
Chapter 27

Irrationally winding

I don’t care for islands, especially very small ones.

—D.H. Lawrence

(R. Artuso and P. Cvitanović)

T  is concerned with the mode locking problems for circle maps:
besides its physical relevance it nicely illustrates the use of cycle expan-
sions away from the dynamical setting, in the realm of renormalization

theory at the transition to chaos.

The physical significance of circle maps is connected with their ability to
model the two–frequencies mode–locking route to chaos for dissipative systems.
In the context ofdissipativedynamical systems one of the most common and
experimentally well explored routes to chaos is the two-frequency mode-locking
route. Interaction of pairs of frequencies is of deep theoretical interest due to the
generality of this phenomenon; as the energy input into a dissipative dynamical
system (for example, a Couette flow) is increased, typicallyfirst one and then two
of intrinsic modes of the system are excited. After two Hopf bifurcations (a fixed
point with inward spiralling stability has become unstableand outward spirals to
a limit cycle) a system lives on a two-torus. Such systems tend to mode-lock:
the system adjusts its internal frequencies slightly so that they fall in step and
minimize the internal dissipation. In such case the ratio ofthe two frequencies
is a rational number. An irrational frequency ratio corresponds to a quasiperiodic
motion - a curve that never quite repeats itself. If the mode-locked states overlap,
chaos sets in. The likelihood that a mode-locking occurs depends on the strength
of the coupling of the two frequencies.

Our main concern in this chapter is to illustrate the “global” theory of circle
maps, connected with universality properties of the whole irrational winding set.
We shall see that critical global properties may be expressed via cycle expansions
involving “local” renormalization critical exponents. The renormalization theory
of critical circle maps demands rather tedious numerical computations, and our
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Figure 27.1: Unperturbed circle map (k = 0 in (27.1))
with golden mean rotation number. 0 0.2 0.4 0.6 0.8 1
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intuition is much facilitated by approximating circle mapsby number-theoretic
models. The models that arise in this way are by no means mathematically triv-
ial, they turn out to be related to number-theoretic abyssessuch as the Riemann
conjecture, already in the context of the “trivial” models.

27.1 Mode locking

The simplest way of modeling a nonlinearly perturbed rotation on a circle is by
1-dimensional circle mapsx→ x′ = f (x), restricted to the one dimensional torus,
such as thesine map

xn+1 = f (xn) = xn + Ω −
k

2π
sin(2πxn) mod 1 . (27.1)

f (x) is assumed to be continuous, have a continuous first derivative, and a con-
tinuous second derivative at the inflection point (where thesecond derivative van-
ishes). For the generic, physically relevant case (the onlyone considered here) the
inflection is cubic. Herek parametrizes the strength of the nonlinear interaction,
andΩ is thebare frequency.

The state space of this map, the unit interval, can be thoughtof as the elemen-
tary cell of the map

x̂n+1 = f̂ (x̂n) = x̂n + Ω −
k

2π
sin(2πx̂n) . (27.2)

where ˆ is used in the same sense as in chapter 25.

The winding number is defined as

W(k,Ω) = lim
n→∞

(x̂n − x̂0)/n. (27.3)

and can be shown to be independent of the initial value ˆx0.
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Fork = 0, the map is a simple rotation (theshift map) see figure 27.1

xn+1 = xn + Ω mod 1 , (27.4)

and the rotation number is given by the parameterΩ.

W(k = 0,Ω) = Ω .

For given values ofΩ andk the winding number can be either rational or irra-
tional. For invertible maps and rational winding numbersW = P/Q the asymptotic
iterates of the map converge to a unique attractor, a stable periodic orbit of period
Q

f̂ Q(x̂i) = x̂i + P, i = 0, 1, 2, · · · ,Q− 1 .

This is a consequence of the independence of ˆx0 previously mentioned. There is
also an unstable cycle, repelling the trajectory. For any rational winding number,
there is a finite interval of values ofΩ values for which the iterates of the circle
map are attracted to theP/Q cycle. This interval is called theP/Q mode-locked exercise 27.1

(or stability) interval, and its width is given by

∆P/Q = Q−2µP/Q = Ω
right
P/Q −Ω

le f t
P/Q . (27.5)

whereΩright
P/Q (Ωle f t

P/Q) denote the biggest (smallest) value ofΩ for which W(k,Ω) =
P/Q. Parametrizing mode lockings by the exponentµ rather than the width∆
will be convenient for description of the distribution of the mode-locking widths,
as the exponentsµ turn out to be of bounded variation. The stability of theP/Q
cycle is

ΛP/Q =
∂xQ

∂x0
= f ′(x0) f ′(x1) · · · f ′(xQ−1)

For a stable cycle|ΛP/Q| lies between 0 (the superstable value, the “center” of the
stability interval) and 1 (theΩright

P/Q , Ωle f t
P/Q endpoints of (27.5)). For the shift map

(27.4), the stability intervals are shrunk to points. AsΩ is varied from 0 to 1,
the iterates of a circle map either mode-lock, with the winding number given by
a rational numberP/Q ∈ (0, 1), or do not mode-lock, in which case the winding
number is irrational. A plot of the winding numberW as a function of the shift
parameterΩ is a convenient visualization of the mode-locking structure of circle
maps. It yields a monotonic “devil’s staircase” of figure 27.2 whose self-similar
structure we are to unravel. Circle maps with zero slope at the inflection pointxc

(see figure 27.3)

f ′(xc) = 0 , f ′′(xc) = 0
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Figure 27.2: The critical circle map (k = 1 in (27.1))
devil’s staircase [27.3]; the winding numberW as func-
tion of the parameterΩ.

Figure 27.3: Critical circle map (k = 1 in (27.1)) with
golden mean bare rotation number. 0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

f(x)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(k = 1, xc = 0 in (27.1)) are calledcritical: they delineate the borderline of chaos
in this scenario. As the nonlinearity parameterk increases, the mode-locked
intervals become wider, and for the critical circle maps (k = 1) they fill out the
whole interval. A critical map has a superstableP/Q cycle for any rationalP/Q,
as the stability of any cycle that includes the inflection point equals zero. If the
map is non-invertible (k > 1), it is called supercritical; the bifurcation structure of
this regime is extremely rich and beyond the scope of this exposition.

The physically relevant transition to chaos is connected with the critical case,
however the apparently simple “free” shift map limit is quite instructive: in essence
it involves the problem of ordering rationals embedded in the unit interval on a hi-
erarchical structure. From a physical point of view, the main problem is to identify
a (number-theoretically) consistent hierarchy susceptible of experimental verifi-
cation. We will now describe a few ways of organizing rationals along the unit
interval: each has its own advantages as well as its drawbacks, when analyzed
from both mathematical and physical perspective.

27.1.1 Hierarchical partitions of the rationals

Intuitively, the longer the cycle, the finer the tuning of theparameterΩ required to
attain it; given finite time and resolution, we expect to be able to resolve cycles up
to some maximal lengthQ. This is the physical motivation for partitioning mode
lockings into sets of cycle length up toQ. In number theory such sets of rationals
are calledFarey series. They are denoted byFQ and defined as follows. The
Farey series of orderQ is the monotonically increasing sequence of all irreducible
rationals between 0 and 1 whose denominators do not exceedQ. Thus Pi/Qi
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belongs toFQ if 0 < Pi ≤ Qi ≤ Q and (Pi |Qi) = 1. For example

F5 =

{1
5
,

1
4
,

1
3
,

2
5
,

1
2
,

3
5
,

2
3
,

3
4
,

4
5
,

1
1

}

A Farey series is characterized by the property that ifPi−1/Qi−1 and Pi/Qi are
consecutive terms ofFQ, then

PiQi−1 − Pi−1Qi = 1.

The number of terms in the Farey seriesFQ is given by

Φ(Q) =
Q

∑

n=1

φ(Q) =
3Q2

π2
+ O(Q ln Q). (27.6)

Here the Euler functionφ(Q) is the number of integers not exceeding and rel-
atively prime toQ. For example,φ(1) = 1, φ(2) = 1, φ(3) = 2, . . . , φ(12) =
4, φ(13)= 12, . . .

From a number-theorist’s point of view, thecontinued fraction partitioningof
the unit interval is the most venerable organization of rationals, preferred already
by Gauss. The continued fraction partitioning is obtained by ordering rationals
corresponding to continued fractions of increasing length. If we turn this ordering
into a way of covering the complementary set to mode-lockings in a circle map,
then the first level is obtained by deleting∆[1] , ∆[2] , · · · ,∆[a1] , · · · mode-lockings;
their complement are thecovering intervalsℓ1, ℓ2, . . . , ℓa1, . . . which contain all
windings, rational and irrational, whose continued fraction expansion starts with
[a1, . . .] and is of length at least 2. The second level is obtained by deleting
∆[1,2], ∆[1,3], · · · ,∆[2,2], ∆[2,3], · · · ,∆[n,m] , · · · and so on.

Thenth level continued fraction partitionSn = {a1a2 · · ·an} is defined as the
monotonically increasing sequence of all rationalsPi/Qi between 0 and 1 whose
continued fraction expansion is of length n:

Pi

Qi
= [a1, a2, · · · , an] =

1

a1 +
1

a2 + . . .
1

an

The object of interest, the set of the irrational winding numbers, is in this partition-
ing labeled byS∞ = {a1a2a3 · · ·}, ak ∈ Z+, i.e., the set of winding numbers with
infinite continued fraction expansions. The continued fraction labeling is particu-
larly appealing in the present context because of the close connection of the Gauss
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shift to the renormalization transformationR, discussed below. The Gauss map

T(x) =
1
x
−

[

1
x

]

x , 0

0 , x = 0 (27.7)

([· · ·] denotes the integer part) acts as a shift on the continued fraction representa-
tion of numbers on the unit interval

x = [a1, a2, a3, . . .] → T(x) = [a2, a3, . . .] . (27.8)

into the “mother” intervalℓa2a3....

However natural the continued fractions partitioning might seem to a number
theorist, it is problematic in practice, as it requires measuring infinity of mode-
lockings even at the first step of the partitioning. Thus numerical and experimental
use of continued fraction partitioning requires at least some understanding of the
asymptotics of mode–lockings with large continued fraction entries.

TheFarey tree partitioningis a systematic bisection of rationals: it is based
on the observation that roughly halfways between any two large stability intervals
(such as 1/2 and 1/3) in the devil’s staircase of figure 27.2 there is the next largest
stability interval (such as 2/5). The winding number of this interval is given by the
Farey mediant (P+P′)/(Q+Q′) of the parent mode-lockingsP/Q andP′/Q′. This
kind of cycle “gluing” is rather general and by no means restricted to circle maps;
it can be attained whenever it is possible to arrange that theQth iterate deviation
caused by shifting a parameter from the correct value for theQ-cycle is exactly
compensated by theQ′th iterate deviation from closing theQ′-cycle; in this way
the two near cycles can be glued together into an exact cycle of lengthQ+Q′. The
Farey tree is obtained by starting with the ends of the unit interval written as 0/1
and 1/1, and then recursively bisecting intervals by means of Farey mediants.

We define thenth Farey tree level Tn as the monotonically increasing sequence
of those continued fractions[a1, a2, . . . , ak] whose entries ai ≥ 1, i = 1, 2, . . . , k−
1, ak ≥ 2, add up to

∑k
i=1 ai = n + 2. For example

T2 =
{

[4], [2, 2], [1, 1, 2], [1, 3]
}

=

(1
4
,
1
5
,
3
5
,
3
4

)

. (27.9)

The number of terms inTn is 2n. Each rational inTn−1 has two “daughters” inTn,
given by

[· · · , a]
[· · · , a− 1, 2] [· · · , a+ 1]
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Figure 27.4: Farey tree: alternating binary or-
dered labeling of all Farey denominators on thenth
Farey tree level.
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Iteration of this rule places all rationals on a binary tree,labeling each by a unique
binary label, figure 27.4.

The smallest and the largest denominator inTn are respectively given by

[n− 2] =
1

n− 2
, [1, 1, . . . , 1, 2] =

Fn+1

Fn+2
∝ ρn , (27.10)

where the Fibonacci numbersFn are defined byFn+1 = Fn+Fn−1; F0 = 0, F1 =

1, andρ is the golden mean ratio

ρ =
1+
√

5
2

= 1.61803. . . (27.11)

Note the enormous spread in the cycle lengths on the same level of the Farey tree:
n ≤ Q ≤ ρn. The cycles whose length grows only as a power of the Farey tree level
will cause strong non-hyperbolic effects in the evaluation of various averages.

Having defined the partitioning schemes of interest here, wenow briefly sum-
marize the results of the circle-map renormalization theory.

27.2 Local theory: “Golden mean” renormalization

The way to pinpoint a point on the border of order is to recursively ad-
just the parameters so that at the recurrence timest = n1, n2, n3, · · · the trajectory
passes through a region of contraction sufficiently strong to compensate for the
accumulated expansion of the precedingni steps, but not so strong as to force the
trajectory into a stable attracting orbit. Therenormalization operation Rimple-
ments this procedure by recursively magnifying the neighborhood of a point on
the border in the dynamical space (by rescaling by a factorα), in the parameter
space (by shifting the parameter origin onto the border and rescaling by a factorδ),
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and by replacing the initial mapf by thenth iterate f n restricted to the magnified
neighborhood

fp(x)→ R fp(x) = α f n
p/δ(x/α)

There are by now many examples of such renormalizations in which the new func-
tion, framed in a smaller box, is a rescaling of the original function, i.e., the fix-
point function of the renormalization operatorR. The best known is the period
doubling renormalization, with the recurrence timesni = 2i . The simplest circle
map example is the golden mean renormalization, with recurrence timesni = Fi

given by the Fibonacci numbers (27.10). Intuitively, in this context a metric self-
similarity arises because iterates of critical maps are themselves critical, i.e., they
also have cubic inflection points with vanishing derivatives.

The renormalization operator appropriate to circle maps acts as a generaliza-
tion of the Gauss shift (27.38); it maps a circle map (represented as a pair of
functions (g, f ), of winding number [a, b, c, . . .] into a rescaled map of winding
number [b, c, . . .]:

Ra

(

g
f

)

=

(

αga−1 ◦ f ◦ α−1

αga−1 ◦ f ◦ g ◦ α−1

)

, (27.12)

Acting on a map with winding number [a, a, a, . . .], Ra returns a map with the same
winding number [a, a, . . .], so the fixed point ofRa has a quadratic irrational wind-
ing numberW = [a, a, a, . . .]. This fixed point has a single expanding eigenvalue
δa. Similarly, the renormalization transformationRap . . .Ra2Ra1 ≡ Ra1a2...ap has
a fixed point of winding numberWp = [a1, a2, . . . , anp, a1, a2, . . .], with a single
expanding eigenvalueδp.

For short repeating blocks,δ can be estimated numerically by comparing suc-
cessive continued fraction approximants toW. Consider thePr/Qr rational ap-
proximation to a quadratic irrational winding numberWp whose continued frac-
tion expansion consists ofr repeats of a blockp. LetΩr be the parameter for which
the map (27.1) has a superstable cycle of rotation numberPr/Qr = [p, p, . . . , p].
Theδp can then be estimated by extrapolating from

Ωr −Ωr+1 ∝ δ−r
p . (27.13)

What this means is that the “devil’s staircase” of figure 27.2is self-similar under
magnification by factorδp around any quadratic irrationalWp.

The fundamental result of the renormalization theory (and the reason why all
this is so interesting) is that the ratios of successivePr/Qr mode-locked intervals
converge touniversallimits. The simplest example of (27.13) is the sequence of
Fibonacci number continued fraction approximants to the golden mean winding
numberW = [1, 1, 1, ...] = (

√
5− 1)/2.
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When global problems are considered, it is useful to have at least and idea on
extemal scaling laws for mode–lockings. This is achieved, in a first analysis, by
fixing the cycle lengthQ and describing the range of possible asymptotics.

For a given cycle lengthQ, it is found that thenarrowestinterval shrinks with
a power law

∆1/Q ∝ Q−3 (27.14)

For fixedQ the widestinterval is bounded byP/Q = Fn−1/Fn, thenth con-
tinued fraction approximant to thegolden mean. The intuitive reason is that the
golden mean winding sits as far as possible from any short cycle mode-locking.

The golden mean interval shrinks with a universal exponent

∆P/Q ∝ Q−2µ1 (27.15)

whereP = Fn−1, Q = Fn andµ1 is related to the universal Shenker numberδ1
(27.13) and the golden mean (27.11) by

µ1 =
ln |δ1|
2 lnρ

= 1.08218. . . (27.16)

The closeness ofµ1 to 1 indicates that the golden mean approximant mode-lockings
barely feel the fact that the map is critical (in the k=0 limit this exponent isµ = 1).

To summarize: for critical maps the spectrum of exponents arising from the
circle maps renormalization theory is bounded from above bythe harmonic scal-
ing, and from below by the geometric golden-mean scaling:

3/2 > µm/n ≥ 1.08218· · · . (27.17)

27.3 Global theory: Thermodynamic averaging

Consider the following average over mode-locking intervals (27.5):

Ω(τ) =
∞
∑

Q=1

∑

(P|Q)=1

∆−τP/Q. (27.18)

The sum is over all irreducible rationalsP/Q, P < Q, and∆P/Q is the width of the
parameter interval for which the iterates of a critical circle map lock onto a cycle
of lengthQ, with winding numberP/Q.
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The qualitative behavior of (27.18) is easy to pin down. For sufficiently neg-
ative τ, the sum is convergent; in particular, forτ = −1, Ω(−1) = 1, as for the
critical circle maps the mode-lockings fill the entireΩ range [27.11]. However,
asτ increases, the contributions of the narrow (largeQ) mode-locked intervals
∆P/Q get blown up to 1/∆τP/Q, and at some critical value ofτ the sum diverges.
This occurs forτ < 0, asΩ(0) equals the number of all rationals and is clearly
divergent.

The sum (27.18) is infinite, but in practice the experimentalor numerical
mode-locked intervals are available only for small finiteQ. Hence it is necessary
to split up the sum into subsetsSn = {i} of rational winding numbersPi/Qi on
the “level” n, and present the set of mode-lockings hierarchically, withresolution
increasing with the level:

Z̄n(τ) =
∑

i∈Sn

∆−τi . (27.19)

The original sum (27.18) can now be recovered as thez = 1 value of a “gener-
ating” functionΩ(z, τ) =

∑

n znZ̄n(τ). As z is anyway a formal parameter, and
n is a rather arbitrary “level” in somead hocpartitioning of rational numbers,
we bravely introduce a still more general,P/Q weighted generating function for
(27.18):

Ω(q, τ) =
∞
∑

Q=1

∑

(P|Q)=1

e−qνP/QQ2τµP/Q . (27.20)

The sum (27.18) corresponds toq = 0. ExponentsνP/Q will reflect the importance
we assign to theP/Q mode-locking, i.e., themeasureused in the averaging over
all mode-lockings. Three choices of of theνP/Q hierarchy that we consider here
correspond respectively to the Farey series partitioning

Ω(q, τ) =
∞
∑

Q=1

Φ(Q)−q
∑

(P|Q)=1

Q2τµP/Q , (27.21)

the continued fraction partitioning

Ω(q, τ) =
∞
∑

n=1

e−qn
∑

[a1,...,an]

Q2τµ[a1,...,an] , (27.22)

and the Farey tree partitioning

Ω(q, τ) =
∞
∑

k=n

2−qn
2n
∑

i=1

Q2τµi
i , Qi/Pi ∈ Tn . (27.23)

We remark that we are investigating a set arising in the analysis of the parameter
space of a dynamical system: there is no “natural measure” dictated by dynamics,
and the choice of weights reflects only the choice of hierarchical presentation.
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27.4 Hausdorff dimension of irrational windings

A finite cover of the set irrational windings at the “nth level of resolution” is
obtained by deleting the parameter values corresponding tothe mode-lockings in
the subsetSn; left behind is the set of complementcoveringintervals of widths

ℓi = Ω
min
Pr/Qr

−Ωmax
Pl/Ql

. (27.24)

HereΩmin
Pr/Qr

(Ωmax
Pl/Ql

) are respectively the lower (upper) edges of the mode-locking
intervals∆Pr/Qr (∆Pl/Ql ) boundingℓi and i is a symbolic dynamics label, for ex-
ample the entries of the continued fraction representationP/Q = [a1, a2, ..., an] of
one of the boundary mode-lockings,i = a1a2 · · · an. ℓi provide a finite cover for
the irrational winding set, so one may consider the sum

Zn(τ) =
∑

i∈Sn

ℓ−τi (27.25)

The value of−τ for which then → ∞ limit of the sum (27.25) is finite is the
Hausdorff dimension DH of the irrational winding set. Strictly speaking, this is
the Hausdorff dimension only if the choice of covering intervalsℓi is optimal;
otherwise it provides an upper bound toDH. As by construction theℓi intervals
cover the set of irrational winding with no slack, we expect that this limit yields
the Hausdorff dimension. This is supported by all numerical evidence, buta proof
that would satisfy mathematicians is lacking.

The physically relevant statement is that for critical circle mapsDH = 0.870. . .
is a (global) universal number. exercise 27.2

27.4.1 The Hausdorff dimension in terms of cycles

Estimating then → ∞ limit of (27.25) from finite numbers of covering intervals
ℓi is a rather unilluminating chore. Fortunately, there existconsiderably more
elegant ways of extractingDH. We have noted that in the case of the “trivial”
mode-locking problem (27.4), the covering intervals are generated by iterations
of the Farey map (27.37) or the Gauss shift (27.38). Thenth level sum (27.25) can
be approximated byLn

τ, where

Lτ(y, x) = δ(x− f −1(y))| f ′(y)|τ

This amounts to approximating each cover widthℓi by |d fn/dx| evaluated on the
ith interval. We are thus led to the following determinant

det (1− zLτ) = exp

















−
∑

p

∞
∑

r=1

zrnp

r

|Λr
p|τ

1− 1/Λr
p
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=
∏

p

∞
∏

k=0

(

1− znp|Λp|τ/Λk
p

)

. (27.26)

The sum (27.25) is dominated by the leading eigenvalue ofLτ; the Hausdorff
dimension conditionZn(−DH) = O(1) means thatτ = −DH should be such that
the leading eigenvalue isz = 1. The leading eigenvalue is determined by the
k = 0 part of (27.26); putting all these pieces together, we obtain a pretty formula
relating the Hausdorff dimension to the prime cycles of the mapf (x):

0 =
∏

p

(

1− 1/|Λp|DH
)

. (27.27)

For the Gauss shift (27.38) the stabilities of periodic cycles are available analytical-
ly, as roots of quadratic equations: For example, thexa fixed points (quadratic
irrationals withxa = [a, a, a . . .] infinitely repeating continued fraction expansion)
are given by

xa =
−a+

√
a2 + 4

2
, Λa = −















a+
√

a2 + 4
2















2

(27.28)

and thexab = [a, b, a, b, a, b, . . .] 2–cycles are given by

xab =
−ab+

√

(ab)2 + 4ab
2b

(27.29)

Λab = (xabxba)
−2 =

(

ab+ 2+
√

ab(ab+ 4)
2

)2

We happen to know beforehand thatDH = 1 (the irrationals take the full mea-
sure on the unit interval, or, from another point of view, theGauss map is not a
repeller), so is the infinite product (27.27) merely a very convoluted way to com-
pute the number 1? Possibly so, but once the meaning of (27.27) has been grasped,
the corresponding formula for thecritical circle maps follows immediately:

0 =
∏

p

(

1− 1/|δp|DH
)

. (27.30)

The importance of this formula relies on the fact that it expressesDH in terms
of universalquantities, thus providing a nice connection from local universal ex-
ponents to global scaling quantities: actual computationsusing (27.30) are rather
involved, as they require a heavy computational effort to extract Shenker’s scaling
δp for periodic continued fractions, and moreover dealing with an infinite alpha-
bet requires control over tail summation if an accurate estimate is to be sought. In
table 27.1 we give a small selection of computed Shenker’s scalings.
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Table 27.1: Shenker’sδp for a few periodic continued fractions, from ref. [27.1].
p δp

[1 1 1 1 ...] -2.833612
[2 2 2 2 ...] -6.7992410
[3 3 3 3 ...] -13.760499
[4 4 4 4 ...] -24.62160
[5 5 5 5 ...] -40.38625
[6 6 6 6 ...] -62.140
[1 2 1 2 ...] 17.66549
[1 3 1 3 ...] 31.62973
[1 4 1 4 ...] 50.80988
[1 5 1 5 ...] 76.01299
[2 3 2 3 ...] 91.29055

27.5 Thermodynamics of Farey tree: Farey model

We end this chapter by giving an example of a number theoretical model
motivated by the mode-locking phenomenology. We will consider it by means of
the thermodynamic formalism of chapter K, by looking at the free energy.

Consider the Farey tree partition sum (27.23): the narrowest mode-locked
interval (27.15) at thenth level of the Farey tree partition sum (27.23) is the golden
mean interval

∆Fn−1/Fn ∝ |δ1|−n. (27.31)

It shrinks exponentially, and forτ positive and large it dominatesq(τ) and bounds
dq(τ)/dτ:

q′max =
ln |δ1|
ln 2

= 1.502642. . . (27.32)

However, forτ large and negative,q(τ) is dominated by the interval (27.14) which
shrinks only harmonically, andq(τ) approaches 0 as

q(τ)
τ
=

3 lnn
n ln 2

→ 0. (27.33)

So for finite n,qn(τ) crosses theτ axis at−τ = Dn, but in then → ∞ limit, the
q(τ) function exhibits a phase transition;q(τ) = 0 for τ < −DH, but is a non-trivial
function ofτ for −DH ≤ τ. This non-analyticity is rather severe - to get a clearer
picture, we illustrate it by a few number-theoretic models (the critical circle maps
case is qualitatively the same).

An approximation to the “trivial” Farey level thermodynamics is given by the
“Farey model,” in which the intervalsℓP/Q are replaced byQ−2:

Zn(τ) =
2n
∑

i=1

Q2τ
i . (27.34)
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Here Qi is the denominator of theith Farey rationalPi/Qi . For example (see
figure 27.4),

Z2(1/2) = 4 + 5 + 5 + 4.

By the annihilation property (27.38) of the Gauss shift on rationals, thenth Farey
level sumZn(−1) can be written as the integral

Zn(−1) =
∫

dxδ( f n(x)) =
∑

1/| f ′a1...ak
(0)| ,

and in general

Zn(τ) =
∫

dxLn
τ(0, x) ,

with the sum restricted to the Farey levela1 + . . . + ak = n+ 2. It is easily checked
that f ′a1...ak

(0) = (−1)kQ2
[a1,...,ak], so the Farey model sum is a partition generated by

the Gauss map preimages ofx = 0, i.e., by rationals, rather than by the quadratic
irrationals as in (27.26). The sums are generated by the sametransfer operator, so
the eigenvalue spectrum should be the same as for the periodic orbit expansion, but
in this variant of the finite level sums we can can evaluateq(τ) exactlyfor τ = k/2,
k a nonnegative integer. First, one observes thatZn(0) = 2n. It is also easy to check
thatZn(1/2) =

∑

i Qi = 2 · 3n. More surprisingly,Zn(3/2) =
∑

i Q3 = 54 · 7n−1.
A few of these “sum rules” are listed in the table 27.2, they are consequence of
the fact that the denominators on a given level are Farey sumsof denominators on
preceding levels. exercise 27.3

A bound onDH can be obtained by approximating (27.34) by

Zn(τ) = n2τ + 2nρ2nτ. (27.35)

In this approximation we have replaced allℓP/Q, except the widest intervalℓ1/n,
by the narrowest intervalℓFn−1/Fn (see (27.15)). The crossover from the harmonic
dominated to the golden mean dominated behavior occurs at theτ value for which
the two terms in (27.35) contribute equally:

Dn = D̂ + O

(

ln n
n

)

, D̂ =
ln 2

2 lnρ
= .72. . . (27.36)

For negativeτ the sum (27.35) is the lower bound on the sum (27.25) , soD̂ is
a lower bound onDH.

From a general perspective the analysis of circle maps thermodynamics has
revealed the fact that physically interesting dynamical systems often exhibit mix-
tures of hyperbolic and marginal stabilities. In such systems there are orbits that
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τ/2 Zn(τ/2)/Zn−1(τ/2)
0 2
1 3
2 (5+

√
17)/2

3 7
4 (5+

√
17)/2

5 7+ 4
√

6
6 26.20249. . .

Table 27.2: Partition function sum rules for the Farey model.

stay ‘glued’ arbitrarily close to stable regions for arbitrarily long times. This is a
generic phenomenon for Hamiltonian systems, where elliptic islands of stability
coexist with hyperbolic homoclinic webs. Thus the considerations of chapter 24
are important also in the analysis of renormalization at theonset of chaos.

Résum é

The mode locking problem, and the quasiperiodic transitionto chaos offer an
opportunity to use cycle expansions on hierarchical structures in parameter space:
this is not just an application of the conventional thermodynamic formalism, but
offers a clue on how to extend universality theory from local scalings to global
quantities.

Commentary

Remark 27.1 The physics of circle maps. Mode–locking phenomenology is reviewed
in ref. [27.5], a more theoretically oriented discussion iscontained in ref. [27.3]. While
representative of dissipative systems we may also considercircle maps as a crude ap-
proximation to Hamiltonian local dynamics: a typical island of stability in a Hamiltonian
2−dimensionalmap is an infinite sequence of concentric KAM tori and chaoticregions. In
the crudest approximation, the radius can here be treated asan external parameterΩ, and
the angular motion can be modeled by a map periodic in the angular variable [27.8, 27.9].
By losing all of the ‘island-within-island’ structure of real systems, circle map models
skirt the problems of determining the symbolic dynamics fora realistic Hamiltonian sys-
tem, but they do retain some of the essential features of suchsystems, such as the golden
mean renormalization [13.5, 27.8] and non-hyperbolicity in form of sequences of cycles
accumulating toward the borders of stability. In particular, in such systems there are orbits
that stay “glued” arbitrarily close to stable regions for arbitrarily long times. As this is
a generic phenomenon in physically interesting dynamical systems, such as the Hamilto-
nian systems with coexisting elliptic islands of stabilityand hyperbolic homoclinic webs,
development of good computational techniques is here of utmost practical importance.

Remark 27.2 Critical mode–locking set The fact that mode-lockings completely fill
the unit interval at the critical point has been proposed in refs. [27.3, 27.10]. The proof

irrational - 22sep2000 ChaosBook.org version13, Dec 31 2009



CHAPTER 27. IRRATIONALLY WINDING 542

that the set of irrational windings is of zero Lebesgue measure in given in ref. [27.11].

Remark 27.3 Counting noise for Farey series. The number of rationals in the Farey
series of orderQ is φ(Q), which is a highly irregular function ofQ: incrementingQ by 1
increasesΦ(Q) by anything from 2 toQ terms. We refer to this fact as the “Euler noise.”

The Euler noise poses a serious obstacle for numerical calculations with the Farey
series partitionings; it blocks smooth extrapolations toQ→ ∞ limits from finite Q data.
While this in practice renders inaccurate most Farey-sequence partitioned averages, the
finite Q Hausdorff dimension estimates exhibit (for reasons that we do not understand)
surprising numerical stability, and the Farey series partitioning actually yields thebestnu-
merical value of the Hausdorff dimension (27.25) of any methods used so far; for example
the computation in ref. [27.12] for critical sine map (27.1), based on 240≤ Q ≤ 250 Farey
series partitions, yieldsDH = .87012± .00001. The quoted error refers to the variation of
DH over this range ofQ; as the computation is not asymptotic, such numerical stability
can underestimate the actual error by a large factor.

Remark 27.4 Farey tree presentation function. The Farey tree rationals can be gen-
erated by backward iterates of 1/2 by the Farey presentation function [27.13]:

f0(x) = x/(1− x) 0 ≤ x < 1/2
f1(x) = (1− x)/x 1/2 < x ≤ 1 . (27.37)

The Gauss shift (27.7) corresponds to replacing the binary Farey presentation function
branchf0 in (27.37) by an infinity of branches

fa(x) = f1 ◦ f (a−1)
0 (x) =

1
x
− a,

1
a− 1

< x ≤ 1
a
,

fab···c(x) = fc ◦ · ◦ fb ◦ fa(x) . (27.38)

A rationalx = [a1, a2, . . . , ak] is annihilated by thekth iterate of the Gauss shift,fa1a2···ak(x) =
0. The above maps look innocent enough, but note that what is being partitioned is not
the dynamical space, but the parameter space. The flow described by (27.37) and by its
non-trivial circle-map generalizations will turn out to bea renormalization groupflow
in the function space of dynamical systems, not an ordinary flow in the state space of a
particular dynamical system.

The Farey tree has a variety of interesting symmetries (suchas “flipping heads and
tails” relations obtained by reversing the order of the continued-fraction entries) with as
yet unexploited implications for the renormalization theory: some of these are discussed
in ref. [27.4].

An alternative labeling of Farey denominators has been introduced by Knauf [27.6]
in context of number-theoretical modeling of ferromagnetic spin chains: it allows for a
number of elegant manipulations in thermodynamic averagesconnected to the Farey tree
hierarchy.

Remark 27.5 Circle map renormalization The idea underlying golden mean renor-
malization goes back to Shenker [27.9]. A renormalization group procedure was formu-
lated in refs. [27.7, 27.14], where moreover the uniquenessof the relevant eigenvalue is
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claimed. This statement has been confirmed by a computer–assisted proof [27.15], and in
the following we will always assume it. There are a number of experimental evidences
for local universality, see refs. [27.16, 27.17].

On the other side of the scaling tale, the power law scaling for harmonic fractions
(discussed in refs. [27.2, 27.4]) is derived by methods akinto those used in describing
intermittency [27.21]: 1/Q cycles accumulate toward the edge of 0/1 mode-locked inter-
val, and as the successive mode-locked intervals 1/Q, 1/(Q− 1) lie on a parabola, their
differences are of orderQ−3.

Remark 27.6 Farey series and the Riemann hypothesis The Farey series thermo-
dynamics is of a number theoretical interest, because the Farey series provide uniform
coverings of the unit interval with rationals, and because they are closely related to the
deepest problems in number theory, such as the Riemann hypothesis [27.22, 27.23] . The
distribution of the Farey series rationals across the unit interval is surprisingly uniform -
indeed, so uniform that in the pre-computer days it has motivated a compilation of an en-
tire handbook of Farey series [27.24]. A quantitative measure of the non-uniformity of the
distribution of Farey rationals is given by displacements of Farey rationals forPi/Qi ∈ FQ

from uniform spacing:

δi =
i
Φ(Q)

− Pi

Qi
, i = 1, 2, · · · ,Φ(Q)

The Riemann hypothesis states that the zeros of the Riemann zeta function lie on the
s = 1/2 + iτ line in the complexs plane, and would seem to have nothing to do with
physicists’ real mode-locking widths that we are interested in here. However, there is a
real-line version of the Riemann hypothesis that lies very close to the mode-locking prob-
lem. According to the theorem of Franel and Landau [27.25, 27.22, 27.23], the Riemann
hypothesis is equivalent to the statement that

∑

Qi≤Q

|δi | = o(Q
1
2+ǫ)

for all ǫ as Q → ∞. The mode-lockings∆P/Q contain the necessary information for
constructing the partition of the unit interval into theℓi covers, and therefore implicitly
contain theδi information. The implications of this for the circle-map scaling theory have
not been worked out, and is not known whether some conjectureabout the thermodynam-
ics of irrational windings is equivalent to (or harder than)the Riemann hypothesis, but the
danger lurks.

Remark 27.7 Farey tree partitioning. The Farey tree partitioning was introduced in
refs. [27.26, 27.27, 27.4] and its thermodynamics is discussed in detail in refs. [27.12,
27.13]. The Farey tree hierarchy of rationals is rather new,and, as far as we are aware,
not previously studied by number theorists. It is appealingboth from the experimental
and from the golden-mean renormalization point of view, butit has a serious drawback of
lumping together mode-locking intervals of wildly different sizes on the same level of the
Farey tree.
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Remark 27.8 Local and global universality. Numerical evidences for global universal
behavior have been presented in ref. [27.3]. The question was reexamined in ref. [27.12],
where it was pointed out how a high-precision numerical estimate is in practice very hard
to obtain. It is not at all clear whether this is the optimal global quantity to test but at
least the Hausdorff dimension has the virtue of being independent of how one partitions
mode-lockings and should thus be the same for the variety of thermodynamic averages in
the literature.

The formula (27.30), linking local to global behavior, was proposed in ref. [27.1].

The derivation of (27.30) relies only on the following aspects of the “hyperbolicity
conjecture” of refs. [27.4, 27.18, 27.19, 27.20]:

1. limits for Shenkerδ’s existand are universal. This should follow from the renor-
malization theory developed in refs. [27.7, 27.14, 27.15],though a general proof is
still lacking.

2. δp growexponentiallywith np, the length of the continued fraction blockp.

3. δp for p = a1a2 . . .n with a large continued fraction entryn grows as apower
of n. According to (27.14), limn→∞ δp ∝ n3. In the calculation of ref. [27.1] the
explicit values of the asymptotic exponents and prefactorswere not used, only the
assumption that the growth ofδp with n is not slower than a power ofn.

Remark 27.9 Farey model. The Farey model (27.33) has been proposed in ref. [27.12];
though it might seem to have been pulled out of a hat, the Fareymodel is as sensible de-
scription of the distribution of rationals as the periodic orbit expansion (27.26).

Remark 27.10 Symbolic dynamics for Hamiltonian rotational orbits. The rotational
codes of ref. [27.37] are closely related to those for maps with a natural angle variable,
for example for circle maps [27.34, 27.36] and cat maps [27.38]. Ref. [27.37] also offers
a systematic rule for obtaining the symbolic codes of “islands around islands” rotational
orbits [27.40]. These correspond, for example, to orbits that rotate around orbits that rotate
around the elliptic fixed point; thus they are defined by a sequence of rotation numbers.

A different method for constructing symbolic codes for “islands around islands” was
given in refs. [27.43, 27.41]; however in these cases the entire set of orbits in an island was
assigned the same sequence and the motivation was to study the transport implications for
chaotic orbits outside the islands [27.40, 27.42].

Exercises

27.1. Mode-locked intervals. Check that whenk , 0 the
interval∆P/Q have a non-zero width (look for instance
at simple fractions, and considerk small). Show that for

smallk the width of∆0/1 is an increasing function ofk.
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27.2. Bounds on Hausdorff dimension. By making use of
the bounds (27.17) show that the Hausdorff dimension
for critical mode lockings may be bounded by

2/3 ≤ DH ≤ .9240. . .

27.3. Farey model sum rules. Verify the sum rules re-
ported in table 27.2. An elegant way to get a number of
sum rules for the Farey model is by taking into account
an lexical ordering introduced by Contucci and Knauf,
see ref. [27.28].

27.4. Metric entropy of the Gauss shift. Check that
the Lyapunov exponent of the Gauss map (27.7) is given
by π2/6 ln 2. This result has been claimed to be rele-
vant in the discussion of “mixmaster” cosmologies, see
ref. [27.30].

27.5. Refined expansions. Show that the above estimates
can be refined as follows:

F(z, 2) ∼ ζ(2)+ (1− z) log(1− z) − (1− z)

and

F(z, s) ∼ ζ(s) + Γ(1− s)(1− z)s−1 − S(s)(1− z)

for s ∈ (1, 2) (S(s) being expressed by a converging
sum). You may use either more detailed estimate for
ζ(s, a) (via Euler summation formula) or keep on sub-
tracting leading contributions [27.31].

27.6. jn and αcr. Look at the integration region and how it
scales by plotting it for increasing values ofn.

27.7. Estimates of the Riemann zeta function. Try to
approximate numerically the Riemann zeta function for
s= 2, 4, 6 using different acceleration algorithms: check
your results with refs. [27.32, 27.33].

27.8. Farey tree and continued fractions I. Consider the
Farey tree presentation functionf : [0, 1] 7→ [0, 1], such
that if I = [0, 1/2) andJ = [1/2, 1], f |I = x/(1− x) and
f |J = (1 − x)/x. Show that the corresponding induced
map is the Gauss mapg(x) = 1/x− [1/x].

27.9. Farey tree and continued fraction II. (Lethal weapon
II). Build the simplest piecewise linear approxima-
tion to the Farey tree presentation function (hint: sub-
stitute first the righmost, hyperbolic branch with a lin-
ear one): consider then the spectral determinant of the
induced map ˆg, and calculate the first two eigenvalues
besides the probability conservation one. Compare the
results with the rigorous bound deduced in ref. [24.17].
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