Chapter 3

Discrete time dynamics

(R. Mainieri and P. Cvitanovi€)

ther continuous or discrete. Discrete time dynamical systarise naturally

from flows; one can observe the flow at fixed time intervals tbgtsng it),
or one can record the coordinates of the flow when a specialt éxampens (the
Poincaré section method). This triggering event can beraple as vanishing
of one of the coordinates, or as complicated as the flow guttimugh a curved
hypersurface.

I HE TIME PARAMETER iN the sect. 2.1 definition of a dynamical system can be ei-

3.1 Poincas sections

R

Successive trajectory intersections witP@incaré sectiona (d — 1)-dimension-
al hypersurface or a set of hypersurfaggembedded in thd-dimensional state
spaceM, define thePoincaré return map &), a d - 1)-dimensional map of form

X =P(x) = fO(x), X,xeP. (3.1)

Here thefirst return functionr(x)—sometimes referred to as tbeiling functior-is
the time of flight to the next section for a trajectory stagtat x. The choice of

Figure 3.1: A x(t) trajectory that intersects a Poincaré
section P at timesty,t,,t3,t4, and closes a cycle
(X1, X2, X3, Xg), X« = X(t) € P of topological length 4
with respect to this section. Note that the intersection
are not normal to the section, and that the crosging
does not count, as it in the wrong direction.
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the section hypersurface is altogether arbitrary. It is rarely possible to define
a single section that cuts across all trajectories of istertn practice one often
needs only a local section—a finite hypersurface of codimank intersected by
a swarm of trajectories near to the trajectory of intereste fiypersurface can be
specified implicitly through a functiobl (x) that is zero whenever a poirtis on
the Poincaré section,

xeP iff U(X) =0. (3.2)

The gradient ofJ(x) evaluated ak € # serves a two-fold function. First, the
flow should pierce the hypersurfa@® rather than being tangent to it. A nearby
point X + 6x is in the hypersurfac® if U(x + 6X) = 0. A nearby point on the
trajectory is given byox = vét, so a traversal is ensured by tlransversality
condition

d

0
(vﬁU):JZ:;vj(x)ajU(x)iO, (9jU(x):a—XjU(x), xeP. (3.3

Second, the gradiedU defines the orientation of the hypersurfeeThe flow

is oriented as well, and a periodic orbit can piefeéwice, traversing it in either
direction, as in figure 3.1. Hence the definition of Poingatérn mapP(x) needs
to be supplemented with the orientation condition

Xne1 = P(Xﬂ) 5 U(XrH-l) = U(Xn) = 0, ne Z+
d
D Vi) 8jU(x) > 0. (3.4)
=1

In this way the continuous timeflow f(x) is reduced to a discrete timese-
quencex, of successiv@rientedtrajectory traversals of. chapter 17

With a suficiently clever choice of a Poincaré section or a set of sastiany
orbit of interest intersects a section. Depending on théiGgjon, one might need
to convert the discrete time back to the continuous flow time. This is accom-

plished by adding up the first return function timg,), with the accumulated
flight time given by

tl’]+1 = tn + T(Xﬂ) ’ tO = 05 Xn € P (35)

Other quantities integrated along the trajectory can beddfin a similar manner,
and will need to be evaluated in the process of evaluatinguaycal averages.

A few examples may help visualize this.
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Figure 3.2: Some examples of 3-disk cycles: (a
12123 and13132 are mapped into each other by th

flip across 1 axis. Similarly (H)23 andL32 are related 5 2

by flips, and (c)1213,1232 andl323 by rotations. (d)

The cycles121212313 and21212323 are related by d) 1 1
rotationandtime reversal. These symmetries are dis 3 3
cussed in chapter 9. (From ref. [3.1]) 121212313 121212323

Example 3.1 Hyperplane P: The simplest choice of a Poincaré section is a plane
P specified by a point (located at the tip of the vector rp) and a direction vector a
perpendicular to the plane. A point X is in this plane if it satisfies the condition

UX)=(x-rp)-a=0. (3.6)

Consider a circular periodic orbit centered at ro, but not lying in . It pierces the hy-
perplane twice; the (v- a) > O traversal orientation condition (3.4) ensures that the first
return time is the full period of the cycle. (continued in example 12.1)

The above flat hyperplane is ad hocconstruct; one Poincaré section rarely
sufices to capture all of the dynamics of interest. A more insidlgicture of the
dynamics is obtained by partitioning the state space higualitatively distinct
regions{Mi, Mo, ..., My} and constructing a Poincaré secti®g per region.
Thed-dimensional flow is thus reduced reduced to composition section 11.1

P5n<—5n—1 0-.:+0 PSQ‘_Sl o P51<—So
of a set of - 1)-dimensional maps
Psies, @ Xn > Xnal, se{l,2,...,N} (3.7)

that map the coordinates of Poincaré secfignto those ofPs, ., the next section
traversed by a given trajectory.

A return map R, from sectionP, to itself now has a contribution from any
admissible (i.e., there exist trajectories that traveeggonsMg, — Mg, — --- —
Ms, = Mg, in the same temporal sequence) periodic sequence of caiopssi

Pssisi1 = Pygesi1 00 0 Pgeg 0 Py (3.8)
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Figure 3.3: Poincaré section coordinates for the 3-dis \\
game of pinball.
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Figure 3.4: Collision sequences(, p1) + (S, p2) —
(s3, ps) from the boundary of a disk to the boundary of
the next disk is coded by the Poincaré sections maps
sequencéz P, ;. S

The next examplefers an unambiguous set of such Poincaré sections whielter 11
do double duty, providing us both with an exact represematif dynamics in
terms of maps, and with a covering symbolic dynamics, a stitbfeat will will
return to in chapter 11.

Example 3.2 Pinball game, Poincar é dissected. A phase space orbit is fully
specified by its position and momentum at a given instant, so no two distinct phase
space trajectories can intersect. The configuration space trajectories, however, can
and do intersect, in rather unilluminating ways, as e.g. in figure 3.2 (d), and it can be
rather hard to perceive the systematics of orbits from their configuration space shapes.
The problem is that we are looking at the projections of a 4-dimensional state space
trajectories onto a 2-dimensional configuration subspace. A much clearer picture of the
dynamics is obtained by constructing a set of state space Poincaré sections.

Suppose that the pinball has just bounced off disk 1. Depending on its posi-
tion and outgoing angle, it could proceed to either disk 2 or 3. Not much happens in
between the bounces—the ball just travels at constant velocity along a straight line—so
we can reduce the 4-dimensional flow to a 2-dimensional map P, ., that maps the
coordinates (Poincaré section 1) of the pinball from one disk edge to another. Just
after the moment of impact the trajectory is defined by s,, the arc-length position of the
nth bounce along the billiard wall, and p, = psing, the momentum component parallel
to the billiard wall at the point of impact, figure 3.3. These coordinates (due to Birkhoff)
are smart, as they conserve the phase space volume. Trajectories originating from one
disk can hit either of the other two disks, or escape without further ado. We label the
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survivor state space regions P12, P13. In terms of the three Poincaré sections, one for
each disk, the dynamics is reduced to the set of six maps

Poracon i (Sn Pn) - (Se1s Pret) s o€{l,23} (3.9)

from the boundary of the disk j to the boundary of the next disk k, figure 3.4. The
explicit form of this map is easily written down, see sect. 8, but much more economical
is the symmetry quotiented version of chapter 9 which replaces the above 6 mapshapr 9
return map pair Py, P1. chapter 8

Embedded within P12, P13 are four strips P121, P123, P131, P13z of initial condi-
tions that survive two bounces, and so forth. Provided that the disks are sufficiently sep-
arated, after n bounces the survivors are labeled by 2" distinct itineraries c102073.. . . op.

Billiard dynamics is exceptionally simple - free flight segnts, followed by
specular reflections at boundaries, thus billiard bourdaaire the obvious choice
as Poincaré sections. What about smooth, continuous taws flvith no obvious
surfaces that would fix the choice of Poincaré sections?

Example 3.3 Pendulum:  The phase space of a simple pendulum is 2-dimensional:
momentum on the vertical axis and position on the horizontal axis. We choose the
Poincaré section to be the positive horizontal axis. Now imagine what happens as a
point traces a trajectory through this phase space. As long as the motion is oscillatory,
in the pendulum all orbits are loops, so any trajectory will periodically intersect the line,
that is the Poincaré section, at one point.

Consider next a pendulum with friction, such as the unforced Duffing system
plotted in figure 2.4. Now every trajectory is an inward spiral, and the trajectory will
intersect the Poincaré section'y = O at a series of points that get closer and closer to
either of the equilibrium points; the Duffing oscillator at rest.

Motion of a pendulum is so simple that you can sketch it ydticsea piece of
paper. The next exampleftfers a better illustration of the utility of visualization
of dynamics by means of Poincaré sections.

Example 3.4 Rdssler flow: (continued from example 2.3) Consider figure 2.6, a
typical trajectory of the 3-dimensional Réssler flow (2.17). It wraps around the z axis, so
a good choice for a Poincaré section is a plane passing through the z axis. A sequence
of such Poincaré sections placed radially at increasing angles with respect to the x axis,
figure 3.5, illustrates the ‘stretch & fold’ action of the Roéssler flow, by assembling these
sections into a series of snapshots of the flow. A line segment [A, B], traversing the
width of the attractor aty = 0, x > 0 section, starts out close to the x-y plane, and after
the stretching (a) — (b) followed by the folding (c) — (d), the folded segment returns
close to the x-y plane strongly compressed. In one Poincaré return the [A, B] interval
is stretched, folded and mapped onto itself, so the flow is expanding. It is also mixing,
as in one Poincaré return a point C from the interior of the attractor can map onto the
outer edge, while the edge point B lands in the interior.

Once a particular Poincaré section is picked, we can also exhibit the return
map (3.1), as in figure 3.6. Cases (a) and (d) are examples of nice 1-to-1 return maps.
However, (b) and (c) appear multimodal and non-invertible, artifacts of projection of
a 2 — dimensionalreturn map (Rn, z,) — (Rni1.Zn+1) ONto a 1-dimensional subspace
Ry — Rn1.  (continued in example 3.6)
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Figure 3.5: (Right:) a sequence of Poincaré sec-
tions of the Rossler strange attractor, defined by
planes through the axis, oriented at angles (a)
-60° (b) @, (c) 6@, (d) 120, in the x-y plane.
(Left:) side andx-y plane view of a typical tra-
jectory with Poincaré sections superimposed. (R.
Paskauskas)
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Figure 3.6: Return maps for th&R, — R, ra-
dial distance Poincaré sections of figure 3.5. (R.
PasSkauskas)

fast track:
W sect. 3.3, p. 62

The above examples illustrate why a Poincaré section givesre informative
shapshot of the flow than the full flow portrait. For exampldilesthe full flow
portrait of the Rossler flow figure 2.6 gives us no sense ofthiekness of the
attractor, we see clearly in figure 3.5 Poincaré sectioasdben though the return
map is 2- dimensional- 2 — dimensionglthe flow contraction is so strong that
for all practical purposes it renders the return mapdimensional

3.1.1 What's the best Poincag section?

In practice, picking sections is a dark and painful art, esly for high-dimens-
ional flows where the human visual cortex falls short. It Belpunderstand why
we need them in the first place.

Whenever a system has a continuous symm@trgny two solutions related
by the symmetry are equivalent, so it would be stupid to kegpmputing them
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over and over. We would rather replace the whole continuansly of solutions
by one.

A smart way to do would be to replace dynamigd,(f) by dynamics on the
quotient state spaceM/G, f). We will discuss this in chapter 9, but in generahapter 9
constructing explicit quotient state space fléwappears either flicult, or not
appreciated enough to generate much readable literatuperbaps impossible.

So one resorts to method of sections.

Time evolution itself is a 1-parameter Abelian Lie groufheit a highly non-
trivial one (otherwise this book would not be much of a dogp$t The invariants
of the flow are its infinite-time orbits; particularly usefuvariants are compact
orbits such as equilibrium points, periodic orbits and.t&or any orbit it stfices
to pick a single state space pokt M, the rest of the orbit is generated by the
flow and its symmetries.

Choice of this one point is utterly arbitrary; in dynamicsstlis called a
“Poincaré section,” and in theoretical physics this gogthle exceptionally unin-
formative name of “gauge fixing.” The price is that one getes&ghosts,” or, in
dynamics, increases the dimensionality of the state spaadditional constraints
(see sect. 13.4). It is a commonly deployed but inelegartgatore where sym-
metry is broken for computational convenience, and redtory at the end of
the calculation, when all broken pieces are reassembled.

This said, there are a few rules of thumb to follow: (a) You park as many
sections as convenient. (b) For ease of computation, pigati sections (3.6)
if you can. (c) If equilibria play important role in organigj a flow, pick sec-
tions that go through them (see example 3.5). (c) If you hagbal discrete chapter 9
or continuous symmetry, pick sections left invariant by sgenmetry (see exam-
ple 9.10). (d) If you are solving a local problem, like findiagperiodic orbit, you
do not need a global section. Pick a section or a set of (rehtibting) sections
on the fly, requiring only that they are locally transversdhe flow. (e) If you
have another rule of thumb dear to you, let us know.

Example 3.5 Sections of Lorenz flow: (continued from example 2.2) The plane
P fixed by the x =y diagonal and the z-axis depicted in figure 3.7 is a natural choice
of a Poincaré section of the Lorenz flow of figure 2.5, as it contains all three equilibria,
Xeq = (0,0,0) and the (2.13) pair Xeq,, Xeq,- A section has to be supplemented
with the orientation condition (3.4): here points where flow pierces into the section are
marked by dots.

Xeq,, Xeq, are centers of out-spirals, and close to them the section to EQq
trajectories pass the z-axis either by crossing the section P or staying on the viewer’s
side. We are free to deploy as many sections as we wish: in order to capture the whole
flow in this neighborhood we add the second Poincaré section, ', through the y = —X
diagonal and the z-axis. Together the two sections, figure 3.7 (b), capture the whole
flow near EQy. In contrast to Rossler sections of figure 3.5, these appear very singular.
We explain this singularity in example 4.7, and postpone construction of a Poincaré
return map to example 9.10. (E. Siminos and J. Halcrow)
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Figure 3.7: (a) Lorenz flow figure 2.5 cut by = x
Poincaré section plan® through thez axis and
both EQ,» equilibria. Points where flow pierces
into section are marked by dots. To aid visualiza-
tion of the flow near th& Q, equilibrium, the flow

is cut by the second Poincaré secti#h, through

y = —x and thez axis. (b) Poincaré sectio®and

%’ laid side-by-side. The singular nature of these
sections close t& @ will be elucidated in exam- y ]
ple 4.7 and figure 11.8 (b). (E. Vo EQ
Siminos) @) (b) '

EQ,

3.2 Constructing a Poincagé section

O3

For almost any flow of physical interest a Poincaré sect®omat available in
analytic form. We describe now a numerical method for deigimg a Poincaré
section. remark 3.1

Consider the system (2.6) of ordinanfférential equations in the vector vari-
ablex = (X1, X2, ..., Xq)

d a
d_)'j = vi(x 1), (3.10)

where the flow velocity is a vector function of the position in state spacand

the timet. In generaly cannot be integrated analytically, so we will have to resort
to numerical integration to determine the trajectoriesha&f $ystem. Our task is
to determine the points at which the numerically integrategectory traverses

a given hypersurface. The hypersurface will be specifiediaitly through a
function U(x) that is zero whenever a pointis on the Poincaré section, such as
the hyperplane (3.6).

If we use atiny step size in our numerical integrator, we daseove the value
of U as we integrate; its sign will change as the trajectory @®#ise hypersurface.
The problem with this method is that we have to use a very smialjration time
step. In order to land exactly on the Poincaré section otenahterpolates the
intersection point from the two trajectory points on eiteele of the hypersurface.
However, there is a better way.

Let t; be the time just befor&J changes sign, ant) the time just after it
changes sign. The method for landing exactly on the Pagnsection will be to
convert one of the space coordinates into an integratioabarfor the part of the
trajectory betweety andt,. Using

dxcdxg  dx

dx, dt d—lel(X, t) = w(x1) (3.11)
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we can rewrite the equations of motion (3.10) as

dt. 1 dxy Vg
’ Xm_Vl.

—=—, 3.12
dX]_ V1 ( )
Now we usex; as the ‘time’ in the integration routine and integrate itfrs (t5) to
the value ofx; on the hypersurface, determined by the hypersurface stgon
condition (3.6). This is the end point of the integrationthwmnho need for any
interpolation or backtracking to the surface of section.e ki+axis need not be

perpendicular to the Poincaré section; aqycan be chosen as the integration

variable, provided the;j-axis is not parallel to the Poincaré section at the trajgct

intersection point. If the section crossing is transve®&8)(v; cannot vanish in

the short segment bracketed by the integration step pregele section, and the
point on the Poincaré section.

Example 3.6 Computation of R dssler flow Poincar é sections. (continued from
example 3.4) Poincaré sections of figure 3.5 are defined by the fixing angle U(x) =

6 — 6o = 0. Convert Réssler equation (2.17) to cylindrical coordinates:

i = v =-zcosd+arsinfo
6 = u9=1+§sin9+gsin29
Z = v;=b+2zrcosh-c). (3.13)

In principle one should use the equilibrium x, from (2.18) as the origin, and its eigen-
vectors as the coordinate frame, but here original coordinates suffice, as for parameter
values (2.17), and (Xo, Yo, 20) sufficiently far away from the inner equilibrium, 6 increases
monotonically with time. Integrate

dr dt dz
ag = Urlves gg = Lve, g = velve (3.14)
from (rn, 6n, Zy) to the next Poincaré section at 6.1, and switch the integration back to
(%Y, 2) coordinates. (continued in example 4.1) (Radford Mitchell, Jr.)
3.3 Maps

Do it again!
—Ilsabelle, age 3

Though we have motivated discrete time dynamics by corisiglexections
of a continuous flow, there are many settings in which dynanscinherently
discrete, and naturally described by repeated iteratibttseosame map

f- M- M,
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Figure 3.8: A flow x(t) of figure 3.1 represented by a
Poincaré return map that maps points in the Poincaré
section asX,.1 = f(x,). In this example the orbit of
x; is periodic and consists of the four periodic points®
(X1, X2, X3, Xa).

or sequences of consecutive applications of a finite set pma
{fA, fB,...fz}ZM—>M, (3.15)

for example maps relating fierent sections among a set of Poincaré sections. The
discrete ‘time’ is then an integer, the number of applicagiof a map. As writing

out formulas involving repeated applications of a set of snagplicitly can be
awkward, we streamline the notation by denoting a map coitipody ‘o’

fz(--- fe(fa(x))---) = fzo--- fg o fa(X), (3.16)
and thenth iterate of mapf by

() = fof"(x) = f(f”‘l(x)) , fO(x) = x.

section 2.1

Thetrajectoryof x is now the discrete set of points
{x £, 12(9)..... ")} .

and theorbit of x is the subset of all points o¥1 that can be reached by iterations
of f. A periodic point(cycle point) xx belonging to a cycle of period is a real
solution of

(%) = F(FC.. F(%)...) =%, k=0,1,2,....,n—1. (3.17)

For example, the orbit oty in figure 3.8 is the 4-cyclexq, Xz, X3, Xa) .

The functional form of such Poincaré return mapas figure 3.6 can be ap-
proximated by tabulating the results of integration of tleevffrom x to the first
Poincaré section return for manye #, and constructing a function that inter-
polates through these points. If we find a good approximatboR(x), we can
get rid of numerical integration altogether, by replacihg tontinuous time tra-
jectory f{(x) by iteration of the Poincaré return m&gx). Constructing accurate
P(x) for a given flow can be tricky, but we can already learn mucmfrapproxi-
mate Poincaré return maps. Multinomial approximations

d d
Pk(X)Zak+Zbijj+ZCkinin+..., Xep (3.18)
j=1 i,j=1
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Figure 3.9: The strange attractor and an unstable pe- X1

riod 7 cycle of the Hénon map (3.19) with = 1.4,
b = 0.3. The periodic points in the cycle are connected
to guide the eye. (from K.T. Hansen [3.2])

to Poincaré return maps

X1,n+1 P1(Xn)

X P
2n+1 | _ | Pa(Xn) , Yo Xuq € P

Xd,n+1 Pa(Xn)
motivate the study of model mappings of the plane, such allém®n map.

Example 3.7 Hénon map:  The map

Xni1 1-axt + by,
Vsl = Xa (3.19)

is a nonlinear 2-dimensional map most frequently employed in testing various hunches
about chaotic dynamics. The Hénon map is sometimes written as a 2-step recurrence
relation

Xne1 = 1—axé + bx 1. (3.20)

An n-step recurrence relation is the discrete-time analogue of an nth order differential
equation, and it can always be replaced by a set of n 1-step recurrence relations.

The Hénon map is the simplest map that captures the ‘stretch & fold’ dynamics
of return maps such as Rdéssler’s, figure 3.5. It can be obtained by a truncation of a
polynomial approximation (3.18) to a Poincaré return map (3.18) to second order.

A quick sketch of the long-time dynamics of such a mapping (an example is
depicted in figure 3.9), is obtained by picking an arbitrary starting point and iterating
(3.19) on a computer. We plot here the dynamics in the (Xn, Xn+1) plane, rather than in
the (xn, Yn) plane, because we think of the Hénon map as a model return map X, —
Xnt1. AS we shall soon see, periodic orbits will be key to understanding the longstémgse 3.5
dynamics, so we also plot a typical periodic orbit of such a system, in this case an
unstable period 7 cycle. Numerical determination of such cycles will be explained in
sect. 29.1, and the periodic point labels 01110101110100- - - in sect. 12.2.
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Example 3.8 Lozi map: Another example frequently employed is the Lozi map, a
linear, ‘tent map’ version of the Hénon map (3.19) given by

Xn+1 1 - aXq| + byn
Yniz = Xn. (3.22)

Though not realistic as an approximation to a smooth flow, the Lozi map is a very helpful
tool for developing intuition about the topology of a large class of maps of the ‘stretch
& fold’ type.

What we get by iterating such maps is—at least qualitativedy unlike what
we get from Poincaré section of flows such as the Rossler filguve 3.6. For
an arbitrary initial point this process might converge taabke limit cycle, to a
strange attractor, to a false attractor (due to rodihdoors), or diverge. In other
words, mindless iteration is essentially uncontrollalaled we will need to resort
to more thoughtful explorations. As we shall explain in doerse, strategies forexercise 3.5
systematic exploration rely on stahlastable manifolds, periodic points, saddle-
straddle methods and so on.

Example 3.9 Parabola: For sufficiently large value of the stretching paramater a,
one iteration of the Hénon map (3.19) stretches and folds a region of the (x,y) plane
centered around the origin. The parameter a controls the amount of stretching, while
the parameter b controls the thickness of the folded image through the ‘1-step memory’
termbx,_1 in (3.20). In figure 3.9 the parameter b is rather large, b = 0.3, so the attractor
is rather thick, with the transverse fractal structure clearly visible. For vanishingly small
b the Hénon map reduces to the 1-dimensional quadratic map

Xpe1 = 1—axt. (3.22)
exercise 3.6

By setting b = 0 we lose determinism, as on reals the inverse of map (3.22) has two
preimages {X:_,, X, _,} for most x,. If Bourbaki is your native dialect: the Hénon map
is injective or one-to-one, but the quadratic map is surjective or many-to-one. Still, this
1-dimensional approximation is very instructive. (continued in example 11.5)

As we shall see in sect. 11.3, an understanding of 1-dimeakaynamics is
indeed the essential prerequisite to unraveling the @ikt dynamics of many
higher-dimensional dynamical systems. For this reasonyreapositions of the
theory of dynamical systems commence with a study of 1-d#ioeal maps. We
prefer to stick to flows, as that is where the physics is. appendix H.8

Résum é

In recurrent dynamics a trajectory exits a region in stacepnd then reenters
it infinitely often, with a finite mean return time. If the othis periodic, it re-

turns after a full period. So, on average, nothing much ydadippens along the
trajectory—what is important is behavior of neighboringjeéctories transverse to
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the flow. This observation motivates a replacement of théimoous time flow by
iterative mapping, the Poincaré return map.

The visualization of strange attractors is greatly faaifd by a felicitous
choice of Poincaré sections, and the reduction of flows fod2oé return maps.
This observation motivates in turn the study of discreteetidynamical systems
generated by iterations of maps.

A particularly natural application of the Poincaré sectinethod is the reduc-
tion of a billiard flow to a boundary-to-boundary return malescribed in chap-
ter 8. As we shall show in chapter 6, further simplificationaoPoincaré returnchapter 8
map, or any nonlinear map, can be attained through rectjftnese maps locallychapter 6
by means of smooth conjugacies.

Commentary

Remark 3.1 Determining a Poincaré section. The idea of changing the integration
variable from time to one of the coordinates, although semphoids the alternative of
having to interpolate the numerical solution to determime intersection. The trick de-
scribed in sect. 3.2 is due to Hénon [3.3, 3.4, 3.5].

Remark 3.2 Hénon, Lozi maps. The Hénon map is of no particular physical import
in and of itself—its significance lies in the fact that it is &imal normal form for mod-
eling flows near a saddle-node bifurcation, and that it iscaigiype of the stretching and
folding dynamics that leads to deterministic chaos. It iseg& in the sense that it can
exhibit arbitrarily complicated symbolic dynamics and toibes of hyperbolic and non—
hyperbolic behaviors. Its construction was motivated ke/liest known early example of
‘deterministic chaos’, the Lorenz equation, see exam@efd remark 2.3.

Hénon’s and Lorenz’s original papers can be found in répratlections refs. [3.7,
3.8]. They are a pleasure to read, and are still the bestdattion to the physics mo-
tivating such models. The rigorous proof of the existencéléhon attractor is due to
Benedicks and Carleson [3.9]. A detailed description ofdjx@amics of the Heénon map
is given by Mira and coworkers [3.10, 3.11, 3.12], as well ag/nmany other authors.

The Lozi map [3.13] is particularly convenient in investigg the symbolic dynamics
of 2 — dimensionaimappings. Both the Lorenz and Lozi systems are uniformlyatmo
systems with singularities. The existence of the attraftdiothe Lozi map was proven
by M. Misiurewicz [3.14], and the existence of the SRB measmas established by L.-
S. Young [3.15]. section 16.1

Remark 3.3 Grasshoppers vs. butterflies. The ’sensitivity to initial conditions’ was
discussed by Maxwell, then 30 years later by Poincaré. kther prediction, the Lorentz’
‘Butterfly Effect’ started its journey in 1898, as a ‘Grasshoppge’ in a book review

by W. S. Franklin [3.16]. In 1963 Lorenz ascribed a ‘seagfitet’ to an unnamed mete-
orologist, and in 1972 he repackaged it as the ‘Butterfte&’.
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Exercises

3.1. Poincaré sections of the Rssler flow.

(continuation of exercise 2.8) Calculate numerically a
Poincaré section (or several Poincaré sections) of the
Rossler flow. As the Rossler flow state spacels the

flow maps onto a R Poincaré section. Do you see that

in your numerical results? How good an approximation
would a replacement of the return map for this section

by a 1-dimensional map be? More precisely, estimate
the thickness of the strange attractor. (continued as ex-
ercise 4.4) 3.4.

(R. PaSkauskas)

3.2. A return Poincar & map for the Rossler flow.  (con-
tinuation of exercise 3.1) That Poincaré return maps of
figure 3.6 appear multimodal and non-invertible is an
artifact of projections of a 2-dimensional return map
(Rn,z0) — (Rai1,Zn+1) ONto a 1-dimensional subspace 3.5.
Ry = Rns1.

Construct a genuing,.1 = f(s,) return map by parame-
trazing points on a Poincaré section of the attractor fig-
ure 3.5 by a Euclidean lengthcomputed curvilinearly
along the attractor section.

This is best done (using methods to be developed in
what follows) by a continuation of the unstable man-
ifold of the 1-cycle embedded in the strange attractor,
figure 13.2 (b). (P. Cvitanovi€) 36

3.3. Arbitrary Poincar & sections. We will generalize the
construction of Poincaré sections so that they can have
any shape, as specified by the equatiw) = 0.

(a) Start by modifying your integrator so that you
can change the coordinates once you get near the
Poincaré section. You can do this easily by writing
the equations as

o =« (3.23)

References

with dt/ds = «, and choosing to be 1 or 1 f;.
This allows one to switch betweermndx; as the
integration 'time.’

(b) Introduce an extra dimensiof,1 into your sys-
tem and set
Xnr1 = U(X) . (3.24)
How can this be used to find a Poincaré section?

Classical collinear helium dynamics.

(continuation of exercise 2.10) Make a Poincaré surface
of section by plottingi(1, p1) whenever, = 0: Note that
forr, = 0, py is already determined by (7.6). Compare
your results with figure 6.3 (b).

(Gregor Tanner, Per Rosenqvist)

Hénon map fixed points.  Show that the two fixed
points (o, Xo), (X1, x1) of the Hénon map (3.19) are
given by

—~(1-b)- /(1-b)2+4a

X = 2a
“ -(1-b)+ +y(1-b2+4a
1 = .
2a

Fixed points of maps. A continuous functiorf is
a contraction of the unit interval if it maps the interval
inside itself.

(a) Use the continuity ofF to show that a 1-
dimensional contractioR of the interval [Q 1] has
at least one fixed point.

(b) In a uniform (hyperbolic) contraction the slope of
F is always smaller than ong’| < 1. Is the com-
position of uniform contractions a contraction? Is
it uniform?

[3.1] P. Cvitanovit, B. Eckhardt, P. E. Rosenqvist, G. Resg and P. Scherer,
“Pinball Scattering,” in G. Casati and B. Chirikov, edQuantum Chaos

(Cambridge U. Press, Cambridge 1993).

refsMaps - 6mar2009 ChaosBook.org version13, Dec 31 2009



References 68

[3.2] K.T. HansenSymbolic Dynamics in Chaotic Syster®1.D. thesis (Univ.
of Oslo, 1994);
ChaosBook.org/projects/KTHansen/thesis

[3.3] M. Hénon, “On the numerical computation of Poincaraps,’Physica D
5,412 (1982).

[3.4] N.B. Tufillaro, T.A. Abbott, and J.P. Reillfgxperimental Approach to Non-
linear Dynamics and Chag#\ddison Wesley, Reading MA, 1992).

[3.5] Bai-Lin Hao,Elementary symbolic dynamics and chaos in dissipative sys-
tems(World Scientific, Singapore, 1989).

[3.6] M. Hénon, “A two-dimensional mapping with a strangéractor,” Comm.
Math. Phys50, 69 (1976).

[3.7] Universality in ChaosP. Cvitanovic, ed., (Adam Hilger, Bristol 1989).
[3.8] Bai-Lin Hao,Chaos(World Scientific, Singapore, 1984).

[3.9] M. Benedicks and L. Carleson, “The dynamics of the btémap,”Ann. of
Math.133 73 (1991).

[3.10] C. Mira,Chaotic Dynamics—From one dimensional endomorphism to two
dimensional dfeomorphism(World Scientific, Singapore, 1987).

[3.11] I. Gumowski and C. MiraRecurrances and Discrete Dynamical Systems
(Springer-Verlag, Berlin 1980).

[3.12] D. Fournier, H. Kawakami and C. Mir&.R. Acad. Sci. Ser. 98 253
(1984); 301, 223 (1985);301, 325 (1985).

[3.13] R. Lozi, “Un attracteur étrange du type attracteer tdénon,”J. Phys.
(Paris) Collog.39, 9 (1978).

[3.14] M. Misiurewicz, “Strange attractors for the Lozi n@pg.” Ann. New York
Acad. Sci357, 348 (1980).

[3.15] L.-S. Young, “Bowen-Ruelle measures for certaincpigise hyperbolic
maps,”’Trans.Amer.Math.So@87, 41 (1985).

[3.16] W. S. Franklin, “New Books,Phys. Rew, 173 (1898);
seewww.ceafinney.com/chaos.

[3.17] P. Dahlqgvist and G. Russberg, “Existence of stabbit®in the x?y? po-
tential,” Phys. Rev. LetB5, 2837 (1990).

refsMaps - 6mar2009 ChaosBook.org version13, Dec 31 2009



