
Chapter 9

World in a mirror

A detour of a thousand pages starts with a single misstep.

—Chairman Miaw

D  often come equipped with symmetries, such as the re-
flection and rotation symmetries of various potentials. In this chapter we
study quotienting of discrete symmetries, and in the next chapter we study

symmetry reduction for continuous symmetries. We look at individual orbits, and
the ways they are interrelated by symmetries. This sets the stage for a discussion
of how symmetries affect global densities of trajectories, and the factorization of
spectral determinants to be undertaken in chapter 21.

As we shall show here and in chapter 21, discrete symmetries simplify the dy-
namics in a rather beautiful way: If dynamics is invariant under a set of discrete
symmetriesG, the state spaceM is tiled by a set of symmetry-related tiles, and
the dynamics can be reduced to dynamics within one such tile,the fundamental
domainM/G. In presence of a symmetry the notion of a prime periodic orbit
has to be reexamined: a set of symmetry-related full state space cycles is replaced
by often much shorterrelative periodic orbit, the shortest segment of the full state
space cycle which tiles the cycle and all of its copies under the action of the group.
Furthermore, the group operations that relate distinct tiles do double duty as letters
of an alphabet which assigns symbolic itineraries to trajectories. section 11.1

Familiarity with basic group-theoretic notions is assumed, with details rele-
gated to appendix H.1. The erudite reader might prefer to skip the lengthy group-
theoretic overture and go directly to C2 = D1 example 9.7, example 9.10, and
C3v = D3 example 9.12, backtrack as needed.

9.1 Discrete symmetries

Normal is just a setting on a washing machine.
—Borgette, Borgo’s daughter
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We show that a symmetry equates multiplets of equivalent orbits, or ‘stratifies’ the
state space into equivalence classes, each class a ‘group orbit.’. We start by defin-
ing a finite (discrete) group, its state space representations, and what we mean by
asymmetry(invarianceor equivariance) of a dynamical system. As is always the
problem with ‘gruppenpest’ (read appendix A.2.3) way too many abstract notions
have to be defined before an intelligent conversation can take place. Perhaps best
to skim through this section on the first reading, then returnto it later as needed.

Definition: A finite group consists of a set of elements

G = {e, g2, . . . , gn} (9.1)

and a group multiplication ruleg j ◦ gi (often abbreviated asg jgi), satisfying

1. Closure: Ifgi , g j ∈ G, theng j ◦ gi ∈ G

2. Associativity:gk ◦ (g j ◦ gi) = (gk ◦ g j) ◦ gi

3. Identitye: g ◦ e= e◦ g = g for all g ∈ G

4. Inverseg−1: For everyg ∈ G, there exists a unique element
h = g−1 ∈ G such thath ◦ g = g ◦ h = e.

|G| = n, the number of elements, is called theorder of the group.

Example 9.1 Discrete groups of order 2 on R
3. Three types of discrete group of

order 2 can arise by linear action on our 3-dimensional Euclidian space R3:

reflections: σ(x, y, z) = (x, y,−z)

rotations: C1/2(x, y, z) = (−x,−y, z) (9.2)

inversions: P(x, y, z) = (−x,−y,−z) .

σ is a reflection (or an inversion) through the [x, y] plane. C1/2 is [x, y]-plane, constant z
rotation by π about the z-axis (or an inversion thorough the z-axis). P is an inversion (or
parity operation) through the point (0, 0, 0). Singly, each operation generates a group
of order 2: D1 = {e, σ}, C2 = {e,C1/2}, and D1 = {e,P}. Together, they form the dihedral
group D2 = {e, σ,C1/2,P} of order 4. (continued in example 9.2)

Definition: Coordinate transformations. Consider a mapx′ = f (x), x, f (x) ∈
M. An activelinear coordinate transformationMx corresponds to a non-singular
[d×d] matrix M that maps the vectorx ∈ M onto another vectorMx ∈ M.
The correspondingpassivecoordinate transformationf (x) → M−1 f (x) changes
the coordinate system with respect to which the vectorf (x) ∈ M is measured.
Together, a passive and active coordinate transformationsyield the map in the
transformed coordinates:

f̂ (x) = M−1 f (Mx) . (9.3)
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Definition: Matrix representation. Linear action of a discrete groupG element
g on statesx ∈ M is given by a finite non-singular [d×d] matrix g, the matrix
representationof elementg ∈ G. We shall denote by ‘g’ both the abstract group
element and its matrix representation.

If the coordinate transformationg belongs to a linear non-singular represen-
tation of a discrete finite groupG, for any elementg ∈ G there exists a number
m≤ |G| such that

gm ≡ g ◦ g ◦ . . . ◦ g
︸          ︷︷          ︸

m times

= e → |detg| = 1 . (9.4)

As the modulus of its determinant is unity, detg is anmth root of 1.

Example 9.2 Discrete operations on R
3. (continued from example 9.1) The matrix

representation of reflections, rotations and inversions defined by (9.2) is

σ =





1 0 0
0 1 0
0 0 −1




, C1/2 =





−1 0 0
0 −1 0
0 0 1




, P =





−1 0 0
0 −1 0
0 0 −1




, (9.5)

with detC1/2 = 1, detσ = detP = −1; that is why we refer to C1/2 as a rotation, and σ, P
as inversions. (continued in example 9.4)

Definition: Symmetry of a dynamical system. A groupG is asymmetryof the
dynamics if for every solutionf (x) ∈ M andg ∈ G, g f(x) is also a solution.

Another way to state this: A dynamical system (M, f ) is invariant (or G-
equivariant) under a symmetry groupG if the time evolution f : M → M (a
discrete time mapf , or the continuous flowf t map from thed-dimensional man-
ifold M into itself) commutes with all actions ofG,

f (gx) = g f(x) , (9.6)

or, in the language of physicists: The ‘law of motion’ is invariant, i.e., retains its
form in any symmetry-group related coordinate frame (9.3),

f (x) = g−1 f (gx) , (9.7)

for any statex ∈ M and any finite non-singular [d× d] matrix representation
g of elementg ∈ G. Why ‘equivariant?’ A functionh(x) is said to beG-
invariant if h(x) = h(gx) for all g ∈ G. The group actions map the solution
f : M → M into different (but equivalent) solutionsg f(x), hence the invariance
condition f (x) = g−1 f (gx) appropriate to vectors (and, more generally, tensors).
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Figure 9.1: The bimodal Ulam sawtooth map with the
D1 symmetry f (−x) = − f (x). If the trajectoryx0 →
x1 → x2 → · · · is a solution, so is its reflectionσx0 →
σx1 → σx2 → · · ·. (continued in figure 9.2)
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The full set of such solutions isG-invariant, but the flow that generates them is
said to beG-equivariant. It is obvious from the context, but for verbalemphasis
applied mathematicians like to distinguish the two cases byin/equi-variant. The
distinction is helpful in distinguishing the dynamics written in the original, equiv-
ariant coordinates from the dynamics rewritten in terms ofinvariant coordinates,
see sects. 9.1.2 and 10.4. exercise 9.7

Example 9.3 A reflection symmetric 1d map. Consider a 1d map f with reflection
symmetry f (−x) = − f (x), such as the bimodal ‘sawtooth’ map of figure 9.1, piecewise-
linear on the state spaceM = [−1, 1], a compact 1-dimensional line interval, split into
three regionsM =ML ∪MC ∪MR. Denote the reflection operation by σx = −x. The
2-element group G = {e, σ} goes by many names, such as Z2 or C2. Here we shall refer
to it as D1, dihedral group generated by a single reflection. The G-equivariance of the
map implies that if {xn} is a trajectory, than also {σxn} is a symmetry-equivalenttrajectory
because σxn+1 = σ f (xn) = f (σxn) (continued in example 9.7)

Example 9.4 Equivariance of the Lorenz flow. (continued from example 9.2) The
vector field in Lorenz equations (2.12) is equivariant under the action of cyclic group
C2 = {e,C1/2} acting on R3 by a π rotation about the z axis,

C1/2(x, y, z) = (−x,−y, z) .

(continued in example 9.10)

discrete - 8nov2009 ChaosBook.org version13, Dec 31 2009



CHAPTER 9. WORLD IN A MIRROR 147

Example 9.5 Discrete symmetries of the plane Couette flow. The plane Couette
flow is a fluid flow bounded by two countermoving planes, in a cell periodic in stream-
wise and spanwise directions. The Navier-Stokes equations for the plane Couette flow
have two discrete symmetries: rotation by π in the (streamwise,spanwise) plane, and
rotation by π in the (streamwise,wall-normal) plane. That is why there are some equi-
libria (as opposed to relative equilibria) and some periodic orbit solutions. They belong
to discrete symmetry subspaces. (continued in example 10.4)

9.1.1 Subgroups, orbits, subspaces

A solution tends to exhibit less symmetry than the dynamicalequations of motion.
The symmetry of a solution is thus a subgroup of the symmetry group of dynam-
ics. This section makes this statement precise by setting upthe group-theoretic
notions needed in what follows. The reader might prefer to skip to sect. 9.2, back-
track as needed.

Definition: Subgroup, coset. Let H = {e, b2, b3, . . . , bh} ⊆ G be a subgroup of
orderh = |H|. The set ofh elements{c, cb2, cb3, . . . , cbh}, c ∈ G but not inH, is
called leftcoset cH. For a given subgroupH the group elements are partitioned
into H andm− 1 cosets, wherem = |G|/|H|. The cosets cannot be subgroups,
since they do not include the identity element.

Definition: Class. An elementb ∈ G is conjugateto a if b = c a c−1 wherec is
some other group element. Ifb andc are both conjugate toa, they are conjugate
to each other. Application of all conjugations separates the set of group elementsexercise 9.3

into mutually not-conjugate subsets calledclasses, typesor conjugacy classes.
The identitye is always in the class{e} of its own. This is the only class which isexercise 9.5

a subgroup, all other classes lack the identity element.

Physical importance of classes is clear from (9.7), the way coordinate trans-
formations act on mappings: action of elements of a class (say reflections, or
rotations) is equivalent up to a redefinition of the coordinate frame.

Definition: Invariant subgroup. A subgroupH ⊆ G is an invariant subgroup
or normal divisorif it consists of complete classes. Class is complete if no conju-
gation takes an element of the class out ofH.

H dividesG into H andm− 1 cosets, each of order|H|. Think of action of
H within each coset as identifying its|H| elements as equivalent. This leads to
the notion ofG/H as thefactor groupor quotient group G/H of G, with respect
to thenormal divisor(or invariant subgroup)H. Its order ism = |G|/|H|, and its
multiplication table can be worked out from theG multiplication table class by
class, with the subgroupH playing the role of identity.G/H is homeomorphicto
G, with |H| elements in a class ofG represented by a single element inG/H.
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So far we have discussed the structure of a group as an abstract entity. Now we
switch gears and describe the action of the group on the statespace of a dynamical
system of interest. This is the key step; if a set of solutionsis equivalent by
symmetry (a circle, let’s say), we would like to represent itby a single solution
(cut the circle at a point, or rewrite the dynamics in an ‘reduced state space,’ where
the circle of solutions is represented by a single point).

Definition: Orbit. The subsetMx0 ⊂ M traversed by the infinite-time trajec-
tory of a given pointx0 is called theorbit (or a solution) x(t) = f t(xInit). An
orbit is adynamically invariantnotion: it refers to the set of all states that can be
reached in time fromx0, thus as a set it is invariant under time evolution. The full
state spaceM is foliated (stratified) into a union of such orbits. We labela generic
orbitMx0 by any point belonging to it,x0 = x(0) for example.

A generic orbit might be ergodic, unstable and essentially uncontrollable. The
ChaosBook strategy is to populate the state space by a hierarchy of orbits which
are compact invariant sets(equilibria, periodic orbits, invariant tori,. . .), each
computable in a finite time. They are a set of zero Lebesgue measure, but dense
on the non–wandering set, and are to a generic orbit what fractions are to normal
numbers on the unit interval. Orbits which are compact invariant sets we label by
whatever alphabet we find convenient in a given context: point EQ = xEQ =MEQ

for an equilibrium, 1-dimensional loopp =Mp for a prime periodic orbitp, etc.
(note also discussion on page 190, and the distinction between trajectory and orbit
made in sect. 2.1; a trajectory is a finite-time segment of an orbit).

Definition: Group orbit. The set of pointsgx generated by all actions of the
groupG on the state space pointx is called thegroup orbitor G-orbitMx. If G is
a symmetry, intrinsic properties of an equilibrium (such asstability eigenvalues)
or a cyclep (period, Floquet multipliers) evaluated anywhere along itsG-orbit are
the same.

A symmetry thus reduces the number of inequivalent solutionsMx0. So we
also need to describe the symmetry of asolution, as opposed to (9.7), the sym-
metry of thesystem. We start by defining the notions ofreduced state space, of
isotropyof a state space point, and ofstabilizerof an orbit.

Definition: Reduced state space. The action of groupG partitions the state
spaceM into a union of group orbits. This set of group orbits, denotedM/G, has
many names:reduced state space, quotient spaceor any of the names listed on
page 181.

Reduction of the dynamical state space is discussed in sect.9.4 for discrete
symmetries, and in sect. 10.4 for continuous symmetries.
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Definition: Isotropy subgroup. The maximal set of group actions which maps
a state space pointx into itself,

Gx = {g ∈ G : gx= x} , (9.8)

is called theisotropy groupor little group of x.

We also need a notion ofset-wiseinvariance, as opposed to thepoint-wise
invariance underGx. exercise 9.2

Definition: Stabilizer. We shall sometimes refer to the subset of nontrivial
group actionsGp ⊆ G on state space points within a compact setMp, which
leave no point fixed but leave the set invariant, as thestabilizer Gp ofMp,

Gp = {g ∈ Gp : gx ∈ Mp, gx, x for g , e} , (9.9)

and reserve the notion of ‘isotropy’ of a setMp for the subgroupGp that leaves
each point in it fixed.

Saying thatGp is the symmetry of the solutionp, or that the orbitMp is ‘Gp-
invariant,’ accomplishes as much without confusing you with all these names (see
remark 9.1). In what follows we shall speak freely and say things like “the sym-
metry of the periodic orbitp is C2 = {e,R},” rather than bandy about ‘stabilizers’
and such.

The splitting of a groupG into an stabilizerGp andm− 1 cosetscGp relates
an orbitMp to m − 1 other distinct orbitscMp. All of them have equivalentexercise 9.4

stabilizers, or, more precisely, the points on the same group orbit haveconjugate
stabilizers:

Gc p = c Gp c−1 . (9.10)

If Gp is the stabilizer of orbitMp, elements of the coset spaceg ∈ G/Gp

generate themp − 1 distinct copies ofMp, so for discrete groups the multiplicity
of orbit p is mp = |G|/|Gp|.

Definition: Fixed-point subspace MH of a subgroup or a ‘centralizer’H ⊂ G,
G a symmetry of dynamics, is the set of all state space points left H-fixed, point-
wiseinvariant under subgroup action

MH = Fix (H) = {x ∈ M : h x= x for all h ∈ H} . (9.11)

Points in state space subspaceMG which are fixed points of the full group action
are calledinvariant points,

MG = Fix (G) = {x ∈ M : g x= x for all g ∈ G} . (9.12)
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Definition: Flow invariant subspace. A typical point inMH moves with time,
but, due to equivariance (9.6), its trajectoryx(t) = f t(x) remains withinf (MH) ⊆
MH for all times,

h f t(x) = f t(hx) = f t(x) , h ∈ H , (9.13)

i.e., belong to aflow invariant subspace. This suggests a systematic approach
to seeking compact invariant solutions. The larger the symmetry subgroup, the
smallerMH, easing the numerical searches, so start with the largest subgroupsH
first.

We can often decompose the state space into smaller subspaces, with group
acting within each ‘chunk’ separately:

Definition: Invariant subspace. Mα ⊂ M is aninvariant subspace if

{Mα : gx ∈ Mα for all g ∈ G andx ∈ Mα} . (9.14)

{0} andM are always invariant subspaces. So is any Fix(H) which is point-wise
invariant under action ofG.

Definition: Irreducible subspace. A spaceMα whose only invariant subspaces
are{0} andMα is calledirreducible.

9.1.2 Invariant bases

Physical laws should have the same form in symmetry-equivalent coordinate frames,
so they are often formulated in terms of functions (Hamiltonians, Lagrangians,
· · ·) invariant under a given set of symmetries.

Example 9.6 Polynomials invariant under discrete operations on R
3. (continued

from example 9.1) σ is a reflection through the [x, y] plane. Any {e, σ}-invariant
function can be expressed in the polynomial basis {u1, u2, u3} = {x, y, z2}.

C1/2 is a [x, y]-plane rotation by π about the z-axis. Any {e,C1/2}-invariant func-
tion can be expressed in the polynomial basis {u1, u2, u3, u4} = {x2, xy, y2, z}, with one
syzygy between the basis polynomials, (x2)(y2) − (xy)2 = 0.

P is an inversion through the point (0, 0, 0). Any {e,P}-invariant function can be
expressed in the polynomial basis {u1, · · · , u6} = {x2, y2, z2, xy, xz, yz}, with three syzy-
gies between the basis polynomials, (x2)(y2) − (xy)2 = 0, and its 2 permutations.

For the D2 dihedral group G = {e, σ,C1/2,P} the G-invariant polynomial basis
is {u1, u2, u3, u4} = {x2, y2, z2, xy}, with one syzygy, (x2)(y2) − (xy)2 = 0. (continued in
example 10.13)

The key result of the representation theory of invariant functions is:
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Hilbert-Weyl theorem. For a compact groupG there exists a finiteG-invariant
homogenous polynomial basis{u1, u2, . . . , um}, m ≥ d, such that anyG-invariant
polynomial can be written as a multinomial

h(x) = p(u1(x), u2(x), . . . , um(x)) , x ∈ M . (9.15)

These polynomials are linearly independent, but can be functionally dependent
through nonlinear relations calledsyzygies.

In practice, explicit construction ofG-invariant basis can be a laborious un-
dertaking, and we will not take this path except for a few simple low-dimensional
cases, such as the 5-dimensional example of sect. 10.5. We prefer to apply the
symmetry to the system as given, rather than undertake a series of nonlinear co-
ordinate transformations that the theorem suggests. (What‘compact’ in the above
refers to will become clearer after we have discussed continuous symmetries. For
now, it suffices to know that any finite discrete group is ‘compact’.) exercise 9.1

9.2 Symmetries of solutions

The solutions of an equivariant system can satisfy all of thesystem’s symmetries,
a proper subgroup of them, or have no symmetry at all. For a generic ergodic
orbit f t(x) the trajectory and any of its images under action ofg ∈ G are distinct
with probability one,f t(x) ∩ g f t′ (x) = ∅ for all t, t′. For example, a typical turbu-
lent trajectory of plane Couette flow has no symmetry beyond the identity, so its
symmetry group is the trivial{e}. For compact invariant sets, such as fixed points
and periodic orbits the situation is very different. For example, the symmetry of
the laminar solution of the plane Couette flow is the full symmetry of its Navier-
Stokes equations. In between we find solutions whose symmetries are subgroups
of the full symmetry of the defining equations.

The key concept in the classification of dynamical orbits is the concept of
their symmetry (isotropyor stabilizer). We note three types of solutions: (i) fully
asymmetrica, (ii) Gp set-wise invariant cycless built by repeats of relative cycle
segments ˜s, and (iii) isotropy subgroupGEQ-invariant equilibria or point-wise
Gp-fixed cyclesb.

Definition: Asymmetric orbits. An equilibrium or periodic orbit is not sym-
metric if {xa} ∩ {gxa} = ∅ for any g ∈ G, where{xa} is the set of periodic points
belonging to the cyclea. Thusg ∈ G generate|G| distinct orbits with the same
number of points and the same stability properties.

A string of unmotivated definitions (no less than an unmotivated definition of
strings) has a way of making trite mysterious, so let’s switch gears again: develop
a feeling for why they are needed by first working out the simplest, 1−dimensional
example with a single reflection symmetry.
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Figure 9.2: TheD1-equivariant bimodal sawtooth
map of figure 9.1 has three types of periodic or-
bits: (a)D1-fixed fixed pointC, asymmetric fixed
points pair{L,R}. (b) D1-symmetric (setwise in-
variant) 2-cycleLR. (c) Asymmetric 2-cycles pair
{LC,CR}. (continued in figure 9.8) (Y. Lan)
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Example 9.7 Group D1 - a reflection symmetric 1d map: Consider the bimodal
‘sawtooth’ map of example 9.3, with the state spaceM = [−1, 1] split into three regions
M = {ML,MC,MR}which we label with a 3-letter alphabet L(eft), C(enter), and R(ight).
The symbolic dynamics is complete ternary dynamics, with any sequence of letters
A = {L,C,R} corresponding to an admissible trajectory (‘complete’ means no additional
grammar rules required, see example 11.6 below). The D1-equivariance of the map,
D1 = {e, σ}, implies that if {xn} is a trajectory, so is {σxn}.
Asymmetric cycles.σ maps a cycle a into the reflected cycle σa, with the same period
and the same stability properties, see figure 9.2 (c).

Definition: Gp-symmetric cycles. A cycle p is Gp-symmetric(set-wise sym-
metric, self-dual) if the action of elements ofGp on the set of periodic pointsMp

reproduces the set. The set of group elements with this property form the stabi-
lizer Gp of the cycles. g ∈ Gp acts as a shift in time, mapping the periodic point
x ∈ Mp into f Tp/|Gp|(x).

Example 9.8 D1-symmetric cycles: For D1 the period of a set-wise symmetric cycle
is even (ns = 2ns̃), and the mirror image of the xs periodic point is reached by traversing
the relative periodic orbit segment s̃ of length ns̃, f ns̃(xs) = σxs, see figure 9.2 (b).

Definition: Gp-fixed orbits: An equilibriumxq or a compact solutionp is point-
wise or Gp-fixed if it lies in the invariant points subspace Fix

(

Gp

)

, gxq = xq

for all g ∈ Gp. A solution that isG-invariant under all groupG operations has
multiplicity 1. Stability of such solutions will have to be examined with care,
as they lie on the boundaries of domains related by the actionof the symmetry
group.

Example 9.9 Group D1-invariant cycles: In the example at hand there is only one
G-invariant (point-wise invariant) orbit, the fixed point C at the origin, see figure 9.2 (a).
We shall continue analysis of this system in example 9.13, and work out the symbolic
dynamics of such reflection symmetric systems in example 12.5.

As reflection symmetry is the only discrete symmetry that a map of the interval
can have, this example completes the group-theoretic analysis of 1-dimensional
maps. Consider next a 3-dimensional flow with a symmetry. exercise 9.7

exercise 9.8
exercise 9.9
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ż
=

xy
−

b
z

in
th

e
Lo

re
nz

eq
ua

tio
n

(2
.1

2)
se

nd
al

li
ni

tia
lc

on
di

tio
ns

w
ith

in
M
−
=

(x
(0

),
y(

0
),

0
)

in
to

th
e

fu
ll,

z(
t)
,

0
st

at
e

sp
ac

e
M
/
M
+
.

T
he

C
1/

2
sy

m
m

et
ry

is
ne

ve
rt

he
le

ss
ve

ry
us

ef
ul

.

B
y

ta
ki

ng
as

a
P

oi
nc

ar
é
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Figure 9.5: The symmetries of three disks on an equi-
lateral triangle. The fundamental domain is indicated
by the shaded wedge.

9.3 Relative periodic orbits

We show that a symmetry reduces computation of periodic orbits to repeats of
shorter, ‘relative periodic orbit’ segments.

Invariance of a flow under a symmetry means that the group action image of
a cycle is again a cycle, with the same period and stability. The new orbit may be
topologically distinct (in which case it contributes to themultiplicity of the cycle)
or it may be the same cycle.

A cycle p is Gp-symmetricunder symmetry operationg ∈ Gp if the operation
acts on it as a shift in time, advancing a cycle point to a cyclepoint on the sym-
metry related segment. The cyclep can thus be subdivided intomp repeats of a
relative periodic orbit segment, ‘prime’ in the sense that the full state space cycle
is built from its repeats. Thus in presence of a symmetry the notion of a periodic
orbit is replaced by the notion of the shortest segment of thefull state space cycle
which tiles the cycle under the action of the group. In what follows we refer to this
segment as arelative periodic orbitsegment (in the literature sometime referred
to as ashort periodic orbit).

.

Relative periodic orbits (orequivariant periodic orbits) are orbitsx(t) in state
spaceM which exactly recur

x(t) = g x(t + T) (9.21)

for the shortest fixedrelative period Tand a fixed group actiong ∈ Gp. This
group action is referred to as a ‘phase,’ or a ‘shift.’ For a discrete group by (9.4)
gm = e for some finitem, so the corresponding full state space orbit is periodic
with periodmT.

The period of the full orbit is given by themp× (period of the relative periodic
orbit), np̃ = np/|Gp|, and theith Floquet multiplierΛp,i is given byΛ

mp

p̃,i of the
relative periodic orbit. The elements of the quotient spaceb ∈ G/Gp generate the
copiesbp, so the multiplicity of the full state space cyclep is mp = |G|/|Gp|.
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Figure 9.6: The 3-disk pinball cycles: (a)12, 13,
23, 123; the clockwise132 not drawn. (b) Cy-
cle1232; the symmetry related1213 and1323 not
drawn. (c)12323; 12123,12132,12313,13131
and 13232 not drawn. (d) The fundamental do-
main, i.e., the 1/6th wedge indicated in (a), con-
sisting of a section of a disk, two segments of sym-
metry axes acting as straight mirror walls, and the
escape gap to the left. The above 14 full-space cy-
cles restricted to the fundamental domain and re-
coded in binary reduce to the two fixed points0,
1, 2-cycle10, and 5-cycle00111 (not drawn). See
figure 9.9 for the001 cycle.

(a) (b) (c)

(d)

Example 9.11 Relative periodic orbits of Lorenz flow: (continuation of exam-
ple 9.10) The relation between the full state space periodic orbits, and the fundamental
domain (9.20) reduced relative periodic orbits of the Lorenz flow: an asymmetric full
state space cycle pair p, Rpmaps into a single cycle p̃ in the fundamental domain, and
any self-dual cycle p = Rp= p̃Rp̃ is a repeat of a relative periodic orbit p̃.

Next illustration of these ideas brings in the noncommutative group structure:
the example of sect. 1.3, symmetries of a 3-disk game of pinball. exercise 9.5

Example 9.12 C3v = D3 invariance - 3-disk game of pinball: As the three disks
in figure 9.5 are equidistantly spaced, our game of pinball has a sixfold symmetry. The
symmetry group of relabeling the 3 disks is the permutation group S3; however, it is
more instructive to think of this group geometrically, as C3v (dihedral group D3), the
group of order |G| = 6 consisting of the identity element e, three reflections across
axes {σ12, σ23, σ13}, and two rotations by 2π/3 and 4π/3 denoted {C1/3,C2/3}. Applying
an element (identity, rotation by ±2π/3, or one of the three possible reflections) of this
symmetry group to a trajectory yields another trajectory. For instance, σ23, the flip
across the symmetry axis going through disk 1 interchanges the symbols 2 and 3; it
maps the cycle 12123into 13132, figure 9.6 (c). Cycles 12, 23, and 13 in figure 9.6 (a)
are related to each other by rotation by ±2π/3, or, equivalently, by a relabeling of the
disks.

The nontrivial subgroups of D3 are D1 = {e, σ}, consisting of the identity and
any one of the reflections, of order 2, and C3 = {e,C1/3,C2/3}, of order 3, so possible
cycle multiplicities are |G|/|Gp| = 1, 2, 3 or 6. Only the fixed point at the origin has full
symmetry Gp = G. Such equilibria exist for smooth potentials, but not for the 3-disk
billiard.

The C3 subgroup Gp = {e,C1/3,C2/3} invariance is exemplified by 2 cycles 123
and 132 which are invariant under rotations by 2π/3 and 4π/3, but are mapped into
each other by any reflection, figure 9.7 (a), and have multiplicity |G|/|Gp| = 2.

The Cv type of a subgroup is exemplified by the invariances of p̂ = 1213. This
cycle is invariant under reflection σ23{1213} = 1312= 1213, so the invariant subgroup
is Gp̂ = {e, σ23}, with multiplicity is mp̂ = |G|/|Gp| = 3; the cycles in this class, 1213, 1232
and 1323, are related by 2π/3 rotations, figure 9.7 (b).
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Figure 9.7: Cycle 121212313 has multiplicity 6;
shown here is121313132= σ23121212313. How-
ever,121231313 which has the same stability and
period is related to121313132 by time reversal,
but not by any C3v symmetry.

A cycle of no symmetry, such as 12123, has Gp = {e} and contributes in all six
copies (the remaining cycles in the class are 12132, 12313, 12323, 13132and 13232),
figure 9.7 (c).

Besides the above spatial symmetries, for Hamiltonian systems cycles may
be related by time reversal symmetry. An example are the cycles 121212313and
313212121= 121213132which have the same periods and stabilities, but are related
by no space symmetry, see figure 9.7. (continued in example 9.14)

9.4 Dynamics reduced to fundamental domain

I submit my total lack of apprehension of fundamental
concepts.

—John F. Gibson

So far we have used symmetry to effect a reduction in the number of independent
cycles, by separating them into equivalence classes. The next step achieves much
more: it replaces each class by a single (typically shorter)prime cycle segment.

1. Discrete symmetry tessellates the state space into copies of a fundamen-
tal domain, and thus induces a natural partition of state space. The state
space is completely tiled by afundamental domainand its symmetry im-
ages: If the dynamics is invariant under a discrete symmetry, the state
spaceM can be completely tiled by the fundamental domainM̃ and its
imagesM̃a = aM̃, M̃b = bM̃, . . . under the action of the symmetry group
G = {e, a, b, . . .},

M = M̃ ∪ M̃a ∪ M̃b · · · ∪ M̃|G| = M̃ ∪ aM̃ ∪ bM̃ · · · . (9.22)

2. Discrete symmetries can be used to restrict all computations to afundamen-
tal domainM̃ =M/G, i.e., the reduced state space quotient of the full state
spaceM by the group actions ofG.

Now we can use the invariance condition (9.6) to move the starting point
x into the fundamental domainx = ax̃, and then use the relationa−1b =
h−1 to also relate the endpointy ∈ M̃b to its image in the fundamental
domainM̃. While the global trajectory runs over the full spaceM, the
restricted trajectory is brought back into the fundamentaldomainM̃ any
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Figure 9.8: The bimodal Ulam sawtooth map of
figure 9.2 with theD1 symmetry f (−x) = − f (x)
restricted to the fundamental domain.f (x) is in-
dicated by the thin line, and fundamental domain
map f̃ (x̃) by the thick line. (a) Boundary fixed
pointC is the fixed point0. The asymmetric fixed
point pair {L,R} is reduced to the fixed point2,
and the full state space symmetric 2-cycleLR is
reduced to the fixed point1. (b) The asymmetric
2-cycle pair{LC,CR} is reduced to 2-cycle01. (c)
All fundamental domain fixed points and 2-cycles.
(Y. Lan)
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time it exits into an adjoining tile; the two trajectories are related by the
symmetry operationh which maps the global endpoint into its fundamental
domain image.

3. Cycle multiplicities induced by the symmetry are removedbydesymmetriza-
tion, reduction of the full dynamics to the dynamics on afundamental do-
main. Each symmetry-related set of global cyclesp corresponds to pre-
cisely one fundamental domain (or relative) cycle ˜p. Conversely, each fun-
damental domain cycle ˜p traces out a segment of the global cyclep, with
the end point of the cycle ˜p mapped into the irreducible segment ofp with
the group elementhp̃. The relative periodic orbits in the full space, folded
back into the fundamental domain, are periodic orbits.

4. The group elementsG = {e, g2, . . . , g|G|} which map the fundamental do-
mainM̃ into its copiesgM̃, serve also as letters of a symbolic dynamics
alphabet.

For a symmetry reduction in presence of continuous symmetries, see sect. 10.4.
exercise 9.6

Example 9.13 Group D1 and reduction to the fundamental domain. Consider
again the reflection-symmetric bimodal Ulam sawtooth map f (−x) = − f (x) of exam-
ple 9.7, with symmetry group D1 = {e, σ}. The state spaceM = [−1, 1] can be tiled by
half-line M̃ = [0, 1], and σM̃ = [−1, 0], its image under a reflection across x = 0 point.
The dynamics can then be restricted to the fundamental domain x̃k ∈ M̃ = [0, 1]; every
time a trajectory leaves this interval, it is mapped back using σ.

In figure 9.8 the fundamental domain map f̃ (x̃) is obtained by reflecting x < 0
segments of the global map f (x) into the upper right quadrant. f̃ is also bimodal and
piecewise-linear, with M̃ = [0, 1] split into three regions M̃ = {M̃0, M̃1, M̃2} which we
label with a 3-letter alphabet Ã = {0, 1, 2}. The symbolic dynamics is again complete
ternary dynamics, with any sequence of letters {0, 1, 2} admissible.

However, the interpretation of the ‘desymmetrized’ dynamics is quite different
- the multiplicity of every periodic orbit is now 1, and relative periodic segments of the
full state space dynamics are all periodic orbits in the fundamental domain. Consider
figure 9.8:

In (a) the boundary fixed point C is also the fixed point 0. In this case the set
of points invariant under group action of D1, M̃ ∩ σM̃, is just this fixed point x = 0, the
reflection symmetry point.
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Figure 9.9: (a) The pair of full-space 9-cycles, the
counter-clockwise121232313 and the clockwise
131323212 correspond to (b) one fundamental do-
main 3-cycle001.

(a)

(b)

The asymmetric fixed point pair {L,R} is reduced to the fixed point 2, and the
full state space symmetric 2-cycle LR is reduced to the fixed point 1. The asymmetric
2-cycle pair {LC,CR} is reduced to the 2-cycle 01. Finally, the symmetric 4-cycle LCRC
is reduced to the 2-cycle 02. This completes the conversion from the full state space
for all fundamental domain fixed points and 2-cycles, figure 9.8 (c).

Example 9.14 3-disk game of pinball in the fundamental domain

If the dynamics is equivariant under interchanges of disks, the absolute disk
labels ǫi = 1, 2, · · · ,N can be replaced by the symmetry-invariant relative disk→disk
increments gi , where gi is the discrete group element that maps disk i−1 into disk i. For
3-disk system gi is either reflection σ back to initial disk (symbol ‘0’) or 2π/3 rotation
by C to the next disk (symbol ‘1’). An immediate gain arising from symmetry invariant
relabeling is that N-disk symbolic dynamics becomes (N−1)-nary, with no restrictions
on the admissible sequences.

An irreducible segment corresponds to a periodic orbit in the fundamental do-
main, a one-sixth slice of the full 3-disk system, with the symmetry axes acting as
reflecting mirrors (see figure 9.6(d)). A set of orbits related in the full space by dis-
crete symmetries maps onto a single fundamental domain orbit. The reduction to
the fundamental domain desymmetrizes the dynamics and removes all global discrete
symmetry-induced degeneracies: rotationally symmetric global orbits (such as the 3-
cycles 123and 132) have multiplicity 2, reflection symmetric ones (such as the 2-cycles
12, 13and 23) have multiplicity 3, and global orbits with no symmetry are 6-fold degen-
erate. Table 12.2 lists some of the shortest binary symbols strings, together with the
corresponding full 3-disk symbol sequences and orbit symmetries. Some examples of
such orbits are shown in figures 9.7 and 9.9. (continued in example 12.7)
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Résum é

If a dynamical system (M, f ) has a symmetryG, the symmetry should be de-
ployed to ‘quotient’ the state space toM/G, i.e., identify all symmetry-equivalent
x ∈ M on a group orbit. The main result of this chapter can be statedas follows:

In presence of a discrete symmetryG, associated with each full state space
cycle p is the group of its symmetriesGp ⊆ G of order 1≤ |Gp| ≤ |G|, whose
elements leave the setMp invariant. The elements ofGp act onp as time shifts,
tiling it with |Gp| copies of its shortest invariant segment, the relative periodic orbit
p̃. The elements of the cosetb ∈ G/Gp generatemp = |G|/|Gp| equivalent copies
of p.

Once you grasp the relation between the full state spaceM and the desym-
metrized,G-quotiented reduced state spaceM/G, you will find the life as a fun-
damentalist so much simpler that you will never return to your full state space
confused ways of yesteryear. The reduction to the fundamental domainM̃ =

M/G simplifies symbolic dynamics and eliminates symmetry-induced degenera-
cies. For the short orbits the labor saving is dramatic. For example, for the 3-disk
game of pinball there are 256 periodic points of length 8, butreduction to the
fundamental domain non-degenerate prime cycles reduces this number to 30. In
the next chapter continuous symmetries will induce relative periodic orbits that
never close a periodic orbit, and in the chapter 25 they will tile the infinite peri-
odic state space, and reduce calculation of diffusion constant in an infinite domain
to a calculation on a compact torus.
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Commentary

Remark 9.1 Literature. We found Tinkham [9.1] the most enjoyable as a no-nonsense,
the user friendliest introduction to the basic concepts. For a summary of the theory of
discrete groups see, for example, ref. [9.2]. Chapter 3 of Rebecca Hoyle [9.3] is a very
student-friendly overview of the group theory a nonlinear dynamicist might need, with
exception of the quotienting, reduction of dynamics to a fundamental domain, which is
not discussed at all. We found sites such as en.wikipedia.org/wiki /Quotientgroup help-
ful. Curiously, we have not read any of the group theory booksthat Hoyle recommends
as background reading, which just confirms that there are waytoo many group theory
books out there. For example, one that you will not find usefulat all is ref. [9.4]. The
reason is presumably that in the 20th century physics (whichmotivated much of the work
on the modern group theory) the focus is on the linear representations used in quantumappendix A.2.3
mechanics, crystallography and quantum field theory. We shall need these techniques in
Chapter 21, where we reduce the linear action of evolution operators to irreducible sub-
spaces. However, here we are looking at nonlinear dynamics,and the emphasis is on the
symmetries of orbits, their reduced state space sisters, and the isotypic decomposition of
their linear stability matrices.

In ChaosBook we focus on chaotic dynamics, and skirt the theory of bifurcations, the
landscape between the boredom of regular motions and the thrills of chaos. Chapter 4
of Rebecca Hoyle [9.3] is a student-friendly introduction to the treatment of bifurcations
in presence of symmetries, worked out in full detail and generality in monographs by
Golubitsky, Stewart and Schaeffer [9.5], Golubitsky and Stewart [9.6] and Chossat and
Lauterbach [9.7]. Term ‘stabilizer’ is used, for example, by Broeret al. [9.8] to refer to a
periodic orbit withZ2 symmetry; they say that the relative or pre-periodic segment is in
this case called a ‘short periodic orbit.’ In Efstathiou [9.9] a subgroup of ‘short periodic
orbit’ symmetries is referred to as a ‘nontrivial isotropy group or stabilizer.’ (continued
in remark 10.1)

Remark 9.2 Symmetries of the Lorenz equation: (continued from remark 2.3) Af-
ter having studied example 9.10 you will appreciate whyChaosBook.org starts out with
the symmetry-less Rössler flow (2.17), instead of the better known Lorenz flow (2.12).
Indeed, getting rid of symmetry was one of Rössler’s motivations. He threw the baby out
with the water; for Lorenz flow dimensionalities of stable/unstable manifolds make pos-
sible a robust heteroclinic connection absent from Rössler flow, with unstable manifold
of an equilibrium flowing into the stable manifold of anotherequilibrium. How such con-
nections are forced upon us is best grasped by perusing the chapter 13 ‘Heteroclinic tan-
gles’ of the inimitable Abraham and Shaw illustrated classic [9.10]. Their beautiful hand-
drawn sketches elucidate the origin of heteroclinic connections in the Lorenz flow (and
its high-dimensional Navier-Stokes relatives) better than any computer simulation. Mi-
randa and Stone [9.11] were first to quotient the C2 symmetry and explicitly construct the
desymmetrized, ‘proto-Lorenz system,’ by a nonlinear coordinate transformation into the
Hilbert-Weyl polynomial basis invariant under the action of the symmetry group [9.12].
For in-depth discussion of symmetry-reduced (‘images’) and symmetry-extended (‘cov-
ers’) topology, symbolic dynamics, periodic orbits, invariant polynomial bases etc., of
Lorenz, Rössler and many other low-dimensional systems there is no better reference
than the Gilmore and Letellier monograph [9.13]. They interpret [9.14] the proto-Lorenz
and its ‘double cover’ Lorenz as ‘intensities’ being the squares of ‘amplitudes,’ and call
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quotiented flows such as (Lorenz)/C2 ‘images.’ Our ‘doubled-polar angle’ visualization
figure 11.8 is a proto-Lorenz in disguise; we, however, integrate the flow and construct
Poincaré sections and return maps in the original Lorenz [x, y, z] coordinates, without any
nonlinear coordinate transformations. The Poincaré return map figure 11.9 is reminiscent
in shape both of the one given by Lorenz in his original paper,and the one plotted in a
radial coordinate by Gilmore and Letellier. Nevertheless,it is profoundly different: our
return maps are from unstable manifold→ itself, and thus intrinsic and coordinate inde-
pendent. In this we follow ref. [9.15]. This construction isnecessary for high-dimensional
flows in order to avoid problems such as double-valuedness ofreturn map projections on
arbitrary 1-dimensional coordinates encountered alreadyin the Rössler example of fig-
ure 3.6. More importantly, as we know the embedding of the unstable manifold into the
full state space, a periodic point of our return mapis - regardless of the length of the cycle
- the periodic point in the full state space, so no additionalNewton searches are needed.
In homage to Lorenz, we note that his return map was already symmetry-reduced: asz
belongs to the symmetry invariant Fix(G) subspace, one can replace dynamics in the full
space by ˙z, z̈, · · ·. That isG-invariant by construction [9.13].

Remark 9.3 Examples of systems with discrete symmetries. Almost any flow of
interest is symmetric in some way or other: the list of examples is endless, we list here
a handful that we found interesting. One has a C2 symmetry in the Lorenz system (re-
mark 2.3), the Ising model, and in the 3-dimensional anisotropic Kepler potential [9.16,
9.17, 9.18], aD4 = C4v symmetry in quartic oscillators [9.19, 9.20], in the purex2y2 poten-
tial [9.21, 9.22] and in hydrogen in a magnetic field [9.23], and aD2 = C2v = V4 = C2×C2

symmetry in the stadium billiard [9.24]. A very nice nontrivial desymmetrization is car-
ried out in ref. [9.25]. An example of a system withD3 = C3v symmetry is provided by
the motion of a particle in the Hénon-Heiles potential [9.26, 9.27, 9.28, 9.29]

V(r, θ) =
1
2

r2 +
1
3

r3 sin(3θ) .

Our 3-disk coding is insufficient for this system because of the existence of elliptic islands
and because the three orbits that run along the symmetry axiscannot be labeled in our
code. As these orbits run along the boundary of the fundamental domain, they require
the special treatment. A partial classification of the 67 possible symmetries of solutions
of the plane Couette flow of example 9.5, and their reduction 5conjugate classes is given
in ref. [9.30].
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Exercises

9.1. Polynomials invariant under discrete operations on
R

3. Prove that the{e, σ}, {e,C1/2}, {e,P} and
{e, σ,C1/2,P}-invariant polynomial basis and syzygies
are those listed in example 9.6.

9.2. Gx ⊂ G. Prove that the setGx as defined in (9.8) is a
subgroup ofG.

9.3. Transitivity of conjugation. Assume thatg1, g2, g3 ∈
G and bothg1 andg2 are conjugate tog3. Prove thatg1

is conjugate tog2.

9.4. Isotropy subgroup of gx. Prove that forg ∈ G, x and
gxhave conjugate isotropy subgroups:

Ggx = g Gx g−1

9.5. D3: symmetries of an equilateral triangle. Consider
group D3 � C3v, the symmetry group of an equilateral
triangle:

1


2
  3
 .

(a) List the group elements and the corresponding ge-
ometric operations

(b) Find the subgroups of the group D3.

(c) Find the classes of D3 and the number of elements
in them, guided by the geometric interpretation of
group elements. Verify your answer using the def-
inition of a class.

(d) List the conjugacy classes of subgroups of D3.

9.6. Reduction of 3-disk symbolic dynamics to binary.
(continued from exercise 1.1)

(a) Verify that the 3-disk cycles
{1 2,1 3,2 3}, {1 2 3,1 3 2}, {12 13+ 2 perms.},
{121 232 313+ 5 perms.}, {121 323+ 2 perms.},
· · ·,
correspond to the fundamental domain cycles0,1,
01,001,011,· · · respectively.

(b) Check the reduction for short cycles in table 12.2
by drawing them both in the full 3-disk system and
in the fundamental domain, as in figure 9.9.

(c) Optional: Can you see how the group elements
listed in table 12.2 relate irreducible segments to
the fundamental domain periodic orbits?

(continued in exercise 12.6)

9.7. C2-equivariance of Lorenz system. Verify that the
vector field in Lorenz equations (2.12)

ẋ = v(x) =





ẋ
ẏ
ż




=





σ(y− x)
ρx− y− xz

xy− bz




(9.23)

is equivariant under the action of cyclic group C2 =

{e,C1/2} acting onR3 by aπ rotation about thezaxis,

C1/2(x, y, z) = (−x,−y, z) ,

as claimed in example 9.4. (continued in exercise 9.8)

9.8. Lorenz system in polar coordinates: group the-
ory. Use (6.7), (6.8) to rewrite the Lorenz equa-
tion (9.23) in polar coordinates (r, θ, z), where (x, y) =
(r cosθ, r sinθ).

1. Show that in the polar coordinates Lorentz flow
takes form

ṙ =
r
2

(−σ − 1+ (σ + ρ − z) sin 2θ

+(1− σ) cos 2θ)

θ̇ =
1
2

(−σ + ρ − z+ (σ − 1) sin 2θ

+(σ + ρ − z) cos 2θ)

ż = −bz+
r2

2
sin 2θ . (9.24)

2. Argue that the transformation to polar coordinates
is invertible almost everywhere. Where does the
inverse not exist? What is group-theoretically spe-
cial about the subspace on which the inverse not
exist?

3. Show that this is the (Lorenz)/C2 quotient map for
the Lorenz flow, i.e., that it identifies points related
by theπ rotation in the [x, y] plane.

4. Rewrite (9.23) in the invariant polynomial basis of
example 9.6 and exercise 9.24.

5. Show that a periodic orbit of the Lorenz flow in
polar representation (9.24) is either a periodic or-
bit or a relative periodic orbit (9.21) of the Lorenz
flow in the (x, y, z) representation.
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By going to polar coordinates we have quotiented out the
π-rotation (x, y, z)→ (−x,−y, z) symmetry of the Lorenz
equations, and constructed an explicit representation of
the desymmetrized Lorenz flow.

9.9. Proto-Lorenz system. Here we quotient out the C2
symmetry by constructing an explicit “intensity” repre-
sentation of the desymmetrized Lorenz flow, following
Miranda and Stone [9.11].

1. Rewrite the Lorenz equation (2.12) in terms of
variables

(u, v, z) = (x2 − y2, 2xy, z) , (9.25)

show that it takes form





u̇
v̇
ż




=





−(σ + 1)u+ (σ − r)v+ (1− σ)N + vz
(r − σ)u− (σ + 1)v+ (r + σ)N − uz− uN

v/2− bz





N =
√

u2 + v2 . (9.26)

2. Show that this is the (Lorenz)/C2 quotient map for
the Lorenz flow, i.e., that it identifies points related
by theπ rotation (9.16).

3. Show that (9.25) is invertible. Where does the in-
verse not exist?

4. Compute the equilibria of proto-Lorenz and their
stabilities. Compare with the equilibria of the
Lorenz flow.

5. Plot the strange attractor both in the original form
(2.12) and in the proto-Lorenz form (9.26)
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for the Lorenz parameter valuesσ = 10,b = 8/3,
ρ = 28. Topologically, does it resemble more the
Lorenz, or the Rössler attractor, or neither? (plot
by J. Halcrow)

7. Show that a periodic orbit of the proto-Lorenz is
either a periodic orbit or a relative periodic orbit
of the Lorenz flow.

8. Show that if a periodic orbit of the proto-Lorenz
is also periodic orbit of the Lorenz flow, their Flo-
quet multipliers are the same. How do the Floquet
multipliers of relative periodic orbits of the Lorenz
flow relate to the Floquet multipliers of the proto-
Lorenz?

9 What does the volume contraction formula (4.48)
look like now? Interpret.

10. Show that the coordinate change (9.25) is the same
as rewriting (9.24) in variables

(u, v) = (r2 cos 2θ, r2 sin 2θ) ,

i.e., squaring a complex numberz = x + iy, z2 =

u+ iv.

11. How is (9.26) related to the invariant polynomial
basis of example 9.6 and exercise 9.24?
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