state space are moless important.
This observation motivated the development of the invaniamtitions of chaotic
systems undertaken in chapter 11, we exploited the intritagiology of a flow to
give us both an invariant partition of the state space andasure of the partition
volumes, in the spirit of figure 1.11.

Furthermore, a piecewise constarttelongs to an unphysical function space,
and with such approximations one is plagued by numericéhet$ such as spu-
rious eigenvalues. In chapter 23 we shall employ a more rfapproach to
extracting spectra, by expanding the initial and final digsp, p’ in some basis
@0, ¢1, ¥2,- -+ (orthogonal polynomials, let us say), and replacifigy, X) by its
¢, basis representation.s = (.|Llgs). The art is then the subtle art of finding
a “good” basis for which finite truncations af,s give accurate estimates of the
eigenvalues of’. chapter 23

Regardless of how sophisticated the choice of basis migthbebasic prob-
lem cannot be avoided - as illustrated by the natural medsuthe Hénon map
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(3.19) sketched in figure 16.5, eigenfunctions/dire complicated, singular func-
tions concentrated on fractal sets, and in general cannagresented by a nice
basis set of smooth functions. We shall resort to matrixesgntations of_ and
the ¢, basis approach only insofar this helps us prove that thetspedhat we
compute is indeed the correct one, and that finite periodiit druncations do
converge.

in depth:
” chapter 1, p. 3
16.4 Invariant measures

A stationaryor invariant densityis a density left unchanged by the flow
p(x.1) = p(x.0) = p(x). (16.15)

Conversely, if such a density exists, the transformafigr) is said to beneasure-
preserving As we are given deterministic dynamics and our goal is thrameo
tation of asymptotic averages of observables, our task iddntify interesting
invariant measures for a givefii(x). Invariant measures remain dfected by dy-
namics, so they are fixed points (in the infinite-dimensidoaktion space op

densities) of the Perron-Frobenius operator (16.10), thighunit eigenvalue: exercise 16.3

Lp(x) = f dys(x— f'¢))ey) = p(¥). (16.16)
M

In general, depending on the choiceféfx) and the function space fp(x), there
may be no, one, or many solutions of the eigenfunction camditl6.16). For
instance, a singular measuig(x) = 6(x — xg)dx concentrated on an equilibrium
point xq = f'(Xg), or any linear combination of such measures, each coratenitr
on a diferent equilibrium point, is stationary. There are thus itdly many sta-
tionary measures that can be constructed. Almost all of themunnatural in the
sense that the slightest perturbation will destroy them.

From a physical point of view, there is no way to prepare ahitlensities
which are singular, so we shall focus on measures which mitslof transforma-
tions experienced by an initial smooth distributjefx) under the action of,

po(¥) = lim fM dys(x— F{(»)(y. 0). fM dyp(y.0)= 1. (16.17)

Intuitively, the “natural” measure should be the measueag ihthe least sensitive
to the (in practice unavoidable) external noise, no maier Weak.
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16.4.1 Natural measure

Huang: Chen-Ning, do you think ergodic theory gives us
useful insight into the foundation of statistical mechaflic
Yang: | don't think so.

—Kerson HuangC.N. Yang interview

In computer experiments, as the Hénon example of figure, 1heslong time
evolution of many “typical” initial conditions leads to tisame asymptotic distri-
bution. Hence the@atural (also called equilibrium measure, SRB measure, Sinai-
Bowen-Ruelle measure, physical measure, invariant densitural density, or

even “natural invariant”) is defined as the limit exercise 16.8
exercise 16.9

liMe e 2 dr oty - £7(x0)) flows
B = (16.18)
liMneo 2 205 8(y = F4(%0)) maps,

wherexg is a generic initial point. Generated by the actionfofthe natural
measure satisfies the stationarity condition (16.16) aridus invariant by con-
struction.

Staring at an average over infinitely many Dirac deltas isanptospect we
cherish. From a computational point of view, the natural snea is the visitation
frequency defined by coarse-graining, integrating (16dl@y theM; region

AT = Jim tt-' (16.19)

wheret; is the accumulated time that a trajectory of total duratispends in the
M, region, with the initial pointxy picked from some smooth densjtyx).

Leta = a(x) be anyobservable In the mathematical literatui®x) is a func-
tion belonging to some function space, for instance theespaintegrable func-
tionsL, that associates to each point in state space a number cobraghbers.
In physical applications the observalal) is necessarily a smooth function. The
observable reports on some property of the dynamical sysBsweral examples
will be given in sect. 17.1.

Thespace averagef the observable with respect to a measuges given by
thed-dimensional integral over the state spae

1
@, = o | depdatg

loml = de,o(x) =mass inM. (16.20)

For now we assume that the state spAdehas a finite dimension and a finite
volume. By definition{a), is a function(al) ofp. Forp = po natural measure we
shall drop the subscript in the definition of the space av&rag,, = (a).
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Inserting the right-hand-side of (16.18) into (16.20), vee shat the natural
measure corresponds tdieme averageof the observable along a trajectory of
the initial pointxo,

t
& = Jim % dra(fT(x)). (16.21)
—00 O

Analysis of the above asymptotic time limit is the centradldem of ergodic
theory. TheBirkhoff ergodic theorenasserts that if an invariant measyr@x- remark 16.1
ists, the limita(xo) for the time average (16.21) exists for (almost) all iditig. appendix A
Still, Birkhoff theorem says nothing about the dependenceyaf time averages
ay, (or, equivalently, that the construction of natural measu16.18) leads to a
“single” density, independent of). This leads to one of the possible definitions
of anergodicevolution: f is ergodic if for any integrable observakden (16.21)
the limit function is constant. If a flow enjoys such a propdtte time averages
coincide (apart from a set gfmeasure 0) with space averages

t
Jim % f dra(f7 (%)) = (@ . (16.22)
—00 O

For future reference, we note a further property that ises than ergodicity:
if the space average of a product of any two variables deledeewith time,

Jim (a(9b(f'(x)) = (@ ¢by , (16.23)

section 22.4

the dynamical system is said to b@xing The terminology may be understood
better once we consider as the pair of observables in (18l2®gacteristic func-
tions of two setsA andB: then (16.23) may be written as

t

so that the seB spreads “uniformly” over the whole state spacet &screases.
Mixing is a fundamental notion in characterizing statiatibehavior for dynam-
ical systems: suppose we start with an arbitrary smooth euatilerium distribu-

tion p(X)v(x): the after timet the average of an observalaés given by

[ axotmr9paco
M
and this tends to the equilibrium avera@, if f is mixing.

Example 16.2 The Hénon attractor natural measure: A numerical calculation of
the natural measure (16.19) for the Hénon attractor (3.19) is given by the histogram
in figure 16.5. The state space is partitioned into many equal-size areas M;, and the
coarse grained measure (16.19) is computed by a long-time iteration of the Hénon map,
and represented by the height of the column over area M;. What we see is a typical
invariant measure - a complicated, singular function concentrated on a fractal set.
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Figure 16.5: Natural measure (16.19) for the Heénons
map (3.19) strange attractor at parameter values
(a,b) = (1.4,0.3). See figure 3.9 for a sketch of the

attractor without the natural measure binning. (Cour-
tesy of J.-P. Eckmann) 104

If an invariant measure is quite singular (for instance abir concentrated
on a fixed point or a cycle), its existence is most likely of nygical import;
no smooth initial density will converge to this measure sfiieighborhood is re-
pelling. In practice the average (16.18) is problematic aften hard to control,
as generic dynamical systems are neither uniformly hyperbor structurally
stable: it is not known whether even the simplest model ofange attractor, the
Hénon attractor of figure 16.5, is “strange,” or merely angiant to a very long

stable cycle. exercise 17.1

16.4.2 Determinism vs. stochasticity

While dynamics can lead to very singulais, in any physical setting we cannot
do better than to measupeaveraged over some regiovi;; the coarse-graining is

not an approximation but a physical necessity. One is frahitk of a measure

as a probability density, as long as one keeps in mind thindigin between de-

terministic and stochastic flows. In deterministic evauatthe evolution kernels

are not probabilistic; the density of trajectories is tosed deterministically

What this distinction means will became apparent later:dieterministic flows chapter 19

our trace and determinant formulas will beact while for quantum and stochas-
tic flows they will only be the leading saddle point (statipnghase, steepest
descent) approximations.

Clearly, while deceptively easy to define, measures spalible. The good
news is that if you hang on, you willever need to compute theat least not
in this book. How so? The evolution operators to which we riext, and the
trace and determinant formulas to which they will lead udl, agsign the correct
weights to desired averages without recourse to any ekglichputation of the
coarse-grained measufg;.

16.5 Density evolution for infinitesimal times

Consider the evolution of a smooth densix) = p(x, 0) under an infinitesimal
stepdt, by expanding the action of’" to linear order inst:

0T _ _ §0T
£ = [ axefy=1709) o9
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f dxd(y — X = 67v(X)) p(X)
M
py—otvly))  _ p(y) — 5Tvi(y)dip(y)

|det(1+6r%)| 1+67 30, avi(y)

PG5 = p(x0) o2 (M)p(x ). (16.24)

Here we have used the infinitesimal form of the flow (2.6), thi®delta Jaco- exercise 4.1

bian (16.9), and the In det tr In relation. By the Einstein summation conven-
tion, repeated indices imply summation(y)d; = Zid:l Vvi(Y)di. Moving p(y, 0) to
the left hand side and dividing by, we discover that the rate of the deformation
of p under the infinitesimal action of the Perron-Frobenius afmeris nothing but
the continuity equatiorfor the density:

Ap+d-(pv) = 0. (16.25)

The family of Perron-Frobenius operators operat{cﬁﬁte& forms a semigroup
parameterized by time

(@ £° =1
(b) £L8=L" >0 (semigroup property) .

From (16.24), time evolution by an infinitesimal st@pforward in time is gener-
ated by

Ap(¥) = + lim 6% (£7=1)p(9 = -3 (p(x). (16.26)

We shall refer to
d
A=-9-Vv+ Z Vi (X); (16.27)
i

as the time evolutiogenerator If the flow is finite-dimensional and invertibleq
is a generator of a full-fledged group. The left hand side 6fZ&) is the definition
of time derivative, so the evolution equation fg{) is

(% - y{) (%) = 0. (16.28)

The finite time Perron-Frobenius operator (16.10) can beédly expressed
by exponentiating the time evolution generatias

L= (16.29)
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The generatorA is reminiscent of the generator of translations. Indeedafoon-
stant velocity field dynamical evolution is nothing but axskation by (timex velocity):

exercise 16.10

eVira(x) = a(x—tv). (16.30)

16.5.1 Resolvent off

Here we limit ourselves to a brief remark about the notiorhef tspectrum” of a
linear operator.

The Perron-Frobenius operatdracts multiplicatively in time, so it is reason-
able to suppose that there exist constavits- 0, 8 > 0 such that|£!|| < Me#
for all t > 0. What does that mean? The operator norm is defined in the same
spirit in which one defines matrix norms:We are assumingrbatalue of£'p(x)
grows faster than exponentially for any choice of functigr), so that the fastest
possible growth can be bounded 8§, a reasonable expectation in the light of
the simplest example studied so far, the exact escape ra@0j1 If that is so,
multiplying £t by &% we construct a new operater? £! = é("-#) which decays
exponentially for large, ||€%A)|| < M. We say thae ¥ £! is an element of a
boundedsemigroup with generatad — gl. Given this bound, it follows by the
Laplace transform

fo dtestet = s_—lﬂ, Res> 3, (16.31)

that theresolventoperator § — A)~* is bounded (“resolvent= able to cause
separation into constituents)

| =< j:)dte‘s‘Me‘ﬁ: ot

If one is interested in the spectrum &f as we will be, the resolvent operator is
a natural object to study; it has no time dependence, anddusded. The main
lesson of this brief aside is that for continuous time flowus, ltaplace transform is
the tool that brings down the generator in (16.29) into tleoheent form (16.31)
and enables us to study its spectrum.

16.6 Liouville operator

y
J A case of special interest is the Hamiltonian or symplecti/flefined by
Hamilton’s equations of motion (7.1). A reader versed inrquen mechanics will
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have observed by now that with replacemeht-> —LH , whereH is the quantum
Hamiltonian operator, (16.28) looks rather like the time@eledent Schrodinger
equation, so this is probably the right moment to figure ouatell this means in
the case of Hamiltonian flows.

The Hamilton’s evolution equations (7.1) for any time-ipdadent quantity
Q = Q(a, p) are given by

dQ _4Qdg  dQdp _dHAIQ _9QaH
dt ~ag dt " op dt _ op g p oG (16.32)

As equations with this structure arise frequently for syeegit flows, it is conve-

nient to introduce a notation for them, tReisson bracket remark 16.4
0A 0B 0A OB
(AB =222 007 16.33
opidq 94 Ip; ( )

In terms of Poisson brackets the time evolution equatiorB@)@akes the compact
form

dQ
5= {H,Q}. (16.34)

The full state space flow velocity is = v = (g, p), where the dot signifies
time derivative.

The discussion of sect. 16.5 applies to any deterministie. flé the density
itself is a material invariant, combining

ol +v-9l =0.

and (16.25) we conclude thapy; = 0 and detl'(x) = 1. An example of such
incompressible flow is the Hamiltonian flow of sect. 7.2. Fmampressible flows
the continuity equation (16.25) becomes a statement ofeceaton of the state
space volume (see sect. 7.2), or theuville theorem

O + Vidip = 0. (16.35)

Hamilton’s equations (7.1) imply that the flow is incompiibks d;vi = 0, so
for Hamiltonian flows the equation ferreduces to theontinuity equatiorfor the
phase space density:

dp+di(pv)=0, i=12....D. (16.36)
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Consider the evolution of the phase space densdf/an ensemble of nonin-
teracting particles; the particles are conserved, so

d 4 .0 .0
d—tp(q, p’t)‘(ﬁwa—qw'a_g p(g. p.t) = 0.

Inserting Hamilton’s equations (7.1) we obtain theuville equation a special
case of (16.28):

3
Ep(q, p,t) = =Ap(a, p,t) = {H, p(a, p, 1)}, (16.37)

where{, } is the Poisson bracket (16.33). The generator of the flov2{)6s in
this case a generator of infinitesimal symplectic transédioms,

.0 .0 oH 0 oH o
A= 50 _OHO OHI 16.38
a aq; P api dpidgi g Ip; ( )

For example, for separable Hamiltonians of farm= p2/2m+V(q), the equations
of motion are

. _ B . V()
4= pi = 5 (16.39)
and the action of the generator exercise 16.11
pi 9 0
a=-272 Lsv . 16.40
maq T V@5 (16.40)

can be interpreted as a translation (16.30) in configurasioece, followed by
acceleration by forcéV(q) in the momentum space.

The time evolution generator (16.27) for the case of synijgdlows is called
the Liouville operator You might have encountered it in statistical mechanics,
while discussing what ergodicity means ford@ard balls. Here its action will
be very tangible; we shall apply the Liouville operator tstgyns as small as 1 or
2 hard balls and to our surprise learn that thiffises to already get a bit of a grip
on foundations of the nonequilibrium statistical mechanic

Résum é

In physically realistic settings the initial state of a gystcan be specified only to
a finite precision. If the dynamics is chaotic, it is not pb&sito calculate accu-
rately the long time trajectory of a given initial point. Depling on the desired
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precision, and given a deterministic law of evolution, tkeges of the system can
then be tracked for a finite time.

The study of long-time dynamics thus requires trading inekelution of a
single state space point for the evolution ofm@asure or the densityof repre-
sentative points in state space, acted upon bgwvatution operatar Essentially
this means trading inonlineardynamical equations on a finite dimensional space
X = (X1, X2 - - - Xg) for alinear equation on an infinite dimensional vector space of
density functiong(x). For finite times and for maps such densities are evolved by
the Perron-Frobenius operator

p(xt) =(Lop) (9.
and in a diferential formulation they satisfy thentinuity equation
op+0-(pv) = 0.

The most physical of stationary measures is the natural uneas measure robust
under perturbations by weak noise.

Reformulated this way, classical dynamics takes on a diyyirguantum-
mechanical flavor. If the Lyapunov time (1.1), the time aftévich the notion
of an individual deterministic trajectory loses meanirgniuch shorter than the
observation time, the “sharp” observables are those du@hie, the eigenvalues
of evolution operators. This is very much the same situaéi®in quantum me-
chanics; as atomic time scales are so short, what is measuteed energy, the
guantum-mechanical observable dual to the time. For lamgdithe dynamics
is described in terms of stationary measures, i.e., fixedtpaf the appropriate
evolution operators. Both in classical and quantum mecisamie has a choice of
implementing dynamical evolution on densities (“Schriggr picture,” sect. 16.5)
or on observables (“Heisenberg picture,” sect. 17.2 angtehd8).

In what follows we shall find the second formulation more eament, but the
alternative is worth keeping in mind when posing and sohimgriant density
problems. However, as classical evolution operators ateimitary, their eigen-
states can be quite singular andfidult to work with. In what follows we shall
learn how to avoid dealing with these eigenstates altogetkea matter of fact,
what follows will be a labor of radical deconstruction; afteaving argued so
strenuously here that only smooth measures are “natural,sell merrily pro-
ceed to erect the whole edifice of our theory on periodic srhi¢., objects that are
é-functions in state space. The trick is that each comes withtaerval, its neigh-
borhood — periodic points only serve to pin these intervalst as the millimeter
marks on a measuring rod partition continuum into intervals
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Commentary

Remark 16.1 Ergodic theory: An overview of ergodic theory is outside the scope of
this book: the interested reader may find it useful to conedfit [16.1, 16.3, 16.4, 16.5].
The existence of time average (16.21) is the basic resultgafdéc theory, known as the
Birkhoff theorem, see for example refs. [16.1, 16.25], or the statewfetheorem 7.3.1
in ref. [16.12]. The natural measure (16.19) of sect. 16sidften referred to as the SRB
or Sinai-Ruelle-Bowen measure [1.29, 1.28, 1.32].

There is much literature on explicit form of natural measfamespecial classes of
1-dimensional maps [1.19, 16.14, 16.15] - J. M. AguirregatfiL6.16], for example,
discusses several families of maps with known smooth meaand behavior of measure
under smooth conjugacies. As no such explicit formulastéarshigher dimensions and
general dynamical systems, we do not discuss such measrees h

Remark 16.2 Time evolution as a Lie group: ~ Time evolution of sect. 16.5 is an ex-
ample of a 1-parameter Lie group. Consult, for example, tdeh of ref. [16.13] for a
clear and pedagogical introduction to Lie groups of tranmsfitions. For a discussion of
the bounded semigroups of page 321 see, for example, MagesakeHughes [16.6].

Remark 16.3 Discretization of the Perron-Frobenius operator operator It is an old
idea of Ulam [16.18] that such an approximation for the Peiffoobenius operator is a
meaningful one. The piecewise-linear approximation of Pleeron-Frobenius operator
(16.14) has been shown to reproduce the spectrum for expgmaaps, once finer and
finer Markov partitions are used [16.19, 16.23, 16.20]. Taktle point of choosing a
state space partitioning for a “generic case” is discussedfi [16.21, 23.22].

Remark 16.4 The sign convention of the Poisson bracket: ~ The Poisson bracket is
antisymmetric in its arguments and there is a freedom to défimith either sign conven-
tion. When such freedom exists, it is certain that both catiees are in use and this is
no exception. In some texts [1.8, 16.7] you will see the riudmid side of (16.33) defined
as{B, A} so that (16.34) i§§ = {Q, H}. Other equally reputable texts [16.24] employ
the convention used here. Landau and Lifshitz [16.8] deadteisson bracket by B],
notation that we reserve here for the quantum-mechanicaftator. As long as one is
consistent, there should be no problem.

Remark 16.5 “Anon itlives™? “Anonitlives” refers to a statue of King Leontes’s wife,
Hermione, who died in a fit of grief after he unjustly accused &f infidelity. Twenty
years later, the servant Paulina shows Leontes this statdermione. When he repents,
the statue comes to life. Or perhaps Hermione actually laed Paulina has kept her
hidden all these years. The text of the play seems delidgrmtebiguous. It is probably
a parable for the resurrection of Christ. (John F. Gibson)
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Exercises

16.1. Integrating over Dirac delta functions. Let us verify
a few of the properties of the delta function and check
(16.9), as well as the formulas (16.7) and (16.8) to be
used later.

(@) If f : RY - RY, show that
1
dxs (f(x) = —_—
fku Xsle:(o) deto, |

(b) The delta function can be approximated by a se-
quence of Gaussians

(a) Calculate by numerical experimentation the Ic
the fraction of trajectories remaining trappe!
the interval [Q 1] for the tent map

f(x) =a(l-2/x-0.5)
for several values od.

(b) Determine analytically thedependence of the
cape ratey(a).

(c) Compare your results for (a) and (b).

2 16.5. Invariant measure.  We will compute the invaria

) e
dx6xfx:||mfdx f(x).
[ xaea169 = m [ x-S0
Use this approximation to see whether the formal
expression

ded(xz)

makes sense.

16.2. Derivativeks of Dirac delta functions. Consider
M) = Zxo(x).
Using integration by parts, determine the value of

f dxs’(y) . wherey = f(x) — x (16.41)
R
1 ()? 4
dXé(z)(y) = _’{3 - —( 6. })
f (x;y(zx):=o, Tyt )R
1 (b by
dxb00?) = T2
f {x:y(x)=0} lyl (y )2 (y )3
o2y )}(
b|3 - 16.43
! ( R E )

These formulas are useful for computinteets of weak
noise on deterministic dynamics [16.9].

16.3. L' generates a semigroup. Check that the Perron-
Frobenius operator has the semigroup property,

measure for two dierent piecewise linear maps.

0 1 0 4 1

(a) Verify the matrixZL representation (17.19).

(b) The maximum value of the first map is 1. C
pute an invariant measure for this map.

(c) Compute the leading eigenvaluebfor this mag

(d) For this map there is an infinite number of
variant measures, but only one of them wil
found when one carries out a numerical sin
tion. Determine that measure, and explain
your choice is the natural measure for this me

(e) In the second map the maximum occursrat
(8- V5)/2 and the slopes ar( V5 + 1)/2. Fin
the natural measure for this map. Show that
piecewise linear and that the ratio of its two va
is (V5 +1)/2.

(medium dfficulty,

16.6. Escape rate for a flow conserving map. Adjust Ag
f dzL%(y,2) L%z X) = L2y, X),  t1,t > 0.(16.44); in (17.17) so that the gap between the intervilg
M

As the flows in which we tend to be interested are in-
vertible, theL's that we will use often do form a group,

M vanishes. Show that the escape rate equals z
this situation.

16.7. Eigenvalues of the Perron-Frobenius operator for th

with ty,t, € R.
B2 skew full tent map.  Show that for the skew full te
16.4. Escape rate of the tent map. map
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1 a bit of unpleasantness to which we shall return in chap-
ter 24.
08 16.9. Invariant measure for the Gauss map. Consider
Ao the Gauss map:
0.6 . .
il x#0
s A f(x) = { 6 [XJ DS (16.46)
where [ ] denotes the integer part.
0.2
(a) Verify that the density
1 1
02 04 06 08 1 PO = 5g2 T x

F) = fo(X) = AAOX’ x € Mo =[0,1/Ao) @ 45is an invariant measure for the map.
T (=150 -%,  xe My=(1/Ao1]. ai) I)s it the natural measure?

the eigenvalues are available analytically, compute #§10. A as a generator of translations.  Verify that for
first few. a constant velocity field the evolution generatérin

. . . . X (16.30) is the generator of translations,
16.8. “Kissing disks”*  (continuation of exercises 8.1 and

8.2). Close € the escape by setting = 2, and look

; ) ' d = & OO Via(x) = a(x + tv) .
in real time at the density of the Poincaré section iter-

ates for a trajectory with a randomly chosen initial coh6.11. Incompressible flows. Show that (16.9) implies that

dition. Does it look uniform? Should it be uniform? po(X) = 1 is an eigenfunction of a volume-preserving

(Hint - phase space volumes are preserved for Hamil-  flow with eigenvaluesy = 0. In particular, this im-

tonian flows by the Liouville theorem). Do you notice plies that the natural measure of hyperbolic and mixing

the trajectories that loiter near special regions of phase  Hamiltonian flows is uniform. Compare this results with

space for long times? These exemplify “intermittency,” the numerical experiment of exercise 16.8.
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