Chapter 10

Relativity for cyclists

(]
, ’\
HAT IF THE LAWS OF MOTION retain their form for a family of coordinate fra-
mes related bgontinuoussymmetries? The notion of ‘fundamental do-
main’ is of no use here. If the symmetry is continuous, theadyical

system should be reduced to a lower-dimensional, desynmaétsystem, with
‘ignorable’ coordinates eliminated (but not forgotten).

We shall describe here two ways of reducing a continuous sgtmymin the
‘method of slices’ or ‘moving frames’ of sect. 10.4 we slide tstate space in
such a way that an entire class of symmetry-equivalent pasntepresented by a
single point. In the Hilbert polynomial basis approach afts&0.5 we replace the
equivariant dynamics by the dynamics rewritten in termswgéiiant coordinates.
In either approach we retain the option of computing in thgioal coordinates,
and then, when done, projecting the solution onto the symynretiuced state
space.

Instead of writing yet another tome on group theory, in windlbfvs we con-
tinue to serve group theoretic nuggets on need-to-knowsptsough a series of
pedestrian examples (but take a slightly higher, cycliatirim the text proper).

10.1 Continuous symmetries

First of all, why worry about continuous symmetries? Heransexample of exercise 10.1
the dfect a continuous symmetry has on dynamics (for physics lvaokd, see exercise 10.2
remark 10.2).

Example 10.1 Complex Lorenz flow: Consider a complex generalization of Lorenz
equations (2.12),
X = -—-oX+oy, y = (o—2)x—ay

(Xy" +X'y)/2 - bz, (10.1)
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Figure 10.1: Atypical {xy, X, Z} trajectory of the com-

plex Lorenz flow, with a short trajectory of figure 10.4
whose initial point is close to the relative equilibriur
TW; superimposed. See also figure 10.7. (R. Wilczal

where X,y are complex variables, z is real, while the parameters o, b are real and
p = p1+ip2, a=1-ie are complex. Recast in real variables, this is a set of five coupled

ODEs
).(1 = —0Xy1+0oYy1
).(2 = —0X2+0Y2
Vi = (p1-2X1—p2Xa—Y1— €y
Y2 = paXa+(o1—2)X+ey -y
Z = —bz+xy1 + Xye. (10.2)

In all numerical examples that follow, the parameters will be settop; = 28, p2 =0, b =
8/3, 0 = 10, e = 1/10, unless explicitly stated otherwise. As we shall show in ex-
ample 10.7, this is a dynamical system with a continuous (but no discrete) symmetry.
Figure 10.1 offers a visualization of its typical long-time dynamics. It is a mess. In the
rest of this chapter we shall investigate various ways of ‘quotienting’ its SQ2) symme-
try, and reducing the dynamics to a 4-dimensional reduced state space. As we shall
show here, the dynamics has a nice ‘stretch & fold’ action, but that is totally masked
by the continuous symmetry drifts. We shall not rest until we attain the simplicity of
figure 10.12, and the bliss of 1-dimensional return map of figure 10.14.

In a presence of a continuous symmetry an orbit can explaartanifold
swept by combined action of the dynamics and the symmetrycied drifts. Fur-
ther problems arise when we try to determine whether an statlows another
orbit (see the figure 13.1 for a sketch of a close pass to agiermobit), or develop
symbolic dynamics (partition the state space, as in chdgdterhere a 1-dimens-
ional trajectory is replaced by &l1)-dimensional ‘sausage, a dimension for each
continuous symmetnyN being the total number of parameters specifying the con-
tinuous transformation, and ‘1’ for the time paramedeHow are we to measure
distances between such objects? We shall develop here liwonenating visual-
izations of such flow than figure 10.1, learn how to ‘quotighir symmetries,
and dfer computationally straightforward methods of reducing ttynamics to
lower-dimensional, reduced state spaces. The method$dsigo be applicable
to high-dimensional flows, such as translationally invatrifiuid flows bounded
by pipes or planes (see example 10.4).
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But first, a lightning review of the theory of Lie groups. Thegp-theoretical
concepts of sect. 9.1 apply to compact continuous groupshtsamd will not be
repeated here. All the group theory that we shall need isiicjple contained in
the Peter-Weyl theorepand its corollaries: A compact Lie gropis completely
reducible, its representations are fully reducible, evemynpact Lie group is a
closed subgroup of a unitary grol{n) for somen, and every continuous, unitary,
irreducible representation of a compact Lie group is finitaehsional.

Example 10.2 Special orthogonal group  SO(2) is a group of length-preserving
rotations in a plane. ‘Special’ refers to requirement that detg = 1, in contradistinction
to the orthogonal group O(n) which allows for detg = +1. A group element can be
parameterized by angle 6, with the group multiplication law g(8)g(6) = g(¢’ + 6), and its
action on smooth periodic functions u(6 + 2r) = u(6) generated by

@) =¢€T, T= (10.3)

d
do’
Expand the exponential, apply it to a differentiable function u(6), and you will recognize
a Taylor series. So g(&') shifts the coordinate by ¢, g(¢") u(@) = u(® + 0).

Example 10.3 Translation group: Differential operator T in (10.3) is reminiscent of
the generator of translations. Indeed, for a constant velocity field v(X) = ¢ - T the time
evolution is nothing but a translation by (time x velocity):

eeTu(x) = e "CHu(x) = u(x — 7). (10.4)

As X is a point in the Euclidean RY space, the group is not compact. In general, a
sequence of time steps in time evolution always forms an Abelian Lie group, albeit
never as trivial as this free ballistic motion.

If the group actions consist of N rotations which commute, for example act on
an N-dimensional cell with periodic boundary conditions, the group is an Abelian group
that acts on a torus TN,

Example 10.4 Continuous symmetries of the plane Couette flow. (continued
from example 9.5) The plane Couette flow is a Navier-Stokes flow bounded by two
countermoving planes, in a cell periodic in streamwise and spanwise directions. Every
solution of Navier-Stokes equations belongs, by the SQ2) x SQ2) symmetry, to a 2-
torus T? of equivalent solutions. Furthermore these tori are interrelated by a discrete D»
group of spanwise and streamwise flips of the flow cell. (continued in example 10.10)

Let G be a group, andM — M a group action on the state spaké The
[dxd] matricesg acting on vectors in thé-dimensional state spack( form a
linear representation of the gro@ If the action of every elemerof a groupG
commutes with the flow

M) =vgx). gt (x) = (g9, (10.5)
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Figure 10.2: The group orbitM, ) of state space point
X(0), and the group orbit,y) reached by the trajec-
tory x(t) timet later. Any point on the manifoldi,
is physically equivalent to any other.

G is a symmetry of the dynamics, and, as in (9.6), the dynansicgid to be
invariant undeiG, or G-equivariant

In order to explore the implications of equivariance for gwdutions of dy-
namical equations, we start by examining the way a compacgtéup acts on
state spacé\. For anyx € M, thegroup orbit My of x is the set of all group
actions (see page 148 and figure 10.2)

My ={gx|geG}. (10.6)

As we saw in example 10.3, the time evolution itself is a nomgact 1-
parameter Lie group. Thus the time evolution and the cootisusymmetries
can be considered on the same Lie group footing. For a givaa space point
x a symmetry group oN continuous transformations together with the evolution
in time sweeps out, in general, a smooki+({)-dimensional manifold of equiv-
alent solutions (if the solution has a nontrivial symmeting manifold may have
a dimension less thaN + 1). For solutionsp for which the group orbit ok, is
periodic in timeT p,, the group orbit sweeps outtampactnvariant manifoldM,.
The simplest example is thé = 0, no symmetry case, where the invariant mani-
fold M, is the 1-torus traced out by a periodic trajectqrylf M is a smootiC*
manifold, andG is compact and acts smoothly @, the reduced state space can
be realized as a ‘stratified manifold,” meaning that eaclugrorbit (a ‘stratum’)
is represented by a point in the reduced state space, sed 8ekt Generalizing
the description of a non—wandering set of sect. 2.1.1, welsayfor flows with
continuous symmetries the non—wanderingetf dynamics (2.2) is the closure
of the set of compact invariant manifoldd,. Without symmetries, we visualize
the non—wandering set as a set of points; in presence of muoonos symmetry,
each such ‘point’ is a group orbit.

10.1.1 Lie groups for pedestrians

[...] which is an expression of consecration of ‘angular
momentum.

— Mason A. Porter’s student
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Definition: A Lie group is a topological grougs such that ()G has the struc-
ture of a smooth dierential manifold, and (ii) the composition m&x G — G :
(9,h) — ghtis smooth, i.e.C™ differentiable.

Do not be mystified by this definition. Mathematicians alseehto make
a living. Historically, the theory of compact Lie groups thee will deploy here
emerged as a generalization of the theory of SO(2) rotatiams Fourier analysis.
By a ‘smooth diferential manifold’ one means objects like the circle of asdhat
parameterize continuous rotations in a plane, example ©0tBe manifold swept
by the three Euler angles that parameterize SO(3) rotations

An element of a compact Lie group continuously connectedeatity can be
written as

9o)=€T,  0-T=) 0aTa a=12---,N, (10.7)

whered - T is aLie algebraelement, and, are the parameters of the transforma-
tion. Repeated indices are summed throughout this chagptdrthe dot product
refers to a sum over Lie algebra generators. The Euclidiadymt of two vectors

x,y will be indicated byx-transpose timey, i.e., X'y = Zid XVi. Unitary trans-
formations expf - T) are generated by sequences of infinitesimal steps of form

960 ~1+60-T, 60eRN, |60 <1, (10.8)

where T, the generatorsof infinitesimal transformations, are a set of linearly
independentdxd] anti-hermitian matrices, )" = —T,, acting linearly on the
d-dimensional state spadg®l. In order to streamline the exposition, we postpone
discussion of combining continuous coordinate transfdiona with the discrete

ones to sect. 10.2.1. exercise 10.3

For continuous groups the Lie algebra, i.e., the seNafeneratorsT 5 of
infinitesimal transformations, takes the role that|tBggroup elements play in the
theory of discrete groups. The flow field at the state spacet panduced by the
action of the group is given by the setMftangent fields

ta(X)i = (Ta)ijX; - (10.9)

Any representation of a compact Lie gro@is fully reducible, and invariant
tensors constructed by contractionsTof are useful for identifying irreducible
representations. The simplest such invariant is

T .T=Y ¢ 1@, (10.10)
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whereC(z") is the quadratic Casimir for irreducible representatidoelada, and
1) js the identity on ther-irreducible subspace, 0 elsewhere. The dot product of
two tangent fields is thus a sum weighted by Casimirs,

)7 - t(x) = > C¥x (7. (10.11)
@
Example 10.5 SO(2) irreducible representations: (continued from example 10.2) Ex-

pand a smooth periodic function u(6 + 2r) = u(6) as a Fourier series

u(o) = Z (ul™ cosms + u” sinmy) . (10.12)

m=0

The matrix representation of the SQ(2) action (10.3) on the mth Fourier coefficient pair
(CRATRIS

Moy _ [ COSMP sinmy’
gv(e) = ( N (10.13)
with the Lie group generator
m _ 0 m
T _ ( o ) (10.14)

The SQ(2) group tangent (10.9) to state space point u(6) on the mth invariant subspace

IS
() = ( _rr:]ﬁ:i) ) (10.15)

The L? norm of t(u) is weighted by the SQ(2) quadratic Casimir (10.10), C;m) = e,

§ & uorTuzn-0 - 3 (W ). @019

m=1

and converges only for sufficiently smooth u(f). What does that mean? We saw in
(10.4) that T generates translations, and by (10.14) the velocity of the mth Fourier
mode is m times higher than for the m = 1 component. If |u™| does not fall off faster
the 1/m, the action of SQ2) is overwhelmed by the high Fourier modes.

Example 10.6 SO(2) rotations for complex Lorenz equations: Substituting the
Lie algebra generator

01 0 00
10 0 00

T=0 0 0 10 (10.17)
0 0-100
0 00 00O
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acting on a 5-dimensional space (10.2) into (10.7) yields a finite angle SQO(2) rotation:

cosfd sing 0 0 0
—sing cosh 0 0 0
g(o) = 0 0 co¥ sing O |. (10.18)
0 0 -sind cosd O
0 0 0 0 1

From (10.14) we see that the action of SQ2) on the complex Lorenz equations state
space decomposes into m = 0 G-invariant subspace (z-axis) and m = 1 subspace with
multiplicity 2.

The generator T is indeed anti-hermitian, T* = =T, and the group is compact,
its elements parametrized by 6 mod 2r. Locally, at x € M, the infinitesimal action of the
group is given by the group tangent fieldt(X) = Tx = (Xz, —X1, Y2, —Y1, 0). In other words,
the flow induced by the group action is normal to the radial direction in the (X, X2) and
(v1, ¥2) planes, while the z-axis is left invariant.

fast track:
W sect. 10.2, p. 175
10.1.2 Lie groups for cyclists

Here comes all of the theory of Lie groups in one quick serviivgu will live ﬁ)
even if you do not digest this section, or, to spell it out;psthis section unless
you already know the theory of Lie algebras.

The [dxd] matricesg acting on vectors in the state spas¢ form a linear
representation of the group. Tensors transform as

ik =g gi g 1. (10.19)

A multilinear functionh(q, 7, ..., s) is an invariant function if (and only if) for any
transformationg € G and for any set of vectorg, 1, s, ... it is unchanged by the
coordinate transformation

a.b

h(@6,ar,...g9 = h(G,7,...,8) = hap.. °r° - <. (10.20)

Examples of such invariant functions are the leng)® = 6i’ X Xj and the volume
V(x,Y, 2) = €*xy;z. Substitute the infinitesimal form of group action (10.8pin
(10.19), keep the linear terms. In the index-notation l@rgh the Lie algebra
generator acts on each index separately,

(T o+ (T by < = (Tafhy -+ =0. (10.21)

Hence the tensd1ij__ ~kis invariant if Tzh = 0, i.e., theN generatordl 5 ‘annihi-
late’ it.
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As one does not want the symmetry rules to change at everythgenera-
torsTg,a=12,...,N, are themselves invariant tensors:

(Ta)| =079 Gaar (Tar) | - (10.22)

wheregap = [e“g'c]ab is the adjoint Nx N] matrix representation of € G. The
[dxd] matricesT 5 are in general non-commuting, and from (10.21) it followatth
they closeN-elementLie algebra

[Ta, To] = TaTo = TpTa= —Canclec, abc=12.,N,
where the fully antisymmetric adjoint representation higem generators
[Cc] ab = Cabc = —Cpac = —Cacb

are thestructure constantef the Lie algebra.

As we will not use non-Abelian Lie groups in this chapter, weittthe deriva-
tion of the Jacobi relation betwe€lj, s, and you can safely ignore all this talk of
tensors and Lie algebra commutators as far as the pedespgdications at hand
are concerned.

10.1.3 Equivariance under infinitesimal transformations

A flow X = v(X) is G-equivariant (10.5) if exercise 10.5
exercise 10.6

v(x) =g tv(gXx), forallge G. (10.23)

For an infinitesimal transformation (10.8) tleequivariance condition becomes
dv
VX)) =1-60-T)V(X+6-TX)+---=v(X) —6-Tw(X) + &G.Tx+--- .

Thev(x) cancel, andi, are arbitrary. Denote thgroup flow tangent fielat x by
ta(X)i = (Ta)i’x;. Thus the infinitesimal, Lie algeb@-equivariance condition is

ta(v) — A(¥) ta(X) = 0, (10.24)

where A = 9v/ox is the stability matrix (4.3). If case you find such learned
remarks helpful: the left-hand side of (10.24) is the derivativeof the dynamical
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flow field v along the direction of the infinitesimal group-rotation ureéd flow
ta(X) = TaX,

(10.25)

0
L,V = (Ta - _(Tax)) v(y)
oy yox
exercise 10.7
. . .. . exercise 10.8
The equivariance condition (10.24) states that the two flems induced by theeyercise 10.9
dynamical vector field,, and the other by the group tangent fi¢lcommute if

their Lie derivatives (or the ‘Lie brackets ’ or ‘Poisson bkats’) vanish.

Example 10.7 Equivariance of complex Lorenz flow: That complex Lorenz flow
(10.2) is equivariant under SQ(2) rotations (10.18) can be checked by substituting the
Lie algebra generator (10.17) and the stability matrix (4.3) for complex Lorenz flow

(10.2),
- 0 o 0 0
0 -0 0 o 0
A=| p1-z —-p2 -1 -e -x |, (10.26)
p2 p1—-z e -1 -x
Y1 Yo X1 % -b

into the equivariance condition (10.24). Considering that t(v) depends on the full set of
equations (10.2), and A(X) is only its linearization, this is not an entirely trivial statement.
For the parameter values (10.2) the flow is strongly volume contracting (4.47),

5
AV = Z A%t = —b—-2(c+1) = —24-2/3, (10.27)
i1
at a coordinate-, p- and e-independent constant rate.

Checking equivariance as a Lie algebra condition (10.2éager than checking
it for global, finite angle rotations (10.23).

10.2 Symmetries of solutions

Let v(x) be the dynamical flow, and™ the trajectory or ‘timer forward map’ of
an initial pointxg,

i v(X), X(1) = f7(Xg) = %o + fOTdT’ v(x(7")) . (10.28)

As discussed in sect. 9.2, solutior&) can be classified by their symmetries.
Generic trajectories have no symmetry, but recurrent gwistoften do. The sim-
plest solutions are thequilibria or steadysolutions (2.8).
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Figure 10.3: (a) A relative equilibrium orbitstarts
out at some poink(0), with the dynamical flow field
V(X) = ¢ - t(x) pointing along the group tangent space. X
For the SO(2) symmetry depicted here, the flow traces
out the group orbit of(0) in time T = 2x/c. (b) An
equilibrium lives either in the fixed FixG) subspace
(%3 axis in this sketch), or on a group orbit as the ong
depicted here, but with zero angular veloaityin that
case the circle (in generdll-torus) depicts a continu-
ous family of fixed equilibria, related only by the group
action.

v=cgt

Definition: Equilibrium  Xeq = Mgq is a fixed, time-invariant solution,

0,

XeQ + fOTdT’ V(X(7")) = Xeq - (10.29)

V(XeQ)

X(XEQ, T)

An equilibriumwith full symmetry,

g XeQ = XEQ forallge G,

lies, by definition, in FiXG) subspace (9.11), for example tke axis in fig-
ure 10.3 (a). The multiplicity of such solution is one. An gitpium Xxgg with
symmetryGgq smaller than the full grougs belongs to a group orb{s/Geq.

If G is finite there argG|/|Gegl equilibria in the group orbit, and iG is contin-

x(V)= () x(0)

X2

exercise 10.10
exercise 10.11

uous then the group orbit of is a continuous family of equilibria of dimension

dimG - dimGgq. For example, if the angular velocityin figure 10.3 (b) equals
zero, the group orbit consists of a circle of (dynamicallgtis) equivalent equi-
libria.

Definition: Relative equilibrium  solutionxrw(7) € Mtw: the dynamical flow
field points along the group tangent field, with constant tdag velocity c, and
the trajectory stays on the group orbit, see figure 10.3 (a):

V(X)

X(7)

c-t(x), X € Mrw
9(-7c)x(0) = € 7°TX(0). (10.30)

A traveling wave

X(t) = g(—cr) Xrw = Xrw— 7, ceRY (10.31)

exercise 10.12
exercise 10.13
exercise 10.14
exercise 10.15
exercise 10.16
exercise 10.17
exercise 10.18

is a special type of a relative equilibrium of equivarianblketion equations, where

the action is given by translation (10.4)y) x(0) = x(0) + y. A rotating waveis
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Figure 10.4: {xq, X,z plot of the complex Lorenz
flow with initial point close toT W;. In figure 10.1 this
relative equilibrium is superimposed over the stranc
attractor. (R. Wilczak)

another special case of relative equilibrium, with theacis given by angular ro-
tation. By equivariance, all points on the group orbit areiegjent, the magnitude
of the velocityc is same everywhere along the orbit, so a ‘traveling wave’ @sov
at a constant speed. For Bh> 1 trajectory traces out a line within the group
orbit. As thec, components are generically not in rational ratios, thestiajry
explores theN-dimensional group orbit (10.6) quasi-periodically. limet words,
the group orbitg(r) x(0) coincides with the dynamical orbi(r) € Mtw and is
thus flow invariant.

Example 10.8 A relative equilibrium: For complex Lorenz equations and our
canonical parameter values of (10.2) a computation yields the relative equilibrium T W
with a representative group orbit point

(X1, %2, Y1, 0, 21w = (8.484920.07713568.48562 0, 26.9999), (10.32)

and angular velocity crwi = 1/11. This corresponds to period Trwi = 2n/C =~ 69, so
a simulation has to be run up to time of order of at least 70 for the strange attractor in
figure 10.1 to start filling in.

Figure 10.4 shows the complex Lorenz flow with the initial point (10.32) on the
relative equilibrium TW. It starts out by drifting in a circle around the z-axis, but as the
numerical errors accumulate, the trajectory spirals out.

Calculation of the relative equilibrium stability reveals that it is spiral-out un-
stable, with the very short period Tspiras = 0.6163 This is the typical time scale for
fast oscillations visible in figure 10.1, with some 100 turns for one circumambulation
of the TW orbit. In that time an initial deviation from Xtw. is multiplied by the factor
Aradial = 500. It would be sweet if we could eliminate the drift time scale ~ 70 and focus
just on the fast time scale of ~ 0.6. That we will attain by reformulating the dynamics in
a reduced state space.

Definition: Periodic orbit. Let x be a periodic point on the periodic orlptof
periodT,
fT)=x, xeMp.

By equivarianceg x is another periodic point, with the orbits afandgx either
identical or disjoint.
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Figure 10.5: A periodic orbit starts out at(0) with the
dynamicalv and group tangerttflows pointing in dif-
ferent directions, and returns after timig to the initial
point x(0) = X(Tp). The group orbit of the temporal
orbit of x(0) sweeps out a AN)-dimensional torus, a
continuous family of equivalent periodic orbits, two of
which are sketched here. For SO(2) this is topolog
cally a 2-torus.

If gxlands on the same orbig is an element of periodic orbit's symmetry
group Gp. If the symmetry group is the full grou@, we are back to (10.30),
i.e., the periodic orbit is the group orbit traced out by atiee equilibrium. The
other option is that the isotropy group is discrete, thetabgmentx, gx} is pre-
periodic (or eventually periodic)x(0) = gpX(Tp), whereT, is a fraction of the
full period, T, = T/m, and thus

x(0)
x(0)

gpX(MTp) = X(T) = x(0). (10.33)

If the periodic solutions are disjoint, as in figure 10.5,itmaultiplicity (if G
is finite, see sect. 9.1), or the dimension of the manifoldgwmder the group
action (ifG is continuous) can be determined by applicationg efG. They form
a family of conjugate solutions (9.10),

Mgp=gMpygt. (10.34)

Definition: Relative periodic orbit pis an orbit M, in state space\l which
exactly recurs

Xp(0) = 9pXp(Tp) Xp(7) € Mp, (10.35)

at a fixedrelative period T, but shifted by a fixed group actiap which brings the
endpointx,(Tp) back into the initial poini,(0), see figure 10.6. The group action
Op parameters = (64, 6, - - - On) are referred to as “phases,” or “shifts.” In contrast
to the pre-periodic (10.33), the phase here are irratiaral, the trajectory sweeps
out ergodically the group orbit without ever closing into eripdic orbit. For
dynamical systems with only continuous (no discrete) syirie® the parameters
{t,01,---,6n} are real numbers, ratiog/'0; are almost never rational, likelihood of
finding a periodic orbit for such system is zero, and suchtiveaeriodic orbits
are almost never eventually periodic.

Relative periodic orbits are to periodic solutions whaatek equilibria (trav-

eling waves) are to equilibria (steady solutions). Equtilsatisfy f*(X) - x =0
and relative equilibria satisfy™(x) — g(r) x = 0 for anyr. In a co-moving frame,
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Figure 10.6: A relative periodic orbit starts out a{0)
with the dynamical and group tangeritflows point-
ing in different directions, and returns to the group or-
bit of x(0) after timeT, at x(T,) = g,x(0), a rotation of
the initial point byg,. For flows with continuous sym- -
metry a generic relative periodic orbit (not pre-periodic
to a periodic orbit) fills out ergodically what is topo-‘\\
logically a torus, as in figure 10.5; if you are able to
draw such a thing, kindly send us the figure. As il-
lustrated by figure 10.8 (a) this might be a project for
Lucas Films.

Figure 10.7: (Figure 10.1 continued) A group portrait
of the complex Lorenz equations state space dynami
Plotted are relative equilibriurm W, (red), its unsta-
ble manifold (brown), equilibriunEQy, one trajectory
from the group orbit of its unstable manifold (green), :
repetitions of relative periodic orb@1 (magenta) and
a generic orbit (blue). (E. Siminos)

i.e., frame moving along the group orbit with velocitfx) = c - t(x), the relative
equilibrium appears as an equilibrium. Similarly, a relatperiodic orbit is peri-
odic in its mean velocitg, = 6,/ T, co-moving frame (see figure 10.8), but in the
stationary frame its trajectory is quasiperiodic. A co-imgvframe is helpful in
visualizing a single ‘relative’ orbit, but useless for vieg collections of orbits,
as each one drifts with its own angular velocity. Visualiaatof all relative peri-
odic orbits as periodic orbits we attain only by global synmpeeductions, to be
undertaken in sect. 10.4.

Example 10.9 Complex Lorenz flow with relative periodic orbit: Figure 10.7 is
a group portrait of the complex Lorenz equations state space dynamics, with several
important players posing against a generic orbit in the background.

The unstable manifold of relative equilibrium TW, is characterized by a 2-
dimensional complex eigenvector pair, so its group orbit is a 3-dimensional. Only one
representative trajectory on it is plotted in the figure. The unstable manifold of equi-
librium EQy has one expanding eigenvalue, but its group orbit is a cone originating at
EQy. Only one representative trajectory on this cone is shown in the figure. It lands
close to TW;, and then spirals out along its unstable manifold. 3 repetitions of a short
relative periodic orbit 01 are drawn. The trajectory fills out ergodically a 2-dimensional
orbit Mo1. The assignment of its symbolic dynamics label will be possible only after the
symmetry reduction, see figure 10.14 and figure 11.9.
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Vo Vi V2 o

Figure 10.8: A relative periodic orbit of
Kuramoto-Sivashinsky flow projected on (a) the V3
stationary state space coordinate frawmev,, va},

traced for four periodsT,; (b) the co-moving
{V1,%,V3} coordinate frame, moving with the
mean angular velocitg, = 6,/Tp. (from

ref. [10.1]) (@) (b)
10.2.1 Discrete and continuous symmetries together

We expect to see relative periodic orbits because a trajethat starts on and
returns to a given torus of a symmetry equivalent solutigniikely to intersect
it at the initial point, unless forced to do so by a discretensetry. This we
will make explicit in sect. 10.4, where relative periodidits will be viewed as
periodic orbits of the reduced dynamics.

If, in addition to a continuous symmetry, one has a discrgitensetry which
is not its subgroup, one does expect equilibria and periodiits. However, a
relative periodic orbit can be pre-periodic if it is equilaant under a discrete sym-
metry, as in (10.33): I§™ = 1 is of finite orderm, then the corresponding orbit
is periodic with periodnT,. If g is not of a finite order, a relative periodic orbit
is periodic only after a shift by, as in (10.35). Morally, as it will be shown in
chapter 21, such orbit is the true ‘prime’ orbit, i.e., theghst segment that under
action ofG tiles the entire invariant submanifoli,,.

Example 10.10 Relative orbits in the plane Couette flow. (continued from
example 10.4) Translational symmetry allows for relative equilibria (traveling waves),
characterized by a fixed profile Eulerian velocity urw(X) moving with constant velocity
C ie.

u(x, 7) = urw(Xx — c7). (10.36)

As the plane Couette flow is bounded by two counter-moving planes, it is easy to see
where the relative equilibrium (traveling wave) solutions come from. A relative equi-
librium solution hugs close to one of the walls and drifts with it with constant velocity,
slower than the wall, while maintaining its shape. A relative periodic solution is a solu-
tion that recurs at time T, with exactly the same disposition of the Eulerian velocity fields
over the entire cell, but shifted by a 2-dimensional (streamwise,spanwise) translation
Op. By discrete symmetries these solutions come in counter-traveling pairs Ug(X — CT),
—Uq(—x + c1): for example, for each one drifting along with the upper wall, there is a
counter-moving one drifting along with the lower wall. Discrete symmetries also imply
existence of strictly stationary solutions, or ‘standing waves.” For example, a solution
with velocity fields antisymmetric under reflection through the midplane has equal flow
velocities in opposite directions, and is thus an equilibrium stationary in time.
chapter 21
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10.3 Stabilit
Yy o o

A spatial derivative of the equivariance condition (10.8Igs the matrix equiv-
ariance condition satisfied by the stability matrix (stabedle both for the finite

group actions, and for the infinitesimal, Lie algebra getes: exercise 10.19
exercise 10.20

oA

gAg 't =A@Y,  [TaAl= x e (10.37)

For a flow within the fixed FiXG) subspacef(x) vanishes, and the symmetry
imposes strong conditions on the perturbations out of tlkd®)i subspace. As
in this subspace stability matrik commutes with the Lie algebra generatdrs
the spectrum of its eigenvalues and eigenvectors is decesdpoto irreducible
representations of the symmetry group. This we have alredderved for the
EQ of the Lorenz flow in example 9.10.

A infinitesimal symmetry group transformation maps theiaiand the end
point of a finite trajectory into a nearby, slightly rotateguévalent points, so we
expect the perturbations along to group orbit to be margimih unit eigenvalues.
The argument is akin to (4.7), the proof of marginality oftpépations along a
periodic orbit. Consider two nearby initial points sepathby anN-dimensional
infinitesimal group transformation (10.8)Xy = g(660)Xy — Xo = 60 - TXg = 66 -
t(xo). By the commutativity of the group with the flog(6) f™(xg) = f7(g(660)xo).
Expanding both sides, keeping the leading termdnand using the definition of
the Jacobian matrix (4.6), we observe tl3afxp) transports theN-dimensional
group tangent space #{0) to the rotated tangent spacexét) at timer:

ta(r) = J7(0)ta(0),  ta(r) = TaX(1). (10.38)

For a relative periodic orbiigpx(Tp) = x(0), at any point along cyclp the group
tangent vectot,(7) is an eigenvector of the Jacobian matrix with an eigenvafue
unit magnitude,

Jpta(¥) = ta(X), Jo(¥) = gpd™P(X), xeMp. (10.39)

Two successive points along the cycle separatedxgy= 66 - t(r) have the same
separation after a completed periodT,) = gyoxo, hence eigenvalue of mag-
nitude 1. In presence of aN-dimensional Lie symmetry group\ eigenvalues

equal unity.

10.4 Reduced state space

Given Lie groupG acting smoothly on &% manifold M, thereduced state space
M/G is the set of equivalence classes, each class a group antie lliterature
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y(t)

N

x(t)

Figure 10.9: Two trajectoriesx(t), y(t) are equivalent
up to a group rotatiog(t) as long as they belong to the
same group orbitMyy.

this space is often rediscovered, and thus has many namsshérnatively called
‘desymmetrized state space,’ ‘orbit space,’ ‘quotientcgjeor ‘image space,’ ob-

tained by mapping equivariant dynamics to invariant dyreasnily methods such

as ‘moving frames,’ ‘cross sections,’ ‘slices,’ ‘freezjngilbert bases,’ ‘quotient- remark 10.1
ing, or ‘desymmetrization’

Symmetry reduction replaces a dynamical systé) {) with a symmetry by
a ‘desymmetrized’ system¥|, f), a system where each group orbit is replaced by
a point, and the action of the group is trivigly = yforally e M, g € G. The
reduced state spackl is sometimes called the ‘quotient spaget/G because
the symmetry has been ‘divided out.’” For a discrete symm#tey/reduced state
spaceM/G is given by the fundamental domain of sect. 9.4. In preserice o
continuous symmetry, the reduction /G amounts to a change of coordinates
where the ‘ignorable angle$ds, - - -, 0y} that parameteriz&l group translations
can be separated out.

We start our discussion of symmetry reduction by considgttire finite-rotations
method of moving frameand its diferential formulation, thenethod of slices

10.4.1 Go with the flow: method of moving frames

The idea: As the symmetries commute with dynamics, we calvewsolution
x(r) for as long as we like, and then rotate it to any equivalenhtp(see fig-
ure 10.9) on its group orbit,

X(7) = 9(7) ¥(7) , (10.40)

any time and any way we like. In the ‘method of slices’ one poimeach group

orbit is picked as the reduced state space representatives @quivalence class,
by slicing across the group orbits by a fixed hypersurface.sW&# by describing

how the method works for a finite segment of the full state spegjectory.

Split up the integration into a sequence of finite time stepsh followed by
a rigid coordinate frame rotation (‘moving frame’) such tthlae next segment’s
initial point is in theslicefixed by a pointy’.
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Figure 10.10: Slice M is a Poincaré section (10.41)
for group orbits (indicated by dotted lines here). The
full state space trajectory(t) and and the reduced state
space trajectory(t) belong to the same group orbit
M,y and are equivalent up to a group rotatig¢t)
(10.40).

Figure 10.11: Method of moving frames for a flow
SO(2)-equivariant under (10.18) with slice through

y = (0,1,0,0,0), group tangent’ = (1,0,0,0,0).

The clockwise orientation condition restricts the slice

to half-hyperplaney; = 0, y, > 0. A trajectory
started on the slice at(0), evolves to a state space
point with a non-zeroq (t;). Compute the polar angle .-~
01 of x(t1) in the (x1, x2) plane. Theentire state space x(t2) )
is then rotated (hence ‘moving frame’) clockwisedy 1.6

to y(t1) = g(—61) X(t1), so that the equivalent pointon (¢, 0 y(ts)
the circle lies on the slicey(t;) = 0. Thus after ev- M 23y (%2
ery finite time step followed by a rotation the trajectory y(t) y(0) Y=Y 2

restarts from the; (t) = 0 reduced state space. X,

Definition: Slice. LetG act regularly on @-dimensional manifold\, i.e., with
all group orbitsN-dimensional. Aslice through pointy’ is a {@—N)-dimensional
submanifoldM such that all group orbits in an open neighborhood of theeslic
defining pointy’ intersectM transversally and only once (see figure 10.10).

_ The simplesslice conditiondefines a slice as @{N)-dimensional hyperplane
M normal to theN group rotation tangents at pointy’:

-Y)t=0, t=tyy)=Tay. (10.41)

In other words, ‘slice’ is a Poincaré section (3.6) for gvarbits. TheG-invariant
subspaces are always within the slice,Tag = 0 for x in an invariant subspace,
see (10.21). Each ‘big circle’ —group orbit tangentZe intersects the hyperplane
exactly twice, with the two solutions separatedshyAs for a Poincaré section
(3.4), we add an orientation condition, and select the setetion with the clock-
wise rotation angle into the slice.

Definition: Moving frame. Assume that for a givem € M and a given slice
M there exists a unique group element= g(x) that rotatesx into the slice,
gx =y € M. The map that associates to a state space pairitie group action

g(x) is called anoving frame exercise 6.1
exercise 10.21

As y’Ttg1 = 0 by the antisymmetry of 5, the slice condition (10.41) fixesfor
a givenx by
0=y't,=x"g)t,, (10.42)
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whereg' denotes the transpose gf The method of moving frames is a postxercise 10.22
processing method; trajectories are computed in the fatestpace, then rotated

into the slice whenever desired, with the slice conditiosilgamplemented. The

slice group tangent’ is a given vector, ang(f) x is another vector, linear in

x and a function of group parametefs Rotation parameterg are determined
numerically, by a Newton method, through the slice condi(ib0.42).

Figure 10.11 illustrates the method of moving frames for @{2 slice nor-
mal to thex, axis. Looks innocent, except there is nothing to prevenajadtory
from going thorough X1, x2) = (0, 0), and wha# is one to use then? We can al-
ways chose a finite time step that hops over this singuldmitlyjn the continuous
time formulation we will not be so lucky.

How does one pick a slice poigt? A generic pointy’ not in an invariant
subspace (on the complex Lorenz equatiaraxis, for example) should fiice
to fix a slice. The rules of thumb are much like the ones for ipigkPoincaré
sections, sect. 3.1.1. The intuitive idea is perhaps besialized in the context
of fluid flows. Suppose the flow exhibits an unstable cohergntctire that —
approximately— recurs often atftiérent spatial dispositions. One can fit a ‘tem-
plate’ to one recurrence of such structure, and describer adturrences as its
translations. A well chosen slice point belongs to such dyinally important
equivalence class (i.e. group orbit). A slice is locallymswphic toM/G, in an
open neighborhood of . As is the case for the dynamical Poincaré sections, in
general a single slice does notiste to reduceM — M/G globally.

The Euclidian product of two vectossy is indicated in (10.41) by-transpose
timesy, i.e.,x'y = Zﬁ XiVi. More general bilinear norm, y) can be used, as long
as they ar&-invariant, i.e., constant on each irreducible subspaceexample is
the quadratic Casimir (10.11).

Note: method of moving frames has nothing in commadth the co-moving
frames, such as the one illustrated in figure 10.8. Eachivelperiodic orbit has
its own co-moving frame. In the method of moving frames (ar thethod of
slices) one fixes a stationary slice, and rotates all saiathm|ack into the slice.

Example 10.11 An SO(2) moving frame: (continued from example 10.2) The
SQ2) action (y1,Y2) = (X1 COSH — Xz SiNd, X1 SiNA + X, cosb) is regular on R?\{0}. Thus
we can define a slice as a ‘hyperplane’ (here a mere line), through'y’ = (0,1), with
group tangent t’ = (0, 1), and ensure uniqueness by clockwise rotation into positive X,
axis. Hence the reduced state space is the half-line x; = 0, y, = X2 > 0. The slice
condition y; = 0 yields the explicit formula for the moving frame parameter

0(x1, %2) = tarmX(xy/%o) , (10.43)

i.e., the angle which rotates the point (X1, Xo) back to the slice, taking care that tarr*
distinguishes (X1, X2) plane quadrants correctly. As SQ2) preserves lengths, xi + xg =
yf + yg, and the group-orbit point in the slice is an SQ(2)-invariant,

Vo= /X4 X2, (10.44)

continuous - 29dec2009 ChaosBook.org version13, Dec 31 2009



CHAPTER 10. RELATIVITY FOR CYCLISTS 185

The example is a bit trivial. If dynamics is in plane and SQ2) equivariant, the solutions

can only be circles of radius 1/xf + x% so this is the ‘“rectification” of the harmonic

oscillator by a change to polar coordinates, example 6.1. Still, it illustrates the sense in
which the method of moving frames yields group invariants. (E. Siminos)

10.4.2 Dynamics within a slice

I made a wrong mistake.
—Yogi Berra

The choice of finite time steps in the preceding sections whisrary, so it is
tempting to see what happens if the steps are taken infimigsiAs we shall see,
we do get a flow restricted to the slice, but at a price.

By equivariance one can always write the full state spagedi@ry asx(r) =
d(7) y(r), where the d—N)-dimensional reduced state space trajecytyis to be
fixed by some condition, angl7) is then the corresponding curve on tRedim-
ensional group manifold of the group action that rotatesto x at timer. The
time derivative is therx = v(gy) = gy + gu, with the reduced state space velocity
field given byu = dy/dt. Rewriting this asu = g~v(gy) — g~*gy and using the
equivariance condition (10.23) leads to

u=v-grgy.

The Lie group element (10.7) and its time derivative descthie group tangent
flow

d .
1y - 19 e
glg=g dte9 6-T.

This is the group tangent velocity 1gy = 6 - t(y) evaluated at the point, i.e.,
with g = 1 .The flow in the §—N) directions transverse to the group flow is now
obtained by subtracting the flow along the group tangenttiome,

u(y) =v(y) - () - t(y),  u=dydt, (10.45)

for any factorization of the flow of fornx(r) = g(r)y(r). To integrate these
equations we first have to fix a particular flow factorizatigrirnposing conditions
ony(r), and then integrate phasé&) on a given reduced state space trajectory

(7). exercise 10.23
exercise 10.24

Here we demand that the reduced state space is confined temlae slice.
Substituting (10.45) into the time derivative of the fixedeslcondition (10.42),

uy)"t; = v(y) Tt — 62 - t(y) 'ty = O,
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Figure 10.12: Method of moving frames, slice
fixed by a point on the complex Lorenz equations
relative equilibrium group orbity = Xrwi. (@)

The strange attractor of figure 10.1 in the reduced
state space of (10.47)xq, X2, 2z} projection. (b)

{X2, Y2, Z} projection. The reduced state space com-
plex Lorenz flow strange attractor of figure 10.1
now exhibits a discontinuity due to the vanishing
denominator in (10.48). @)

yields the equation for the group phases flodor the slice fixed by, together
with the reduced state spadd flow u(y):

: v(y) "t;
Ba(y) o v i (10.46)
uy) = vy - 6(y) -y, yeM. (10.47)

Each group orbitMy = {gx|g € G} is an equivalence class; method of slices
represents the class by its single slice intersection poiBy constructionu™t’ =

0, and the motion stays in thé<{N)-dimensional slice. We have thus replaced the
original dynamical systeroM, f} by a reduced systefoM, f}.

In the pattern recognition and ‘template fitting’ settind®.46) is called the
‘reconstruction equation.” Integrated together, the oedlistate space trajectorgxercise 10.25
(10.47) andy(r) = expd(7) - T}, the integrated phase (10.46), reconstruct the fengrcise 10.26
state space trajectom(r) = g() y(r) from the reduced state space trajecty(y),
so no information about the flow is lost in the process of symmyeduction.

Example 10.12 A slice for complex Lorenz flow. (continuation of example 10.6) Here
we can use the fact that

ty)" U =XT-TY = XX + XX, + V1Y, + Yoo

is the dot-product restricted to the m = 1 4-dimensional representation of SO2). A
genericy can be brought to formy" = (0, 1,Y}, Y5, 2) by a rotation and rescaling. Then

Ty = (10,5, -Y;,0), and

V(X) -t Vit Vay, —Vay)

-V Xty +YaY,

(10.48)

A long time trajectory of (10.47) with y' on the relative equilibrium TWy group orbit
is shown in figure 10.12. As initial condition we chose the initial point (10.32) on the
unstable manifold of T\, rotated back to the slice by angle 6 as prescribed by (10.42).
We show the part of the trajectory fort € [70,100] The relative equilibrium T W, now an
equilibrium of the reduced state space dynamics, organizes the flow into a Rdssler type
attractor (see figure 2.6). The denominator in (10.46) vanishes and the phase velocity
0(y) diverges whenever the direction of group action on the reduced state space point
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is perpendicular to the direction of group action on the slicepointy’. While the reduced
state space flow appears continuous in the {Xi, X2, Z} projection, figure 10.12 (a), this
singularity manifests itself as a discontinuity in the {x, Y», z} projection, figure 10.12 (b).
The reduced state space complex Lorenz flow strange attractor of figure 10.1 now
exhibits a discontinuity whenever the trajectory crosses this -dimensional subspace.

Slice flow equations (10.47) and (10.46) are pretty, butehgra trouble in
the paradise. The slice flow encounters singularities isetgof state space, with
phase velocity divergent whenever the denominator in (10.48) changes s&m
{x2, Y2, Z} projection of figure 10.12 (b). Hence a single slice does nadneral
sufice to coverM/G globally.

10.5 Method of images: Hilbert bases

(E. Siminos and P. Cvitanovit)

Erudite reader might wander: why all this slicing and digimdhen the problem
of symmetry reduction had been solved by Hilbert and Weylrlgea century
ago? Indeed, the most common approach to symmetry reduistibp means
of a Hilbert invariant polynomial bases (9.15), motivatatlitively by existence
of such nonlinear invariants as the rotationally-invaritengthr? = x2 + x5 +
cee 4 xg, or, in Hamiltonian dynamics, the energy function. One ésaih the
equivariant state space coordinatgs, xo, - - -, Xg} for a non-unique set ah > d
polynomials{us, Uy, - - -, Un} invariant under the action of the symmetry group.
These polynomials are linearly independent, but functlgradependent through
m-—d + N relations callegsyzygies

Example 10.13 An SO(2) Hilbert basis: (continued from example 9.6) The
Hilbert basis

u = Xj+x5, Up = Y3 +Y3,

Us = Xiy2 — Xy, Ug = Xay1 + X2Y2,

u = Z. (10.49)

is invariant under the SQ(2) action on a 5-dimensional state space (10.18). That im-
plies, in particular, that the image of the full state space relative equilibrium T W1 group
orbit of figure 10.4 is the stationary equilibrium point EQ, see figure 10.13. The poly-
nomials are linearly independent, but related through one syzygy,

Ul — U2 — U2 =0, (10.50)
3 4

yielding a 4-dimensional M/SQ2) reduced state space, a symmetry-invariant rep-
resentation of the 5-dimensional SQ2) equivariant dynamics. (continued in exam-
ple 10.14)

The dynamical equations follow from the chain rule

oy .

= —X; 10.51

Uj
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Figure 10.13: Invariant ‘image’ of complex Lorenz
equations dynamics, figure 10.1, projected onto the i

manifold connection from the equilibriufBQ, at the |}
origin to the strange attractor controlled by the rota-\
tion around relative equilibriurk @, (the reduced state
space image of W,); as in the Lorenz flow figure 3.7,
natural measure close #Q, is vanishingly small but
non-zero. Uz

upon substitution{xy, X, - -+, X4} — {U1, Up, - - -, Um}. One can either rewrite the
dynamics in this basis or plot the ‘image’ of solutions coneglin the original,
equivariant basis in terms of these invariant polynomials.

Example 10.14 Complex Lorenz equations in a Hilbert basis: (continuation of
example 10.13) Substitution of (10.2) and (10.49) into (10.51) yields complex Lorenz
equations in terms of invariant polynomials:

U = 20(uz—u)

Uy = —-2Up—2ug(us—p1)

U3 = olp— (0 —1)Us—el+ U (o1 - Us)

W = ew—(0c+1u

Us = Uz3—Dbus. (10.52)

As far as visualization goes, we need neither construct nor integrate the invariant dy-
namics (10.52). It suffices to integrate the original, unreduced flow of Figure 10.1, but
plot the solution in the image space, i.e., U; invariant, Hilbert polynomial coordinates,
as in figure 10.13. A drawback of such polynomial projections is that the folding mech-
anism is harder to view since the dynamics is squeezed near the z-axis.

Reducing dimensionality of a dynamical system by elimmatf variables
through inclusion of syzygies such as (10.50) introducegidarities. Such elim-
ination of variables, however, is not needed for visualrapurposes; syzygies
merely guarantee that the dynamics takes place on a sulwoiwbinithe projection
on the{uy, uy, - - -, Uy} coordinates. However, when orezonstructghe dynamics
in the original spacé\ from its imageM/G, the transformations have singulari-
ties at the fixed-point subspaces of the isotropy subgraupd.i

Nevertheless we can now easily identify a suitable Poaesaction, guided
by the Lorenz flow examples of chapter 9, as one that conthimz-axis and
the image of the relative equilibriummW;, here defined by the conditiom =
Uz. As in example 11.4, we construct the first return map usingoasdinate
the Euclidean arclength along the intersection of the lhstenanifold of TW;
with the Poincaré surface of section, see figure 10.14. Thegoals set into
the introduction to this chapter are attained: we have redube messy strange
attractor of figure 10.1 to a 1-dimensional return map. Ad ba explained in
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50Cr
400

~ 300
Figure 10.14: Return map to the Poincaré sectior
U, = u, for complex Lorenz equations projected on 200t
invariant polynomials (10.49). The return map coor-
dinate is the Euclidean arclength distance fromj,
measured along the Poincaré section of its spiral-out

10Cr

unstable manifold, as for the Lorenz flow return map 0 100 500 300 400 500
of example 11.4. S

example 11.4 for the Lorenz attractor, we now have the syimlgyinamics and
can compute as many relative periodic orbits of the complesehz flow as we
wish, missing none.

What limits the utility of Hilbert basis methods are not shigularities, but
rather the fact that the algebra needed to determine a liilasis becomes com-
putationally prohibitive as the dimension of the systemfahe group increases.
Moreover, even if such basis were available, rewriting tipgations in an invariant
polynomial basis seems impractical, so Hilbert basis cdatjpns appear not fea-
sible beyond state space dimension of order ten. When olirsmeguotient con-
tinuous symmetries of high-dimensional flows, such as thae¥&tokes flows,
we need a more practical, workable framework. The methodmfing frames of
sect. 10.4 is one such minimalist alternative.

Résum é

The messagelf a dynamical systems has a symmetry, use it! Here we have de
scribed how, and féered two approaches to continuous symmetry reduction. In
the method of slicesne fixes a ‘slice’ y — y')'t’ = 0, a hyperplane normal to
the group tangertt that cuts across group orbits in the neighborhood of theslic
fixing pointy’. Each class of symmetry-equivalent points is represenyes 9in-

gle point, with the symmetry-reduced dynamics in the redustate spac#1/G
given by (10.47):

u=v-20-t, 0= (v-t)/(t-1).

In practice one runs the dynamics in the full state space,pastiprocesses the
trajectory by the method of moving frames. In tHdbert polynomial basisap-
proach one transforms the equivariant state space cotedin&o invariant ones,
by a nonlinear coordinate transformation

{Xl,XZ,"'aXd}_>{Ul,UZ,“‘,Um}a
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and study the invariant ‘image’ of dynamics (10.51) rewritin terms of invariant
coordinates.

In practice, continuous symmetry reduction is considgrahbre involved
than the discrete symmetry reduction to a fundamental dowfahapter 9. Slices
are only local sections of group orbits, and Hilbert polyrals are non-unigue
and dificult to compute for high-dimensional flows. However, therad need to
actually recast the dynamics in the new coordinates: eépproach can be used
as a visualization tool, with all computations carried aquthe original coordi-
nates, and then, when done, projecting the solutions oetey{tmmetry reduced
state space by post-processing the data. The trick is tdraoh& good set of
symmetry invariant Poincaré sections (see sect. 3.1){taatds always a dark art,
with or without a symmetry.

In sect. 2.1.1 we made an attempt to classify ‘all possibléans:’ (1) equi-
libria, (2) periodic orbits, (3) everything else. Now onenddiscern in the fog of
dynamics an outline of a more serious classification - longetdynamics takes
place on the closure of a set of all invariant compact setsgpved by the dynam-
ics, and those are: (1) O-dimensional equilibMé:q, (2) 1-dimensional periodic
orbits Mp, (3) global symmetry inducell-dimensional relative equilibridry,

(4) (N+1)-dimensional relative periodic orbits{p, (5) terra incognita. We have
some inklings of the ‘terra incognita:’ for example, symgile symmetry induces
existence of KAM-tori, and in general dynamical settingsemeounteipartially
hyperbolic invariant torj isolated tori that are consequences of dynamics, not of a
global symmetry. They are harder to compute than anythinbave attempted so
far, as they cannot be represented by a single relativegierawbit, but require a
numerical computation of fullN+1)-dimensional compact invariant sets and their
infinite-dimensional linearized Jacobian matrices, meabin (N+1) dimensions,
and hyperbolic in the rest.

We conclude with a few general observations: Higher dinmradidynamics
requires study of compact invariant sets of higher dimengi@an 0-dimensional
equilibria and 1-dimensional periodic orbits studied so fd/e expect, for ex-
ample, partially hyperbolic invariant tori to play impaontarole. In this chapter
we have focused on the simplest example of such compacianvaets, where
invariant tori are a robust consequence of a global contisgymmetry of the dy-
namics. The direct product structure of a global symmetay tommutes with the
flow enables us to reduce the dynamics to a desymmetrizetd-(N)-dimensional
reduced state spacel/G.

Relative equilibria and relative periodic orbits are thdlmark of systems
with continuous symmetry. Amusingly, in this extension péfiodic orbit’ theory
from unstable 1-dimensional closed periodic orbits to aiplst (N+1)-dimension-
al compact manifoldg\, invariant under continuous symmetries, there are either
no or proportionally few periodic orbits. In presence of atouous symmetry,
likelihood of finding a periodic orbit igera Relative periodic orbits are almost
never eventually periodic, i.e., they almost never lie onqgakc trajectories in
the full state space, so looking for periodic orbits in sgstewith continuous
symmetries is a fool’s errand.
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However, dynamical systems are often equivariant undernabamation of
continuous symmetries and discrete coordinate transfiiwnsof chapter 9, for
example the orthogonal group ©)( In presence of discrete symmetries relative
periodic orbits within discrete symmetry-invariant suases are eventually peri-
odic. Atypical as they are (no generic chaotic orbit can @rder these discrete
invariant subspaces) they will be important for periodibibtheory, as there the
shortest orbits dominate, and they tend to be the most syritnsetutions. chapter 21

Commentary

Remark 10.1 A brief history of relativity, or, ‘Desymmetrization and its discontents’
(after Civilization and its discontents; continued fronmark 9.1): The literature on
symmetries in dynamical systems is immense, most of itidebty unintelligible. Would

it kill them to say ‘symmetry group of orbiM,,’ instead of carrying on about ‘isotropies,
quotients, factors, normalizers, centralizers and stahg?’ For the dynamical systems
applications at hand we need only basic results, on the téaaly standard group theory
textbook [10.2]. Chapter 2. of ref. [10.3]fers a pedagogical introduction to Lie groups
of transformations, and Nakahara [10.4] to Lie derivatiaed brackets. The presentation
given here is in part based on Siminos thesis [10.29] and16f30]. The reader is re-
ferred to the monographs of Golubitsky and Stewart [10.48}le [10.44], Olver[10.45],
Bredon [10.19], and Krupa [10.46] for more depth and rig@arthvould be wise to wade
into here.

The relative equilibria and relative periodic solutions aglated to equilibria and pe-
riodic solutions respectively of dynamics reduced by thems\etries. They appear in
many physical situations, such as motion of rigid bodieayigationalN-body problems,
molecules, nonlinear waves, spiralling patterns and ferime. According to Cushman,
Bates [10.5] and Yoder [10.6], C. Huygens [10.7] understtedrelative equilibria of
a spherical pendulum many years before publishing them #B16\ reduction of the
translation symmetry was obtained by fixing the center of sretsthe origin or, con-
sidering a configuration as an element of the dispositiogesp&/(1, ..., 1)R by Jacobi.
According to Chenciner[10.8, 10.10], the first attempt ta firelative) periodic solutions
of the N-body problem by was the 1896 short note by Poincaré [10n9lhe context
of the 3-body problem. Relative equilibria of tiNbody problem (known in this con-
text as the Lagrange points, stationary in the co-rotatiag€) are circular motions in
the inertial frame, and relative periodic orbits correspém quasiperiodic motions in the
inertial frame. Relative equilibria can exist in a rotatiftgme, and are called central
configurations. For relative periodic orbits in celestiadchanics see also ref. [10.11].
Striking application of relative periodic orbits has beka tiscovery of “choreographies”
of N-body problems [10.12, 10.13, 10.14].

The notion of anoving frames a map from a manifold to a Lie group was introduced
by Cartan [10.33], and the factorization (10.40) is stateithut reference) on p. 31 of
Anosov and Arnol'd [10.34]. We follow Fels and Olver who viglhe method as an alter-
native to the Grobner bases methods (here called ‘Hillzsed' ) to compute functionally
independent fundamental invariant bases for general gaotipns, with no explicit con-
nection to dynamics, €fierential equations or symmetry reduction. ‘Fundamentaieh
means that they can be used to generate all other invari@hter's monograph [10.45]
is pedagogical, but does not describe the original Cartaethod. Fels and Olver pa-
pers [10.40, 10.41] are lengthy and technical. They ref€@adan’s method as method of
‘moving frames’ and view it as a special and less rigorous cdisheir ‘moving coframe’
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method. The name ‘moving coframes’ arises through the uddafrer-Cartan form
which is a coframe on the Lie grou, i.e., they form a pointwise basis for the cotan-
gent space. In refs. [10.29, 10.30] the invariant basesrg&at by the moving frame
method are used as a basis to project a full state spacettigjdo the slice (i.e.., the
M/G reduced state space).

The basic idea of the ‘method of slices’ is intuitive; for exale, it is stated with-
out attribution as the problem 1. of Sect. 6.2 of ArnoQddinary Differential Equa-
tions[10.32]. It is reinvented often,

HaMe98

Derivation of sect. 10.4.2 follows Rowley and Marsden [10.&ho, in the pat-
tern recognition and ‘template fitting’ settings, call (46) the ‘reconstruction equa-
tion’ [10.36, 10.35].

For the definition of ‘slice’ see, for example, Chossat andteebach [10.39]. Briefly,
a submanifold\1y containingy’ is called aslicethroughy’ if it is invariant under isotropy
Gy(My) = My. If y is a fixed point ofG, than slice is invariant under the whole
group. The slice theorem is explained, for example, in Elpaedia of Mathematics.
Slices tend to be discussed in contexts much maffecdit than our application - sym-
plectic groups, sections in absence of global charts, rmonpact Lie groups. We follow
refs. [10.35] in referring to a local group-orbit sectionasslice.” Refs. [10.19, 10.16]
and others refer to global group-orbit sections as ‘cresgisns,” a term that we rather
avoid, as it already has aftirent and well established meaning in physics. Duister-
maat and Kolk [10.15] refer to ‘slices,’” but the usage goeskbat least to Guillemin
and Sternberg [10.16] in 1984, Palais [10.18] in 1961 andtt&a$10.17] in 1957. Bre-
don [10.19] discusses both cross-sections and slices.le@ul and Sternberg [10.16]
define the ‘cross-section,” but emphasize that finding ieiy/vare: “existence of a global
section is a very stringent condition on a group action. Tdotom of ‘slice’ is weaker but
has a much broader range of existence.”

The Gilmore and Lettelier monograph [10.2%fers a very clear, detailed and user
friendly discussion of symmetry reduction by means of Hitlpolynomial bases (do not
look for ‘Hilbert’ in the index, though). The determinatiaf a Hilbert basis appears
computationally prohibitive for state space dimensiongdathan ten [10.38, 10.39], and
rewriting the equations of motions in invariant polynomialses appears impractical for
high-dimensional flows.

Sect. 10.1.2 ‘Lie groups for cyclists’ is bit of a joke in movays than one. First, ‘cy-
clist, ‘pedestrian’ throughout ChaosBook.org refer jogly both to the title of Lipkin's
Lie groups for pedestriarf40.22] and to our preoccupations with actual cycling. Lipk
‘pedestrian’ is fluent in Quantum Field Theory, but wobbly Bynkin diagrams. More
to the point, it's impossible to dispose of Lie groups in agafitext. As a counterdote
to the 1-page summmary of sect. 10.1.2, consider readingddd’s monograph [10.20]
which ofers a quirky, personal and enjoyable distillation of a iifet of pondering Lie
groups. As seems to be the case with any textbook on Lie grdwpd not help you with
the problem at hand, but it is the only place you can learn dtat Galois actually did
when he invented the theory of finite groups in 1830, and wihapired by Galois, Lie
actually did in his 1874 study of symmetries of ODEs. Gilmalso explains many things
that we pass over in silence here, such as matrix groupspgnaunifolds, and compact
groups.

Remark 10.2 Complex Lorenz equations (10.1) were introduced by Gibbon and
McGuinness [10.24, 10.25] as a low-dimensional model obtiaric instability in the at-
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mosphere. They are a generalization of Lorenz equatiof2)2Ning and Haken [10.26]
have shown that equations isomorphic to complex Lorenztemssalso appear as a trun-
cation of Maxwell-Bloch equations describing a single matiegtuned, ring laser. They
sete+p, = 0 so that a detuned equilibrium exists. Bakasov and Abralién27] criticize
this choice as being “degenerate” (the choice of Ning andedad&ads to non-generic bi-
furcations) and show that one can use complex Lorenz equsatighp, = 0 ande # 0 to
describe detuned lasers. Here we are not interested in tysgalhapplications of these
equations; rather, we study them as a simple example of antigahsystem with con-
tinuous (but no discrete) symmetries, with a view of testimgthods of reducing the dy-
namics to a lower-dimensional reduced state space. Corhplenz flow examples and
exercises in this chapter are based on E. Siminos thesiggjllnd R. Wilczak project
report [10.31]. (E. Siminos)

(E. Siminos and P. Cvitanovit)

Exercises
10.1. Visualizations of the 5-dimensional complex Lorenz Yo =
flow: Plot complex Lorenz flow projected on any 7 = —bz+ Xy + XoYs. (10.54)
three of the fivgxy, X2, Y1, Y2, Z} axes. Experiment with . o ) )
different visualizations. Verify (10.54) by substituting = X1 +i X2, y = y1+iYya,
r=ry+irpy a=1+ieinto the complex 2-mode equa-
10.2. An SO(2)-equivariant flow with two Fourier modes: tions (10.53).

Complex Lorenz equations (10.1) of Gibbon an 3
McGuinness [10.24] have a degenerate 4-dimensionaq '
subspace, with SO(2) acting only in its lowest non-
trivial representation. Here is a possible model, still
5-dimensional, but with SO(2) acting in the two low-
est representations. Such models arise as truncations of

SO(2) rotationsin a plane:  Show by exponentiation
(10.7) that the SO(2) Lie algebra eleméhigenerates
rotationg in a plane,

g(6) el = cos@( é 2 )+sin6( _01 é )

Fourier-basis representations of PDEs on periodic do- cosd)  sing
mains. In the complex form, the simplest such modifica- = ( —sing cosd ) , (10.55)
tion of complex Lorenz equations may be the “2-mode”
system ] ) )
10.4. Invariance under fractional rotations. Argue that
= —oX+0XYy if the isotropy group of the velocity field(x) is the dis-
- (r-2%-ay crete subgrqup of SO(2) rotations about an axis (let’s
. 1,, , say the z-axis’),
zZ = é (X W + X" y) - bZ, (1053) Cl/mV(X) _ V(Cl/mX) _ V(X) , (Cl/m)m —e,
wherex,y, r = r; +irp, a = 1+ ie are complex and the only non-zero components of Fourier-transformed
z, b, o are real. Rewritten in terms of real variables equations of motion arajm for j = 1,2,---. Argue that
X = X +iX2, y=Yy1+iysthisis a5-dimensional first the Fourier representation is then the quotient map of
order ODE system the dynamicsM/Cy,,. (Hint: this sounds much fancier
than what is - think first of how it applies to the Lorenz
X1 = -oXg+oyr system and the 3-disk pinball.)
X2 = —0X+0Yy2 10.5. U(1) equivariance of complex Lorenz equations for
yi = (o1- z)xi —TIoXp — Y1 — €y finite angles:  Show that the vector field in complex

exerContinuous - 100ct2009 ChaosBook.org version13, Dec 31 2009



EXERCISES

10.6.

10.7.

10.8.

10.9.

10.10.

10.11.

10.12.

exerContinuous - 100ct2009

Lorenz equations (10.1) is equivariant under the unitary
group U(1) acting oiR® = C2 x R by

g0)(x.y,2) = (€%, €%,7), 6€]0,2r).(10.56)

(E. Siminos)
SO(2) equivariance of complex Lorenz equations for
finite angles: ~ Show that complex Lorenz equations

(10.2) are equivariant under rotation for finite angles.

Stability matrix of complex Lorenz flow:  Compute
the stability matrix (10.26) for complex Lorenz equa-
tions (10.2).

Rotational equivariance, infinitesimal angles. Show
that complex Lorenz equations are equivariant under in-
finitesimal SO(2) rotations.

Discover the equivariance of a given flow:

}
J Suppose you were given complex Lorenz equa-
tions, but nobody told you they are SO(2) equivariant.
More generally, you might encounter a flow without re-
alizing that it has a continuous symmetry - how would
you discover it?

Equilibria of complex Lorenz equations:  Find all
equilibria of complex Lorenz equations. Hint: Equilib-
ria come either in the fixed FG) subspace, or on a
group orbit.

.
Equilibria of complex Lorenz equations: J In
exercise 10.10 we found only one equilibrium of com-
plex Lorenz equations. The Ning and Haken [10.26]
version of complex Lorenz equations (a truncation of
Maxwell-Bloch equations describing a single mode ring
laser) set®e + p, = 0 so that a detuned equilibrium ex-
ists. Test your routines on 2 cases: €a) 0,p, = 0. As
discussed by Siminos [10.29], reality of parameteys

in (10.1) implies existence of a discrete €&ymmetry.

(b)e+p2 = 0,e # 0. You might want to compare result$p.13.

with those of Ning and Haken.

Complex Lorenz equations in polar coordinates.
Rewrite complex Lorenz equations from Cartesian to
polar coordinates, using{, Xz, 1, Y2, 2) =

(r1€c0Sfy,r1SiN01,12C0SH, r2SiNG,,2), (10.57)

wherer; > 0,r, > 0. Show that in polar coordinatei0 14

the equations take form

f1 —0 (r; — rpcosb)

0, —osing

f2 |=| —r2+r1((p1—2) cosf —pzsind) |,
0> e+ & ((o1 - 2) sind + p2 cosd)

Z —bz+rir, cosd

194

We know from classical mechanics that for translation-
ally or rotationally invariant flows the relative distance
is invariant (that is why one speaks of ‘relative’ equilib-
ria), hence we introduce a variakde= 6; — 6,. 6; and

0, change in time, but at the relative equilibria the dif-
ference between them is constant. Show that this new
variable allows us to rewrite the complex Lorenz equa-
tions as 4 coupled polar coordinates equations:

rq —0 (ry — rocost)

P2 | —ry + (o1 — 2)r; cosd

0 |7| —e= (o2 +(or-2%)sing (10.58)
z —bz+rqrocosd

where we have set;, = 0. Plot a long-time solution of
these equations and show that the polar representatior
introduces singularities into what initially was a smooth
flow:

We shall encounter the same problem in implementing
the x; = 0 moving frames slice). A polar coordinates
{r1,r2,0} plot of the complex Lorenz flow strange at-
tractor. 6 is very small until the trajectory approaches
eitherr; — 0 orr, — 0, whereMathematica contin-
ues through the singularity by a rapid change bfy .
The the fixed FiXG) subspacer(,r,,0,2) = (0,0,0, 2)
separates the two folds of the attractor.

Visualizations of the complex Lorenz flow in polar
coordinates: Plot complex Lorenz flow projected
on any three of théry, r,, 0, zZ} coordinates. Experiment
with different visualizations. The flow (10.58) is singu-
lar asrj — 0, with angled; going through a rapid change
there: is that a problem? Does it make sense to insist on
ry > 0,r, > 0, or should one let them have either sign
in order that the trajectory be continuous?

Computing the relative equilibrium TW;:  Find the
relative equilibria of the complex Lorenz equations by
finding the equilibria of the system in polar coordinates
(10.58). Show that

(@) The relative equilibrium (hereafter referred

to [10.29] asT W) is given by
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10.15.

10.16.

10.17.

10.18.

10.19.

10.20.

10.21.
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(ri,r2,0,2 =

(Vb (o1 —d). vbd(p:1 - d),
cos™* (1/Vd),p1 - d) ,(10.59)

whered = 1 + €/(c + 1)?,

(b) The angular velocity of relative equilibriufw, 10.23.

is
6 = oe/(oc+1), (10.60)
with the periodTrw, = 27(c + 1)/ce.

Relative equilibrium TW; in polar coordinates: Plot
the equilibriumT W, in polar coordinates.

Relative equilibrium TW; in Cartesian coordinates:
Show that for our parameter values,

(X1, X2, Y1, Y2, 2) (10.61)
(8.48490.0771358.4856 0, 26.999),

XTw, =

is a point on theél W, orbit. Plot the relative equilibrium
TW; in Cartesian coordinates.

Eigenvalues and eigenvectors of W, stability ma-

trix: Compute the eigenvalues and eigenvectors of
the stability matrix (10.26) evaluated @\, and using

the (10.2) parameter values, in (a) Cartesian coordinates,
(b) polar coordinates.

The eigen-system o W; stability matrix in polar co-
ordinates: Plot the eigenvectors gk at TW, in polar
coordinates, as well as the complex Lorenz flow at val-
ues very neal W.

Eigenvalues and eigenvectors oEQ, stability ma-

trix:  Find the eigenvalues and the eigenvectors of the
stability matrix A (10.26) atEQy = (0,0, 0,0, 0) deter-
mined in exercise 10.10. ChaosBook convention is to
order eigenvalues from most positive (unstable) to the
most negative. Follow that. Replace complex eigenvec-
tors by the real, imaginary parts, as that is what you ac-
tually use.

The eigen-system of the stability matrix atE Qy:  Plot
the eigenvectors ofA at EQy and the complex Lorenz
flow at values very close tB Q.

SQO(2) or harmonic oscillator slice: Construct a
moving frame slice for action of SO(2) dt?

(X%, y) = (xcosf — ysing, xsinb + ycosh)

by, for instance, the positiveaxis: x = 0, y > 0. Write
out explicitly the group transformations that bring any
point back to the slice. What invariant is preserved by
this construction? (E. Siminos)

195

10.22. State space reduction by a slice, finite time segments:

Replace integration of the complex Lorenz equations by
a sequence of finite time steps, each followed by a rota-
tion such that the next segment initial pointis in the slice
Y2 = 07 Y1 > 0.

State space reduction by a slice, ODE formulation:
Reconsider (10.22) in the sequence of infinitesimal time
steps limit, each followed by an infinitesimal rotation
such that the next segment initial point is in the slice
y2 = 0,y; > 0. Derive the correspondingddeduced
state space ODE for the complex Lorenz flow. Here is
a way to do it, bit diferent from the derivation given in
sect. 10.4.2.

Infinitesimal time version of the moving frames sym-
metry reduction is attained by taking small time steps
in figure 10.11 and dropping the higher order terms.
For infinitesimaldg we set sirdd ~ do, cosdd ~ 1,
g(dd) ~ 1+ doT, and the condition (10.41) for rotat-
ing an infinitesimal time evolution stegix = v dt back
into the slice

0 = (y+dx-gdo)'Ty
~ (y+dtv)-(1+doT)'TY
~ dtv-Ty +doy-T'Ty
yields
do ~ -% (10.62)

Let u(y) be the vector field that generates the flow in the
reduced state space. According to

* x+vdt

‘ R(d6) .(x+vdt)

/]

t

in the limit thatg(df) ~ 1+ dO T the infinitesimal time
step undeu is connected to the time step unddry

y+udt=(1+doT) - (y+ vdi).

Dropping second order terms, dividing through waith
do
= —T
u=v+ at Y,
and substituting (10.62) gives the reduced state space
equations (10.47):

(v-Ty)

EATAYY

Ty, (10.63)
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where we have used the factthat- T Tx* = (x- X*)4 = 10.26. State space reduction by a relative equilibriumT W

X1X] + XX + Y1y; + Y2Y; is the dot-product restricted to cross-section:  Replace integration of the complex
the 4-dimensional representation of SO(2). By construc-  Lorenz equations by a sequence of short time steps, eacl
tion, the motion stays in thel¢1)-dimensional slice. followed by a rotation such that the next segment initial

10.24. Accumulated phase shift: Derive the H equation pointis in the relative equilibriurT W, cross-section
(10.46) for the accumulated phase shiftssociated with
the 4-dimensional reduced state space ODE of exer- (Y—yrw) - trw, =0, trw, = TyTw; , (10.64)
cise 10.23.

10.25. The moving frame flow stays in the reduced state where for anyx, y = g(6) - x is the rotation that lies in
space: Show that the flow (10.63) stays in d{1)- the cross-section. Check figure 10.12 by long-time inte-
dimensional slice. gration of (10.63).
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