Chapter 30

Prologue

Anyone who uses words “quantum” and “chaos” in the
same sentence should be hung by his thumbs on a tree in
the park behind the Niels Bohr Institute.

—Joseph Ford

(G. Vattay, G. Tanner and P. Cvitanovit)

play a game of classical pinball, and a skilled neuros@egtn poke rat

brains. We learned that information about chaotic dynaroas be ob-
tained by calculating spectra of linear operators such asetlolution operator
of sect. 17.2 or the associated partidfeliential equations such as the Liouville
equation (16.37). The spectra of these operators can bessqut in terms of pe-
riodic orbits of the deterministic dynamics by means of é&rémrmulas and cycle
expansions.

Y ou HAVE READ the first volume of this book. So far, so good — anyone can

But what happens quantum mechanically, i.e., if we scattefew rather than
point-like pinballs? Can we turn the problem round and stlidgar PDE'’s in
terms of the underlying deterministic dynamics? And, isr¢ha link between
structures in the spectrum or the eigenfunctions of a PDEldynamical prop-
erties of the underlying classical flow? The answer is yes, hiuthings are be-
coming somewhat more complicated when studying 2nd or highder linear
PDE’s. We can find classical dynamics associated with aliREH:, just take ge-
ometric optics as a familiar example. Propagation of ligiibfvs a second order
wave equation but may in certain limits be well describedemmis of geometric
rays. A theory in terms of properties of the classical dyreamdlone, referredchapter 38
to here as thessemiclassical theorywill not be exact, in contrast to the classi-
cal periodic orbit formulas obtained so far. Waves exhilgiiviphenomena, such
as interference, éiraction, and higheh corrections which will only be partially
incorporated into the periodic orbit theory.
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CHAPTER 30. PROLOGUE 581

30.1 Quantum pinball

In what follows, we will restrict the discussion to the naativistic Schrodinger
equation. The approach will be very much in the spirit of thdyedays of quan-
tum mechanics, before its wave character has been fullywened by Schrodinger
in the mid 1920's. Indeed, were physicists of the period aslfar with classical
chaos as we are today, this theory could have been devel@geb8s ago. It was
the discrete nature of the hydrogen spectrum which inspivredohr - de Broglie
picture of the old quantum theory: one places a wave instéadparticle on a
Keplerian orbit around the hydrogen nucleus. The quarmtizatondition is that
only those orbits contribute for which this wave is statigndrom this followed
the Balmer spectrum and the Bohr-Sommerfeld quantizatisicimeventually led
to the more sophisticated theory of Heisenberg, Schr@diagd others. Today
we are very aware of the fact that elliptic orbits are an igmusacy of the Kepler
problem, and that chaos is the rule; so can the Bohr quaictiche generalized
to chaotic systems?

The question was answereffianatively by M. Gutzwiller, as late as 1971: a
chaotic system can indeed be quantized by placing a waveatnoédheinfinity
of unstable periodic orbits. Due to the instability of thdits the wave does not
stay localized but leaks into neighborhoods of other péciodbits. Contributions
of different periodic orbits interfere and the quantization cbodican no longer
be attributed to a single periodic orbit: A coherent sumorativer the infinity of
periodic orbit contributions gives the desired spectrum.

The pleasant surprise is that the zeros of the dynamicalfaatdion (1.10)
derived in the context of classical chaotic dynamics, chapter 19
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also yield excellent estimates @fiantunresonances, with the quantum amplitude
associated with a given cycle approximated semiclasgibglthe weight

tp = ——ei Sorimmo/2 (30.1)
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whose magnitude is the square root of the classical weighi ()
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and the phase is given by the Bohr-Sommerfeld action integyatogether with
an additional topological phasep, the number of caustics along the periodic
trajectory, points where the naive semiclassical apprexion fails. chapter 33
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In this approach, the quantal spectra of classically chatyhamical systems
are determined from the zeros of dynamical zeta functioefined by cycle ex-
pansions of infinite products of form

Ys=]]@-t)=1-> "t - > (30.2)
p f k

with weightt, associated to every prime (non-repeating) periodic odsitycle
p.

The key observation is that the chaotic dynamics is ofteamimgd around a
few fundamentakycles. These short cycles capture the skeletal topolodkieof
motion in the sense that any long orbit can approximatelyiéegal together from
the fundamental cycles. In chapter 20 it was shown that fier fason the cy-
cle expansion (30.2) is a highly convergent expansion dataihby short cycles
grouped intofundamentalkontributions, with longer cycles contributing rapidly
decreasingcurvature corrections. Computations with dynamical zeta functions
are rather straightforward; typically one determines teegand stabilities of a fi-
nite number of shortest periodic orbits, substitutes thetm (30.2), and estimates
the zeros of 17 from such polynomial approximations.

From the vantage point of the dynamical systems theory,rtee tformulas
(both the exact Selberg and the semiclassical Gutzwilkaretiformula) fit into
a general framework of replacing phase space averages by suen periodic
orbits. For classical hyperbolic systems this is possilvleesthe invariant densitychapter 34
can be represented by sum over all periodic orbits, with tisigelated to their
instability. The semiclassical periodic orbit sumsfel from the classical ones
only in phase factors and stability weights; suclietiences may be traced back
to the fact that in quantum mechanics the amplitudes raktzar the probabilities
are added.

The type of dynamics has a strong influence on the convergenogle ex-
pansions and the properties of quantal spectra; this ritatessdevelopment of
different approaches for fierent types of dynamical behavior such as, on one
hand, the strongly hyperbolic and, on the other hand, thegrimittent dynamics
of chapters 20 and 24. For generic nonhyperbolic systemglwhlie shall not
discuss here), with mixed phase space and marginally sbabits, periodic orbit
summations are hard to control, and it is still not clear thatperiodic orbit sums
should necessarily be the computational method of choice.

Where is all this taking us? The goal of this part of the bodk idemonstrate
that the cycle expansions, developed so far in classidaigstare also a powerful
tool for evaluation ofjuantumresonances of classically chaotic systems.

First, we shall warm up playing our game of pinball, this tiinea quan-
tum version. Were the game of pinball a closed system, quamechanically
one would determine its stationary eigenfunctions andreigergies. For open
systems one seeks instead complex resonances, where tfieanygpart of the
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Figure 30.1: A typical collinear helium trajectory in
ther; —r; plane; the trajectory enters along theaxis
and escapes to infinity along thgaxis. r

eigenenergy describes the rate at which the quantum wawtidarieaks out of
the central scattering region. This will turn out to work yedxcept who truly
wants to know accurately the resonances of a quantum ptball chapter 35

30.2 Quantization of helium

Once we have derived the semiclassical weight associatédtié periodic or-
bit p (30.1), we will finally be in position to accomplish sometiialtogether
remarkable. We are now able to put together all ingredidmds make the game
of pinball unpredictable, and compute a “chaotic” part & ttelium spectrum to
shocking accuracy. From the classical dynamics point afMelium is an exam-
ple of Poincaré’s dreaded and intractable 3-body probl&mdaunted, we forge
ahead and consider tlgellinear helium, with zero total angular momentum, and
the two electrons orlihe opposite sides of the nucleus.

We set the electron mass to 1, the nucleus mass, tihe helium nucleus chargehapter 37
to 2, the electron charges to -1. The Hamiltonian is

, 2 2 1

1
H:—p1+§p2————+

. 30.3
I 5 r+ro ( )

Due to the energy conservation, only three of the phase sjpacdinatesr(, r», p1, p2)
are independent. The dynamics can be visualized as a maottbe 1, r2),ri > 0
quadrant, figure 30.1, or, better still, by a well chosen r2atisional Poincaré
section.

The motion in ther, r2) plane is topologically similar to the pinball motion
in a 3-disk system, except that the motion is not free, buhe@oulomb poten-
tial. The classical collinear helium is also a repeller; adtnall of the classical
trajectories escape. Miraculously, the symbolic dynarfocghe survivors turns
out to be binary, just as in the 3-disk game of pinball, so wevkmvhat cycles
need to be computed for the cycle expansion (1.11). A setmtest cycles up to
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a given symbol string length then yields an estimate of thieitmespectrum. This chapter 37
simple calculation yields surprisingly accurate eigeneal even though the cycle
expansion was based on themiclassical approximatiof80.1) which is expected

to be good only in the classical large energy limit, the e@gengies are good to

1% all the way down to the ground state.

Before we can get to this point, we first have to recapitulateesbasic notions
of quantum mechanics; after having defined the main quanhjetts of interest,
the gquantum propagator and the Green’s function, we wiliteethe quantum
propagation to the classical flow of the underlying dynatrsgatem. We will then
proceed to construct semiclassical approximations to tiatym propagator and
the Green’s function. A rederivation of classical Hamileondynamics starting
from the Hamilton-Jacobi equation will beéfered along the way. The derivation
of the Gutzwiller trace formula and the semiclassical zetecfion as a sum and as
a product over periodic orbits will be given in chapter 34 siibsequent chapters
we buttress our case by applying and extending the theorycle expansion
calculation of scattering resonances in a 3-disk billiardhapter 35, the spectrum
of helium in chapter 37, and the incorporation dffdiction dfects in chapter 38.

Commentary

Remark 30.1 Guide to literature. A key prerequisite to developing any theory of
“quantum chaos” is solid understanding of Hamiltonian natbs. For that, Arnol'd
monograph [30.5] is the essential reference. Ozorio de Alai® monograph [6.9]Bers

a compact introduction to the aspects of Hamiltonian dycamequired for the quantiza-
tion of integrable and nearly integrable systems, with easghon periodic orbits, normal
forms, catastrophy theory and torus quantization. The HyoRrack and Bhaduri [30.1]
is an excellent introduction to the semiclassical meth@igzwiller's monograph [30.2]
is an advanced introduction focusing on chaotic dynamidb loclassical Hamiltonian
settings and in the semiclassical quantization. This beakarth browsing through for
its many insights and erudite comments on quantum and @lastchanics even if one
is not working on problems of quantum chaos. More suitable g@saduate course text is
Reichl’s exposition [30.3].

This book does not discuss the random matrix theory apprtmchaos in quantal
spectra; no randomness assumptions are made here, rattgwahis to milk the deter-
ministic chaotic dynamics for its full worth. The book conteates on the periodic orbit
theory. For an introduction to “quantum chaos” that focuseshe random matrix theory
the reader is referred to the excellent monograph by Haaké]3among others.

Remark 30.2 The dates. Schrodinger's first wave mechanics paper [33.3] (hydrogen
spectrum) was submitted 27 January 1926. Submission datdddelung’s ‘quantum
theory in hydrodynamical form’ paper [33.2] was 25 Octob@?8.

introQM - 10jul2006 ChaosBook.org version13, Dec 31 2009



REFERENCES 585

References

[30.1] M. Brack and R.K. Bhadur§emiclassical Physi¢&ddison-Wesley, New
York 1997).

[30.2] M.C. Gutzwiller,Chaos in Classical and Quantum Mechan{&pringer,
New York 1990).

[30.3] L.E. Reichl, The Transition to Chaos in Conservative Classical Systems:
Quantum ManifestationéSpringer-Verlag, New York 1992).

[30.4] F. HaakeQuantum Signatures of Chada edition (Springer-Verlag, New
York 2001).

[30.5] V.I. Arnold, Mathematical Methods in Classical Mechani¢Springer-
Verlag, Berlin 1978).

refsintroQM - 13jun2008 ChaosBook.org version13, Dec 31 2009



