Chapter 5

Cycle stability

and the ways in which the orbits intertwine— are invariandema general

continuous change of coordinates. Surprisingly, there algst quantities
that depend on the notion of metric distance between pdintsnevertheless do
not change value under a smooth change of coordinates. oeattities such
as the eigenvalues of equilibria and periodic orbits, arabal quantities such
as Lyapunov exponents, metric entropy, and fractal dinoessare examples of
properties of dynamical systems independent of coordicladée.

TOPOLOGICAL reaTURES Of @ dynamical system —singularities, periodic orbits,

We now turn to the first, local class of such invariants, Imgability of pe-
riodic orbits of flows and maps. This will give us metric infioation about local
dynamics. If you already know that the eigenvalues of péciodbits are invari-
ants of a flow, skip this chapter.

fast track:
W chapter 7, p. 121

5.1 Stability of periodic orbits 5

X

As noted on page 40, a trajectory can be stationary, periodaperiodic. For
chaotic systems almost all trajectories are aperiodicertieeless, equilibria and
periodic orbits turn out to be the key to unraveling chaotjoamics. Here we
note a few of the properties that make them so precious tocaisie

An obvious virtue of periodic orbits is that they a@pologicalinvariants: a
fixed point remains a fixed point for any choice of coordinatsd similarly a
periodic orbit remains periodic in any representation @& ttynamics. Any re-
parametrization of a dynamical system that preservespi@ogy has to preserve
topological relations between periodic orbits, such as teéative inter-windings
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and knots. So the mere existence of periodic orbifies to partially organize
the spatial layout of a non—wandering set. No less impqr@asitwe shall now
show, is the fact that cycle eigenvalues aretricinvariants: they determine the
relative sizes of neighborhoods in a non—wandering set.

We start by noting that due to the multiplicative structu4e44) of Jacobian
matrices, the Jacobian matrix for thila repeat of a prime cyclp of periodT, is

ITe(x) = J(FITo(x) - ITo(FTP(x)) I (%) = Jp(x)" (5.1)

where Jp(x) = JTr(x) is the Jacobian matrix for a single traversal of the prime
cycle p, x € My is any point on the cycle, anfiTe(x) = x as f(X) returns tox
every multiple of the period,. Hence, it stiices to restrict our considerations to
the stability of prime cycles.

fast track:
W sect. 5.2, p. 99
5.1.1 Floquet vectors

When dealing with periodic orbits, some of the quantitiesady introduced in-
herit names from the Floquet theory offféirential equations with time-periodic
codficients. Consider the equation of variations (4.2) evatliatea periodic orbit
P,

ox=AMS6X,  Al) = AX(V) = At +Tp). (5.2)

The T, periodicity of the stability matrix implies that ix(t) is a solution of (5.2)
then alsasx(t + Tp) satisfies the same equation: moreover the two solutions are
related by (4.6)

SX(t+ Tp) = Ip(X) oX(1) . (5.3)

Even though the Jacobian matridg(x) depends uporx (the ‘starting’ point of
the periodic orbit), we shall show in sect. 5.2 that its eigdwmes do not, so we
may write for its eigenvectore) (sometimes referred to as ‘covariant Lyapunov
vectors,’ or, for periodic orbits, as ‘Floquet vectors’)

3D = Ap (), Apy=oPelTo. (5.4)

where/lg) = ;ﬁpj) + iwg) ando-g) are independent of. WhenA; is real, we do

care aboutr(pj) = Apj/IApjl € {+1,-1}, the sign of thejth Floguet multiplier.
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Figure 5.1: For a prime cyclep, Floguet matrix
Jp returns an infinitesimal spherical neighborhood of
X € M, stretched into an ellipsoid, with overlap ratio
along the eigdirectio” of Jy(x) given by the Flo-
quet multiplier|Ap;|. These ratios are invariant under
smooth nonlinear reparametrizations of state space
ordinates, and are intrinsic property of cyge

If 0'(pJ) =-1 and/l(p” + 0, the corresponding eigen-direction is said tarerse section 7.2
hyperbolic Keeping track of this by case-by-case enumeration is aragssary
nuisance, so most of our formulas will be stated in termseRioquet multipliers

Aj rather than in the terms of the multiplier sign§), exponentg) and phases

W,

Expandsx in the (5.4) eigenbasisix(t) = 3, oxj(t) €, ) = e (x(0)).
Taking into account (5.3), we get théx;(t) is multiplied byAp ; per each period

SX(t+Tp) = D" oxi(t+Tp el = 3" Apjox(t) el
j j

We can absorb this exponential growtbontraction by rewriting the cdéicients
ox(t) as

s = e¥tui),  u0)=6x(0),

with u;(t) periodicwith periodT . Thus each solution of the equation of variations
(4.2) may be expressed in the Floquet form

axt)= > eWtuime?,  uit+Tp) = (). (5.5)
j

The continuous time appearing in (5.5) does not imply that eigenvalues of the
Jacobian matrix enjoy any multiplicative property tog rTp: /lg) = ;1(,,’) + iw(pj)
refer to a full traversal of the periodic orbit. Indeed, vehil;(t) describes the
variation ofsx(t) with respect to the stationary eigen-frame fixed by eigetors
at the pointx(0), the object of real interest is the co-moving eigen-feadefined

below in (5.13).

5.1.2 Floquet matrix eigenvalues and exponents

The time-dependent-periodic vector fields, such as the flow linearized around
the periodic orbit, are described by Floquet theory. Hememfnow on we shall
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Figure 5.2: An unstable periodic orbit repels every o
neighboring trajectory (t), except those on its centerX (T)
and unstable manifolds.

refer to a Jacobian matrix evaluated on a periodic orbit alp@uet matrix, to its
eigenvalues\, j as Floquet multipliers (5.4), and Kﬁ,') = p(p” + iw(p” as Floquet
or characteristic exponents. We sort tlequet multipliers{Ap1, Ap2, ..., Apd}

of the [dxd] Floguet matrixJ, evaluated on th@-cycle into setge, m, ¢}

expanding:  {Ale = {Ap;:|Apj|>1)
marginal:  {AJm = (Apj:|Apj| = 1) (5.6)
contracting:  {Ale = {Ap;:|Ap|<1).

and denote by\, (no jth eigenvalue index) the product ekpandingFloquet
multipliers

Ap=] ] Ape. 6.7)

As Jp is a real matrix, complex eigenvalues always come in comptejugate
pairs,Apj:1 = A*;i, so the product (5.7) is always real.

The stretchinfrontraction rates per unit time are given by the real parts of
Floquet exponents

i 1
ul) = ™ In|Api - (5.8)

The factor T, in the definition of the Floquet exponents is motivated by its

form for the linear dynamical systems, for example (4.16)wall as the fact that
exponents so defined can be interpreted as Lyapunov exgofiéh83) evaluated

on the prime cyclep. As in the three cases of (5.6), we sort the Floquet exponents

A = p +iwinto three sets section 17.3

expanding: {1le = {/lg) : /ug) > 0}
marginal: {Am = {/lg) : ,ug) =0}
contracting: {Ae = {/l(;) : ,ug) <0}. (5.9)
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A periodic orbit p of a d-dimensional flow or a map istableif real parts
of all of its Floquet exponents (other than the vanishinggitrdinal exponent,
explained in sect. 5.2.1) are strictly negatiy%), < 0. The region of system pa-
rameter values for which a periodic orlgtis stable is called thstability window
of p. The setM,, of initial points that are asymptotically attractedg@st — +co
(for a fixed set of system parameter values) is called#wn of attractiorof p. If
all Floguet exponents (other than the vanishing longitudirpbeent) are strictly
positive,u® > ymin > 0, the cycle igepelling and unstable to any perturbation.
If some are strictly positive, and rest strictly negative® > umin > 0, the cycle
is said to benyperbolicor asaddle and unstable to perturbations outside its stable
manifold. Repelling and hyperbolic cycles are unstableeioegic perturbations,
and thus said to banstable see figure 5.2. If all() = 0, the orbit is said to be
elliptic, and ifu® = 0 for a subset of exponents (other than the longitudinal one)
the orbit is said to b@artially hyperbolic Such orbits proliferate in Hamiltonian

flows. section 7.3

If all Floquet exponents (other than the vanishing longitudixaloaent) of
all periodic orbits of a flow are strictly bounded away from zdte flow is said
to behyperbolic Otherwise the flow is said to benhyperbolic

Example 5.1 Stability of cycles of 1-dimensional maps: The stability of a prime
cycle p of a 1-dimensional map follows from the chain rule (4.51) for stability of the npth
iterate of the map

np-1

Ao= e ™00 = [ | 0. %= 1700). (5.10)
m=0

Ap is a property of the cycle, not the initial periodic point, as taking any periodic point
in the p cycle as the initial one yields the same Ap.

A critical point x; is a value of x for which the mapping f(X) has vanishing
derivative, f’(xc) = 0. A periodic orbit of a 1-dimensional map is stable if

|AP| =

£ () f (1) -+~ () (x| < 1.

and superstable if the orbit includes a critical point, so that the above product vanishes.
For a stable periodic orbit of period n the slope Ap of the nth iterate f"(X) evaluated
on a periodic point X (fixed point of the nth iterate) lies between -1 and 1. If |Ap| > 1,
p-cycle is unstable.

Example 5.2 Stability of cycles for maps: No matter what method we use to
determine the unstable cycles, the theory to be developed here requires that their Flo-
quet multipliers be evaluated as well. For maps a Floquet matrix is easily evaluated
by picking any periodic point as a starting point, running once around a prime cycle,
and multiplying the individual periodic point Jacobian matrices according to (4.52). For
example, the Floquet matrix My, for a Hénon map (3.19) prime cycle p of length n is
given by (4.53),

M()—ﬁ —2a% b eM
p(Xo) = 1 o/ Xic ps

k=n,
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and the Floquet matrix My, for a 2-dimensional billiard prime cycle p of length np

wo-cor[1(3 1)(n 9)

k=n,

follows from (8.11) of chapter 8 below. The decreasing order in the indices of the
products in above formulas is a reminder that the successive time steps correspond
to multiplication from the left, Mp(X1) = M(Xa,) - M(x1). We shall compute Floquet
multipliers of Hénon map cycles once we learn how to find their periodic orbits, see
exercise 13.13.

5.2 Floquet multipliers are invariant A
The 1-dimensional map Floquet multiplier (5.10) is a prddfaderivatives over Q&
all points around the cycle, and is therefore independemthach periodic point
is chosen as the initial one. In higher dimensions the forthefFloquet ma-
trix Jp(Xo) in (5.1) does depend on the choice of coordinates and ttialipdint

Xo € Mp. Nevertheless, as we shall now show, the cyellequet multipliers
are intrinsic property of a cycle in any dimension. Consitferith eigenvalue,
eigenvector pair/p;, €) computed fromJ, evaluated at a periodic poii

1) eV(x) = Api (¥, xeM,. (5.11)

Consider another point on the cycle at timéter, X = f'(x) whose Floquet
matrix is Jp(X'). By the group property (4.44)™*t = J*Te and the Jacobian
matrix atx’ can be written either as

IT(x) = IT(x) 39 = Jp(x) I'(X),

or J'(x) Jp(X). Multiplying (5.11) by J'(X), we find that the Floquet matrix evalu-
ated atx’ has the same Floquet multiplier,

Jo(x) eV(x) = Api (X)), eD(x)=J(x)eV(x), (5.12)

but with the eigenvectoe®) transported along the flow — x to el)(x) =
Ji(x) €D (x). Hence, in the spirit of the Floquet theory (5.5) one canrdefime-
periodic unit eigenvectors (in a co-moving ‘Lagrangiamie)

) = e D),  el(t) = eD(xt). xt)eMp. (5.13)

Jp evaluated anywhere along the cycle has the same set of Flogugpliers
{Ap1,Ap2, -+, L -+ ,Apg-1}. As quantities such as dp(x), detJp(x) depend
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only on the eigenvalues af,(x) and not on the starting poin¢ in expressions 5.3 Stability of Poincaré map cycles
such as deftl - J(x)) we may omit reference te, @%}

(R. PaSkauskas and P. Cvitanovit)
det(1- J5) = det(1- Jy(x)) foranyxe My. (5.14) , S o _
If a continuous flow periodic orbip pierces the Poincaré sectigh once, the
section point is a fixed point of the Poincaré return rRapith stability (4.57)
We postpone the proof that the cycle Floquet multipliers ammoth conjugacy
invariants of the flow to sect. 6.6. wU
- Uy
Jj = (6ik - (\/I—U)) I » (5.17)
5.2.1 Marginal eigenvalues
with all primes dropped, as the initial and the final pointscile, X' = fr(x) =
x. If the periodic orbitp pierces the Poincaré sectinimes, the same observation

The presence of marginal eigenvalues signals either ammants symmetry of the : -
applies to thenth iterate ofP.

flow (which one should immediately exploit to simplify theoptem), or a non-
hyperbolicity of a flow (a source of much pain, hard to avold)that case (typical
of parameter values for which bifurcations occur) one hagddeyond linear
stability, deal with Jordan type subspaces (see examp)eahd sub-exponential

We have already established in (4.58) that the velog() is a zero eigen-
vector of the Poincaré section Floquet matdy = 0. Consider nextAp,,. )y,
the full state spaceth (eigenvalue, eigenvector) pair (5.11), evaluated atra pe

growth rates, such &8. chapter 24 ; ; ) , .
. odic point on a Poincaré section,
exercise 5.1
For flow-invariant solutions such as periodic orbits, timedievolution is itself
a continuous symmetry, hence a periodic orbit of a flow alwags amarginal J)ED(X) = A €(x), xeP. (5.18)
Floquet multiplier
As JY(x) transports the velocity field(x) by (4.7), after a complete period Multiplying (5.17) byel® and inserting (5.18), we fing that the full state space
Floquet matrix and the Poincaré section Floquet matrhave the same Floquet
multiplier
() V(X) = v(X), (5.15)
J () = A, 8%, xeP, (5.19)

so for a periodic orbit of #lowthe local velocity field is always has an eigenvector
ell(x) = v(x) with the unit Floquet multiplier,
where & is a projection of the full state space eigenvector onto thimdarée

Aot 0o 516 section:
pi =1 p =0. (5.16)

exercise 6.3

The continuous invariance that gives rise to this margitadjéet multiplier is the
invariance of a cycle (the sétl,) under a translation of its points along the cycle:
two points on the cycle (see figure 4.3) initially distadoeapart,x’'(0) — x(0) =
6x(0), are separated by the exactly samefter a full periodT,. As we shall see
in sect. 5.3, this marginal stability direction can be efiated by cutting the cycle
by a Poincaré section and eliminating the continuous flavgé&ét matrix in favor
of the Floquet matrix of the Poincaré return map.

sy _ (s _ YiYk) @ P
@) = [on - o) @ (5.20)
Hence,jp evaluated on any Poincaré section point along the gytlas the same
set of Floquet multipliergA 1, Ap2, - -- Ap g} as the full state space Floquet ma-
trix Jp, except for the marginal unit Floquet multiplier (5.16).

As established in (4.58), due to the continuous symmelrr)e(thvariance)fp
is a rankd—1 matrix. We shall refer to any such ranldf{ 1—-N)x (d—1-N)]
submatrix withN —1 continuous symmetries quotiented out as rienodromy
matrix M, (from Greekmono-= alone, single, andiromo = run, racecourse,
meaning a single run around the stadium). Quotienting nantis symmetries is
discussed in chapter 10 below.

If the flow is governed by a time-independent Hamiltoniae, ¢nergy is con-
served, and that leads to an additional marginal Floquetipfigt (we shall show
in sect. 7.3 that due to the symplectic invariance (7.19)e&genvalues come in
pairs). Further marginal eigenvalues arise in presencemtfrtuous symmetries,
as discussed in chapter 10 below.
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5.4 There goes the neighborhood °

XX
In what follows, our task will be to determine the size afieighborhoodof x(t),

and that is why we care about the Floquet multipliers, an@é@afly the unstable
(expanding) ones. Nearby points aligned along the stableti@cting) directions
remain in the neighborhood of the trajectaxt) = f'(xo); the ones to keep an
eye on are the points which leave the neighborhood alongribable directions.
The sub-volumgM;| = HFAX; of the set of points which get no further away
from f!(xo) thanL, the typical size of the system, is fixed by the condition that
AxAi = O(L) in each expanding direction Hence the neighborhood size scales
asc 1/|Ap| whereA, is the product of expanding Floguet multipliers (5.7) only;
contracting ones play a secondary role.

So the dynamically important information is carried by thep@nding sub-
volume, not the total volume computed so easily in (4.47gatThalso the reason
why the dissipative and the Hamiltonian chaotic flows are mmore alike than
one would have naively expected for ‘compressible’ ‘incompressible’ flows.
In hyperbolic systems what matters are the expanding drezt Whether the
contracting eigenvalues are inverses of the expanding @nest is of secondary
importance. As long as the number of unstable directionsitgfithe same theory
applies both to the finite-dimensional ODEs and infinite-lisional PDEs.

Résum é

Periodic orbits play a central role in any invariant chaeaization of the dynam-

ics, because (a) their existence and inter-relations aopaogical coordinate-
independent property of the dynamics, and (b) their Floguetipliers form an

infinite set ofmetric invariants The Floquet multipliers of a periodic orbit remaigection 6.6
invariant under any smooth nonlinear change of coordinfitesho f oh™ . Let

us summarize the linearized flow notation used throughaiCthaosBook.

Differential formulation, flows:
X=v, X = ASX

governs the dynamics in the tangent bundlgsk) € T M obtained by adjoining
the d-dimensional tangent spaée € T My to every pointx € M in the d-dim-
ensional state spackl c RY. The stability matrix A = dv/dx describes the
instantaneous rate of shearing of the infinitesimal neididad of x(t) by the
flow.

Finite time formulation, maps: A discrete sets of trajectory poin{go, xq, - - -,
X, -} € M can be generated by composing finite-time maps, either gigen
xne1 = f(Xn), Or obtained by integrating the dynamical equations

thi1
Xout = F(%0) = % + fl drvX(D)), (5.21)
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for a discrete sequence of timigg t1, - - -, ty, - - -}, Specified by some criterion such
as strobing or Poincaré sections. In the discrete time ditation the dynamics in
the tangent bundlex(6x) € T M is governed by

X1 = F(X0).  Oner = I(X) 0%, I0%) = IT(x)

whereJ(X,) = 0Xn41/0% = fdr exp (A1) is the Jacobian matrix.

Stability of invariant solutions: The linear stability of an equilibriumi(xgQ) =
0is described by the eigenvalues and eigenve¢asts e} of the stability matrix
A evaluated at the equilibrium point, and the linear stapitif a periodic orbit
fT(X) = x, xe Mp,

30X = Ap (), Ay =oPelTo,
by its Floguet multipliers, vectors and exponetus;, e}, where/l(g) = #(p” +
iw(p” For every continuous symmetry there is a marginal eigeeetion, with
Apj = 1,/1(,)” = 0. With all 1+ N continuous symmetries quotiented out (Poincaré
sections for time, slices for continuous symmetries of dyica, see sect. 10.4)
linear stability of a periodic orbit (and, more generally,eopartially hyperbolic
torus) is described by thed{1-N) x (d-1-N)] monodromy matrix, all of whose
Floquet multiplierdAp j| # 1 are generically strictly hyperbolic,

Mp() eP(x) = Apje(x),  xe My/G.

We shall show in chapter 11 that extending the linearizebilgtahyperbolic
eigen-directions into stable and unstable manifolds giélaportant global infor-
mation about the topological organization of state spackafwhatters most are
the expanding directions. The physically important infation is carried by the
unstable manifold, and the expanding sub-volume chaiaeteby the product of
expanding Floquet multipliers a,. As long as the number of unstable directions
is finite, the theory can be applied to flows of arbitrarily fhigimension.

in depth: fast track:
” appendix B, p. 752 W chapter 9, p. 143
Commentary

Remark 5.1 Floquet theory. Study of time-dependent afftperiodic vector fields is

a classical subject in the theory offidirential equations [5.1, 5.2]. In physics literature
Floguet exponents often assum@elient names according to the context where the the-
ory is applied: they are called Bloch phases in the discassfdSchrodinger equation
with a periodic potential [5.3], or quasi-momenta in the igfuan theory of time-periodic
Hamiltonians.
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Exercises

5.1. A limit cycle with analytic Floquet exponent.

There are only two examples of nonlinear flows for
which the Floquet multipliers can be evaluated ana5.2.
lytically. Both are cheats. One example is the-2

dimensionaflow

p+q(l-o* - pd)
-q+p(l-’ - p?).

q
b =

Determine all periodic solutions of this flow, and deter-
mine analytically their Floquet exponents. Hint: go to

polar coordinatesy, p) = (r cost, r siné). G. Bard
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5.3.

Ermentrout

The other example of a limit cycle with analytic Flo-
quet exponent. What is the other example of a
nonlinear flow for which the Floquet multipliers can be
evaluated analytically? Hint: email G.B. Ermentrout.

Yet another example of a limit cycle with analytic
Floquet exponent. Prove G.B. Ermentrout wrong
by solving a third example (or more) of a nonlinear flow
for which the Floquet multipliers can be evaluated ana-
lytically.
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