Chapter 25

Deterministic diffusion

This is a bizzare and discordant situation.
—M.V. Berry

(R. Artuso and P. Cvitanovit)

Boltzmann’s mechanical formulation of statistical medbanSinai, Ruelle

and Bowen (SRB) have generalized Boltzmann’s notion ofdigity for a
constant energy surface for a Hamiltonian system in eqiilib to dissipative sys-
tems in nonequilibrium stationary states. In this more galngetting the attractor
plays the role of a constant energy surface, and the SRB meeafgect. 16.1 is
a generalization of the Liouville measure. Such measuregarely microscopic
and indiferent to whether the system is at equilibrium, close to éayiuim or far
from it. “Far for equilibrium” in this context refers to symhs with large devia-
tions from Maxwell’'s equilibrium velocity distribution. #thermore, the theory
of dynamical systems has yielded new sets of microscopiamjecs formulas for
macroscopic observables such afudiion constants and the pressure, to which
we turn now.

THE ADVANCEs in the theory of dynamical systems have brought a new life to

We shall apply cycle expansions to the analysigrahsport properties of
chaotic systems.

The resulting formulas are exact; no probabilistic assimngtare made, and
the all correlations are taken into account by the inclusibeycles of all periods.
The infinite extent systems for which the periodic orbit thyegields formulas for
diffusion and other transport déieients are spatially periodic, the global state
space being tiled with copies of a elementary cell. The ratitw are physical
problems such as beam defocusing in particle accelerataisamtic behavior of
passive tracers in-2dimensionatotating flows, problems which can be described
as deterministic dfusion in periodic arrays.

In sect. 25.1 we derive the formulas foffdision codicients in a simple phys-
ical setting, the 2- dimensionalperiodic Lorentz gas. This system, however, is
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8/
Figure 25.1: Deterministic dffusion in a finite horizon ]\Q ( ) i
periodic Lorentz gas. (T. Schreiber) =77 : N7

not the best one to illustrate the theory, due to its comfgitaymbolic dynamics.
Therefore we apply the theory first tofflision induced by a-tdimensionamaps
in sect. 25.2.

25.1 Diffusion in periodic arrays

The 2— dimensional Lorentz gas an infinite scatterer array in whichftlision

of a light molecule in a gas of heavy scatterers is modelechbyntotion of a
point particle in a plane bouncingfcan array of reflecting disks. The Lorentz
gas is called “gas” as one can equivalently think of it as timg of any num-
ber of pointlike fast “light molecules” interacting only thithe stationary “heavy
molecules” and not among themselves. As the scatterer &rhyilt up from
only defocusing concave surfaces, it is a pure hyperbokitesy, and one of the
simplest nontrivial dynamical systems that exhibits deteistic diffusion, fig-
ure 25.1. We shall now show that theriodicLorentz gas is amenable to a purely
deterministic treatment. In this class of open dynamicsieys quantities charac-
terizing global dynamics, such as the Lyapunov exponeesgure and éiusion
constant, can be computed from the dynamics restrictedete@lgmentary cell.
The method applies to any hyperbolic dynamical system thatperiodic tiling
M = Unet Ma of the dynamical state spa(z’é( by translatesM; of anelemen-
tary cell M, with T the Abelian group of lattice translations. If the scattgramray
has further discrete symmetries, such as reflection syryneetch elementary cell
may be built from gundamental domaiM by the action of a discrete (not nec-
essarily Abelian) grougs. The symbolM refers here to the full state space, i.e.,,
both the spatial coordinates and the momenta. The spatigaoent ofM is the
complement of the disks in theholespace.

We shall now relate the dynamics W to diffusive properties of the Lorentz
gas inM.
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P
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Figure 25.2: Tiling of M, a periodic lattice of reflect- .

ing disks, by the fundamental domaM. Indicated is ‘
an example of a global trajector(t) together with the
corresponding elementary cell trajectaxt) and the

fundamental domain trajectom(t). (Courtesy of J.-P.
Eclman) 'Y Y Y

These concepts are best illustrated by a specific exampleremtz gas based
on the hexagonal lattice Sinai billiard of figure 25.2. Wetidiguish two types
of diffusive behavior; thénfinite horizoncase, which allows for infinite length
flights, and thefinite horizoncase, where any free particle trajectory must hit a
disk in finite time. In this chapter we shall restrict our ciolesation to the finite
horizon case, with disks fliciently large so that no infinite length free flight is
possible. In this case theftlision is normal, withx(t)? growing liket. We shall
discuss the anomalousfiision case in sect. 25.3.

As we will work with three kinds of state spaces, good manmnegsiire that
we repeat what tildes, nothings and hats atop symbols gignif

~  fundamental domain, triangle in figure 25.2
elementary cell, hexagon in figure 25.2
full state space, lattice in figure 25.2 (25.1)

It is convenient to define an evolution operator for each ef 3hcases of fig-
ure 25.2. X(t) = (%) denotes the point in the global spa& reached by the
flow in timet. x(t) = f!(xg) denotes the corresponding flow in the elementary
cell; the two are related by

fi(xo) = fi(x0) - Fi(x0) € T, (25.2)

the translation of the endpoint of the global path into thesredntary cellM. The
quantity X(t) = f!(%) denotes the flow in the fundamental domatity f'(%) is
related tof'(X) by a discrete symmetry € G which mapsx{t) € Mto x(t) € M. chapter 21

Fix a vectorg € RY, whered is the dimension of the state space. We will
compute the dfusive properties of the Lorentz gas from the leading eiglerevaf
the evolution operator (17.11)

@) = Jim 1 log@ ), (253)
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where the average is over all initial points in the elemegntail, x € M.

If all odd derivatives vanish by symmetry, there is no drifidathe second
derivatives

0 0

S(B)‘ = Jim RO - (0 - 9w,
=0

yield a difusion matrix. This symmetric matrix can, in general, be atnigpic
(i.e., haved distinct eigenvalues and eigenvectors). The spatiision constant
is then given by the Einstein relation (17.13)

iy T 5
D= EZ @S(ﬁ)‘ﬂzo = Jim S5¢(@® - A7

where thd sum is restricted to the spatial componenjtsf the state space vectors
x = (g, p), i.e., if the dynamics is Hamiltonian, the sum is over thine degrees
of freedom.

We now turn to the connection between (25.3) and periodiisib the ele-
mentary cell. As the fullM — M reduction is complicated by the non-Abeliaremark 25.5
nature ofG, we discuss only the Abeliam — M reduction.

25.1.1 Reduction fromM to M

The key idea follows from inspection of the relation

(#60-R) dxdy 0959 - (%) .

M = |M| xeM

JeM

IM| = fM dxis the volume of the elementary céil. Due to translational symme-
try, it suffices to start with a density of trajectories defined over asiafgmentary
cell M. As in sect. 17.2, we have used the identity: JfMdyé(y— X(t)) to moti-
vate the introduction of the evolution operat6i(, x). There is a unique lattice
translationn"such thaty"= y — A, with the endpoiny € M translated back to the
elementary cell, and'(x) given by (25.2). The dierence is a translation by a
constant lattice vectar, and the Jacobian for changing integration frdjrto dy
equals unity. Therefore, and this is the main point, trailainvariance can be
used to reduce this average to the elementary cell:

(O = Wll dedyé‘f‘(x)-X)a(y— f1(x) . (25.4)
X,YE

As this is a translation, the Jacobiand§/dy] = 1. In this way the globaF!(x)
flow, infinite volume state space averages can be computedllbying the flow
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f'(xo) restricted to the compact, finite volume elementary adll The equation
(25.4) suggests that we study the evolution operator

Ly, x) = 0Ny - f(x), (25.5)

wherex(t) = fi(x) € Mis the displacement in the full space, butf'(x), y € M.
It is straightforward to check that this operator satisfies $emigroup property
(17.25),

f dthz (y’ Z)Ltl (Z, X) - Ltzﬁl (y’ X) .
M

Forp = 0, the operator (25.5) is the Perron-Frobenius operatad @6with the
leading eigenvalue® = 1 because there is no escape from this system (see the
flow conservation sum rule (22.11)).

The rest is old hat. The spectrum 6fis evaluated by taking the trace section 18.2
trot = f dx @Ms(x - (1)) .
M

Hereri(X) is the discrete lattice translation defined in (25.2). Twalk of orbits
periodic in the elementary cell contribute. A periodic oérisi calledstanding

if it is also periodic orbit of the infinite state space dynasyif T°(x) = x, and it

is calledrunning if it corresponds to a lattice translation in the dynamicstioz
infinite state spacefTr(X) = X+ fp. We recognize the shortest repeating segment
of a running orbit as our old ‘relative periodic orbit’ fridrfrom chapter 9. In the
theory of area—preserving maps such as the standard maoipéx 7.6 these
orbits are callecccelerator modess the ditusion takes place along the momen-
tum rather than the position coordinate. The traveled digta, = fir (xo) is
independent of the starting poirg, as can be easily seen by continuing the path
periodically in M.

The final result is the spectral determinant (19.6)

i 1 e(/i~ﬁp—sTp)r
det(S(B) — A) = exp|-) ———|, (25.6)
L] [ rz-;’|det(1—Ma)]

or the corresponding dynamical zeta function (19.15)
-Ap—STp)
il ) 25.7)

o -2

p
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The dynamical zeta function cycle averaging formula (2Pt the difusion
constant (17.13), zero mean drjf) = 0, is given by

(25.8)

1 (*2>g 11 Z (1) (P, + -+ + )2

T2, " 2d (M), Apy - Apd

where the sum is over all distinct non-repeating combimatibprime cycles. The
derivation is standard, still the formula is strangeff8ion is unbounded motion
across an infinite lattice; nevertheless, the reductioheéetementary cell enables
us to compute relevant quantities in the usual way, in terhpeodic orbits.

A sleepy reader might protest the(T,) — x(0) is manifestly equal to zero for
a periodic orbit. That is correctyyin the above formula refers to a displacement
X(Tp) on theinfinite periodic lattice, whilep refers to closed orbit of the dynamics
f{(x) reduced to the elementary cell, witg a periodic point in the closed prime
cyclep.

Even so, this is not an obvious formula. Globally periodibitsr havex% =0,
and contribute only to the time normalizatidi),. The mean square displace-
ment()‘@)( gets contributions only from the periodic runaway trajeiets; they
are closed in the elementary cell, but on the periodic kattiach one grows like
K(t)? = (Ap/Tp)?t? = VAt2. So the orbits that contribute to the trace formulas
and spectral determinants exhibit either ballistic tramspr no transport at all:
diffusion arises as a balance between the two kinds of motiomghtezl by the
1/IApl measure. If the system is not hyperbolic such weights maybheranally
large, with Y|Ap| ~ 1/Tp* rather than LAy = e Te!, whereA is the Lyapunov
exponent, and they may lead to anomaloudRudion - accelerated or slowed down
depending on whether the probabilities of the running ordtamding orbits are
enhanced. section 25.3

We illustrate the main idea, tracking of a globallyffdsing orbit by the as-
sociated confined orbit restricted to the elementary celih & class of simple
1 - dimensionadynamical systems where all transport fiméents can be evalu-
ated analytically.

25.2 Diffusion induced by chains ofL — dimensionamaps

In a typical deterministic diusive process, trajectories originating from a given
scatterer reach a finite set of neighboring scatterers inbouece, and then the
process is repeated. As was shown in chapter 11, the edgeantiaf this pro-
cess is the stretching along the unstable directions of tve find in the crud-
est approximation the dynamics can be modeled bydimensionalexpanding
maps. This observation motivates introduction of a claspasficularly simple

1 - dimensionakystems.
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The piecewise linearity and the simple symbolic dynamics lead to the full cancelation
of all curvature corrections in (20.7). The exact dynamical zeta function (15.15) is given
by the fixed point contributions:

1/4B.2) = 1-to, —to —---—t@1), —tau

a-1
1- g[u Zcoshﬁj)). (25.17)
j=1

The leading (and only) eigenvalue of the evolution operator (25.5) is

a-1
s(B) = |og{§1 [1 > coshgj)]} . A=2a ainteger. (25.18)
=1

The flow conservation (22.11) sum rule is manifestly satisfied, so s(0) = 0. The first
derivative S(0) vanishes as well by the left/right symmetry of the dynamics, implying
vanishing mean drift (X) = 0. The second derivative S(8)” yields the diffusion constant

(25.14):
2 2 2 1\
(" =2ax =1, (%) = PP S P Gk (25.19)
A TN A TA A
Using the identity Yp_, k? = n(n+ 1)(2n + 1)/6 we obtain
D = 2—14(/\ -1)(A-2), A even integer. (25.20)
Similar calculation for odd integer A = 2k — 1 yields exercise 25.1
D= 2—14(1\2— 1), A odd integer. (25.21)
25.2.1 Higher order transport codficients
The same approach yields higher order transporffiments
B 1d s(B) B,=D (25.22)
k= 7ok ) 2=D, .
k! dk =0

known fork > 2 as the Burnett cd&cients. The behavior of the higher or-
der codficients yields information on the relaxation to the asymiptdistribution
function generated by thefilisive process. Herg s the relevant dynamical
variable andBy’s are related to momen<§<{<> of arbitrary order.

Were the difusive process purely Gaussian

gsle dg fRe/EDY 7Dt (25.23)

) l 00
" anDt Lo
the only B codficient diferent from zero would b&, = D. Hence, nonvan-

ishing higher order cd#cients signal deviations of deterministididision from a
Gaussian stochastic process.
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Figure 25.4: (a) A partition of the unit interval
into six intervals, labeled by the jumping number
Ax) | = {0,,1,,2,,2,1.,0_}. The partition is
Markov, as the critical point is mapped onto the
right border of My, . (b) The transition graph for
this partition. (c) The transition graph in the com-
pact notation of (25.26) (introduced by Vadim Mo-
roz). (@) (b)

Example 25.3 8,4 Burnett coefficient. For the map under consideration the first
Burnett coefficient coefficient B, is easily evaluated. For example, using (25.18) in the
case of even integer slope A = 2a we obtain exercise 25.2

By = _4!~—l60(a_ 1)(2a-1)(4a% - 9a+7). (25.24)

We see that deterministicfilision is nota Gaussian stochastic process. Higher
order even coiicients may be calculated along the same lines.

25.2.2 Finite Markov partitions

For piecewise-linear maps exact results may be obtainedeviee the critical
points are mapped in finite numbers of iterations onto pantiboundary points,
or onto unstable periodic orbits. We will work out here anrape for which
this occurs in two iterations, leaving other cases as esesci The key idea
is to construct aMarkov partition (11.2), with intervals mappednto unions of
intervals.

Example 25.4 A finite Markov partition. As an example we determine a value
of the parameter 4 < A < 6 for which f (f(1/2)) = 0. As in the integer A case,
we partition the unit interval into six intervals, labeled by the jumping number A(x) €
{Mo,, M1,, Mo, , Mo , M1, Mo }, ordered by their placement along the unit interval,
figure 25.4 (a).

In general the critical value a = fA(l/ 2) will not correspond to an interval border,
but now we choose a such that the critical point is mapped onto the right border of
M. Equating f(1/2) with the right border of My, x = 1/A, we obtain a quadratic
equation with the expanding solution A = 2(2+1). For this parameter value f(My,) =
Mo, UMy, F(Mz) = Mo U My, while the remaining intervals map onto the whole
unit interval M. The transition matrix (14.1) is given by

[y

do.
b1,
¢2.
6 | (25.25)
$1
$o

S

1}

_'

A

11
s
P RPRR R
OO0 ORR
rRrOOOO
PR RRRR

|l el
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One could diagonalize (25.25) on a computer, but, as we saw in chapter 14, the tran-
sition graph of figure 25.4 (b) corresponding to map figure 25.4 (a) offers more insight
into the dynamics. Figure 25.4 (b) can be redrawn more compactly as transition graph
figure 25.4 (c) by replacing parallel lines in a graph by their sum

123
@ — e >> o =1+ +13.

The dynamics is unrestricted in the alphabet

(25.26)

A={0,,1,,2,0,,2,1,,2.1,20.,1,0}.

Applying the loop expansion (15.15) of sect. 15.3, we are led to the dynamical zeta
function

1/{B,2 = 1-to, —ty, —too —t21, —t21 —tao —ti —to

= 1- 2Xz(l + coshp)) — i—zzz (cosh() + cosh(®)) . (25.27)

For grammar as simple as this one, the dynamical zeta function is the sum over fixed
points of the unrestricted alphabet. As the first check of this expression for the dynam-
ical zeta function we verify that

4 2
1/¢(0,1) =1—K—E

=0,

as required by the flow conservation (22.11). Conversely, we could have started by
picking the desired Markov patrtition, writing down the corresponding dynamical zeta
function, and then fixing A by the 1/£(0, 1) = O condition. For more complicated transi-
tion graphs this approach, together with the factorization (25.35), is helpful in reducing
the order of the polynomial condition that fixes A.

The diffusion constant follows from (25.14) exercise 25.3

12 - 12 22 3
M = ag+ag. (F) =25 +25+25
15+2vV2
m—aé (25:28)

Itis by now clear how to build an infinite hierarchy of finite Kkav partitions:
tune the slope in such a way that the critical vafi&/2) is mapped into the fixed
point at the origin in a finite number of iteratiopsf”(1/2) = 0. By taking higher
and higher values op one constructs a dense set of Markov parameter values,
organized into a hierarchy that resembles the way in whitbmals are densely
embedded in the unit interval. For example, each of the 6gmgnntervals can
be subdivided into 6 intervals obtained by the 2-nd iterdtth® map, and for the
critical point mapping into any of those in 2 steps the gramaad the corre-
sponding cycle expansion) is finite. So, if we can prove cwiity of D = D(A),
we can apply the periodic orbit theory to the sawtooth map9Rfr a random
“generic” value of the paramete, for exampleA = 4.5. The idea is to bracket
this value ofA by a sequence of nearby Markov values, compute the exgiat di
sion constant for each such Markov partition, and study t@ivergence toward
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Figure 25.5: The dependence & on the map pa- e 0.805
rametera is continuous, but not monotone. Here 6 62 64 66 68 7 56 562 564
stands for the slop& in (25.9). (Fromref. [25.9].) a a

the value ofD for A = 4.5.
tent map (see sect. 15.5), this is not likely to take only aknefevork.

Expressions like (25.20) may lead to an expectation thadliffiesion codi-
cient (and thus transport properties) are smooth functainsarameters control-
ling the chaoticity of the system. For example, one migheexghat the dfusion
codficient increases smoothly and monotonically as the sfopéthe map (25.9)
is increased, or, perhaps more physically, that tifieision codficient is a smooth
function of the Lyapunov exponent This turns out not to be trued as a func-

tion of A is a fractal, nowhere élierentiable curve illustrated in figure 25.5. The
dependence dd on the map paramete is rather unexpected - even though for

larger A more points are mapped outside the unit cell in one iteratf@ndifusion
constant does not necessarily grow.
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1/s branch cut in dynamical zeta function was the whole answer. Here we shall take a
slightly different route, and pick piecewise constant slopes such that the dynamical zeta
function for intermittent system can be expressed in terms of the Jonquiére functiemark 25.7

- Iz9 = ) 2k (25.29)
L k=1
: Once the 0 fixed point is pruned away, the symbolic dynamics is given by the
i 172 infinite alphabet {1, 2,3,4,011,012,03,0'4}, i, j. k. = 1,2,... (compare with table 24.1).
= —— s The partitioning of the subinterval Mo is induced by Mogighy = f(;i';m)(Mgu Ma)
1 ol (where ﬂﬁéht) denotes the inverse of the right branch of fhl M,) and the same reason-
Py T ing applies to the leftmost branch. These are regions over which the slope of fA| Mo IS
- L constant. Thus we have the following stabilities and jumping numbers associated to
4 FX) 4 letters:
Il
T
1+a a
03,04  Ap=kz  Ap=1
l+a ~
P 01,02 Ap=L7  fp=-1
Figure 25.6:(a) A map with marginal fixed point. Ayz2 ;O 3i.4 3,4 Ap = £A fp=1
(b) The map restricted to the unit circle. (a) (b) -172 X 12 21 Ap==A fp = -1, (25.30)
This is a consequence of the lack of structural stabilityenesf purely hyper- where o = 1/s is determined by the intermittency exponent (24.1), while q is to be
bolic systems such as the Lozi map and thedimensionadiffusion map (25.9). determined by the flow conservation (22.11) for f
The trouble arises due to non-smooth dependence of theowipal entropy on 4
system parameters - any parameter change, no mater how kadf to creation At 2q¢(e+1)=1
and destruction of infinitely many periodic orbits. As fardiusion is concerned
this means that even though local expansion rate is a smonttidén ofA, the (where { is the Riemann zeta function), so that ¢ = (A~ 4)/(2A(a+1)). The dynamical
number of ways in which the trajectory can re-enter theahitell is an irregular zeta function picks up contributions just by the alphabet’s letters, as we have imposed
function of A piecewise linearity, and can be expressed in terms of a Jonquiére function (25.29):
. - . - 4 A-4
The lesson is that lack of structural stability implies ladkspectral stability, 1/%(zp) = 1- chosh@ - mzcosm Jza+1). (25.31)
and no global observable is expected to depend smoothlyeosystem parame- ’
ters. If you want to master the material, working through ofthe deterministic Its first zero z(B) is determined by
diffusion projects oithaosBook.org/pages is strongly recommended.
4,, A4, Jza+1) = 1
A" A1+ ) L@ " coshB”
25.3 Marginal stability and anomalous dffusion _ o ,
D vanishes by the implicit function theorera/(8)|;-, = 0 whene < 1. The
) ] ] physical interpretation is that a typical orbit will stickrflong times near thé
What effect does the intermittency of chapter 24 have on transpofiepties? A marginal fixed point, and the ‘trapping time’ will be largerfhigher values of
marginal fixed point fiects the balance between the running and standing orbits, the intermittency parametex(recalla = 1/s). As always, we need to look more
thus generating a mechanism that may result in anomaldiussidin. closely at the behavior of traces of high powers of the trnsperator.
o ) . ) ) The evaluation of transport cfiient requires one more derivative with re-
Example 25.5 Anomalous diffusion. Consider a 1-dimensionamap of the real line spect to expectation values of state space observablesdeee25.1): if we use
on itself shown in figure 25.6 (a), with the same properties as in sect. 25.2, except for a the difusion d ical zeta functi 257 it thﬁ.uﬂi". &
marginal fixed point at X = 0. The corresponding circle map is given in figure 25.6 (b). _e USIOn. ynamical zeta function (_ -7), we may wri _e o ion codti-
As in sect. 24.2.1, a branch with support in Mi, i = 1,2, 3,4 has constant slope A, cient as an inverse Laplace transform, in such a way thatigtiaction between

while f|p, is of intermittent form. To keep you nimble, this time we take a slightly
different choice of slopes. The toy example of sect. 24.2.1 was cooked up so that the
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maps and flows has vanished. In the case efdimensionaldiffusion we thus
have

d2 1 a+ioo t{(ﬁs)
0 = 5 [ I

(25.32)

where the” refers to the derivative with respect $o

The evaluation of inverse Laplace transforms for high valoethe argument
is most conveniently performed using Tauberian theorems. skill take

w() = j;m dxe*u(x),

with u(x) monotone ax — oo; then, ast — 0 andx +— oo respectively (and
p €(0,00),

1 (1
if and only if
u(¥) ~ pr L,

whereL denotes any slowly varying function with lim., L(ty)/L(t) = 1. Now

vuesp (i i OE ,a+1)+J(e a))) coshp

1/¢0(e,8) ~ 1- 4e-Scoshp - eS(es,a + 1)coshBd

/\[(1+a)

Taking the second derivative with respecptae obtain

d2
a7 WO EAITEEA),

%(9). (25.33)

AR5 0ES e+ D+ e a)
(1-fes-

e siE s a+ 1))

The asymptotic behavior of the inverse Laplace transfor;132) may then be
evaluated via Tauberian theorems, once we use our estimateef behavior of
Jonquiére functions near= 1. The deviations from normal behavior correspond
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to an explicit dependence &f on time. Omitting prefactors (which can be calcu-
lated by the same procedure) we have

s2 for @ >1
Gu(9) ~ { s for a €(0,1)
1/(Ins) for a=1.

The anomalous diusion exponents follow: exercise 25.6

t* for @ € (0,1)
((X=%0)?) ~ { t/Int for a=1 (25.34)
t for a>1.

Résum é

With initial data accuracyx = [6x(0)| and system sizk, a trajectory is predictable
only to the finite Lyapunov timé|yap ~ A71In|L/8x . Beyond that, chaos rules.
We have discussed the implications in sect. 1.8: chaos i@ gews for prediction
of long term observables such as transport in statisticahaueics.

The classical Boltzmann equation for evolution of 1-péetidensity is based
on stosszahlansatzeglect of particle correlations prior to, or after a 2+{jude
collision. It is a very good approximate description of t#las dynamics, but
a difficult starting point for inclusion of systematic correconIn the theory
developed here, no correlations are neglected - they arecilided in the cycle
averaging formula such as the cycle expansion for tffeslon constant

k+1 (npl -+ ﬁpk)z
2d<T>Z( Y IApl Apl

Such formulas arexact the issue in their applications is what are the most ef-
fective schemes of estimating the infinite cycle sums reguiior their evaluation.
Unlike most statistical mechanics, here there are no phenofogical macro-
scopic parameters; quantities such as transpoffic@nts are calculable to any
desired accuracy from the microscopic dynamics.

For systems of a few degrees of freedom these results arganouis footing,
but there are indications that they capture the essentigmics of systems of
many degrees of freedom as well.

Though superficially indistinguishable from the probattit random walk
diffusion, deterministic diiusion is quite recognizable, at least in low dimen-
sional settings, through fractal dependence of tifi@sion constant on the system
parameters, and through non-Gaussion relaxation to bguiti (non-vanishing
Burnett codicients).
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That Smale’s “structural stability” conjecture turned ¢otbe wrong is not a
bane of chaotic dynamics - it is actually a virtue, perhagsrtost dramatic ex-
perimentally measurable prediction of chaotic dynamics.Ighg as microscopic
periodicity is exact, the prediction is counterintuitiver fa physicist - transport
codficients arenot smooth functions of system parameters, rather they are non-
monotonic,nowhere dfferentiablefunctions.

Actual evaluation of transport cicients is a test of the techniques developed
above in physical settings. In cases of severe pruning #ue tiormulas and er-
godic sampling of dominant cycles might be mofieetive strategy than the cycle
expansions of dynamical zeta functions and systematic eratran of all cycles.

Commentary

Remark 25.1 Lorentz gas. The original pinball model proposed by Lorentz [25.4]
consisted of randomly, rather than regularly placed scatie

Remark 25.2 Who's dunnit? Cycle expansions for the fliiision constant of a particle
moving in a periodic array have been introduced by R. Art&m4] (exact dynamical
zeta function for 1- dimensionakhains of maps (25.8)), by W.N. Vance [25.6],and by
P. Cvitanovi¢, J.-P. Eckmann, and P. Gaspard [25.7] (thedhjcal zeta function cycle
expansion (25.8) applied to the Lorentz gas).

Remark 25.3 Lack of structural stability for D.  Expressions like (25.20) may lead to
an expectation that the filision codicient (and thus transport properties) are smooth
functions of the chaoticity of the system (parameterized gkample, by the Lyapunov
exponentl = InA). This turns out not to be trueD as a function ofA is a fractal,
nowhere diferentiable curve shown in figure 25.5. The dependende oh the map
parameterA is rather unexpected - even though for largemore points are mapped
outside the unit cell in one iteration, theffdision constant does not necessarily grow.
We refer the reader to refs. [25.15, 25.16] for early work be tdeterministic dfusion
induced by 1-dimensional maps. The sawtooth map (25.9)ntasdiuced by Grossmann
and Fujisaka [25.17] who derived the integer slope form(#s20) for the difusion
constant. The sawtooth map is also discussed in refs. [R5Th@ fractal dependence of
diffusion constant on the map parameter is discussed in ref9, [25.8, 25.10]. Sect. 1.8
gives a brief summary of the experimental implications;tfar the current state of the art
of fractal transport ca@cients consult the first part of Klage’s monograph [25.12pWd

be nice if someone would eventually check these predicfioegperiments... Statistical
mechanicians tend to believe that such complicated beh@vioot to be expected in
systems with very many degrees of freedom, as the additiarldgge integer dimension
of a number smaller than 1 should be as unnoticeable as asoapi perturbation of a
macroscopic quantity. No fractal-like behavior of the coativity for the Lorentz gas has
been detected so far [25.14]. (P. Cvitanovit and L. Rondoni

Remark 25.4 Symmetry factorization in one dimension.  In theg = 0 limit the dy-
namics (25.11) is symmetric under— —X, and the zeta functions factorize into prod-
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[ Tength [ # cycles] £(0,0) | 1]
1 51 -1.216975 -
2 10 | -0.024823| 1.745407
3 32 | -0.021694| 1.719617
4 104 | 0.000329| 1.743494
5 351 | 0.002527| 1.760581
6 1243| 0.000034| 1.756546

Table 25.1: Fundamental domain, 0.3 .

ucts of zeta functions for the symmetric and antisymmetniospaces, as described in
sect. 21.1.1:

1 B 1 1
¢(0,2 4s(0,2) £a(0,2)
01 101 161

7l aiG LG (2539

The leading (material flow conserving) eigenvaiie 1 belongs to the symmetric sub-
space 15(0,1) = 0, so the derivatives (25.15) also depend only on the syniersib-
space:

21
0z {(0, Z) z=1
1 Zé 1
£a(0,2) 9z (5(0,2)

(0%

(25.36)

z=1

Implementing the symmetry factorization is convenient, it essential, at this level of
computation.

Remark 25.5 Lorentz gas in the fundamental domain.  The vector valued nature of
the generating function (25.3) in the case under consieratakes it dificult to per-
form a calculation of the diiusion constant within the fundamental domain. Yet we point
out that, at least as regards scalar quantities, the fullatéoh to M leads to better esti-
mates. A proper symbolic dynamics in the fundamental dorhasbeen introduced in
ref. [25.19].

In order to perform the full reduction for fiusion one should express the dynamical
zeta function (25.7) in terms of the prime cycles of the fundatal domainM of the
lattice (see figure 25.2) rather than those of the elemeigt&igner-Seitz) cellM. This
problem is complicated by the breaking of the rotational syetry by the auxiliary vector
B, or, in other words, the non-commutativity of translati@mel rotations: see ref. [25.7].

Remark 25.6 Anomalous diffusion. Anomalous difusion for 1- dimensionainter-
mittent maps was studied in the continuous time random waitkaach in refs. [24.10,
24.11]. The first approach within the framework of cycle exgians (based on truncated
dynamical zeta functions) was proposed in ref. [24.12]. @emtment follows methods
introduced in ref. [24.13], applied there to investigate iehavior of the Lorentz gas with
unbounded horizon.
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Remark 25.7 Jonquiére functions. In statistical mechanics Jonquiere function (25.29)

504

appears in the theory of free Bose-Einstein gas, see ref2224.23].
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Exercises

25.1.

25.2.

25.3.
25.4.

25.5.

25.6.

Diffusion for odd integerA. Show that when the

slopeA = 2k — 1 in (25.9) is an odd integer, the dif-

fusion constant is given b = (A% — 1)/24, as stated in

(25.21).
Fourth-order transport coefficient.  Verify (25.24).

You will need the identity
: 1
DK = —n(n+ )20+ 1)3°+3n - 1).
i 30

Finite Markov partitions.  Verify (25.28).
Maps with variable peak shape: Consider the fol-
lowing piecewise linear map
13—X xe M;
3
00 =1 3-(
1

where My = [0.3(1-6)], Mz = [3(1-06).2(2+9)],
Mz = [é(2+6), %] and the map in [12, 1] is obtained
by antisymmetry with respectto= 1/2,y = 1/2, Write

25.7.

|52 - X € Mz (25.37)

the corresponding dynamical zeta function relevant to

diffusion and then show that

_ 6(2+9)
D)

See refs. [25.21, 25.22] for further details.

Two-symbol cycles for the Lorentz gas. Write down

all cycles labeled by two symbols, such as (0 6), (1 725.8.

(15)and (05).
ChaosBook.org/pages offers several project-length
deterministic difusion exercises.

Accelerated difusion. (medium dificulty) Consider
a maph, such thah = f of figure 25.6 (b), but now run-

ning branches are turned into standing branches and vice

References

versa, so that,2, 3,4 are standing while 0 leads to b
positive and negative jumps. Build the correspor
dynamical zeta function and show that
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