Chapter 9

World in a mirror

A detour of a thousand pages starts with a single misstep.
—Chairman Miaw

flection and rotation symmetries of various potentials. His thapter we

study quotienting of discrete symmetries, and in the neaptdr we study
symmetry reduction for continuous symmetries. We look diviidual orbits, and
the ways they are interrelated by symmetries. This setstége dor a discussion
of how symmetries féiect global densities of trajectories, and the factorizatid
spectral determinants to be undertaken in chapter 21.

DYNAMICAL sysTEMs Often come equipped with symmetries, such as the re-

As we shall show here and in chapter 21, discrete symmetineglig/ the dy-
namics in a rather beautiful way: If dynamics is invariantdena set of discrete
symmetriesG, the state spacé is tiled by a set of symmetry-related tiles, and
the dynamics can be reduced to dynamics within one suchttigfundamental
domain M/G. In presence of a symmetry the notion of a prime periodictorbi
has to be reexamined: a set of symmetry-related full stateespycles is replaced
by often much shorterelative periodic orbit the shortest segment of the full state
space cycle which tiles the cycle and all of its copies unigeiaction of the group.
Furthermore, the group operations that relate distines tilo double duty as letters

of an alphabet which assigns symbolic itineraries to ttajies. section 11.1

Familiarity with basic group-theoretic notions is assumeith details rele-
gated to appendix H.1. The erudite reader might prefer to e lengthy group-
theoretic overture and go directly to,G= D; example 9.7, example 9.10, and
Csy = D3z example 9.12, backtrack as needed.

9.1 Discrete symmetries

(]
Normal is just a setting on a washing machine. Q

—Borgette, Borgo’s daughter
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We show that a symmetry equates multiplets of equivalentsrtr ‘stratifies’ the
state space into equivalence classes, each class a ‘groitip Bve start by defin-
ing a finite (discrete) group, its state space representt@and what we mean by
asymmetry(invarianceor equivariancg of a dynamical system. As is always the
problem with ‘gruppenpest’ (read appendix A.2.3) way toawnabstract notions
have to be defined before an intelligent conversation caspédce. Perhaps best
to skim through this section on the first reading, then retari later as needed.

Definition: A finite group consists of a set of elements

G={egz....0n) (9.1
and a group multiplication rulg; o g; (often abbreviated ag;g;), satisfying

1. Closure: Ifg;,gj € G, thengj o g € G

2. Associativity:gk o (gj 0 gi) = (Gk © gj) © i

3. Identitye. goe=eog=gforallge G

4. Inverseg~!: For everyg € G, there exists a unique element
h=g'eGsuchthahog=goh=e.

|G| = n, the number of elements, is called theler of the group.

Example 9.1 Discrete groups of order 2 on  R3.  Three types of discrete group of
order 2 can arise by linear action on our 3-dimensional Euclidian space R3:

reflections: o(x,y,2) = (XY,-2)
rotations: CY?(x,y,2) = (-x-Y,2) (©.2)
inversions: P(x,y,2) = (=X -Y,—2).

o is areflection (or an inversion) through the [x, y] plane. C*? is [x,y]-plane, constant z
rotation by 7 about the z-axis (or an inversion thorough the z-axis). P is an inversion (or
parity operation) through the point (0,0, 0). Singly, each operation generates a group
of order 2: D1 = {e,0}, G, = {e,CY?}, and D1 = {e, P}. Together, they form the dihedral
group D; = {e,o, CY/?, P} of order 4. (continued in example 9.2)

Definition: Coordinate transformations. Consider a map’ = f(x), x, f(X) €
M. An activelinear coordinate transformatiav x corresponds to a non-singular
[dxd] matrix M that maps the vectox € M onto another vectoMx € M.
The correspondingassivecoordinate transformatiofi(x) — M~1f(x) changes
the coordinate system with respect to which the vedie) € M is measured.
Together, a passive and active coordinate transformati@id the map in the
transformed coordinates:

f(x) = ML (MX). (9.3)
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Definition: Matrix representation.  Linear action of a discrete groupelement
g on statesx € M is given by a finite non-singuladpx d] matrix g, the matrix
representatiorof elementg € G. We shall denote byg’ both the abstract group
element and its matrix representation.

If the coordinate transformatiog belongs to a linear non-singular represen-
tation of a discrete finite grou@, for any elemeng € G there exists a number
m < |G| such that

g"=gogo...og=e — |detg =1. (9.4)

mtimes

As the modulus of its determinant is unity, dgs anmth root of 1.

Example 9.2 Discrete operations on R3. (continued from example 9.1) The matrix
representation of reflections, rotations and inversions defined by (9.2) is

10 0 -1 0 0 -1 0 0
a:[o 1 0), 01/2:[ 0 -1 0], P:( 0 -1 0], (9.5)
00 -1 0 0 1 0 0 -1

with detCY? = 1, deto = detP = —1; that is why we refer to C*/? as a rotation, and -, P
as inversions. (continued in example 9.4)

Definition: Symmetry of a dynamical system. A groupG is asymmetnof the
dynamics if for every solutiorf(x) € M andg € G, gf(x) is also a solution.

Another way to state this: A dynamical system(f) is invariant (or G-
equivarian) under a symmetry grou if the time evolutionf : M — M (a
discrete time mag, or the continuous flow' map from thed-dimensional man-
ifold M into itself) commutes with all actions &,

(g% = gf(x), (9.6)

or, in the language of physicists: The ‘law of motion’ is ineet, i.e., retains its
form in any symmetry-group related coordinate frame (9.3),

f() =gf(gx. 9.7)

for any statex € M and any finite non-singular ¢ x d] matrix representation

g of elementg € G. Why ‘equivariant?” A functionh(x) is said to beG-
invariant if h(x) = h(gx) for all g € G. The group actions map the solution
f : M — M nto different (but equivalent) solutiorgsf(x), hence the invariance
condition f(x) = g1 f(gX) appropriate to vectors (and, more generally, tensors).

discrete - 8nov2009 ChaosBook.org version13, Dec 31 2009

CHAPTER 9. WORLD IN A MIRROR 146
f(x)
Ko
X1
X3 X
oX 2 »
0 oX 3
%% e X
Figure 9.1: The bimodal Ulam sawtooth map with the| B
Dy symmetry f(-x) = —f(x). If the trajectoryx, — [
X; — Xp — --- is a solution, so is its reflectiomxy — TG X
X — 0¥ — -+ (continued in figure 9.2) ’

The full set of such solutions i&-invariant but the flow that generates them is
said to beG-equivariant. It is obvious from the context, but for verleahphasis
applied mathematicians like to distinguish the two casesjeguivariant. The
distinction is helpful in distinguishing the dynamics w&it in the original, equiv-
ariant coordinates from the dynamics rewritten in termgwériant coordinates,

see sects. 9.1.2 and 10.4. exercise 9.7

Example 9.3 A reflection symmetric 1d map.  Consider a 1d map f with reflection
symmetry f(-x) = —f(X), such as the bimodal ‘sawtooth’ map of figure 9.1, piecewise-
linear on the state space M = [-1, 1], a compact 1-dimensional line interval, split into
three regions M = M. U Mc U Mg. Denote the reflection operation by ox = —X. The
2-element group G = {e, o} goes by many names, such as Z, or C,. Here we shall refer
to it as D1, dihedral group generated by a single reflection. The G-equivariance of the
map implies that if {X,} is a trajectory, than also {cXn} is a symmetry-equivalenttrajectory
because oXni1 = 0 f(Xn) = f(o%:) (continued in example 9.7)

Example 9.4 Equivariance of the Lorenz flow. (continued from example 9.2) The
vector field in Lorenz equations (2.12) is equivariant under the action of cyclic group
G, = {e,CY?} acting on R® by a r rotation about the z axis,

CY2(xy,2) = (=%, -Y,2).

(continued in example 9.10)
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Example 9.5 Discrete symmetries of the plane Couette flow. The plane Couette
flow is a fluid flow bounded by two countermoving planes, in a cell periodic in stream-
wise and spanwise directions. The Navier-Stokes equations for the plane Couette flow
have two discrete symmetries: rotation by x in the (streamwise,spanwise) plane, and
rotation by n in the (streamwise,wall-normal) plane. That is why there are some equi-
libria (as opposed to relative equilibria) and some periodic orbit solutions. They belong
to discrete symmetry subspaces. (continued in example 10.4)

9.1.1 Subgroups, orbits, subspaces

A solution tends to exhibit less symmetry than the dynameéqaiations of motion.
The symmetry of a solution is thus a subgroup of the symmetygof dynam-
ics. This section makes this statement precise by settindpeigroup-theoretic
notions needed in what follows. The reader might prefer ip &ksect. 9.2, back-
track as needed.

Definition: Subgroup, coset. LetH = {e by, bs,...,by} € G be a subgroup of
orderh = |H|. The set ot elementgc, ch, chs, ..., ch,}, c € G but not inH, is
called leftcoset cH For a given subgroupl the group elements are partitioned
into H andm - 1 cosets, wheren = |G|/|H|. The cosets cannot be subgroups,
since they do not include the identity element.

Definition: Class. An elementb € G is conjugateto aif b = cac® wherecis

some other group element. Bfandc are both conjugate ta, they are conjugate

to each other. Application of all conjugations separatesstt of group elementssxercise 9.3
into mutually not-conjugate subsets calleldsses typesor conjugacy classes

The identityeis always in the clasge} of its own. This is the only class which igxercise 9.5
a subgroup, all other classes lack the identity element.

Physical importance of classes is clear from (9.7), the wardinate trans-
formations act on mappings: action of elements of a clasg fsfections, or
rotations) is equivalent up to a redefinition of the coorténzame.

Definition: Invariant subgroup. A subgroupH C G is aninvariant subgroup
or normal divisorif it consists of complete classes. Class is complete if mjLzo
gation takes an element of the class ouHof

H dividesG into H andm — 1 cosets, each of ordéid|. Think of action of
H within each coset as identifying itsl| elements as equivalent. This leads to
the notion ofG/H as thefactor groupor quotient group GH of G, with respect
to thenormal divisor(or invariant subgroupH. Its order ism = |G|/|H|, and its
multiplication table can be worked out from ti&multiplication table class by
class, with the subgroud playing the role of identityG/H is homeomorphito
G, with |H| elements in a class & represented by a single elemenGpH.
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So far we have discussed the structure of a group as an atesttdy. Now we
switch gears and describe the action of the group on thestate of a dynamical
system of interest. This is the key step; if a set of solutisnequivalent by
symmetry (a circle, let's say), we would like to represeribyta single solution
(cut the circle at a point, or rewrite the dynamics in an ‘reeldi state space, where
the circle of solutions is represented by a single point).

Definition: Orbit.  The subseiM,, c M traversed by the infinite-time trajec-
tory of a given pointxg is called theorbit (or a solution) x(t) = f{(xInit). An
orbit is adynamically invariantnotion: it refers to the set of all states that can be
reached in time fronxo, thus as a set it is invariant under time evolution. The full
state spacé is foliated (stratified) into a union of such orbits. We labejeneric
orbit My, by any point belonging to ity = x(0) for example.

A generic orbit might be ergodic, unstable and essentialyoutrollable. The
ChaosBook strategy is to populate the state space by adtigraf orbits which
are compact invariant setgequilibria, periodic orbits, invariant tori,..), each
computable in a finite time. They are a set of zero Lebesguesuneabut dense
on the non—-wandering set, and are to a generic orbit whatidrecare to normal
numbers on the unit interval. Orbits which are compact iiararsets we label by
whatever alphabet we find convenient in a given context:td = Xeq = Mo
for an equilibrium, 1-dimensional loop = M, for a prime periodic orbip, etc.
(note also discussion on page 190, and the distinction leetivejectory and orbit
made in sect. 2.1; a trajectory is a finite-time segment ofrhit)o

Definition: Group orbit. The set of pointgx generated by all actions of the
groupG on the state space poiris called thegroup orbitor G-orbit My. If G is

a symmetry, intrinsic properties of an equilibrium (suchstability eigenvalues)
or a cyclep (period, Floquet multipliers) evaluated anywhere alos@#orbit are
the same.

A symmetry thus reduces the number of inequivalent solstibfy,. So we
also need to describe the symmetry o$aution as opposed to (9.7), the sym-
metry of thesystem We start by defining the notions eféduced state spacef
isotropyof a state space point, andsiabilizerof an orbit.

Definition: Reduced state space. The action of grougs partitions the state
spaceM into a union of group orbits. This set of group orbits, dedotd/G, has
many namesreduced state spaceguotient spacer any of the names listed on
page 181.

Reduction of the dynamical state space is discussed in%&dcfor discrete
symmetries, and in sect. 10.4 for continuous symmetries.
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Definition: Isotropy subgroup. The maximal set of group actions which maps
a state space pointinto itself,

Gx={geG:gx=x, (9.8)

is called thesotropy groupor little group of x.

We also need a notion fet-wiseinvariance, as opposed to tipeint-wise
invariance undeGsy. exercise 9.2

Definition: Stabilizer. We shall sometimes refer to the subset of nontrivial
group actionsGp, < G on state space points within a compact 8ég, which
leave no point fixed but leave the set invariant, asstiadilizer G, of M,

Gp =1{ge€Gp:gxe My, gx# xforg # ¢}, (9.9)

and reserve the notion of ‘isotropy’ of a séf,, for the subgroups,, that leaves
each point in it fixed.

Saying thaGy, is the symmetry of the solutiop, or that the orbitM, is ‘G-
invariant, accomplishes as much without confusing youhwit these names (see
remark 9.1). In what follows we shall speak freely and sagghilike “the sym-
metry of the periodic orbip is C; = {e, R},” rather than bandy about ‘stabilizers’
and such.

The splitting of a grougs into an stabilizeiGp andm — 1 cosetxG,, relates
an orbit M, to m — 1 other distinct orbitxcM,,. All of them have equivalentexercise 9.4
stabilizers, or, more precisely, the points on the samemobit haveconjugate
stabilizers

Gep=cGpct. (9.10)
If Gp is the stabilizer of orbitMp, elements of the coset spagee G/Gy

generate then, — 1 distinct copies ofMp, so for discrete groups the multiplicity
of orbit pis mp = |G|/|Gpl.

Definition: Fixed-point subspace My of a subgroup or a ‘centralizeH c G,
G a symmetry of dynamics, is the set of all state space poifit$iidixed point-
wiseinvariant under subgroup action

My =Fix(H) = {xe M:hx=xforallheH}. (9.11)

Points in state space subspatfs which are fixed points of the full group action
are callednvariant points

Mg =Fix(G) = {xe M:gx=xforallgeG}. (9.12)

discrete - 8nov2009 ChaosBook.org version13, Dec 31 2009
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Definition: Flow invariant subspace. A typical point in My moves with time,
but, due to equivariance (9.6), its trajectotf) = f'(x) remains withinf(My) C
My for all times,

hft(x) = fi(hY) = fi(x), heH, (9.13)

i.e., belong to dlow invariant subspace This suggests a systematic approach
to seeking compact invariant solutions. The larger the sgimymsubgroup, the
smaller My, easing the numerical searches, so start with the largbgrasupsH
first.

We can often decompose the state space into smaller subspétie group
acting within each ‘chunk’ separately:

Definition: Invariant subspace. M, c M is aninvariant subspace if
{M, :gxe M, forallge Gandxe M,}. (9.19)

{0} and M are always invariant subspaces. So is any(Rikwhich is point-wise
invariant under action d&.

Definition: Irreducible subspace. A spaceM, whose only invariant subspaces
are{0} and M, is calledirreducible

9.1.2 Invariant bases

Physical laws should have the same form in symmetry-eqeivaoordinate frames,
so they are often formulated in terms of functions (Hamikois, Lagrangians,
--+) invariant under a given set of symmetries.

Example 9.6 Polynomials invariant under discrete operations on RS.  (continued
from example 9.1) o is a reflection through the [x,y] plane. Any {e o}-invariant
function can be expressed in the polynomial basis {uy, Uz, Uz} = {X, Y, 2}

CY2 s a[x,y]-plane rotation by n about the z-axis. Any {e, C/}-invariant func-
tion can be expressed in the polynomial basis {Uy, Up, U3, Us} = {X2, XY, Y2, 2}, with one
syzygy between the basis polynomials, (x?)(y?) — (xy)? = 0.

P is an inversion through the point (0,0, 0). Any {e, P}-invariant function can be
expressed in the polynomial basis {uy, - --,Us) = X2,y 22, Xy, Xz.yZ}, with three syzy-
gies between the basis polynomials, (x?)(y?) — (xy)? = 0, and its 2 permutations.

For the D, dihedral group G = {e, o, CY2, P} the G-invariant polynomial basis
is {Uy, Up, U3, Us} = {X2,y2, 22, xy}, with one syzygy, (x®)(y?) — (xy)? = 0. (continued in
example 10.13)

The key result of the representation theory of invariantcfions is:
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Hilbert-Weyl theorem. For a compact grou there exists a finit&-invariant
homogenous polynomial badis:, Uy, ..., un}, M > d, such that ang-invariant
polynomial can be written as a multinomial

h(x) = p(u1(x), Uz(x), . . ., um(X)) , xe M. (9.15)

These polynomials are linearly independent, but can betifumally dependent
through nonlinear relations callayzygies

In practice, explicit construction dB-invariant basis can be a laborious un-
dertaking, and we will not take this path except for a few daripw-dimensional
cases, such as the 5-dimensional example of sect. 10.5. & po apply the
symmetry to the system as given, rather than undertake @ssefrinonlinear co-
ordinate transformations that the theorem suggests. (Wbatpact’ in the above
refers to will become clearer after we have discussed cootis symmetries. For
now, it sufices to know that any finite discrete group is ‘compact’.) exercise 9.1

9.2 Symmetries of solutions

The solutions of an equivariant system can satisfy all ostfgtem’s symmetries,

a proper subgroup of them, or have no symmetry at all. For @rerrgodic
orbit f{(x) the trajectory and any of its images under actiomy&f G are distinct
with probability one,f!{(x) n gf'(x) = 0 for all t, t’. For example, a typical turbu-
lent trajectory of plane Couette flow has no symmetry beydrdidentity, so its
symmetry group is the trividle}. For compact invariant sets, such as fixed points
and periodic orbits the situation is veryfidirent. For example, the symmetry of
the laminar solution of the plane Couette flow is the full syetiry of its Navier-
Stokes equations. In between we find solutions whose syr@setre subgroups
of the full symmetry of the defining equations.

The key concept in the classification of dynamical orbitshis toncept of
their symmetry isotropyor stabilizer). We note three types of solutions: (i) fully
asymmetrica, (i) Gy set-wise invariant cycles built by repeats of relative cycle
segmentss,“and (iii) isotropy subgrousgQ-invariant equilibria or point-wise
Gp-fixed cyclesb.

Definition: Asymmetric orbits. An equilibrium or periodic orbit is not sym-
metric if {Xa} N {gX} = 0 for anyg € G, where{xy} is the set of periodic points
belonging to the cycla. Thusg € G generatdG| distinct orbits with the same
number of points and the same stability properties.

A string of unmotivated definitions (no less than an unmagdadefinition of
strings) has a way of making trite mysterious, so let's shvijears again: develop
a feeling for why they are needed by first working out the sasplt-dimensional
example with a single reflection symmetry.
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‘sawtooth’ map of example 9.3, with the state space M = [-1, 1] split into three regions
M = {My, Mc, Mg} which we label with a 3-letter alphabet L (eft), C(enter), and R(ight).
The symbolic dynamics is complete ternary dynamics, with any sequence of letters
A = {L,C, R} corresponding to an admissible trajectory (‘complete’ means no additional
grammar rules required, see example 11.6 below). The D;-equivariance of the map,
D1 = {e, o}, implies that if {xn} is a trajectory, S0 is {o%n}.

Asymmetric cycles.o- maps a cycle a into the reflected cycle o-a, with the same period
and the same stability properties, see figure 9.2 (c).

Definition: Gp-symmetric cycles. A cycle p is Gp-symmetric(set-wise sym-
metric self-dua) if the action of elements b, on the set of periodic pointaA,
reproduces the set. The set of group elements with this psofiem the stabi-
lizer G, of the cycles. g € G, acts as a shift in time, mapping the periodic point
X € My into fTe/Csl(x).

Example 9.8 D;-symmetric cycles: For D, the period of a set-wise symmetric cycle
is even (ns = 2ng), and the mirror image of the Xs periodic point is reached by traversing
the relative periodic orbit segment § of length ns, f™(xs) = oXs, see figure 9.2 (b).

Definition: Gp-fixed orbits:  An equilibrium x, or a compact solutiop is point-
wise or Gp-fixedif it lies in the invariant points subspace F{sz), g% = Xg
for all g € Gp. A solution that isG-invariant under all grougs operations has
multiplicity 1. Stability of such solutions will have to bexamined with care,
as they lie on the boundaries of domains related by the acficghe symmetry
group.

Example 9.9 Group Di-invariant cycles: In the example at hand there is only one
G-invariant (point-wise invariant) orbit, the fixed point C at the origin, see figure 9.2 (a).
We shall continue analysis of this system in example 9.13, and work out the symbolic
dynamics of such reflection symmetric systems in example 12.5.

As reflection symmetry is the only discrete symmetry that @ ofahe interval
can have, this example completes the group-theoretic sisaty 1-dimensional

maps. Consider next a 3-dimensional flow with a symmetry. exercise 9.7
exercise 9.8
exercise 9.9
discrete - 8nov2009 ChaosBook.org version13, Dec 31 2009
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f(x). f(x). f(x).
CR
fL/fc g
Figure 9.2: The D;-equivariant bimodal sawtooth =
map of figure 9.1 has three types of periodic or- C
bits: (a) D;-fixed fixed pointC, asymmetric fixed LR -
points pair(L,R}. (b) D;-symmetric (setwise in- LC
variant) 2-cycleLR. (c) Asymmetric 2-cycles pair
{LC,CR. (continued in figure 9.8) (Y. Lan) @) (b) (©
Example 9.7 Group D; - a reflection symmetric 1d map: Consider the bimodal
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Figure 9.5: The symmetries of three disks on an equi
lateral triangle. The fundamental domain is indicate
by the shaded wedge.

9.3 Relative periodic orbits

We show that a symmetry reduces computation of periodictotbi repeats of
shorter, ‘relative periodic orbit’ segments.

Invariance of a flow under a symmetry means that the groupraatiage of
a cycle is again a cycle, with the same period and stabilibe few orbit may be
topologically distinct (in which case it contributes to timeiltiplicity of the cycle)
or it may be the same cycle.

A cycle p is Gp-symmetricunder symmetry operatiog e Gy, if the operation
acts on it as a shift in time, advancing a cycle point to a cpcliat on the sym-
metry related segment. The cygbecan thus be subdivided into, repeats of a
relative periodic orbit segmenftprime’ in the sense that the full state space cycle
is built from its repeats. Thus in presence of a symmetry titeon of a periodic
orbit is replaced by the notion of the shortest segment ofithetate space cycle
which tiles the cycle under the action of the group. In whiibfes we refer to this
segment as eelative periodic orbitsegment (in the literature sometime referred
to as ashort periodic orbi}.

Relative periodic orbits (oequivariant periodic orbitsare orbitsx(t) in state
spaceM which exactly recur

X(t) = g Xt +T) (9.21)

for the shortest fixedelative period Tand a fixed group actiog € Gp. This
group action is referred to as a ‘phase,’ or a ‘shift.” For scdéte group by (9.4)
g™ = e for some finitem, so the corresponding full state space orbit is periodic
with periodmT.

The period of the full orbit is given by the, x (period of the relative periodic
orbit), ng = np/|Gpl, and theith Floquet multiplierA,; is given byz\r;‘iu of the
relative periodic orbit. The elements of the quotient sgaeeG/Gp, generate the
copiesbp, so the multiplicity of the full state space cyglds mp = |G|/|Gyl.
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Figure 9.6: The 3-disk pinball cycles: (92,13,
23, 123; the clockwisel32 not drawn. (b) Cy-
cle 1232; the symmetry relatet13 andl323 not
drawn. (c)12323;12123,12132,12313,13131
and 13232 not drawn. (d) The fundamental do-
main, i.e., the 6th wedge indicated in (a), con-
sisting of a section of a disk, two segments of sym-
metry axes acting as straight mirror walls, and the
escape gap to the left. The above 14 full-space cy-
cles restricted to the fundamental domain and re-
coded in binary reduce to the two fixed poifits

1, 2-cyclel0, and 5-cycl®0111 (not drawn). See
figure 9.9 for thed01 cycle. (d)

the example of sect. 1.3, symmetries of a 3-disk game of pinba
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@

Example 9.11 Relative periodic orbits of Lorenz flow: (continuation of exam-
ple 9.10) The relation between the full state space periodic orbits, and the fundamental
domain (9.20) reduced relative periodic orbits of the Lorenz flow: an asymmetric full
state space cycle pair p, Rpmaps into a single cycle p in the fundamental domain, and
any self-dual cycle p = Rp= PR is a repeat of a relative periodic orbit p.

Next illustration of these ideas brings in the noncommuéagjiroup structure:

Example 9.12 Cy, = Dg3 invariance - 3-disk game of pinball: As the three disks
in figure 9.5 are equidistantly spaced, our game of pinball has a sixfold symmetry. The
symmetry group of relabeling the 3 disks is the permutation group Ss; however, it is
more instructive to think of this group geometrically, as Cs, (dihedral group D3), the
group of order |G| = 6 consisting of the identity element e, three reflections across
axes {012, 023, 013}, and two rotations by 2r/3 and 4r/3 denoted {CY/3,C?3). Applying
an element (identity, rotation by +2r/3, or one of the three possible reflections) of this
symmetry group to a trajectory yields another trajectory. For instance, o3, the flip
across the symmetry axis going through disk 1 interchanges the symbols 2 and 3; it
maps the cycle 12123into 13132 figure 9.6 (c). Cycles 12, 23, and 13 in figure 9.6 (a)
are related to each other by rotation by +2r/3, or, equivalently, by a relabeling of the
disks.

The nontrivial subgroups of D3 are D1 = {e, o}, consisting of the identity and
any one of the reflections, of order 2, and Cz = {e, C¥3,C%3}, of order 3, so possible
cycle multiplicities are |G|/|Gp| = 1, 2, 3 or 6. Only the fixed point at the origin has full
symmetry G, = G. Such equilibria exist for smooth potentials, but not for the 3-disk
billiard.

The Cs subgroup Gy, = {e, CY/3,C?/3) invariance is exemplified by 2 cycles 123
and 132 which are invariant under rotations by 2r/3 and 4r/3, but are mapped into
each other by any reflection, figure 9.7 (a), and have multiplicity |G|/|Gp| = 2.

The C, type of a subgroup is exemplified by the invariances of p = 1213 This
cycle is invariant under reflection 053{1213 = 1312= 1213 so the invariant subgroup
is Gp = {€, a3}, with multiplicity is mp = |GI/|Gp| = 3; the cycles in this class, 1213 1232
and 1323 are related by 27t/3 rotations, figure 9.7 (b).
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121212313 121313132 121231313
Figure 9.7: Cycle 121212313 has multiplicity 6;
shown here i421313132= ¢,3121212313. How-
ever,121231313 which has the same stability an
period is related td21313132 by time reversal,
but not by any G, symmetry.

A cycle of no symmetry, such as 12123 has Gy, = {e} and contributes in all six
copies (the remaining cycles in the class are 12132 12313 12323 13132and 13232,
figure 9.7 (c).

Besides the above spatial symmetries, for Hamiltonian systems cycles may
be related by time reversal symmetry. An example are the cycles 121212313and
313212121= 121213132Wwhich have the same periods and stabilities, but are related
by no space symmetry, see figure 9.7. (continued in example 9.14)

9.4 Dynamics reduced to fundamental domain

concepts.
—John F. Gibson

.\ °
| submit my total lack of apprehension of fundamen

So far we have used symmetry tfiext a reduction in the number of independent
cycles, by separating them into equivalence classes. Testep achieves much
more: it replaces each class by a single (typically shopgeme cycle segment.

1. Discrete symmetry tessellates the state space intoopia fundamen-
tal domain, and thus induces a natural partition of stateespdhe state
space is completely tiled by fandamental domaiand its symmetry im-
ages: If the dynamics is invariant under a discrete symméiwy state
spaceM can be completely tiled by the fundamental domaihand its
imagesM, = aM, M, = bM, ... under the action of the symmetry group
G={eab,...},

M=MUMaUMp---U Mg = MUaMUbM--- . (9.22)

2. Discrete symmetries can be used to restrict all computsitio dundamen-
tal domainM = M/G, i.e., the reduced state space quotient of the full state
spaceM by the group actions db.

Now we can use the invariance condition (9.6) to move theistapoint
x into the fundamental domair = aX%, and then use the relaticarb =
h™! to also relate the endpoint € M to its image in the fundamental
domain M. While the global trajectory runs over the full spadd, the
restricted trajectory is brought back into the fundamenitahain M any

discrete - 8nov2009 ChaosBook.org version13, Dec 31 2009
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Figure 9.8: The bimodal Ulam sawtooth map of f(x)
figure 9.2 with theD; symmetry f(-x) = —f(x)

restricted to the fundamental domairfi(x) is in-
dicated by the thin line, and fundamental domain
map f(X) by the thick line. (a) Boundary fixed
pointC is the fixed poinD. The asymmetric fixed
point pair {L,R} is reduced to the fixed poir, C

and the full state space symmetric 2-cytlR is e )
reduced to the fixed poirit. (b) The asymmetric LR §
2-cycle pairLC,CR) is reduced to 2-cycl81. (c) AN
All fundamental domain fixed points and 2-cycles.

(Y. Lan) b Y (a) (b)

i
7,

time it exits into an adjoining tile; the two trajectoriesearlated by the
symmetry operatioih which maps the global endpoint into its fundamental
domain image.

3. Cycle multiplicities induced by the symmetry are remobgdesymmetriza-
tion, reduction of the full dynamics to the dynamics ofuadamental do-
main Each symmetry-related set of global cyclesorresponds to pre-
cisely one fundamental domain (or relative) cypleConversely, each fun-
damental domain cycle fraces out a segment of the global cyplewith
the end point of the cycle mapped into the irreducible segmentpvith
the group elemertt;. The relative periodic orbits in the full space, folded
back into the fundamental domain, are periodic orbits.

4. The group elements = {e, 0y, ..., g} Which map the fundamental do-
main M into its copiesgM, serve also as letters of a symbolic dynamics
alphabet.

For a symmetry reduction in presence of continuous symemtsiee sect. 10.4.

exercise 9.6
Example 9.13 Group D; and reduction to the fundamental domain. Consider
again the reflection-symmetric bimodal Ulam sawtooth map f(-x) = —f(x) of exam-

ple 9.7, with symmetry group D1 = {€,0’}. The state space M = [~1,1] can be tiled by
half-line M = [0, 1], and oM = [-1,0], its image under a reflection across x = 0 point.
The dynamics can then be restricted to the fundamental domain % € M= [0,1]; every
time a trajectory leaves this interval, it is mapped back using o.

In figure 9.8 the fundamental domain map f(X) is obtained by reflecting x < O
segments of the global map f(x) into the upper right quadrant. f is also bimodal and
piecewise-linear, with M = [0, 1] split into three regions M = { Mo, My, Mz} which we
label with a 3-letter alphabet A =1{0,1,2}. The symbolic dynamics is again complete
ternary dynamics, with any sequence of letters {0, 1, 2} admissible.

However, the interpretation of the ‘desymmetrized’ dynamics is quite different
- the multiplicity of every periodic orbit is now 1, and relative periodic segments of the
full state space dynamics are all periodic orbits in the fundamental domain. Consider
figure 9.8:

In (a) the boundary fixed point C is also the fixed point 0. In this case the set
of points invariant under group action of D1, M N oM, is just this fixed point x = 0, the
reflection symmetry point.
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Résum é

If a dynamical systemA(, f) has a symmetnG, the symmetry should be de-
ployed to ‘quotient’ the state spaceAd/G, i.e., identify all symmetry-equivalent
X € Mon a group orbit. The main result of this chapter can be stasedllows:

In presence of a discrete symmefy associated with each full state space
cycle p is the group of its symmetrieS§, ¢ G of order 1< |G| < |G|, whose
elements leave the sl invariant. The elements & act onp as time shifts,
tiling it with |G| copies of its shortest invariant segment, the relativeopiziorbit
p. The elements of the coskte G/Gp, generatem, = |G|/|Gp| equivalent copies
of p.

Once you grasp the relation between the full state specand the desym-
metrized,G-quotiented reduced state spak&G, you will find the life as a fun-
damentalist so much simpler that you will never return toryfull state space
confused ways of yesteryear. The reduction to the fundaahetamain M =
M/G simplifies symbolic dynamics and eliminates symmetry-getlidegenera-
cies. For the short orbits the labor saving is dramatic. kangple, for the 3-disk

Figure 9.9: (a) The pair of full-space 9-cycles, the
counter-clockwisel21232313 and the clockwise
131323212 correspond to (b) one fundamental do-
main 3-cycle001.

The asymmetric fixed point pair {L,R} is reduced to the fixed point 2, and the
full state space symmetric 2-cycle LR is reduced to the fixed point 1. The asymmetric
2-cycle pair {LC,CR) is reduced to the 2-cycle 0L Finally, the symmetric 4-cycle LCRC
is reduced to the 2-cycle 02. This completes the conversion from the full state space
for all fundamental domain fixed points and 2-cycles, figure 9.8 (c).

Example 9.14 3-disk game of pinball in the fundamental domain

If the dynamics is equivariant under interchanges of disks, the absolute disk
labels ¢ = 1,2,---,N can be replaced by the symmetry-invariant relative disk— disk
increments g;, where g; is the discrete group element that maps disk i—1 into diski. For
3-disk system g is either reflection o~ back to initial disk (symbol ‘0’) or 2r/3 rotation
by C to the next disk (symbol ‘1’). An immediate gain arising from symmetry invariant
relabeling is that N-disk symbolic dynamics becomes (N—1)-nary, with no restrictions
on the admissible sequences.

An irreducible segment corresponds to a periodic orbit in the fundamental do-
main, a one-sixth slice of the full 3-disk system, with the symmetry axes acting as
reflecting mirrors (see figure 9.6(d)). A set of orbits related in the full space by dis-
crete symmetries maps onto a single fundamental domain orbit. The reduction to
the fundamental domain desymmetrizes the dynamics and removes all global discrete
symmetry-induced degeneracies: rotationally symmetric global orbits (such as the 3-
cycles 123and HZ) have multiplicity 2, reflection symmetric ones (such as the 2-cycles
12, 13 and 23) have multiplicity 3, and global orbits with no symmetry are 6-fold degen-
erate. Table 12.2 lists some of the shortest binary symbols strings, together with the
corresponding full 3-disk symbol sequences and orbit symmetries. Some examples of
such orbits are shown in figures 9.7 and 9.9.  (continued in example 12.7)

discrete - 8nov2009 ChaosBook.org version13, Dec 31 2009

game of pinball there are 256 periodic points of length 8, fedluction to the
fundamental domain non-degenerate prime cycles redugesaumber to 30. In
the next chapter continuous symmetries will induce retaperiodic orbits that
never close a periodic orbit, and in the chapter 25 they vldlthe infinite peri-
odic state space, and reduce calculation fifidion constant in an infinite domain
to a calculation on a compact torus.
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Commentary

Remark 9.1 Literature. We found Tinkham [9.1] the most enjoyable as a no-nonsense,

the user friendliest introduction to the basic conceptst &summary of the theory of
discrete groups see, for example, ref. [9.2]. Chapter 3 dfeiRea Hoyle [9.3] is a very
student-friendly overview of the group theory a nonlinegnamicist might need, with
exception of the quotienting, reduction of dynamics to adfamental domain, which is
not discussed at all. We found sites such as en.wikipedjaviki/Quotientgroup help-

ful. Curiously, we have not read any of the group theory bables Hoyle recommends
as background reading, which just confirms that there are twaymany group theory
books out there. For example, one that you will not find usefull is ref. [9.4]. The

reason is presumably that in the 20th century physics (wiictivated much of the work

on the modern group theory) the focus is on the linear reptasiens used in quantumappendix A.2.3

mechanics, crystallography and quantum field theory. Wé sbad these techniques in
Chapter 21, where we reduce the linear action of evoluticerators to irreducible sub-

spaces. However, here we are looking at nonlinear dynamisthe emphasis is on the
symmetries of orbits, their reduced state space sistedsthamnisotypic decomposition of

their linear stability matrices.

In ChaosBook we focus on chaotic dynamics, and skirt theryhefbifurcations, the
landscape between the boredom of regular motions and this thfrchaos. Chapter 4
of Rebecca Hoyle [9.3] is a student-friendly introductiorttie treatment of bifurcations
in presence of symmetries, worked out in full detail and gelity in monographs by
Golubitsky, Stewart and Schidier [9.5], Golubitsky and Stewart [9.6] and Chossat and
Lauterbach [9.7]. Term ‘stabilizer’ is used, for examplg Broeret al.[9.8] to refer to a
periodic orbit withZ, symmetry; they say that the relative or pre-periodic segrieeim
this case called a ‘short periodic orbit.” In EfstathioudPa subgroup of ‘short periodic
orbit’ symmetries is referred to as a ‘nontrivial isotropsogp or stabilizer.” (continued
in remark 10.1)

Remark 9.2 Symmetries of the Lorenz equation:  (continued from remark 2.3) Af-
ter having studied example 9.10 you will appreciate WhyosBook. org starts out with
the symmetry-less Rossler flow (2.17), instead of the b&tiewn Lorenz flow (2.12).
Indeed, getting rid of symmetry was one of Rossler's maiives. He threw the baby out
with the water; for Lorenz flow dimensionalities of stahiestable manifolds make pos-
sible a robust heteroclinic connection absent from Roskle, with unstable manifold
of an equilibrium flowing into the stable manifold of anotleguilibrium. How such con-
nections are forced upon us is best grasped by perusing #pertl3 ‘Heteroclinic tan-
gles’ of the inimitable Abraham and Shaw illustrated cla$8i10]. Their beautiful hand-
drawn sketches elucidate the origin of heteroclinic cotines in the Lorenz flow (and
its high-dimensional Navier-Stokes relatives) bettenthay computer simulation. Mi-
randa and Stone [9.11] were first to quotient thesgmmetry and explicitly construct the
desymmetrized, ‘proto-Lorenz system,” by a nonlinear dawate transformation into the
Hilbert-Weyl polynomial basis invariant under the actidrtlve symmetry group [9.12].
For in-depth discussion of symmetry-reduced (‘imagest) agmmetry-extended (‘cov-
ers’) topology, symbolic dynamics, periodic orbits, ineat polynomial bases etc., of
Lorenz, Rossler and many other low-dimensional systerasetis no better reference
than the Gilmore and Letellier monograph [9.13]. They iptet [9.14] the proto-Lorenz
and its ‘double cover’ Lorenz as ‘intensities’ being the ags of ‘amplitudes,’ and call
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quotiented flows such as (Lorefi2) ‘images.’ Our ‘doubled-polar angle’ visualization
figure 11.8 is a proto-Lorenz in disguise; we, however, irdggthe flow and construct
Poincaré sections and return maps in the original Loreng ] coordinates, without any
nonlinear coordinate transformations. The Poincaré&netap figure 11.9 is reminiscent
in shape both of the one given by Lorenz in his original paped the one plotted in a
radial coordinate by Gilmore and Letellier. Nevertheless profoundly diferent: our
return maps are from unstable manifelditself, and thus intrinsic and coordinate inde-
pendent. In this we follow ref. [9.15]. This constructiomiscessary for high-dimensional
flows in order to avoid problems such as double-valuednesstwfn map projections on
arbitrary 1-dimensional coordinates encountered alréadiie Rossler example of fig-
ure 3.6. More importantly, as we know the embedding of theabie manifold into the
full state space, a periodic point of our return nispregardless of the length of the cycle
- the periodic point in the full state space, so no additidwelvton searches are needed.
In homage to Lorenz, we note that his return map was alreaayrsstry-reduced: as
belongs to the symmetry invariant Hi®) subspace, one can replace dynamics in the full
space by, Z - --. That isG-invariant by construction [9.13].

Remark 9.3 Examples of systems with discrete symmetries. Almost any flow of
interest is symmetric in some way or other: the list of exaesp$ endless, we list here
a handful that we found interesting. One hasxas@mmetry in the Lorenz system (re-
mark 2.3), the Ising model, and in the 3-dimensional anigotr Kepler potential [9.16,
9.17,9.18], @4 = C4 Symmetry in quartic oscillators [9.19, 9.20], in the pufg? poten-
tial [9.21, 9.22] and in hydrogen in a magnetic field [9.28ld@D;, = Cy, = V4 = C;xCyp
symmetry in the stadium billiard [9.24]. A very nice nontaldesymmetrization is car-
ried out in ref. [9.25]. An example of a system withy = C3, symmetry is provided by
the motion of a particle in the Henon-Heiles potential §9.2.27, 9.28, 9.29]

V(r,6) = %rz + %r3sin(34) .

Our 3-disk coding is insflicient for this system because of the existence of ellipiniss
and because the three orbits that run along the symmetrycarisot be labeled in our
code. As these orbits run along the boundary of the fundaahdomain, they require
the special treatment. A partial classification of the 67sfile symmetries of solutions
of the plane Couette flow of example 9.5, and their reductioarjugate classes is given
in ref. [9.30].
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EXERCISES

Exercises

9.1. Polynomials invariant under discrete operations on

RS, Prove that thele, o}, {e.C¥?}, {e,P} and
{e, o, CY/2, P}-invariant polynomial basis and syzygies
are those listed in example 9.6.

Prove that the séby, as defined in (9.8) is a
subgroup ofG. 9

Assume thag:, g2, g3 €
G and bothg; andg, are conjugate tgs. Prove thag;
is conjugate taj.

9.4. Isotropy subgroup of gx. Prove that foig € G, x and

gxhave conjugate isotropy subgroups:

Ggx = g Gx g’

9.5. D3: symmetries of an equilateral triangle. Consider

group Dy = Cgy, the symmetry group of an equilateral
triangle:

9.8.

2 3

(a) Listthe group elements and the corresponding ge-
ometric operations

(b) Find the subgroups of the group.D

(c) Find the classes offand the number of elements
in them, guided by the geometric interpretation of
group elements. Verify your answer using the def-
inition of a class.

(d) List the conjugacy classes of subgroups ef D

9.6. Reduction of 3-disk symbolic dynamics to binary.

(continued from exercise 1.1)

(@) Verify that the 3-disk cycles

(12,13,23},{123,132, {1213+ 2 perms},
{121232313+ 5 perms}, {121323 2 perms},

correspond to the fundamental domain cy€les,

01,001,011, - - respectively.

Check the reduction for short cycles in table 12.2
by drawing them both in the full 3-disk system and
in the fundamental domain, as in figure 9.9.

(b

=

7. Cy-equivariance of Lorenz system.

163

(c) Optional: Can you see how the group elements
listed in table 12.2 relate irreducible segments to
the fundamental domain periodic orbits?

(continued in exercise 12.6)

Verify that the
vector field in Lorenz equations (2.12)

X o(y-%)
X = V(X) :[ y|= px—y—xz} (9.23)
z xy— bz

is equivariant under the action of cyclic group G
{e,C%2) acting onR? by ax rotation about the axis,

CY(xy,2) = (-x.-¥,2),
as claimed in example 9.4. (continued in exercise 9.8)

Lorenz system in polar coordinates: group the-
ory. Use (6.7), (6.8) to rewrite the Lorenz equa-
tion (9.23) in polar coordinates,@, z), where & y) =

(r cosd, r siné).

1. Show that in the polar coordinates Lorentz flow

takes form
Po= %(—o’—l+(a’+p—z)sin29
+(1- o) cos )
0 = %(—a+p—z+((r—1)sin29
+(o+p -2 cosd)
z = —bz+;sin29. (9.24)

2. Argue that the transformation to polar coordinates
is invertible almost everywhere. Where does the
inverse not exist? What is group-theoretically spe-

cial about the subspace on which the inverse not

exist?

3. Showthatthis is the (Loren&}, quotient map for
the Lorenz flow, i.e., that it identifies points related
by ther rotation in the k, y] plane.

4. Rewrite (9.23) in the invariant polynomial basis of
example 9.6 and exercise 9.24.

5. Show that a periodic orbit of the Lorenz flow in
polar representation (9.24) is either a periodic or-
bit or a relative periodic orbit (9.21) of the Lorenz
flow in the (x,y, 2) representation.
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. Proto-Lorenz system.

By going to polar coordinates we have quotiented out the
n-rotation .y, 2) — (=X, -, 2) symmetry of the Lorenz
equations, and constructed an explicit representation of
the desymmetrized Lorenz flow.

Here we quotient out the C
symmetry by constructing an explicit “intensity” repre-
sentation of the desymmetrized Lorenz flow, following
Miranda and Stone [9.11].

1. Rewrite the Lorenz equation (2.12) in terms of
variables

U, v,2) = (6 -y, 2xy,2), (9.25)

show that it takes form

v/2-bz

N = Vuz+\2.

2. Show thatthis is the (Loren&}, quotient map for
the Lorenz flow, i.e., that it identifies points related
by ther rotation (9.16).

3. Show that (9.25) is invertible. Where does the in-
verse not exist?

4. Compute the equilibria of proto-Lorenz and their
stabilities. Compare with the equilibria of the
Lorenz flow.

5. Plot the strange attractor both in the original form
(2.12) and in the proto-Lorenz form (9.26)
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for the Lorenz parameter values= 10,b = 8/3
p = 28. Topologically, does it resemble more
Lorenz, or the Rossler attractor, or neither? |
by J. Halcrow)

—(c+u+ (o —r)v+ (1-0)N+vz 7.]Show that a periodic orbit of the proto-Loren
(r=o)u—(o+1)v+(r+o)N-uz—uN |either a periodic orbit or a relative periodic o

of the Lorenz flow.

(9€6Bhow that if a periodic orbit of the proto-Lor
is also periodic orbit of the Lorenz flow, their F
quet multipliers are the same. How do the Flo
multipliers of relative periodic orbits of the Lore
flow relate to the Floquet multipliers of the prc
Lorenz?

9 What does the volume contraction formula (4
look like now? Interpret.

10. Show thatthe coordinate change (9.25) is the
as rewriting (9.24) in variables
(u,v) = (r>cos @, r?sin %),
i.e., squaring a complex number= X + iy, 2 =
u+iv.

11. How is (9.26) related to the invariant polynor
basis of example 9.6 and exercise 9.24?
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