Chapter 27

Irrationally winding

| don’t care for islands, especially very small ones.
—D.H. Lawrence

(R. Artuso and P. Cvitanovit)

besides its physical relevance it nicely illustrates the ofcycle expan-
sions away from the dynamical setting, in the realm of reradization
theory at the transition to chaos.

Tms CHAPTER iS concerned with the mode locking problems for circle maps:

The physical significance of circle maps is connected witirthbility to
model the two—frequencies mode—locking route to chaosifsightive systems.
In the context ofdissipativedynamical systems one of the most common and
experimentally well explored routes to chaos is the twarfiency mode-locking
route. Interaction of pairs of frequencies is of deep theécakinterest due to the
generality of this phenomenon; as the energy input into sighisive dynamical
system (for example, a Couette flow) is increased, typidaly one and then two
of intrinsic modes of the system are excited. After two Hoifdifzations (a fixed
point with inward spiralling stability has become unstabtel outward spirals to
a limit cycle) a system lives on a two-torus. Such systemd termode-lock:
the system adjusts its internal frequencies slightly so they fall in step and
minimize the internal dissipation. In such case the ratitheftwo frequencies
is a rational number. An irrational frequency ratio corresg@s to a quasiperiodic
motion - a curve that never quite repeats itself. If the mimed states overlap,
chaos sets in. The likelihood that a mode-locking occureddp on the strength
of the coupling of the two frequencies.

Our main concern in this chapter is to illustrate the “gldtiakory of circle
maps, connected with universality properties of the whokgional winding set.
We shall see that critical global properties may be expresiecycle expansions
involving “local” renormalization critical exponents. €hrenormalization theory
of critical circle maps demands rather tedious numericahatations, and our
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Figure 27.1: Unperturbed circle magk(= 0 in (27.1))

with golden mean rotation number.

intuition is much facilitated by approximating circle mapg number-theoretic
models. The models that arise in this way are by no means matielly triv-
ial, they turn out to be related to number-theoretic abysseh as the Riemann
conjecture, already in the context of the “trivial” models.

27.1 Mode locking

The simplest way of modeling a nonlinearly perturbed rotatn a circle is by
1-dimensional circle maps— x’ = f(X), restricted to the one dimensional torus,
such as theine map

X1 = F(Xa) = X + Q — %sin(ern) mod 1. (27.1)

f(x) is assumed to be continuous, have a continuous first degyatnd a con-
tinuous second derivative at the inflection point (wherestheond derivative van-
ishes). For the generic, physically relevant case (the ong/considered here) the
inflection is cubic. Herd parametrizes the strength of the nonlinear interaction,
andQ is thebarefrequency.
The state space of this map, the unit interval, can be thafgid the elemen-

tary cell of the map

o fo N k . 5

fi1 = F(%n) = %o + Q — o sin(2rXy) - (27.2)

where "is used in the same sense as in chapter 25.

The winding number is defined as
W(k, Q) = r!im (%0 — Xo)/n. (27.3)

and can be shown to be independent of the initial vatue ~
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Fork = 0, the map is a simple rotation (tisaift mayp see figure 27.1
Xnp1 = Xn + Q mod 1, (27.4)
and the rotation number is given by the parameler
Wk=0Q)=0Q.

For given values of2 andk the winding number can be either rational or irra-
tional. Forinvertible maps and rational winding numbéfs= P/Q the asymptotic
iterates of the map converge to a unique attractor, a staledic orbit of period

Q
) =%+P, i=012---,Q-1.

This is a consequence of the independenceyqiréviously mentioned. There is
also an unstable cycle, repelling the trajectory. For atipmal winding number,
there is a finite interval of values @1 values for which the iterates of the circle

map are attracted to the/Q cycle. This interval is called thB/Q mode-locked exercise 27.1

(or stability) interval, and its width is given by

A _ fight left
Apjg = Q72 = QpI0 - Qg6 . (27.5)

Wherng?gt (Q'F‘f/fé) denote the biggest (smallest) valueifor which W(k, Q) =
P/Q. Parametrizing mode lockings by the expongmtather than the width
will be convenient for description of the distribution oftimode-locking widths,
as the exponents turn out to be of bounded variation. The stability of tREQ

cycle is

0%
Apig= 5.2 = F00)f'(x) - F'(q-)

For a stable cyclé\p/ql lies between O (the superstable value, the “center” of the
stability interval) and 1 (th@{,’f’g, Q';f/fé endpoints of (27.5)). For the shift map
(27.4), the stability intervals are shrunk to points. @ss varied from 0 to 1,
the iterates of a circle map either mode-lock, with the wiigdhumber given by

a rational numbeP/Q € (0,1), or do not mode-lock, in which case the winding
number is irrational. A plot of the winding numbgY as a function of the shift
parameteK is a convenient visualization of the mode-locking struetaf circle
maps. It yields a monotonic “devil’s staircase” of figure 2Whose self-similar
structure we are to unravel. Circle maps with zero slopeatrtfiection pointx.
(see figure 27.3)

fi)=0, f'(x)=0
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Figure 27.2: The critical circle mapK = 1 in (27.1)) 02 e
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tion of the paramete®.

Figure 27.3:Critical circle map k = 1in (27.1)) with
golden mean bare rotation number.

(k =1, xc = 0in (27.1)) are calledritical: they delineate the borderline of chaos
in this scenario.  As the nonlinearity paramekeincreases, the mode-locked
intervals become wider, and for the critical circle mags=(1) they fill out the
whole interval. A critical map has a superstaBl& cycle for any rationaP/Q,

as the stability of any cycle that includes the inflectionnp@quals zero. If the
map is non-invertiblel > 1), it is called supercritical; the bifurcation structure o
this regime is extremely rich and beyond the scope of thi®siipn.

The physically relevant transition to chaos is connecteti thie critical case,
however the apparently simple “free” shift map limit is quiibstructive: in essence
it involves the problem of ordering rationals embedded &uhit interval on a hi-
erarchical structure. From a physical point of view, themaoblem is to identify
a (number-theoretically) consistent hierarchy suscéptith experimental verifi-
cation. We will now describe a few ways of organizing ratisnalong the unit
interval: each has its own advantages as well as its drasbadken analyzed
from both mathematical and physical perspective.

27.1.1 Hierarchical partitions of the rationals

Intuitively, the longer the cycle, the finer the tuning of frerametef2 required to
attain it; given finite time and resolution, we expect to bkeab resolve cycles up
to some maximal lengt®. This is the physical motivation for partitioning mode
lockings into sets of cycle length up @ In number theory such sets of rationals
are calledFarey series They are denoted bfg and defined as follows. The
Farey series of ordd® is the monotonically increasing sequence of all irredugibl
rationals between 0 and 1 whose denominators do not ex@eedhus P;/Q;
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belongs toFg if 0 < P; < Q; < Qand @i|Q) = 1. For example

A Farey series is characterized by the property tha®;ifi/Q;_1 and P;/Q; are
consecutive terms of g, then

PiQ-1 - PiaQ = 1

The number of terms in the Farey serfeg is given by

Q 2
@ = Y 4@ = 22 + oI Q). (27.6)
n=1

Here the Euler functiom(Q) is the number of integers not exceeding and rel-
atively prime toQ. For exampleg(1l) = 1, ¢(2) = 1, ¢(3) = 2, ...,¢(12) =
4,6(13)=12...

From a number-theorist’s point of view, tisentinued fraction partitioningf
the unit interval is the most venerable organization obrzdis, preferred already
by Gauss. The continued fraction partitioning is obtaingdfdering rationals
corresponding to continued fractions of increasing lenifttve turn this ordering
into a way of covering the complementary set to mode-lockimga circle map,
then the first level is obtained by deleting, Ay, - -+, Afa,. - - - mode-lockings;
their complement are theoveringintervals £y, £, ..., {4, ... which contain all
windings, rational and irrational, whose continued fractexpansion starts with
[a1,...] and is of length at least 2. The second level is obtained HWgtidg
A[llz], A[l,S]» EEEN A[z,z], A[gyg], EERIN A[n,m]7 --.and so on.

Thenth level continued fraction partitioS, = {a;az - - - a,} is defined as the
monotonically increasing sequence of all ratioralsQ; between 0 and 1 whose
continued fraction expansion is of length n:

ﬂ=[a1,az,-~-,an]=7l
Qi 1

atr—

az+...a

The object of interest, the set of the irrational winding rtoars, is in this partition-
ing labeled byS., = {ayaxasz---}, ax € Z*, i.e., the set of winding numbers with
infinite continued fraction expansions. The continuedtfeaclabeling is particu-
larly appealing in the present context because of the closeeaction of the Gauss
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shift to the renormalization transformatiét discussed below. The Gauss map

T = %—[}] x#0
0, x=0 (27.7)

([- - -] denotes the integer part) acts as a shift on the contingdtidn representa-
tion of numbers on the unit interval

x=[ag,a,83..] = T(X) =[aas,..]. (27.8)

into the “mother” intervala,a, ...

However natural the continued fractions partitioning ntigéem to a number
theorist, it is problematic in practice, as it requires meggy infinity of mode-
lockings even at the first step of the partitioning. Thus nticaéand experimental
use of continued fraction partitioning requires at leashsainderstanding of the
asymptotics of mode—lockings with large continued frat@mtries.

The Farey tree partitioningis a systematic bisection of rationals: it is based
on the observation that roughly halfways between any twgelatability intervals
(such as 12 and ¥3) in the devil’'s staircase of figure 27.2 there is the nexgdat
stability interval (such as/5). The winding number of this interval is given by the
Farey mediantR+P’)/(Q+Q’) of the parent mode-locking®/Q andP’/Q’. This
kind of cycle “gluing” is rather general and by no means iettd to circle maps;
it can be attained whenever it is possible to arrange tha@theterate deviation
caused by shifting a parameter from the correct value forQkmycle is exactly
compensated by th@'th iterate deviation from closing th@’-cycle; in this way
the two near cycles can be glued together into an exact cy@agthQ+Q’. The
Farey tree is obtained by starting with the ends of the utéril written as AL
and ¥1, and then recursively bisecting intervals by means ofyrarediants.

We define theith Farey tree level F as the monotonically increasing sequence
of those continued fractior{sy, ay, . . ., a&] whose entriesia> 1, i = 1,2,..., k-
1, a >2 addup tozik:1 a = n + 2. Forexample

=222 = (5 5 o o) (27.9)

ol w

The number of terms i, is 2". Each rational inl,_; has two “daughters” iff,,
given by

[.--,a=-1,2] [---,a+1]
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and by replacing the initial map by thenth iterate f" restricted to the magnified
neighborhood

N

(%) = Rip(X) = a0 (x/a)

There are by now many examples of such renormalizations iohwthe new func-
tion, framed in a smaller box, is a rescaling of the originaidtion, i.e., the fix-
point function of the renormalization operatBr The best known is the period
doubling renormalization, with the recurrence timgs= 2. The simplest circle
map example is the golden mean renormalization, with recee timesy = F;
given by the Fibonacci numbers (27.10). Intuitively, instabntext a metric self-
similarity arises because iterates of critical maps arend@ves critical, i.e., they
also have cubic inflection points with vanishing derivasive

dered labeling of all Farey denominators on titie
Farey tree level.

Iteration of this rule places all rationals on a binary tleegling each by a unique

binary label, figure 27.4. The renormalization operator appropriate to circle mays as a generaliza-

tion of the Gauss shift (27.38); it maps a circle map (repre=e as a pair of
functions @, ), of winding number & b, c,...] into a rescaled map of winding
number p,c,...]:

The smallest and the largest denominatof jrare respectively given by

[n—2]=nT12, [1,1,...,1,2]:%«,)", (27.10)
+

a1y fo gl
Ra(g) - ((’g foa (27.12)

. . . f agtlofogoal)
where the Fibonacci numbefg, are defined b¥p.1 = Fp+Fno1; Fo=0, Fp =

1, andp is the golden mean ratio ) o .
Acting on a map with winding numbea]a, a, . . .], Ry returns a map with the same

winding number§, a, .. .], so the fixed point oR, has a quadratic irrational wind-

_ 1++5 — 161803 (27.11) ing numbeW = [a,a,a,...]. This fixed point has a single expanding eigenvalue
2 ) ' Sa. Similarly, the renormalization transformatidRy, ... Re,Ra; = Reyay..a, Nas
a fixed point of winding numbew, = [a, &, ..., an,, a1, &, .. ], with a single
Note the enormous spread in the cycle lengths on the samefehe Farey tree: expanding eigenvalug,.
n < Q < p". The cycles whose length grows only as a power of the Fareyexe|
will cause strong non-hyperbolidfects in the evaluation of various averages. For short repeating blocks,can be estimated numerically by comparing suc-
cessive continued fraction approximants\ib Consider theP,/Q; rational ap-
Having defined the partitioning schemes of interest herenavebriefly sum- proximation to a quadratic irrational winding numbak, whose continued frac-
marize the results of the circle-map renormalization tiieor tion expansion consists ofepeats of a block. LetQ; be the parameter for which

the map (27.1) has a superstable cycle of rotation nurBb&®; = [p, p,..., p)-
Thed,, can then be estimated by extrapolating from

27.2 Local theory: “Golden mean” renormalization

O = Oy 8y (27.13)

§
J The way to pinpoint a point on the border of order is to rexalyi ad- What this means is that the “devil's staircase” of figure 4%.8elf-similar under
just the parameters so that at the recurrence timesi, n, ns, - - - the trajectory magnification by factos, around any quadratic irration&lVp.
passes through a region of contractiorfisiently strong to compensate for the
accumulated expansion of the precedmgteps, but not so strong as to force the The fundamental result of the renormalization theory (drereason why all
trajectory into a stable attracting orbit. Thenormalization operation Rnple- this is so interesting) is that the ratios of succes§lv&Q, mode-locked intervals
ments this procedure by recursively magnifying the neighbod of a point on converge tauniversallimits. The simplest example of (27.13) is the sequence of
the border in the dynamical space (by rescaling by a fagjpn the parameter Fibonacci number continued fraction approximants to thieeyo mean winding
space (by shifting the parameter origin onto the border esdaling by a factaf), numberW = [1,1,1,..] = (V5 - 1)/2.
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When global problems are considered, it is useful to haveaatland idea on
extemal scaling laws for mode—lockings. This is achievad first analysis, by
fixing the cycle lengtiQ and describing the range of possible asymptotics.

For a given cycle lengtl, it is found that thenarrowestinterval shrinks with
a power law

Ayjg « Q73 (27.14)

For fixed Q the widestinterval is bounded by/Q = F,_1/Fy, thenth con-
tinued fraction approximant to thgolden mean The intuitive reason is that the
golden mean winding sits as far as possible from any shote egode-locking.

The golden mean interval shrinks with a universal exponent
Apjg o Q724 (27.15)

whereP = Fn_1, Q = Fpandy; is related to the universal Shenker number
(27.13) and the golden mean (27.11) by

_Injsyq]
KL= 2lnp

= 1.08218... (27.16)
The closeness ¢f; to 1 indicates that the golden mean approximant mode-lgekin
barely feel the fact that the map is critical (in the(klimit this exponentig = 1).

To summarize: for critical maps the spectrum of exponerisray from the

circle maps renormalization theory is bounded from abovéhkeyharmonic scal-
ing, and from below by the geometric golden-mean scaling:

3/2 > pyn = 1.08218 - - (27.17)

27.3 Global theory: Thermodynamic averaging

Consider the following average over mode-locking intes\@7.5):

)

0@ =) > Ao (27.18)
Q=1 (PIQ)=1

The sum is over all irreducible rationa® Q, P < Q, andAp,q is the width of the
parameter interval for which the iterates of a critical Ermap lock onto a cycle

of lengthQ, with winding numbeP/Q.
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The qualitative behavior of (27.18) is easy to pin down. Refisiently neg-
ative 7, the sum is convergent; in particular, for= -1, Q(-1) = 1, as for the
critical circle maps the mode-lockings fill the entiferange [27.11]. However,
ast increases, the contributions of the narrow (la@emode-locked intervals
Ap/q get blown up to 1AL o and at some critical value afthe sum diverges.
This occurs forr < 0, asQ(0) equals the number of all rationals and is clearly
divergent.

The sum (27.18) is infinite, but in practice the experimemahumerical
mode-locked intervals are available only for small fifReHence it is necessary
to split up the sum into subses, = {i} of rational winding number®;/Q; on
the “level” n, and present the set of mode-lockings hierarchically, wagolution
increasing with the level:

Zn(7) = Z AT (27.19)

i€Sh

The original sum (27.18) can now be recovered aszthel value of a “gener-
ating” functionQ(z 7) = Y.,Z'Zn(7). As zis anyway a formal parameter, and
n is a rather arbitrary “level” in somad hoc partitioning of rational numbers,
we bravely introduce a still more gener&)Q weighted generating function for
(27.18):

)

Q1) = Z Z g PRQHRQ | (27.20)
Q=1 (PIQ)=1

The sum (27.18) correspondsde= 0. Exponentsp,q will reflect the importance
we assign to th€/Q mode-locking, i.e., theneasuraused in the averaging over
all mode-lockings. Three choices of of thg/q hierarchy that we consider here
correspond respectively to the Farey series partitioning

oo

Qo)=Y oQ1 > Qe (27.21)
Q=1 (PIQ=1

the continued fraction partitioning

o0

Q=) M ) Qrmal, (27.22)

n=1 [a1,....an)

and the Farey tree partitioning

oo 2n
Qo= 2" ", Q/PieT,. (27.23)
k=n i=1

We remark that we are investigating a set arising in the ailyf the parameter
space of a dynamical system: there is no “natural measucgdtdid by dynamics,
and the choice of weights reflects only the choice of hieiaatipresentation.
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27.4 Hausdoff dimension of irrational windings

A finite cover of the set irrational windings at theth level of resolution” is
obtained by deleting the parameter values corresponditigetonode-lockings in
the subseS,,; left behind is the set of complemetveringintervals of widths

. _ omin max
i =Qp o ~ g - (@7.24)

HereQQ';‘Q (QQI%I) are respectively the lower (upper) edges of the mode-fmrki
intervalsAp, /q, (Ap/q) boundingé; andi is a symbolic dynamics label, for ex-
ample the entries of the continued fraction representd®d = [a;, @, ..., an] of
one of the boundary mode-lockings= aiay - - - a,. ¢; provide a finite cover for

the irrational winding set, so one may consider the sum

Zor) = ) 67 (27.25)

i€Sn

The value of-7 for which then — oo limit of the sum (27.25) is finite is the
Hausdoyf dimension [y of the irrational winding set. Strictly speaking, this is
the Hausddf dimension only if the choice of covering intervalsis optimal;
otherwise it provides an upper boundg. As by construction thé; intervals
cover the set of irrational winding with no slack, we expéwttthis limit yields
the Hausddf dimension. This is supported by all numerical evidence ghuitoof
that would satisfy mathematicians is lacking.

The physically relevant statement is that for critical EnmapsDy = 0.870. ..

is a (global) universal number. exercise 27.2

27.4.1 The Hausdoff dimension in terms of cycles

Estimating then — oo limit of (27.25) from finite numbers of covering intervals
¢ is a rather unilluminating chore. Fortunately, there exishsiderably more
elegant ways of extractin®y. We have noted that in the case of the “trivial”
mode-locking problem (27.4), the covering intervals araggated by iterations
of the Farey map (27.37) or the Gauss shift (27.38). fithdevel sum (27.25) can
be approximated by, where

Loy, ) = 8(x = TN O)IF

This amounts to approximating each cover widtly |d f"/dX evaluated on the
ith interval. We are thus led to the following determinant

T

Z"p
det(1-z£L;) = exp|- ZZ T 1p/Af
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00

ﬂ]_[ (1= ZPIApI/AE) (27.26)
P

k=0

The sum (27.25) is dominated by the leading eigenvalug,othe Hausddf
dimension conditiorZ,(—Dy) = O(1) means that = —Dy should be such that
the leading eigenvalue & = 1. The leading eigenvalue is determined by the
k = 0 part of (27.26); putting all these pieces together, weinkgretty formula
relating the Hausddi dimension to the prime cycles of the méx):

0= (1-1/18p) . (27.27)
p

For the Gauss shift (27.38) the stabilities of periodic egare available analytical-
ly, as roots of quadratic equations: For example, xhdixed points (quadratic
irrationals withx, = [a, a,a. . .] infinitely repeating continued fraction expansion)
are given by

= 5 (27.28)

2
_marver+d [a+ a2+4]
_fy a— |7~

and thexap = [a,b,a,b,a,b,...] 2-cycles are given by

_ 2
ab+ \/(zib) + 4ab (27.29)

2
(Kan¥on) 2 = ab+2+ \Z/ab(ab+ 4))

>
&
[

We happen to know beforehand th = 1 (the irrationals take the full mea-
sure on the unit interval, or, from another point of view, Bauss map is not a
repeller), so is the infinite product (27.27) merely a verpwaiuted way to com-
pute the number 1? Possibly so, but once the meaning of (27a2been grasped,
the corresponding formula for trezitical circle maps follows immediately:

o= ](x-1/160") - (27.30)
p

The importance of this formula relies on the fact that it egsesDy in terms
of universalquantities, thus providing a nice connection from localvarsal ex-
ponents to global scaling quantities: actual computaticsisg (27.30) are rather
involved, as they require a heavy computatiorfébr to extract Shenker’s scaling
6, for periodic continued fractions, and moreover dealinghwein infinite alpha-
bet requires control over tail summation if an accuratengste is to be sought. In
table 27.1 we give a small selection of computed Shenkeabrgfs.
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Table 27.1: Shenker'sy, for a few periodic continued fractions, from ref. [27.1].

p
1111.. -2.833612
2222..] -6.7992410
3333..] -13.760499

[4444.] -24.62160
[5555..] -40.38625

6666 ... -62.140
1212.. 17.66549
1313.. 31.62973
1414 .. 50.80988
1515.. 76.01299
2323 .. 91.29055

27.5 Thermodynamics of Farey tree: Farey model

s
J We end this chapter by giving an example of a number theailatiodel
motivated by the mode-locking phenomenology. We will cdasit by means of
the thermodynamic formalism of chapter K, by looking at treefenergy.

Consider the Farey tree partition sum (27.23): the narrowesde-locked
interval (27.15) at theth level of the Farey tree partition sum (27.23) is the golden
mean interval

Af,y/F, o fo1l™ (27.31)

It shrinks exponentially, and far positive and large it dominategr) and bounds
dq(r)/dr:

,_ Inlogl

Oax = o = 1502642 (27.32)

However, forr large and negativey(r) is dominated by the interval (27.14) which
shrinks only harmonically, ang(r) approaches 0 as

g(r) _ 3lnn
el e 0. (27.33)

So for finite n,q,(7) crosses the axis at—r = Dy, but in then — oo limit, the
q(r) function exhibits a phase transitiog(r) = 0 for r < —Dy, but is a non-trivial
function ofr for -Dy < 7. This non-analyticity is rather severe - to get a clearer

picture, we illustrate it by a few number-theoretic modéfee (critical circle maps
case is qualitatively the same).

An approximation to the “trivial” Farey level thermodynassiis given by the
“Farey model,” in which the intervalép/q are replaced b2

»
Zi(r) = ), Q. (27.34)

i=1
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Here Q; is the denominator of théh Farey rationalP;/Q;. For example (see
figure 27.4),

Z5(1/2) =4 +5+5+ 4

By the annihilation property (27.38) of the Gauss shift aiorals, thenth Farey
level sumZy(—1) can be written as the integral

2(-1)= [ axa(°0) = Y, 118, o 00

and in general

Zn(1) = deLQ(O, X),

with the sum restricted to the Farey leegl+ ... + ax = n+ 2. Itis easily checked
thatf; ,(0)= (-1)k [zal AAAA ag’ SO the Farey model sum is a partition generated by
the Gauss map preimages»# 0, i.e., by rationals, rather than by the quadratic
irrationals as in (27.26). The sums are generated by the samsfer operator, so
the eigenvalue spectrum should be the same as for the pedddi expansion, but

in this variant of the finite level sums we can can evalagtg exactlyfor = k/2,

k a nonnegative integer. First, one observesZhfd) = 2". Itis also easy to check
thatZ,(1/2) = 3, Q = 2-3". More surprisingly,Z,(3/2) = ¥; Q% = 54. 71,

A few of these “sum rules” are listed in the table 27.2, they esnsequence of
the fact that the denominators on a given level are Farey sfisesnominators on

preceding levels. exercise 27.3

A bound onDy can be obtained by approximating (27.34) by
Zn(1) = n% 4+ 272", (27.35)

In this approximation we have replaced &, except the widest intervathn,

by the narrowest intervdl-, ,/r, (see (27.15)). The crossover from the harmonic
dominated to the golden mean dominated behavior occurg atdue for which
the two terms in (27.35) contribute equally:

Inn A In2
D = =.72... 27.36
) 2Inp ( )

Dn:I5+O(T,

For negativer the sum (27.35) is the lower bound on the sum (27.25)0 &
a lower bound oDy.

From a general perspective the analysis of circle maps theymamics has

revealed the fact that physically interesting dynamicatams often exhibit mix-
tures of hyperbolic and marginal stabilities. In such systehere are orbits that
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7/

Zn(7/ 2)/?171(1/ 2)
3
(5+ V17)/2
7

(5+ V17)/2
7+46
26.20249. ..

2
0
1
2
3
4
5
6

Table 27.2: Partition function sum rules for the Farey model.

stay ‘glued’ arbitrarily close to stable regions for arhiily long times. This is a
generic phenomenon for Hamiltonian systems, where ellistands of stability
coexist with hyperbolic homoclinic webs. Thus the consitiens of chapter 24
are important also in the analysis of renormalization atahset of chaos.

Résum é

The mode locking problem, and the quasiperiodic transitmrthaos fer an
opportunity to use cycle expansions on hierarchical stinestin parameter space:
this is not just an application of the conventional thermmatyic formalism, but
offers a clue on how to extend universality theory from localisga to global
quantities.

Commentary

Remark 27.1 The physics of circle maps. Mode—locking phenomenology is reviewed
in ref. [27.5], a more theoretically oriented discussiocastained in ref. [27.3]. While
representative of dissipative systems we may also considge maps as a crude ap-
proximation to Hamiltonian local dynamics: a typical istborf stability in a Hamiltonian
2-dimensionamap is an infinite sequence of concentric KAM tori and chaetigons. In
the crudest approximation, the radius can here be treatad esternal paramete€r, and
the angular motion can be modeled by a map periodic in thelangariable [27.8, 27.9].
By losing all of the ‘island-within-island’ structure of aésystems, circle map models
skirt the problems of determining the symbolic dynamicsdaealistic Hamiltonian sys-
tem, but they do retain some of the essential features of sygtems, such as the golden
mean renormalization [13.5, 27.8] and non-hyperboligitydrm of sequences of cycles
accumulating toward the borders of stability. In particuiasuch systems there are orbits
that stay “glued” arbitrarily close to stable regions fobitmarily long times. As this is
a generic phenomenon in physically interesting dynamigstesns, such as the Hamilto-
nian systems with coexisting elliptic islands of stabibtyd hyperbolic homoclinic webs,
development of good computational techniques is here obsttipractical importance.

Remark 27.2 Critical mode—locking set The fact that mode-lockings completely fill
the unit interval at the critical point has been proposeckfs.r[27.3, 27.10]. The proof
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that the set of irrational windings is of zero Lebesgue memsugiven in ref. [27.11].

Remark 27.3 Counting noise for Farey series. The number of rationals in the Farey
series of ordeR is ¢(Q), which is a highly irregular function of: incrementingQ by 1
increase®(Q) by anything from 2 taQ terms. We refer to this fact as the “Euler noise.”

The Euler noise poses a serious obstacle for numericallatifous with the Farey
series partitionings; it blocks smooth extrapolation®te» oo limits from finite Q data.
While this in practice renders inaccurate most Farey-secgi@artitioned averages, the
finite Q Hausdolf dimension estimates exhibit (for reasons that we do not nsiated)
surprising numerical stability, and the Farey series parting actually yields theestnu-
merical value of the Hausdfiidimension (27.25) of any methods used so far; for example
the computation in ref. [27.12] for critical sine map (27 Hased on 24& Q < 250 Farey
series partitions, yieldBy = .87012+ .00001. The quoted error refers to the variation of
Dy over this range of); as the computation is not asymptotic, such numerical litabi
can underestimate the actual error by a large factor.

Remark 27.4 Farey tree presentation function. The Farey tree rationals can be gen-
erated by backward iterates gPlby the Farey presentation function [27.13]:

fo(x)
f1(x)

x/(1-X) 0<x<1/2
1-x)/x 1/2<x<1.

(27.37)

The Gauss shift (27.7) corresponds to replacing the binargypresentation function
branchfy in (27.37) by an infinity of branches

(O

fa® = fio féaﬁl)(x) =i a, aTll <X< =,
farc(X) = feo-ofpo fa(X) (27.38)

Arationalx = [aj, &y, . . ., a] is annihilated by théth iterate of the Gauss shifty,a,..a,(X) =
0. The above maps look innocent enough, but note that whaig fpartitioned is not
the dynamical space, but the parameter space. The flow deddsy (27.37) and by its
non-trivial circle-map generalizations will turn out to laerenormalization grougflow
in the function space of dynamical systems, not an ordinawy fh the state space of a
particular dynamical system.

The Farey tree has a variety of interesting symmetries (ssctilipping heads and
tails” relations obtained by reversing the order of the cared-fraction entries) with as
yet unexploited implications for the renormalization thecsome of these are discussed
in ref. [27.4].

An alternative labeling of Farey denominators has beemdhiced by Knauf [27.6]
in context of number-theoretical modeling of ferromagoaepin chains: it allows for a
number of elegant manipulations in thermodynamic averagesected to the Farey tree
hierarchy.

Remark 27.5 Circle map renormalization ~ The idea underlying golden mean renor-
malization goes back to Shenker [27.9]. A renormalizatiooug procedure was formu-
lated in refs. [27.7, 27.14], where moreover the uniquenésise relevant eigenvalue is
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claimed. This statement has been confirmed by a computésteabproof [27.15], and in
the following we will always assume it. There are a numbengfezimental evidences
for local universality, see refs. [27.16, 27.17].

On the other side of the scaling tale, the power law scalimghéomonic fractions
(discussed in refs. [27.2, 27.4]) is derived by methods &kithose used in describing
intermittency [27.21]: 1Q cycles accumulate toward the edge ¢1@node-locked inter-
val, and as the successive mode-locked intervalg 1/(Q — 1) lie on a parabola, their
differences are of orde-2.

Remark 27.6 Farey series and the Riemann hypothesis  The Farey series thermo-
dynamics is of a number theoretical interest, because theyFseries provide uniform
coverings of the unit interval with rationals, and becaussytare closely related to the
deepest problems in number theory, such as the Riemanniegie{27.22, 27.23] . The
distribution of the Farey series rationals across the umérial is surprisingly uniform -
indeed, so uniform that in the pre-computer days it has ratgiva compilation of an en-
tire handbook of Farey series [27.24]. A quantitative measfithe non-uniformity of the
distribution of Farey rationals is given by displacemeritSarey rationals foP;/Q; € o
from uniform spacing:

i P
6i Qo i=12---,0(Q)
The Riemann hypothesis states that the zeros of the Riemetanfunction lie on the
s = 1/2 + it line in the complexs plane, and would seem to have nothing to do with
physicists’ real mode-locking widths that we are interdstehere. However, there is a
real-line version of the Riemann hypothesis that lies véogeto the mode-locking prob-
lem. According to the theorem of Franel and Landau [27.2522727.23], the Riemann
hypothesis is equivalent to the statement that

> l6il = 0(Q*)

Q=Q

for all e asQ — co. The mode-lockingg\p,q contain the necessary information for
constructing the partition of the unit interval into thecovers, and therefore implicitly
contain thej; information. The implications of this for the circle-mapadiog theory have
not been worked out, and is not known whether some conjeahoat the thermodynam-
ics of irrational windings is equivalent to (or harder théim Riemann hypothesis, but the
danger lurks.

Remark 27.7 Farey tree partitioning. The Farey tree partitioning was introduced in
refs. [27.26, 27.27, 27.4] and its thermodynamics is disedsn detail in refs. [27.12,
27.13]. The Farey tree hierarchy of rationals is rather reavd, as far as we are aware,
not previously studied by number theorists. It is appeaboth from the experimental
and from the golden-mean renormalization point of view,ibbas a serious drawback of
lumping together mode-locking intervals of wildlyftérent sizes on the same level of the
Farey tree.
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Remark 27.8 Local and global universality. Numerical evidences for global universal
behavior have been presented in ref. [27.3]. The questi@raexamined in ref. [27.12],
where it was pointed out how a high-precision numericaheste is in practice very hard
to obtain. It is not at all clear whether this is the optimadlzdl quantity to test but at
least the Hausdéirdimension has the virtue of being independent of how onetjosrs
mode-lockings and should thus be the same for the varietyesfitodynamic averages in
the literature.

The formula (27.30), linking local to global behavior, wasposed in ref. [27.1].

The derivation of (27.30) relies only on the following asfseof the “hyperbolicity
conjecture” of refs. [27.4, 27.18, 27.19, 27.20]:

1. limits for Shenkers’s existand are universal. This should follow from the renor-
malization theory developed in refs. [27.7, 27.14, 27 .f%ugh a general proof is
still lacking.

2. 6 grow exponentiallywith ny, the length of the continued fraction blopk

3. 6p for p = aja,...n with a large continued fraction entny grows as apower
of n. According to (27.14), lim« 6p o« n3. In the calculation of ref. [27.1] the
explicit values of the asymptotic exponents and prefact@® not used, only the
assumption that the growth 6f with nis not slower than a power of

Remark 27.9 Farey model. The Farey model (27.33) has been proposed in ref. [27.12];
though it might seem to have been pulled out of a hat, the Rarel is as sensible de-
scription of the distribution of rationals as the periodibibexpansion (27.26).

Remark 27.10 Symbolic dynamics for Hamiltonian rotational orbits. ~ The rotational
codes of ref. [27.37] are closely related to those for maph winatural angle variable,
for example for circle maps [27.34, 27.36] and cat maps [@]7 Bef. [27.37] also fiers
a systematic rule for obtaining the symbolic codes of “idaround islands” rotational
orbits [27.40]. These correspond, for example, to orbis thtate around orbits that rotate
around the elliptic fixed point; thus they are defined by a sege of rotation numbers.

A different method for constructing symbolic codes for “islandsiad islands” was
giveninrefs. [27.43, 27.41]; however in these cases thiesssst of orbits in an island was
assigned the same sequence and the motivation was to stuigiiBport implications for
chaotic orbits outside the islands [27.40, 27.42].

Exercises

27.1. Mode-locked intervals.  Check that whetk # 0 the smallk the width ofAg,1 is an increasing function d{

interval Apo have a non-zero width (look for instance
at simple fractions, and considesmall). Show that for
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27.2. Bounds on Hausdoff dimension. By making use of
the bounds (27.17) show that the HausBldimension

for critical mode lockings may be bounded by

2/3 <Dy <.9240...

27.3. Farey model sum rules.

see ref. [27.28].
27.4. Metric entropy of the Gauss shift.

ref. [27.30].

27.5. Refined expansions. Show that the above estimate< /-9

can be refined as follows:
F(z2) ~ ¢(2)+(1-2)log(1-2) - (1-2)
and

F(z9) ~ (9 +T(1-9(1-251-S(9(1-2)

References

Verify the sum rules re-
ported in table 27.2. An elegant way to get a number @f7.7.
sum rules for the Farey model is by taking into account

an lexical ordering introduced by Contucci and Knauf,

Check that 27.8.
the Lyapunov exponent of the Gauss map (27.7) is given
by 72/6In2. This result has been claimed to be rele-
vant in the discussion of “mixmaster” cosmologies, see
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for s € (1,2) (S(s) being expressed by a converging
sum). You may use either more detailed estimate for
{(s,a) (via Euler summation formula) or keep on sub-
tracting leading contributions [27.31].

. jnand ag.  Look at the integration region and how it

scales by plotting it for increasing valuesrof

Estimates of the Riemann zeta function.  Try to
approximate numerically the Riemann zeta function for
s = 2,4,6 using diferent acceleration algorithms: check
your results with refs. [27.32, 27.33].

Farey tree and continued fractions I. Consider the
Farey tree presentation functidn [0, 1] + [0, 1], such
that if | = [0,1/2) andJ = [1/2,1], f|, = /(1 - x) and
fl; = (1 - x)/x. Show that the corresponding induced
map is the Gauss mayfx) = 1/x— [1/x].

Farey tree and continued fraction II. (Lethal weapon

II).  Build the simplest piecewise linear approxima-
tion to the Farey tree presentation function (hint: sub-
stitute first the righmost, hyperbolic branch with a lin-
ear one): consider then the spectral determinant of the
induced mapy,” and calculate the first two eigenvalues
besides the probability conservation one. Compare the
results with the rigorous bound deduced in ref. [24.17].
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