Chapter 23

Why does it work?

Bloch: “Space is the field of linear operators.”
Heisenberg: “Nonsense, space is blue and birds fly
through it.”

—Felix Bloch, Heisenberg and the early days of
guantum mechanics

(R. Artuso, H.H. Rugh and P. Cvitanovit)

S WE SHALL SEg, the trace formulas and spectral determinants work well,
A sometimes very well. The question is: Why? And it still is.eTtmeuris-
tic manipulations of chapters 18 and 6 were naive and reskieswe are
facing infinite-dimensional vector spaces and singulagrdl kernels.

We now outline the key ingredients of proofs that put thedrand determi-
nant formulas on solid footing. This requires taking a ctdeek at the evolution
operators from a mathematical point of view, since up to nosvhave talked
about eigenvalues without any reference to what kind of atfan space the cor-
responding eigenfunctions belong to. We shall restrictansiderations to the
spectral properties of the Perron-Frobenius operator fpsnas proofs for more
general evolution operators follow along the same linesaiMre refer to as a “the
set of eigenvalues” acquires meaning only within a pregispkcified functional
setting: this sets the stage for a discussion of the andjypooperties of spectral
determinants. In example 23.1 we compute explicitly therggpectrum for the
three analytically tractable piecewise linear examplasdct. 23.3 we review the
basic facts of the classical Fredholm theory of integraladigns. The program
is sketched in sect. 23.4, motivated by an explicit studyigémspectrum of the
Bernoulli shift map, and in sect. 23.5 generalized to pigseweal-analytic hy-
perbolic maps acting on appropriate densities. We show @masimple example
that the spectrum is quite sensitive to the regularity pribjge of the functions
considered.

For expanding and hyperbolic finite-subshift maps anatytieads to a very
strong result; not only do the determinants have betteryéiogy properties than
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CHAPTER 23. WHY DOES IT WORK? 432

the trace formulas, but the spectral determinants areesinmlit as entire functions
in the complexs plane. remark 23.1

The goal of this chapter is not to provide an exhaustive vewkthe rigorous the-
ory of the Perron-Frobenius operators and their spectri@raiénants, but rather
to give you a feeling for how our heuristic considerations t& put on a firm
basis. The mathematics underpinning the theory is both duaddorofound.

If you are primarily interested in applications of the pelimorbit theory, you
should skip this chapter on the first reading.

fast track:
W chapter 13, p. 249
23.1 Linear maps. exact spectra

We start gently; in example 23.1 we work out teeacteigenvalues and eigen-
functions of the Perron-Frobenius operator for the sintpeample of unstable,
expanding dynamics, a linear-1dimensionalmap with one unstable fixed point.
. Ref. [23.6] shows that this can be carried ovedidimensions. Not only that,
but in example 23.5 we compute the exact spectrum for thelsghpxample of a
dynamical system with aimfinity of unstable periodic orbits, the Bernoulli shift.

Example 23.1 The simplest eigenspectrum - a single fixed point: In order to get
some feeling for the determinants defined so formally in sect. 19.2, let us work out a
trivial example: a repeller with only one expanding linear branch

f(x) = AX, Al >1,

and only one fixed point Xq = 0. The action of the Perron-Frobenius operator (16.10) is

Lo(y) = f dxa(y — AX) 9(x) = Kﬂay/m. (23.1)

From this one immediately gets that the monomials Y are eigenfunctions:

1
|AJAK

Ly =

¥, k=0,1,2,... (23.2)

What are these eigenfunctions? Think of eigenfunctionshef3chrodinger
equation:k labels thekth eigenfunctionx® in the same spirit in which the number
of nodes labels thkth guantum-mechanical eigenfunction. A quantum-meclanic
amplitude with more nodes has more variability, hence addinetic energy.
Analogously, for a Perron-Frobenius operator, a higheigenvalue LA|AK is
getting exponentially smaller because densities thatwemse rapidly decay more
rapidly under the expanding action of the map.
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Example 23.2 The trace formula for a single fixed point: The eigenvalues A¥1
fall off exponentially with k, so the trace of L is a convergent sum

1 o 1 1
tr_C = — A_k = = s
Al % AL=AD) ~ [0y -1

in agreement with (18.7). A similar result follows for powers of L, yielding the single-
fixed point version of the trace formula for maps (18.10):

> zek > 7 1
_ s__L 23.3
é 1-ze ; oA © TAAK (23.3)

The left hand side of (23.3) is a meromorphic function, with teading zero
atz=|A|. So what?

Example 23.3 Meromorphic functions and exponential convergence: As an
illustration of how exponential convergence of a truncated series is related to analytic
properties of functions, consider, as the simplest possible example of a meromorphic
function, the ratio
z—a
h(z = —

(o

with a, b real and positive and a < b. Within the spectral radius |Z < b the function h
can be represented by the power series

o

h@ =" o,

k=0

where o9 = a/b, and the higher order coefficients are given by oj = (a— b)/ bi+l,
Consider now the truncation of order N of the power series

N

@ = ) o = 2+

k=0

Za-b)(1-2V/bN)
2(1— z/b)

Let zy be the solution of the truncated series hy(zy) = 0. To estimate the distance
between a and 2y it is sufficient to calculate hy(a). It is of order (a/b)N*1, so finite order
estimates converge exponentially to the asymptotic value.

This example shows that: (1) an estimate of the leading gbke leéading
eigenvalue off) from a finite truncation of a trace formula converges expene
tially, and (2) the non-leading eigenvalues.fflie outside of the radius of con-
vergence of the trace formula and cannot be computed by nwasnsch cycle
expansion. However, as we shall now see, the whole spectueachable at no
extra d@fort, by computing it from a determinant rather than a trace.
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f(x)

Figure 23.1: The Bernoulli shift map. X

Example 23.4 The spectral determinant for a single fixed point: The spectral
determinant (19.3) follows from the trace formulas of example 23.2:

- z - z
det(1-z£) = (1——)= -)"Qn, t=—, 23.4
(1-2L) Q A g()n A (23.4)
where the cummulants Q,, are given explicitly by the Euler formula exercise 23.3
1 A—l A—n+1

Qn (23.5)

TI-AT1I-A2 T TI-AT

The main lesson to glean from this simple example is that ginenculantsQy
decay asymptoticalljasterthan exponentially, a& ~"("-1/2, For example, if we
approximate series such as (23.4) by the first 10 terms, thbeiarthe estimate of
the leading zero is 1/A0!

So far all is well for a rather boring example, a dynamicaksgswith a single
repelling fixed point. What about chaos? Systems where th#beuof unstable
cycles increases exponentially with their length? We nom to the simplest
example of a dynamical system with an infinity of unstableqabc orbits.

Example 23.5 Eigenfunction of Bernoulli shift map. (continued from example 11.7) The
Bernoulli shift map figure 23.1

fo(X) = 2. lo = [0, 1/2
f(x)z{ f‘j&%:zi_l, iili:%l/z,li (23.6)

models the 50-50% probability of a coin toss. The associated Perron-Frobenius oper-
ator (16.9) assembles p(y) from its two preimages

@M=§@%§4¥;y (23.7)

For this simple example the eigenfunctions can be written down explicitly: they coincide,
up to constant prefactors, with the Bernoulli polynomials B(X). These polynomials are
generated by the Taylor expansion of the generating function

text - tk 1
Gt = 5 é Bi(¥)g - Bo(®=1. B =x-3....
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The Perron-Frobenius operator (23.7) acts on the generating function G as

T 2ei2-1

1(teV2 te2e¥2) t 2 S (t/2)
LG6(x1) = 5 (— + —) = 2, B(¥) ;
2\¢é-1 ¢€-1 kZ:;l k!

hence each By(x) is an eigenfunction of £ with eigenvalue 1/2~.

The full operator has two components corresponding to the two branches. For
the n times iterated operator we have a full binary shift, and for each of the 2" branches
the above calculations carry over, yielding the same trace (2" — 1)™* for every cycle on
length n. Without further ado we substitute everything back and obtain the determinant,

det(1- L) = exp(— Z% an—il) =11 (1— 2—Zk) : (23.8)

verifying that the Bernoulli polynomials are eigenfunctions with eigenvalues 1, 1/2, . . .,
/2", ...

The Bernoulli map spectrum looks reminiscent of the singledipoint spec-
trum (23.2), with the dference that the leading eigenvalue here is 1, rather than
1/IA]. The dtterence is significant: the single fixed-point map is a repeliéh
escape rate (1.7) given by thgleading eigenvalug = In|A|, while there is no
escape in the case of the Bernoulli map. As already notedsicudsion of the
relation (19.23), for bound systems the local expansioa flagre IfA| = IN2) section 19.4
is balanced by the entropy (here In 2, the log of the numberreipgeskFs),
yielding zero escape rate.

So far we have demonstrated that our periodic orbit formalascorrect for
two piecewise linear maps in 1 dimension, one with a singledfigoint, and one
with a full binary shift chaotic dynamics. For a single fixeaiqt, eigenfunctions
are monomials irx. For the chaotic example, they are orthogonal polynomials o
the unit interval. What about higher dimensions? We cheakfoumulas on a
2 — dimensionahyperbolic map next.

Example 23.6 The simplest of 2 — dimensionalmaps - a single hyperbolic fixed
point: We start by considering a very simple linear hyperbolic map with a single
hyperbolic fixed point,

f(X) = (fu(x1, X2), fa(X1, X2)) = (AsXs, AuX2), O <A <1, |Ay>1.

The Perron-Frobenius operator (16.10) acts on the 2— dimensionabensity functions as

1
Lp(X1, X2) = mp(xl//\s, X2/ Au) (23.9)

What are good eigenfunctions? Cribbing the 1 — dimensionaleigenfunctions for the
stable, contracting X1 direction from example 23.1 is not a good idea, as under the
iteration of L the high terms in a Taylor expansion of p(x1, X2) in the x; variable would
get multiplied by exponentially exploding eigenvalues 1/A'§. This makes sense, as in
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the contracting directions hyperbolic dynamics crunches up initial densities, instead of
smoothing them. So we guess instead that the eigenfunctions are of form

Pk (X1 X2) = X2/ Xk ke =0,1,2,..., (23.10)

a mixture of the Laurent series in the contraction X direction, and the Taylor series in
the expanding direction, the X, variable. The action of Perron-Frobenius operator on
this set of basis functions

ki

Lok, (X1, X2) = m A_lff ik (X1, X2) 0 = Ag/|Ag]

is smoothing, with the higher ki, ko eigenvectors decaying exponentially faster, by
A'§1/A52+1 factor in the eigenvalue. One verifies by an explicit calculation (undoing
the geometric series expansions to lead to (19.9)) that the trace of L indeed equals
1/|det@ - M)| = 1/|(1 - Ay)(1— Ag)|, from which it follows that all our trace and spectral
determinant formulas apply. The argument applies to any hyperbolic map linearized

around the fixed point of form f(X;...., Xg) = (A1X1, A2Xo, ..., AgXq).

So far we have checked the trace and spectral determinantfas derived
heuristically in chapters 18 and 19, but only for the case efdimensionaland
2-dimensionalinear maps. But for infinite-dimensional vector spaces g@ame
is fraught with dangers, and we have already been misleaddngpise linear
examples into spectral confusions: contrast the spectexaiple 16.1 and ex-
ample 17.4 with the spectrum computed in example 18.2.

We show next that the above results do carry over to a sizdds of piece-
wise analytic expanding maps.

23.2 Evolution operator in a matrix representation

The standard, and for numerical purposes sometimes ¥agtive way to look at
operators is through their matrix representations. Evatubperators are moving
density functions defined over some state space, and as énajeve can imple-
ment this only numerically, the temptation is to discretihe state space as in
sect. 16.3. The problem with such state space discretizafiproaches that they
sometimes yield plainly wrong spectra (compare exampléd Wwith the result of
example 18.2), so we have to think through carefully what ithat wereally
measure.

An expanding mapf (X) takes an initial smooth density,(x), defined on a
subinterval, stretches it out and overlays it over a langerival, resulting in a new,
smoother densityn,1(X). Repetition of this process smoothes the initial density,
so it is natural to represent densitiggx) by their Taylor series. Expanding

¥
K’

y

Iraic = ) 81 (0%

=0

) = Y ¥ (0)
k=0
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#80= [ axa%y - [, . x= 170,
and substitute the two Taylor series into (16.6):

Inea(y) = (Lo0) (¥) = fM dxa(y — (X)) én().

The matrix elements follow by evaluating the integral

af Xk
L= Wfdxﬁ(y, X)H (23.11)

y=0

we obtain a matrix representation of the evolution operator
k 4
X > Y ,
fde(y,x)H: 4 ml_k/k, kk=0,12,...

which maps the® component of the density of trajectorigg(x) into they¥ com-
ponent of the density,.1(y) one time step later, witii = f(X).

We already have some practice with evaluating derivaieg)) = %6(y) from
sect. 16.2. This yields a representation of the evolutioeraor centered on the
fixed point, evaluated recursively in terms of derivativéshe mapf:

Xk
f dxsO(x - (g
1(d 1 \'x«
m(d_xwx))ﬁ

The matrix elements vanish fdr < k, soL is a lower triangular matrix. The
diagonal and the successivé-diagonal matrix elements are easily evaluated it-
eratively by computer algebra

(L)ex (23.12)

x=f(x)

x=f(X)

Lo = 1 L _ (k+ 27
kk = |A|Ak s k+l,k - 2k||A|Ak+2 s

For chaotic systems the map is expanding,> 1. Hence the diagonal terms drop

off exponentially, as JA[<*1, the terms below the diagonal falff@ven faster, and

truncatingL to a finite matrix introduces only exponentially small egor

The trace formula (23.3) takes now a matrix form

zL L
tr 1-2f =1tr T (23.13)

converg - 9nov2008 ChaosBook.org version13, Dec 31 2009



CHAPTER 23. WHY DOES IT WORK? 438

Figure 23.2: A nonlinear one-branch repeller with a
. . . 0%
single fixed pointng. 0

In order to illustrate how this works, we work out a few exaal

In example 23.7 we show that these results carry over to aaly@nsingle-
branch 1- dimensionakepeller. Further examples motivate the steps that lead to
a proof that spectral determinants for general analyticdimensionakxpanding
maps, and - in sect. 23.5, fordimensionahyperbolic mappings - are also entire
functions.

Example 23.7 Perron-Frobenius operator in a matrix representation: As in ex-
ample 23.1, we start with a map with a single fixed point, but this time with a nonlin-
ear piecewise analytic map f with a nonlinear inverse F = 1, sign of the derivative
o = o(F’) = F’/|F’|, and the Perron-Frobenius operator acting on densities analytic in
an open domain enclosing the fixed point X = Wg,

Lo(y) = fdxé(Y— f(x))(X) = o F'(y) ¢(F(Y))-
Assume that F is a contraction of the unit disk in the complex plane, i.e.,

IF(9l<0<1 and |F'(?9/<C<o for |14 <1, (23.14)
and expand ¢ in a polynomial basis with the Cauchy integral formula

dw  ¢(w) 3 dw  ¢(w)

$0=2,70= P55 oz =P w

Combining this with (23.22), we see that in this basis Perron-Frobenius operator L is
represented by the matrix
dw o F'(W)(F(w))"

— e (23.15)

~£¢(W) = Z V\/ml-mn(ﬁn . Lmn=
mn

Taking the trace and summing we get:

trL=ZLnn= dw o F’/(w)

o~ 27 w—F(w)
This integral has but one simple pole at the unique fixed point w* = F(w*) = f(w*).
Hence exercise 23.6
L= o Fw) 1

C1-F(w) o fw) -1
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This super-exponential decay of cummulais ensures that for a repeller
consisting of a single repelling point the spectral deteant (23.4) isentirein
the complexz plane.

In retrospect, the matrix representation method for sglthre density evolu-
tion problems is eminently sensible — after all, that is tteywne solves a close
relative to classical density evolution equations, ther&dinger equation\When
available, matrix representations fdr enable us to compute many more orders
of cumulant expansions of spectral determinants and mamg migenvalues of
evolution operators than the cycle expensions approach.

Now, if the spectral determinant is entire, formulas suclil&s25) imply that
the dynamical zeta function is a meromorphic function. Thacgical import of
this observation is that it guarantees that finite ordemnests of zeroes of dyn-
amical zeta functions and spectral determinants convexgenentially, or - in
cases such as (23.4) - super-exponentially to the exacésjalnd so the cycle
expansions to be discussed in chapter 20 represene perturbativeapproach to
chaotic dynamics.

Before turning to specifics we summarize a few facts abowsaial theory
of integral equations, something you might prefer to skipficst reading. The
purpose of this exercise is to understand that the Fredhodory, a theory that
works so well for the Hilbert spaces of quantum mechanics amad necessarily
work for deterministic dynamics - the ergodic theory is miender.

fast track:
W sect. 23.4, p. 441
23.3 Classical Fredholm theory

He who would valiant be 'gainst all disaster
Let him in constancy follow the Master.
—John BunyanPRilgrim’s Progress

J The Perron-Frobenius operator
£609 = [ dysx- 1) 00)
has the same appearance as a classical Fredholm integratape
Kot = [ ayaenet). (23.16)

and one is tempted to resort too classical Fredholm theoorder to establish
analyticity properties of spectral determinants. Thishpgt enlightenment is
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blocked by the singular nature of the kernel, which is a itistion, whereas the
standard theory of integral equations usually concerrdf itgith regular kernels
K(x,y) € L2(M?). Here we briefly recall some steps of Fredholm theory, teefor
working out the example of example 23.5.

The general form of Fredholm integral equations of the sddand is
o9 = [ ayreuyet) + €09 (23.17)

where&(x) is a given function in.?(M) and the kerneK (x,y) € L2(M?) (Hilbert-
Schmidt condition). The natural object to study is then thedr integral operator
(23.16), acting on the Hilbert spaté(M): the fundamental property that follows
from the L2(Q) nature of the kernel is that such an operatocasnpact that is
close to a finite rank operator.A compact operator has thpguty that for every
¢ > 0 only afinite number of linearly independent eigenvectors exist coordp
ing to eigenvalues whose absolute value excegeds we immediately realize
(figure 23.5) that much work is needed to bring Perron-Fralsenperators into
this picture.

We rewrite (23.17) in the form
Te=¢, 7T=1-%K. (23.18)

The Fredholm alternative is now applied to this situatioficdiews: the equation
T ¢ = & has a unique solution for eveey € L2(M) or there exists a non-zero
solution of 7 ¢ = 0, with an eigenvector oK corresponding to the eigenvalue 1.
The theory remains the same if insteadoive consider the operatar, = 1-AK
with 2 # 0. AsK is a compact operator there is at most a denumerable adbof
which the second part of the Fredholm alternative holdsrtdpam this set the
inverse operator (217)~! exists and is bounded (in the operator sense). \When
is suficiently small we may look for a perturbative expression fmtsan inverse,
as a geometric series

(1-2%K) Y = 142K+ 2K? + -+ = 1+ AW, (23.19)
whereK™ is a compact integral operator with kernel

Koxy) = [ da KOz K s,

andW is also compact, as it is given by the convergent sum of cohgerators.
The problem with (23.19) is that the series has a finite radfusonvergence,
while apart from a denumerable set 8§ the inverse operator is well defined.
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A fundamental result in the theory of integral equationssistis in rewriting the
resolving kernetW as a ratio of twanalytic functions ofa

D(X,Y; )

Wxy) = 0]

If we introduce the notation

X, K(x1,¥1) ... KX, ¥n)
Yi... ) B

X1..
R s
" 7(()((1’ yl) e 7(()((1’ yn)

we may write the explicit expressions

- A" ... 72
_ _1\n 1
D) = 1+HZ=‘{( i andzl...dzﬂ(( 21...zn)
ad m
= exp(—z ’l—trv(m) (23.20)
m=1 m
. _ X X (_/l)n X 5 ... Zp
DXY; ) = W(y)+n§l ~ Mndzl...dz,ﬂ((y 2 ...z

The quantityD(2) is known as the Fredholm determinant (see (19.24)):it is an
entire analytic function oft, andD(1) = 0 if and only if /1 is an eigenvalue of
K.

Worth emphasizing again: the Fredholm theory is based ondh®gactness
of the integral operator, i.e., on the functional properiisummability) of its ker-
nel. As the Perron-Frobenius operator is not compact, ttseeebit of wishful
thinking involved here.

23.4 Analyticity of spectral deter minants

They savored the strange warm glow of being much more
ignorant than ordinary people, who were only ignorant of
ordinary things.

—Terry Pratchett

Spaces of functions integrable', or square-integrabl&? on interval [Q1]
are mapped into themselves by the Perron-Frobenius opeaaitt in both cases
the constant functiogy = 1 is an eigenfunction with eigenvalue 1. If we focus
our attention orL.! we also have a family df* eigenfunctions,

1

By) = ) exp(@riky)

k#0

(23.21)
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with complex eigenvalue 2, parameterized by complexwith Re # > 0. By
varying 6 one realizes that such eigenvalues fill out the entire umsi.diSuch
essential spectrunthe casek = 0 of figure 23.5, hides all fine details of the
spectrum.

What's going on? Spacds' andL? contain arbitrarily ugly functions, allow-
ing any singularity as long as it is (square) integrable - tregte is no way that
expanding dynamics can smooth a kinky function with a ndgfedéntiable singu-
larity, let's say a discontinuous step, and that is why thyeespectrum is dense
rather than discrete. Mathematicians love to wallow in kil of muck, but there
is no way to prepare a nowheref#irentiableL? initial density in a laboratory. The
only thing we can prepare and measure are piecewise smaathafmalytic) den-
sity functions.

For a bounded linear operatofl on a Banach spac®, the spectral radius
is the smallest positive numbggpecsuch that the spectrum is inside the disk of
radius pspes While the essential spectral radius is the smallest pesiiumber
PessSuUch that outside the disk of radipsssthe spectrum consists only of isolated
eigenvalues of finite multiplicity (see figure 23.5). exercise 23.5

We may shrink the essential spectrum by letting the Perrobéhius oper-
ator act on a space of smoother functions, exactly as in tieebcench repeller
case of sect. 23.1. We thus consider a smaller spalt€, the space ok times
differentiable functions whodéth derivatives are Holder continuous with an ex-
ponent O< a < 1: the expansion property guarantees that such a space geohap
into itself by the Perron-Frobenius operator. In the strip Red < k+ @ mostgy
will cease to be eigenfunctions in the spate®; the functiong,, survives only for
integer valued = n. In this way we arrive at a finite set @olatedeigenvalues
1, 2L, ..., 2% and an essential spectral radjugs= 2+,

We follow a simpler path and restrict the function space duether, namely
to a space of analytic functions, i.e., functions for whikbk Taylor expansion is
convergent at each point of the interval 1. With this choice things turn out easy
and elegant. To be more specific, ¢ebe a holomorphic and bounded function on
the diskD = B(0, R) of radiusR > 0 centered at the origin. Our Perron-Frobenius
operator preserves the space of such functions providedRjl2 < R so all we
need is to choos® > 1. If Fg, s € {0, 1}, denotes thes inverse branch of the
Bernoulli shift (23.6), the corresponding action of theefFrobenius operator
is given by Lsh(y) = o F4(y) h o Fs(y), using the Cauchy integral formula along
the oD boundary contour:

dw h(w)F(y)

Lshy) = o i 6DW——F5(y) .

(23.22)

For reasons that will be made clear later we have introducgdrer = +1 of the
given real branchF’(y)| = o F’(y). For both branches of the Bernoulli shift= 1,
but in general one is not allowed to take absolute values iasctiuld destroy
analyticity. In the above formula one may also replace thenala D by any
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domaincontaining [Q 1] such that the inverse branches maps the closueinfo

the interior of D. Why? simply because the kernel remains non-singular under
this condition, i.e.w — F(y) # 0 whenevew € 9D andy € CI D. The problem

is now reduced to the standard theory for Fredholm detemtsnaect. 23.3. The
integral kernel is no longer singular, traces and deternigare well-defined, and
we can evaluate the trace 6f by means of the Cauchy contour integral formula:

dw oF’(w)
trlp=Q-— ———.
Lr 21 w— F(w)
Elementary complex analysis shows that sifcenaps the closure db into its
own interior, F has a unique (real-valued) fixed pokitwith a multiplier strictly
smaller than one in absolute value. Residue calculus trergfelds exercise 23.6

_oF'(x) 1
SRR 0 -1

justifying our previousad hoccalculations of traces using Dirac delta functions.

Example 23.8 Perron-Frobenius operator in a matrix representation: As in ex-
ample 23.1, we start with a map with a single fixed point, but this time with a nonlin-
ear piecewise analytic map f with a nonlinear inverse F = f~1, sign of the derivative
o=oc(F)=F/F|

Lo(2) = f dx(z— f(X) ¢(x) = o F'(2 ¢(F(2)-
Assume that F is a contraction of the unit disk, i.e.,
IF(9l<0<1 and |F'(?9/<C<o for |14 <1, (23.23)

and expand ¢ in a polynomial basis by means of the Cauchy formula

dw  ¢(w) _ L dw g(w)

0=2.70=Poi woz = Pom won

Combining this with (23.22), we see that in this basis L is represented by the matrix

dw o F’(w)(F(w)"

b v (23.24)

~£¢(W) = Z V\/ml-mn(ﬁn . Lmn=
mn

Taking the trace and summing we get:

B _ Ldw o F'(w)
trL_ZLnn_ 2 WF@

n>0

This integral has but one simple pole at the unique fixed point w* = F(w*) = f(w*).
Hence
wr=2 F’(w") _ 1 '
1-F(w) [fr(w) -1
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We worked out a very specific example, yet our conclusions lEagener-
alized, provided a number of restrictive requirements aet by the dynamical
system under investigation: exercise 23.6

1) the evolution operator iswultiplicativealong the flow,

2) the symbolic dynamics isfiite subshift

3) all cycle eigenvalues arkyperbolic (exponentially bounded in
magnitude away from 1),

4) the map (or the flow) iseal analytig i.e., it has a piecewise ana-
lytic continuation to a complex extension of the state space

These assumptions are romantic expectations not satisfitttelbdynamical
systems that we actually desire to understand. Still, theyat devoid of physical
interest; for example, nice repellers like our 3-disk garfpioball do satisfy the
above requirements.

Properties 1 and 2 enable us to represent the evolution topexa a finite
matrix in an appropriate basis; properties 3 and 4 enable Umtind the size
of the matrix elements and control the eigenvalues. To ses @dn go wrong,
consider the following examples:

Property 1 is violated for flows in 3 or more dimensions by th#ofving
weighted evolution operator

Ly, %) = 1A' 0Ps(y - 11(%)

whereA!(x) is an eigenvalue of the Jacobian matrix transverse to the B@mi-
classical quantum mechanics suggest operators of this fatmpg = 1/2.The
problem with such operators arises from the fact that whersidering the Ja-
cobian matricesly, = JaJp for two successive trajectory segmentandb, the
corresponding eigenvalues are in geneal multiplicative, Agp # AaAp (Unless
a, b are iterates of the same prime cyqeso J,Jp = Jg'°). Consequently, this
evolution operator is not multiplicative along the tragt The theorems require
that the evolution be represented as a matrix in an appteppialynomial basis,
and thus cannot be applied to non-multiplicative kernets, kernels that do not
satisfy the semi-group propert§t £t = £V,

Property 2 is violated by the 4 dimensionatent map (see figure 23.3 (a))
fX)=a(l - 11-2xX), 1/2<a<1l.

All cycle eigenvalues are hyperbolic, but in general theical point x, = 1/2

is not a pre-periodic point, so there is no finite Markov et and the sym-
bolic dynamics does not have a finite grammar (see sect. @aRdkefinitions). In
practice, this means that while the leading eigenvalug€ ofight be computable,
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1 : 1
f(x) f(x)
05 . 1 0.5-
Figure 23.3: (a) A (hyperbolic) tent map without 0 a0 ‘ ‘ 0
a finite Markov partition. (b) A Markov map with 0 05 1 0 I,
a marginal fixed point. @ (b)

the rest of the spectrum is very hard to control; as the patemes varied, the
non-leading zeros of the spectral determinant move wilOtyua.

Property 3 is violated by the map (see figure 23.3 (b))

X+2x% , xelpg=][0,1
f)=1 5" €lo=[023]
2-2x xell_[i,l]

Here the interval [01] has a Markov partition into two subintervdisandl, and

f is monotone on each. However, the fixed poinkat 0 has marginal stability
Ao = 1, and violates condition 3. This type of map is called “imétent” and
necessitates much extra work. The problem is that the dyssamithe neighbor-
hood of a marginal fixed point is very slow, with correlaticiscaying as power
laws rather than exponentially. We will discuss such flowshapter 24.

Property 4 is required as the heuristic approach of chaf@éades two major
hurdles:

1. The trace (18.8) is not well defined because the integrakkés singular.

2. The existence and properties of eigenvalues are by nosrobear.

Actually, property 4 is quite restrictive, but we need itletpresent approach,
so that the Banach space of analytic functions in a disk sgpved by the Perron-
Frobenius operator.

In attempting to generalize the results, we encounter aépeoblems. First,
in higher dimensions life is not as simple. Multi-dimensabresidue calculus is
at our disposal but in general requires that we find poly-doméirect product
of domains in each coordinate) and this need not be the casmn8, and per-
haps somewhat surprisingly, the ‘counting of periodic wrhpresents a dicult
problem. For example, instead of the Bernoulli shift coasithe doubling map
(11.8) of the circlex — 2x mod 1,x € R/Z. Compared to the shift on the interval
[0, 1] the only diference is that the endpoints 0 and 1 are now glued together. Be
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cause these endpoints are fixed points of the map, the nurhbgcles of length
n decreases by 1. The determinant becomes:

n_
det(1-z£) = exp(— Z % %] =1-z (23.25)

The valuez = 1 still comes from the constant eigenfunction, but the Beliho
polynomials no longer contribute to the spectrum (as theyat periodic). Proofs
of these facts, however, ardliltult if one sticks to the space of analytic functions.

Third, our Cauchy formulaa priori work only when considering purely ex-
panding maps. When stable and unstable directions cosggisiave to resort to
stranger function spaces, as shown in the next section.

23.5 Hyperbolic maps

| can give you a definion of a Banach space, but | do not
know what that means.

—Federico BonnettdBanach space
(H.H. Rugh)

Proceeding to hyperbolic systems, one faces the followiaggox: If f is an
area-preserving hyperbolic and real-analytic map of, xameple, a 2-dimensional
torus then the Perron-Frobenius operator is unitary on plaees ofL? functions,
and its spectrum is confined to the unit circle. On the otherdhavhen we
compute determinants we find eigenvalues scattered arosidkithe unit disk.
Thinking back to the Bernoulli shift example 23.5 one woukkIto imagine
these eigenvalues as popping up from tRespectrum by shrinking the function
space. Shrinking the space, however, can only make therspestmaller so this
is obviously not what happens. Instead one needs to inteodtimixed’ function
space where in the unstable direction one resorts to aodilyictions, as before,
but in the stable direction one instead considers a ‘dualesp distributions on
analytic functions. Such a space is neither included in nolutdesL? and we
have thus resolved the paradox. However, it still remainse®een how traces
and determinants are calculated.

The linear hyperbolic fixed point example 23.6 is somewhateading, as we
have made explicit use of a map that acts independently #h@gtable and unsta-
ble directions. For a more general hyperbolic map, ther@iway to implement
such direct product structure, and the whole argument #gdbst. Her comes an
idea; use the analyticity of the map to rewrite the PerrombEnius operator acting
as follows (wherer denotes the sign of the derivative in the unstable direftion

B o h(w, wo) dwy dw,
iz, z) = 5656 (2 — fo(wa, Wo)(Fa(We, Wo) — 22) 2ni 2 ° (23.26)
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Figure 23.4: For an analytic hyperbolic map, specify-
ing the contracting coordinate, at the initial rectangle )
and the expanding coordinatgat the image rectangle W - ////,
defines a unique trajectory between the two rectangles. .—
In particular,w, andz, (not shown) are uniquely spec- W
ified. ' h

Here the functionp should belong to a space of functions analytic respectively
outsidea disk andinsidea disk in the first and the second coordinates; with the
additional property that the function decays to zero as tis¢ dbordinate tends

to infinity. The contour integrals are along the boundariethese disks. It is

an exercise in multi-dimensional residue calculus to yetigat for the above lin-
ear example this expression reduces to (23.9). Such opefaton the building
blocks in the calculation of traces and determinants. Onguoave the following:

Theorem: The spectral determinant f@—dimensional hyperbolic analytic maps
is entire. remark 23.8

The proof, apart from the Markov property that is the sameoashfe purely
expanding case, relies heavily on the analyticity of the nimaghe explicit con-
struction of the function space. The idea is to view the higpkcity as a cross
product of a contracting map in forward time and another rating map in back-
ward time. In this case the Markov property introduced alia&to be elaborated
a bit. Instead of dividing the state space into interval® divides it into rectan-
gles. The rectangles should be viewed as a direct producttedfvals (say hori-
zontal and vertical), such that the forward map is contrgcin, for example, the
horizontal direction, while the inverse map is contractimghe vertical direction.
For Axiom A systems (see remark 23.8) one may choose codedarees close
to the stabl@instable manifolds of the map. With the state space divided i
N rectangleS M1, Mo, ..., Mn}, Mi = Iih x I one needs a complex extension
Dih x DY, with which the hyperbolicity condition (which simultanggy guaran-
tees the Markov property) can be formulated as follows:

Analytic hyperbolic propertyEither f(M;) N Int(M;) = 0, or for each pair
Wh € CI(Dih), Z, € CI(D‘J.’) there exist unique analytic functions wf, z,; W, =
Wy(Wh, 2,) € Int(D}), 2z, = zy(Wh,2) € Int(D'j‘), such thatf (wn, W) = (zv, 2,).
Furthermore, ifv, € 1" andz, € 1Y, thenwy € 1Y andz, € Ijh (see figure 23.4).

In plain English, this means for the iterated map that onéacgs the coor-
dinatesz,, z, at timen by the contracting paiz,, wy, wherew, is the contracting
coordinate at tima + 1 for the ‘partial’ inverse map.

In two dimensions the operator in (23.26) acts on functiamaslydic outside
Dih in the horizontal direction (and tending to zero at infinignd insideD;’ in
the vertical direction. The contour integrals are pregisgbng the boundaries of
these domains.
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A map f satisfying the above condition is calledhalytic hyperbolicand the
theorem states that the associated spectral determinamiiis, and that the trace
formula (18.8) is correct.

Examples of analytic hyperbolic maps are provided by smalic pertur-
bations of the cat map, the 3-disk repeller, and thedZmensionabaker’s map.

23.6 Thephysics of eigenvalues and eigenfunctions

,
J We appreciate by now that any honest attempt to look at thetrsph@rop-
erties of the Perron-Frobenius operator involves hard emttics, but theféort
is rewarded by the fact that we are finally able to control thel\gicity properties
of dynamical zeta functions and spectral determinants,tlns! substantiate the
claim that these objects provide a powerful and well-fouhgerturbation theory.

Often (see chapter 17) physically important part of the spet is just the
leading eigenvalue, which gives us the escape rate fromedleepor, for a gen-
eral evolution operator, formulas for expectation valueslservables and their
higher moments. Also the eigenfunction associated to tding eigenvalue has
a physical interpretation (see chapter 16): it is the dgmdithe natural measures,
with singular measures ruled out by the proper choice oftinetfon space. This
conclusion is in accord with the generalized Perron-Fralsetheorem for evolu-
tion operators. In the finite dimensional setting, such ard® is formulated as
follows: remark 23.7

e Perron-Frobenius theorem: Let L;; be a nonnegative matrix, such that
somen exists for which [");; > 0 Vi, j: then

1. The maximal modulus eigenvalue is non-degenerate ne@lpasitive

2. The corresponding eigenvector (defined up to a constasthonneg-
ative coordinates

We may ask what physical information is contained in eigkres beyond the
leading one: suppose that we have a probability conseryiates (so that the
dominant eigenvalue is 1), for which the essential spectdius satisfies <
Pess< 0 < 1 on some Banach spa#ge Denote byP the projection corresponding
to the part of the spectrum inside a disk of radiudNVe denote b1, A2..., Aum
the eigenvalues outside of this disk, ordered by the sizéaf absolute value,
with 11 = 1. Then we have the following decomposition

M
Lo = ) Awilivie + PLy (23.27)
i=1

whenlL; are (finite) matrices in Jordan canomical forby & 0 is a [1x 1] matrix,
asp is simple, due to the Perron-Frobenius theorem), whepeasa row vector
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whose elements form a basis on the eigenspace correspotadihigandy; is
a column vector of elements @&* (the dual space of linear functionals o8y
spanning the eigenspace 6f corresponding tolj. For iterates of the Perron-
Frobenius operator, (23.27) becomes

M
L = " Ayilluie + PLY. (23.28)
i=1

If we now consider, for example, correlation between ihigi@volvedn steps and
final &,

LN = fM dy£(y) (L) (y) = fM dw(& o f)(Wew), (23.29)

it follows that
L
€L = Hur(E0) + Y V(€ ¢) + 00, (23.30)
i=2
where

) = [ dveLivie.
M

The eigenvalues beyond the leading one provide two piecasfaimation:
they rule the convergence of expressions containing higiepoof the evolution
operator to leading order (th& contribution). Moreover ifw1(£,¢) = 0 then exercise 23.7
(23.29) defines a correlation function: as each term in (3vanishes exponen-
tially in the n — oo limit, the eigenvaluesl,, ..., 1y determine the exponential
decay of correlations for our dynamical system. The prefaet depend on the
choice of functions, whereas the exponential decay ratesr(dpy logarithms of
A;) do not: the correlation spectrum is thusimiversalproperty of the dynamics
(once we fix the overall functional space on which the PeFarbenius operator
acts).

Example 23.9 Bernoulli shift eigenfunctions: Let us revisit the Bernoulli shift ex-
ample (23.6) on the space of analytic functions on a disk: apart from the origin we have
only simple eigenvalues A = 2°¥, k = 0,1,.... The eigenvalue 1o = 1 corresponds to

probability conservation: the corresponding eigenfunction Bo(X) = 1 indicates that the
natural measure has a constant density over the unit interval. If we now take any ana-
lytic function n(X) with zero average (with respect to the Lebesgue measure), it follows
that wi(n,n) = 0, and from (23.30) the asymptotic decay of the correlation function is
(unless also w1(n,n) = 0)

C,n(nN) ~ exp(nlog2). (23.31)
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Thus, —log; gives the exponential decay rate of correlations (with a prefactor that
depends on the choice of the function). Actually the Bernoulli shift case may be treated
exactly, as for analytic functions we can employ the Euler-MacLaurin summation for-
mula

n@ = fo ' dwr(w) + i ”(mfl)(l)n‘q,”(mfl)(o) Bu(2). (23.32)
m=1 )

As we are considering functions with zero average, we have from (23.29) and the fact
that Bernoulli polynomials are eigenvectors of the Perron-Frobenius operator that

© —m\n(,,(m) _ (m 1
Cy(M) = Z 2)"@™ (1) - 7™(0)) fo 420(2Bu(?) .
m=1

m!

The decomposition (23.32) is also useful in realizing that the linear functionals y; are
singular objects: if we write it as

@ =) Bu@unlnl.,
m=0
we see that these functionals are of the form

1
ilel = | dw¥ .
vilel fo W (W)e(w)

where

P (w) = (_Il—,)l (6 Dw-1)- 6 Dw)) , (23.33)

wheni > 1 and Wo(w) = 1. This representation is only meaningful when the function
is analytic in neighborhoods of w,w — 1.

23.7 Troublesahead

The above discussion confirms that for a series of examplaxmasing gener-
ality formal manipulations with traces and determinantsjastified: the Perron-
Frobenius operator has isolated eigenvalues, the traneufas are explicitly ver-
ified, and the spectral determinant is an entire function sehreroes yield the
eigenvalues. Real life is harder, as we may appreciate ghrole following
considerations:

e Our discussion tacitly assumed something that is phygieallirely reason-
able: our evolution operator is acting on the space of aitdiyhctions, i.e.,
we are allowed to represent the initial dengify) by its Taylor expansions
in the neighborhoods of periodic points. This is howeveilfiiam being the exercise 23.1
only possible choice: mathematicians often work with thecfion space
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essential spectrum

Figure 23.5: Spectrum of the Perron-Frobenius oper
ator acting on the space @*** Holder-continuous
functions: onlyk isolated eigenvalues remain betwee
the spectral radius, and the essential spectral rad
which bounds the “essential,” continuous spectrum.

ck+e e, the space df times diferentiable functions whodéth deriva-
tives are Holder continuous with an exponent @ < 1: then every” with
Ren > kis an eigenfunction of the Perron-Frobenius operator antiave

1

L= A

vy, necC.

This spectrum dfers markedly from the analytic case: only a small number
of isolated eigenvalues remain, enclosed between therapeadius and a
smaller disk of radius AJA[<*1, see figure 23.5. In literature the radius of
this disk is called thessential spectral radius

In sect. 23.4 we discussed this point further, with the aic ¢éss trivial

1 - dimensionalexample. The physical point of view is complementary

to the standard setting of ergodic theory, where many cbaotiperties of

a dynamical system are encoded by the presenceon@nuousspectrum,

used to prove asymptotic decay of correlations in the spade€ square-

integrable functions. exercise 23.2

e A deceptively innocent assumption is hidden beneath muahwtlas dis-
cussed so far: that (23.1) maps a given function space isedf.itTheex-
panding property of the map guarantees that: f{{x) is smooth in a do-
main D then f(x/A) is smooth on darger domain, providedA| > 1. For
higher-dimensional hyperbolic flows this is not the casel, @s we saw in
sect. 23.5, extensions of the results obtained for expgriindimensional
maps are highly nontrivial.

e Itis not at all clear that the above analysis of a simple o&dh, one fixed
point repeller can be extended to dynamical systems withtdCaets of
periodic points: we showed this in sect. 23.4.

Résumé

Examples of analytic eigenfunctions foldimensionamaps are seductive, and
make the problem of evaluating ergodic averages appear jegsyntegrate over
the desired observable weighted by the natural measuh¢?rigo, generic natural
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measure sits on a fractal set and is singular everywhere.pdhm of this book
is that you neveneed to construct the natural measure, cycle expansiohgavil
that job.

A theory of evaluation of dynamical averages by means ofetfacmulas
and spectral determinants requires a deep understanditigeiofanalyticity and
convergence. We worked here through a series of examples:

1. exact spectrum (but for a single fixed point of a linear map)
2. exact spectrum for a locally analytic map, matrix repnéston

3. rigorous proof of existence of discrete spectrum ferddmensionahyper-
bolic maps

In the case of especially well-behaved “Axiofti systems, where both the
symbolic dynamics and hyperbolicity are under control,sitpossible to treat
traces and determinants in a rigorous fashion, and strosgtseabout the ana-
lyticity properties of dynamical zeta functions and spalotieterminants outlined
above follow.

Most systems of interest aret of the “axiom A’ category; they are neither
purely hyperbolic nor (as we have seen in chapters 11 and @2hey have finite
grammar. The importance of symbolic dynamics is generaibgsgly unappreci-
ated; the crucial ingredient for nice analyticity propestiof zeta functions is the
existence of a finite grammar (coupled with uniform hypeid).

The dynamical systems which areally interesting - for example, smooth
bounded Hamiltonian potentials - are presumably nevey feitlaotic, and the
central question remains: How do we attack this problem ilysdesnatic and
controllable fashion?
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Theorem: Conjecture 3 with technical hypothesis is true
in a lot of cases.

— M. Shub

Commentary

Remark 23.1 Surveys of rigorous theory. We recommend the references listed in re-
mark 1.1 for an introduction to the mathematical literatomghis subject. For a physicist,
Driebe’s monograph [1.19] might be the most accessibl®dhtction into mathematics
discussed briefly in this chapter. There are a number of we/ the mathematical ap-
proach to dynamical zeta functions and spectral deterngnaiith pointers to the original
references, such as refs. [23.1, 23.2]. An alternativeeagugr to spectral properties of the
Perron-Frobenius operator is given in ref. [23.3].

Ergodic theory, as presented by Sinai [23.14] and othenspt® one to describe the
densities on which the evolution operator acts in terms tifegiintegrable or square-
integrable functions. For our purposes, as we have alreagly, $his space is not suitable.
An introduction to ergodic theory is given by Sinai, Korrdednd Fomin [23.15]; more
advanced old-fashioned presentations are Walters [2ari@Denker, Grillenberger and
Sigmund [23.16]; and a more formal one is given by Petersari[Z. W. Tucker [23.28,
23.29, 23.30] has proven rigorously via interval arithroghiat the Lorentz attractor is
strange for the original parameters, and has a long stabledie orbit for the slightly
different parameters.

Remark 23.2 Fredholm theory. Our brief summary of Fredholm theory is based on
the exposition of ref. [23.4]. A technical introduction dfet theory from an operator
point of view is given in ref. [23.5]. The theory is preseniaca more general form in
ref. [23.6].

Remark 23.3 Bernoulli shift. ~ For a more in-depth discussion, consult chapter 3 of
ref. [1.19]. The extension of Fredholm theory to the case emBulli shift onCk®

(in which the Perron-Frobenius operatornst compact — technically it is onlguasi-
compact That is, the essential spectral radius is strictly smalan the spectral radius)
has been given by Ruelle [23.7]: a concise and readablevgtateof the results is con-
tained in ref. [23.8]. We see from (23.31) that for the Beftiahift the exponential
decay rate of correlations coincides with the Lyapunov egmt: while such an identity
holds for a number of systems, it is by no means a generaltyesu there exist explicit
counterexamples.

Remark 23.4 Hyperbolic dynamics. When dealing with hyperbolic systems one might
try to reduce to the expanding case by projecting the dynaaling the unstable direc-
tions. As mentioned in the text this can be quite involvedhitécally, as such unstable
foliations are not characterized by strong smoothnesseuti@s. For such an approach,
see ref. [23.3].

Remark 23.5 Spectral determinants for smooth flows.  The theorem on page 446
also applies to hyperbolic analytic mapsdndimensions and smooth hyperbolic ana-
lytic flows in (d + 1) dimensions, provided that the flow can be reduced to a pisee
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analytic map by a suspension on a Poincaré section, corepleah by an analytic “ceil-
ing” function (3.5) that accounts for a variation in the s@cteturn times. For example, if
we take as the ceiling functiay(x) = €™, whereT (x) is the next Poincaré section time
for a trajectory staring ax, we reproduce the flow spectral determinant (19.13). Proofs
are beyond the scope of this chapter.

Remark 23.6 Explicit diagonalization. For 1-dimensionatepellers a diagonalization
of an explicit truncated , matrix evaluated in a judiciously chosen basis may yieldynan
more eigenvalues than a cycle expansion (see refs. [233101R. The reasons why one
persists in using periodic orbit theory are partially aesthand partially pragmatic. The
explicit calculation ofL,, demands an explicit choice of a basis and is thus non-inviaria
in contrast to cycle expansions which utilize only the imaatinformation of the flow. In
addition, we usually do not know how to constriigt, for a realistic high-dimensional
flow, such as the hyperbolic 3-disk game of pinball flow of s&c8, whereas periodic
orbit theory is true in higher dimensions and straightfaichvi@a apply.

Remark 23.7 Perron-Frobenius theorem. A proof of the Perron-Frobenius theo-
rem may be found in ref. [23.12]. For positive transfer opers, this theorem has been
generalized by Ruelle [23.13].

Remark 23.8 Axiom A systems. The proofs in sect. 23.5 follow the thesis work of
H.H. Rugh [23.9, 23.18, 23.19]. For a mathematical intrdiguncto the subject, consult
the excellent review by V. Baladi [23.1]. It would take us faoafield to give and explain
the definition of Axiom A systems (see refs. [1.27, 1.28]).idxr A implies, however,
the existence of a Markov partition of the state space frontlwthe properties 2 and 3
assumed on page 435 follow.

Remark 23.9 Left eigenfunctions. We shall never use an explicit form of left eigen-
functions, corresponding to highly singular kernels [iR8.33). Many details have been
elaborated in a number of papers, such as ref. [23.20], withreng physical interpreta-
tion.

Remark 23.10 Ulam’sidea. The approximation of Perron-Frobenius operator defined
by (16.14) has been shown to reproduce the spectrum for dikpgamaps, once finer
and finer Markov partitions are used [23.21]. The subtle pofrchoosing a state space
partitioning for a “generic case” is discussed in ref. [23.2
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Exercises

23.1. What space does £ act on? Show that (23.2) is a
complete basis on the space of analytic functions on a
disk (and thus that we found tlmmpleteset of eigen-
values).

23.2. What space does £ act on?  What can be said about
the spectrum of (23.1) oh*[0, 1]? Compare the result

with figure 23.5.

23.3. Euler formula.

lu < 1:

Derive the Euler formula (23.5),

= t t2u
1+ tuf 1
l.;!( ) Tt awa-w®

t3ud

T-oa-wa-w
o k(k-1)

K uz
2 Ty

23.5.

23.6.

T

23.4. 2-dimensionaproduct expansion*. \We conjecture 23.7.
that the expansion corresponding to exercise 23.3 is in
the 2— dimensionatase given by

1_[(1 + tuk)k+l
k=0

References

Fi(u)
W@)2---(1— U2
1+ t+ 2 t?
(1-uw? (1-uwX1-uw)?
U?(1+ 4u+ u?) 3
o wa-wra-wp T

S k
2 T t
1

Fk(u) is a polynomial inu, and the cofiicients fall af
asymptotically a£, ~ un’?, Verify; if you have a proof

to all orders, e-mail it to the authors. (See also solu-
tion 23.3).

Bernoulli shift on L spaces. Check that the family
(23.21) belongs td.*([0, 1]). What can be said about
the essential spectral radius bf([0, 1])? A useful ref-
erence is [23.24].

Cauchy integrals. Rework all complex analysis steps
used in the Bernoulli shift example on analytic functions
on a disk.

Escaperate. Consider the escape rate from a strange
repeller: find a choice of trial functions and ¢ such
that (23.29) gives the fraction on particles surviving afte

n iterations, if their initial density distribution igg(X).
Discuss the behavior of such an expression in the long
time limit.
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