Chapter 17

Averaging

For it, the mystic evolution;
Not the right only justified
—what we call evil also justified.

—Walt Whitman,
Leaves of Grass: Song of the Universal

chaotic dynamics. A time average of an observable is condpoyan-

tegrating its value along a trajectory. The integral aloragectory can
be split into a sum of over integrals evaluated on trajecgggments; if expo-
nentiated, this yields eultiplicative weight for successive trajectory segments.
This elementary observation will enable us to recast thefbas for averages in
a multiplicative form that motivates the introduction ofohwtion operators and
further formal developments to come. The main result is &mgtdynamicalav-
erage measurable in a chaotic system can be extracted fesptttrum of an
appropriately constructed evolution operator. In ordekeep our toes closer to
the ground, in sect. 17.3 we try out the formalism on the fisstrgitative diagnosis
that a system'’s got chaos, Lyapunov exponents.

WE piscuss FIRST the necessity of studying the averages of observables in

17.1 Dynamical averaging

In chaotic dynamics detailed prediction is impossible,rasfanitely specified ini-
tial condition, no matter how precise, will fill out the emtiaccessible state space
after a finite Lyapunov time (1.1). Hence for chaotic dynamoe cannot follow
individual trajectories for a long time; what is attainalidea description of the
geometry of the set of possible outcomes, and evaluationngf time averages.
Examples of such averages are transporttogents for chaotic dynamical flows,
such as escape rate, mean drift anfiudion rate; power spectra; and a host of
mathematical constructs such as generalized dimensintitepées and Lyapunov
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CHAPTER 17. AVERAGING 330

exponents. Here we outline how such averages are evaludtieit ¥he evolu-
tion operator framework. The key idea is to replace the etgtien values of
observables by the expectation values of generating fumals. This associates
an evolution operator with a given observable, and reldte€xpectation value of
the observable to the leading eigenvalue of the evolutie@raipr.

17.1.1 Time averages

Let a = a(X) be anyobservable a function that associates to each point in state
space a number, a vector, or a tensor. The observable repoisproperty of
the dynamical system. It is a device, such as a thermometkrser Doppler
velocitometer. The device itself does not change duringnteasurement. The
velocity field aj(X) = vi(X) is an example of a vector observable; the length of
this vector, or perhaps a temperature measured in an ex@etriat instant are
examples of scalar observables. We defineititegrated observable tAas the
time integral of the observabkeevaluated along the trajectory of the initial point

X0,

t
Al(xg) = fo dra(fT(xg)). (17.1)

If the dynamics is given by an iterated mapping and the tindiserete,t — n,
the integrated observable is given by

n-1
A'(x0) = ) a(f(x0)) (17.2)

k=0

(we suppress possible vectorial indices for the time being)

Example 17.1 Integrated observables. If the observable is the velocity, aj(X) =
Vi(X), its time integral Al(Xo) is the trajectory Al(Xo) = Xi(t).

For Hamiltonian flows the action associated with a trajectory x(t) = [q(t), p(t)]
passing through a phase space point Xy = [q(0), p(0)] is:

t
A = [ dra - po). (17.3)
Thetime averagef the observable along a orbit is defined by
T
a(xXg) = tI|m YA (x0) . (17.4)

If adoes not behave too wildly as a function of time — for examiple,(x) is the
Chicago temperature, bounded betwe®@°F and+13C°F for all times —A'(x)
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CHAPTER 17. AVERAGING 331

Figure 17.1: (a) A typical chaotic trajectory ex-

plores the phase space with the long time visitation

frequency building up the natural measyigX).

(b) time average evaluated along an atypical tra-

jectory such as a periodic orbit fails to explore the

entire accessible state space. (A. Johansen) @ M (b)

is expected to grow not faster thgnand the limit (17.4) exists. For an example
of a time average - the Lyapunov exponent - see sect. 17.3.

The time average depends on the orbit, but not on the initatpon that
orbit: if we start at a later state space poffii(xo) we get a couple of extra finite
contributions that vanish in thie— oo limit:

t+T

ATT0) = fm T [ dra(i"(o)
T t+T
= a6~ im 1| [ drattoo) - [ dra(t o))
_ 9.

The integrated observabié(x) and the time averags xo) take a particularly

simple form when evaluated on a periodic orbit. Define exercise 4.6
— Tp T
A= B0To = Jo dralffo) foraflow oy a7
aphp, = X5 a(f'(x))  foramap

where p is a prime cycle,T, is its period, andh, is its discrete time period in
the case of iterated map dynamids, is a loop integral of the observable along
a single traversal of a prime cyclg so it is an intrinsic property of the cycle,
independent of the starting poirg € M. (If the observable is not a scalar but
a vector or matrix we might have to be more careful in definingegerage which
is independent of the starting point on the cycle). If thgettory retraces itself
r times, we just obtairA, repeated times. Evaluation of the asymptotic time
average (17.4) requires therefore only a single travelfsideocycle:

However,a(xo) is in general a wild function okg; for a hyperbolic system it
takes the same valu@) for almost all initial Xy, but a diferent value (17.6) on
any periodic orbit, i.e., on a dense set of points (figure (7))L
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Example 17.2 Deterministic diffusion. The phase space of an open system such as
the Sinai gas (an infinite 2-dimensional periodic array of scattering disks, see sect. 25.1)
is dense with initial points that correspond to periodic runaway trajectories. The mean
distance squared traversed by any such trajectory grows as x(t)? ~ t2, and its contri-
bution to the diffusion rate D o« X(t)?/t, (17.4) evaluated with a(x) = X(t)?, diverges.
Seemingly there is a paradox; even though intuition says the typical motion should be
diffusive, we have an infinity of ballistic trajectories. (continued in example 17.3)

For chaotic dynamical systems, this paradox is resolvedobyst averag-
ing, i.e., averaging also over the initig] and worrying about the measure of the
“pathological” trajectories.

17.1.2 Space averages

The space averagef a quantitya that may depend on the poirtof state space
M and on the time is given by thed-dimensional integral over theécoordinates
of the dynamical system:

f dx = volume of M. a7.7)
M

(@)

M

The spaceM is assumed to have finite volume (open systems like the 3gdisie
of pinball are discussed in sect. 17.1.3).

What is it wereally do in experiments? We cannot measure the time aver-
age (17.4), as there is no way to prepare a single initial itlondwith infinite
precision. The best we can do is to prepare some initial tenéx) perhaps con-
centrated on some small (but always finite) neighborhoodngsoshould abandon
the uniform space average (17.7), and consider instead

1 :
@,0) = 37 | dxe(9a(r'0). (17.8)

For the ergodic and mixing systems that we shall consider dx@ysmooth initial
density will tend to the asymptotic natural meastre oo limit p(x,t) — po(X),

so we can just as well take the initia{x) = const. and define thexpectation
value(a) of an observabla to be the asymptotic time and space average over the
state spaceM

1
(a):medxa(x)— |I_)n;lom dx = fdra(f (X). (17.9)

We use the samg- -) notation as for the space average (17.7), and distinguésh th
two by the presence of the time variable in the argument: afdbantity(a)(t)
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being averaged depends on time, then it is a space averdiggods not, it is the
expectation valuéa).

The expectation value is a space average of time averagdsevaryx € M
used as a starting point of atime average. The advantagexging over space is
that it smears over the starting points which were probléniat the time average
(like the periodic points). While easy to define, the expgatavalue(a) turns
out not to be particularly tractable in practice. Here coraesimple idea that
is the basis of all that follows: Such averages are more coendly studied by
investigating instead gf) the space averages of form

Ay _ 1 A
(¢ >_|M|fdee6 . (17.10)

In the present contexis an auxiliary variable of no physical significance whose
role is to enable us to recover the desired space averagdtbyeditiation,

(%)= 554,

In most applicationg is a scalar, but if the observable iglalimensional vector
ai(x) € RY, so isB € RY; if the observable is @ x d tensor,3 is also a rank-2
tensor, and so on. Here we will mostly limit the considenatido scalar values of

B.

If the limit a(xo) for the time average (17.4) exists for “almost all” initis
and the system is ergodic and mixing (in the sense of sectl)1.%e expect the
time average along almost all trajectories to tend to theesaatuea, and the
integrated observabla! to tend tota. The space average (17.10) is an integral
over exponentials, and such integral also grows exporibntidgth time. So as
t — oo we would expect the space average of gxp{!(X)) to grow exponentially
with time

<e3'Al> — (const)e’®) |
and its rate of growth to be given by the limit
s(B) = lim 5|n<e3'At> (17.11)
t—oo t ’ ’

Now we understand one reason for why it is smarter to com{@xp( - A"))
rather thana): the expectation value of the observable (17.9) and the mtsadé
the integrated observable (17.1) can be computed by elraduidie derivatives of
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s(B)
9 1
a_,BSﬂ:O B tILrDoT<At>=<a>’
S| i LAY (A (A (17.12)
o Jim £ ((A'A%) = (A1) (&)
55

lim = <(At - t(a) >

and so forth. We have written out the formulas for a scalaeplable; the vectorexercise 17.2
case is worked out in the exercise 17.2. If we can computeuthetibn s(5), we

have the desired expectation value without having to estimay infinite time

limits from finite time data.

Suppose we could evaluasd) and its derivatives. What are such formulas
good for? A typical application is to the problem of determ@transport cofi-
cients from underlying deterministic dynamics.

Example 17.3 Deterministic diffusion. (continued from example 17.2) Con-
sider a point particle scattering elastically off a d-dimensional array of scatterers. If
the scatterers are sufficiently large to block any infinite length free flights, the particle
will diffuse chaotically, and the transport coefficient of interest is the diffusion constant
X(t)?) ~ 4Dt. In contrast to D estimated numerically from trajectories x(t) for finite
but large t, the above formulas yield the asymptotic D without any extrapolations to the
t — oo limit. For example, for a; = v; and zero mean drift {v;) = 0, in d dimensions the
diffusion constant is given by the curvature of S(8) at 8 = 0, section 25.1

(17.13)

bl

d
1
= lim 2_dt (x(®)?) —dzl:

so if we can evaluate derivatives of S(8), we can compute transport coefficients that
characterize deterministic diffusion. As we shall see in chapter 25, periodic orbit theory
yields an explicit closed form expression for D.

fast track:
W sect. 17.2, p. 337
17.1.3 Averaging in open systems

3

J If the M is a compact region or set of regions to which the dynamics
is confined for all times, (17.9) is a sensible definition af txpectation value.
However, if the trajectories can exMl without ever returning,

f dyo(y— Fl0Q) =0 fort>texes %o € M,
M
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) 0.5 |

Figure 17.2: A piecewise-linear repeller (17.17): All o
trajectories that land in the gap between fhend f; %"1/‘ ST
branches escapa§ = 4, A; = -2). '

we might be in trouble. In particular, for a repeller the é@tpry f'(xo) will even-
tually leave the regionM, unless the initial point is on the repeller, so the
identity

f dys(y— fi(x) =1, t>0, iff Xo € non—wandering set (17.14)
M

might apply only to a fractal subset of initial points a setefo Lebesgue measure
(non—wandering setis defined in sect. 2.1.1). Clearly, pmrosystems we need to
modify the definition of the expectation value to restridiithe dynamics on the
non—-wandering set, the set of trajectories which are codfioeall times.

Note by M a state space region that encloses all interesting initigltp, say
the 3-disk Poincaré section constructed from the disk Hatias and all possible
incidence angles, and denote || the volume ofM. The volume of the state
space containing all trajectories which start out withia gtate space regioml
and recur within that region at the tinhe

IM(®) = fM dxdys(y - f'(x) ~ IMe™ (17.15)

is expected to decrease exponentially, with the escapeyraide integral over section 1.4.3
x takes care of all possible initial points; the integral oyehecks whether their
trajectories are still withinM by the timet. For example, any trajectory that fallsection 22.1
off the pinball table in figure 1.1 is gone for good.

The non—wandering set can be veryhidult object to describe; but for any
finite time we can construct a normalized measure from théefinine covering
volume (17.15), by redefining the space average (17.10) as

At 1 ALK 1 AL X)+
(e“>=fdelM(meBA(MmedxéfA()Vt. (17.16)

in order to compensate for the exponential decrease of thebauof surviving
trajectories in an open system with the exponentially gngwiactore”. What
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does this mean? Once we have computade can replenish the density lost to
escaping trajectories, by pumpingett in such a way that the overall measure is
correctly normalized at all timegl) = 1.

Example 17.4 A piecewise-linear repeller: (continuation of example 16.1) What is
gained by reformulating the dynamics in terms of “operators?” We start by considering
a simple example in which the operator is a [2x 2] matrix. Assume the expanding
1-dimensionamap f(X) of figure 17.2, a piecewise-linear 2—branch repeller with slopes
Aog>lland A1 < -1:

fo = AoX if xe Mp= [0, 1/A0]
f(x) = . (17.17)
fl = A1(X - 1) if xe My = [l + 1/A1, 1]
Both f(Mo) and f(My) map onto the entire unit interval M = [0, 1]. Assume a piece-
wise constant density

_J po ifxe Mg
p(X) = { o1 ifxe My - (17.18)
There is no need to define p(X) in the gap between My and Ma, as any point that lands
in the gap escapes.

The physical motivation for studying this kind of mapping is the pinball game: f
is the simplest model for the pinball escape, figure 1.8, with fy and f1 modelling its two
strips of survivors.

As can be easily checked using (16.9), the Perron-Frobenius operator acts on
this piecewise constant function as a [2x2] “transfer” matrix with matrix elementsexercise 16.1
exercise 16.5

1 1
(po) N £p=( B Tl )(p"), (17.19)
pP1 Ao A /\P1

stretching both po and p1 over the whole unit interval A, and decreasing the density
at every iteration. In this example the density is constant after one iteration, so £ has
only one non-zero eigenvalue €® = 1/|A¢| + 1/|A1|, with constant density eigenvector
po = p1. The quantities 1/|Aol, 1/|A1] are, respectively, the sizes of the | Mo|, |IMi|
intervals, so the exact escape rate (1.3) — the log of the fraction of survivors at each
iteration for this linear repeller — is given by the sole eigenvalue of L:

Y =-% = —In(1/|Ac + 1/IA4]). (17.20)

Voila! Here is the rationale for introducing operators — in one time step we have solved
the problem of evaluating escape rates at infinite time. This simple explicit matrix rep-
resentation of the Perron-Frobenius operator is a consequence of the piecewise lin-
earity of f, and the restriction of the densities p to the space of piecewise constant
functions. The example gives a flavor of the enterprise upon which we are about to
embark in this book, but the full story is much subtler: in general, there will exist no
such finite-dimensional representation for the Perron-Frobenius operator. (continued
in example 23.5)

We now turn to the problem of evaluatifg?*').
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Figure 17.3: Space averaging pieces together thg
time average computed along the— oo orbit
of figure 17.1 by a space average over infinitely'
many short trajectory segments starting at all ini-
tial points at once.

17.2 Evolution operators

The above simple shift of focus, from studyita to studying(exp(s - A")) is the
key to all that follows. Make the dependence on the flow ekig rewriting this
quantity as

(M) = ﬁ fM dx fM dyo(y - f'(x) &40, (17.21)

Here 6(y — f'(x)) is the Dirac delta function: for a deterministic flow an ialti
point x maps into a unique pointat timet. Formally, all we have done above is
to insert the identity

_ _ ¢t
1= fM dys(y - f'(x) . (17.22)

into (17.10) to make explicit the fact that we are averaginty @ver the trajec-
tories that remain ioM for all times. However, having made this substitution we
have replaced the study of individual trajectorig$x) by the study of the evo-
lution of density ofthe totality of initial conditions. Instead of trying to extract
a temporal average from an arbitrarily long trajectory whéaxplores the phase
space ergodically, we can now probe the entire state spabesivort (and con-
trollable) finite time pieces of trajectories originatingr every point inM.

As a matter of fact (and that is why we went to the trouble ofrdefj the gen-
erator (16.27) of infinitesimal transformations of dersjiinfinitesimally short
time evolution induced by the generat@t of (16.27) stfices to determine the
spectrum and eigenvalues 6.

We shall refer to the kernel of the operation (17.21) assti@lution operator
L. %) = oy - fi(x) 40 (17.23)

The simplest example is thie= 0 case, i.e., the Perron-Frobenius operator intro-
duced in sect. 16.2. Another example - designed to delivekyapunov exponent
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- will be the evolution operator (17.36). The action of theletion operator on a
function ¢ is given by

(Lio0) = [ dxaly- £109) D9, (17.24)
M

In terms of the evolution operator, the space average of émemgting function
(17.21) is given by

(@)= [ dx [ dyew)L(y. 0.
IMIIm Im

where ¢(x) is the constant functiog(x) = 1. If the linear operator! can be
thought of as a matrix, high powers of a matrix are dominateddfastest grow-
ing matrix elements, and the limit (17.11)

@ -pmnz)

yields the leading eigenvalue @§(8), and, through it, all desired expectation
values (17.12).

The evolution operator is fierent for diferent observables, as its definition
depends on the choice of the integrated observAbla the exponential. Its job
is deliver to us the expectation valueafut before showing that it accomplishes
that, we need to verify the semigroup property of evolutiperators.

By its definition, the integral over the observalaslés additive along the tra-
jectory

X(t1+t2) Vas X(t1+t2)
x(O)%/> = X(0) 7 x(t) + X

ty t1+t2
t1+to T T
A2 (x0) fo dra(f’(x) + f dra(f7(x))

= AL(x) v AR ().

exercise 16.3

As Al(x) is additive along the trajectory, the evolution operatengrates a semi-
group section 16.5

L (y,x) = f dz£%(y,2 L% (z ), (17.25)
M
as is easily checked by substitution
L2La(y) = f dxa(y - f2(0)e" P (L1a)(x) = L3a(y).
M

This semigroup property is the main reason why (17.21) ifepable to (17.9) as
a starting point for evaluation of dynamical averages: éasts averaging in form
of operators multiplicative along the flow.
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8%

Figure 17.4: A long-time numerical calculation of the
leading Lyapunov exponent requires rescaling the dis-
tance in order to keep the nearby trajectory separation
within the linearized flow range.

17.3 Lyapunov exponents

(J. Mathiesen and P. Cvitanovic)

Let us apply the newly acquired tools to the fundamentalrbatics in this sub-
ject: Is a given system “chaotic”? And if so, how chaotic?llf@ints in a neigh- example 2.3
borhood of a trajectory converge toward the same trajectbeyattractor is a fixed
point or a limit cycle. However, if the attractor is strang®y two trajectories  section 1.3.1

X(t) = fl{(xo) and X(t) + 6x(t) = f(xo + 6Xg) (17.26)

that start out very close to each other separate exporgntiith time, and in
a finite time their separation attains the size of the acbkssiate space. This
sensitivity to initial conditiongan be quantified as

I6X(t)] ~ 50| (17.27)

where 1, the mean rate of separation of trajectories of the systsmalied the
Lyapunov exponent

17.3.1 Lyapunov exponent as a time average

We can start out with a smailk and try to estimata from (17.27), but now that we
have quantified the notion of linear stability in chapter 4 defined the dynamical
time averages in sect. 17.1.1, we can do better. The problémmeasuring the

growth rate of the distance between two points is that as tiregpseparate, the
measurement is less and less a local measurement. In stedpafimental time

series this might be the only option, but if we have the eguatiof motion, a

better way is to measure the growth rate of vectors transviera given orbit.

The mean growth rate of the distanég(t)|/|0Xo| between neighboring trajec-
tories (17.27) is given by thieyapunov exponent

1
A= tI|m n In [5x(1)]/16Xo] (17.28)

average - 200ct2008 ChaosBook.org version13, Dec 31 2009



CHAPTER 17. AVERAGING 340

Figure 17.5: The symmetric matrixl = (J')" J* maps
a swarm of initial points in an infinitesimal spherical
neighborhood of¢ into a cigar-shaped neighborhood <%
finite timet later, with semiaxes determined by the |0_X0+ 6X
cal stretchingshrinking |A1|, but local individual tra-

jectory rotations by the complex phasefignored.

/ X(t)+Jdx

(For notational brevity we shall often suppress the depecel®f quantities such
asd = A(Xg), 6x(t) = 6x(xo,1) on the initial pointxy and the timet). One
can take (17.28) as is, take a small initial separadirg) track distance between
two nearby trajectories untipx(t1)| gets significantly bigger, then recotdt; =
In(|6X(t1)]/16%0l), rescalesx(ty) by factor|oxg|/|0x(t1)], and continue add infinitum,
as in figure 17.4, with the leading Lyapunov exponent given by

A= tlim % tidi. (17.29)

However, we can do better. Given the equations of motionipforitesimalsx we
know theox;(t)/0x;(0) ratio exactly, as this is by definition the Jacobian mxatri
(4.43)

- ox(t)  ox(t)
5x(0)-0 6x(0) ~ 9xj(0)

‘]itj (x0)

so the leading Lyapunov exponent can be computed from tharispproximation
(4.29)

|3t (x0) 50|

ETIIN R PEN
o _tIerJOzln(n (3H'J'0). (17.30)

A(Xg) = tIim %In

In this formula the scale of the initial separation drops, autly its orientation
given by the initial orientation unit vectar = 6Xg/|6Xo| matters. The eigenval-
ues ofJ are either real or come in complex conjugate pairs. JAs in general
not symmetric and not diagonalizable, it is more conventenivork with the
symmetric and diagonalizable mati = (J%) Jt, with real positive eigenval-
ues{|A1? > ... > |Agl?}, and a complete orthonormal set of eigenvectors of
{Ug, ..., Uq}. Expanding the initial orientation = Y (A - u;)u; in theMu; = |A;[2u;
eigenbasis, we have

d
ATMA = > (A~ w)AAIP = (7 - up)?e?t (1+ O 22y (17.31)
i=1

wheretu; = In|A;j(Xo, t)|, with real parts of characteristic exponents (4.19) ordere
by u1s > po > us---. For long times the largest Lyapunov exponent dominates
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Figure 17.6: A numerical estimate of the leading Lya- :
punov exponent for the Rossler flow (2.17) from the*
dominant expanding eigenvalue formula (17.30). The
leading Lyapunov exponent ~ 0.09 is positive, so
numerics supports the hypothesis that the Rossler at-

tractor is strange. (J. Mathiesen)

exponentially (17.30), provided the orientatinof the initial separation was not
chosen perpendicular to the dominant expanding eigemitireu;. The Lya-
punov exponent is the time average

1 o
Ax0) = fim Z{InA-ul +In Ay (0. 1) + O(e 2]

1
fim = In|A1(x. 1), (17.32)

where A1(Xo, t) is the leading eigenvalue df(xp). By choosing the initial dis-
placement such that i normal to the firsti¢1l) eigen-directions we can define
not only the leading, but all Lyapunov exponents as well:

(%) = JLrgo%ln |Ai (%o, 1)1, i=12---.,d. (17.33)

The leading Lyapunov exponent now follows from the Jacobatrix by
numerical integration of (4.9).

The equations can be integrated accurately for a finite tiraece the infinite
time limit of (17.30) can be only estimated from pIots%th(ﬁTM f) as function
of time, such as figure 17.6 for the Rossler flow (2.17).

As the local expansion and contraction rates vary along tive the temporal
dependence exhibits small and large humps. The sudderpfalllow level is
caused by a close passage to a folding point of the attrastoliustration of why
numerical evaluation of the Lyapunov exponents, and pptie very existence
of a strange attractor is a veryfiicult problem. The approximately monotone
part of the curve can be used (at your own peril) to estimatdeading Lyapunov
exponent by a straight line fit.

As we can already see, we are courtin€fidulties if we try to calculate the
Lyapunov exponent by using the definition (17.32) direcByst of all, the state
space is dense with atypical trajectories; for exampleg iiappened to lie on a
periodic orbitp, 1 would be simply INApl/Tp, a local property of cyclep, not a
global property of the dynamical system. Furthermore, eve@ happens to be a
“generic” state space point, it is still not obvious thafAlixg, t)|/t should be con-
verging to anything in particular. In a Hamiltonian systeiitiveoexisting elliptic
islands and chaotic regions, a chaotic trajectory getsicagtin the neighborhood
of an elliptic island every so often and can stay there foiti@tily long time; as
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there the orbit is nearly stable, during such episoda (Ro, t)|/t can dip arbitrar-

ily close to 0. For state space volume non-preserving flows the trajeatarny

traverse locally contracting regions, andAfXg, t)|/t can occasionally go nega-

tive; even worse, one never knows whether the asymptotacadt is periodic or

“strange,” so any finite estimate afmight be dead wrong. exercise 17.1

17.3.2 Evolution operator evaluation of Lyapunov exponerg

A cure to these problems wastered in sect. 17.2. We shall now replace time
averaging along a single orbit by action of a multiplicatexelution operator on
the entire state space, and extract the Lyapunov exporantifs leading eigen-
value. If the chaotic motion fills the whole state space, vecimdeed computing
the asymptotic Lyapunov exponent. If the chaotic motionrasdient, leading
eventually to some long attractive cycle, our Lyapunov equmi, computed on
non-wandering set, will characterize the chaotic trartsidhns is actually what
any experiment would measure, as even very small amounttefrat noise will
sufice to destabilize a long stable cycle with a minute immediatgn of attrac-
tion.

Example 17.5 Lyapunov exponent, discrete time 1-dimensional dynamics. Due
to the chain rule (4.52) for the derivative of an iterated map, the stability of a 1 —
dimensionamapping is multiplicative along the flow, so the integral (17.1) of the observ-
able a(x) = In|f’(X)|, the local trajectory divergence rate, evaluated along the trajectory
of Xg is additive:

n-1
A'(x0) = In[f™(x0)| = D" In| (x| . (17.34)
k=0

The Lyapunov exponent is then the expectation value (17.9) given by a spatial integral
(17.8) weighted by the natural measure

A={In|f" (X)) = f dxpo(X) In|f'(X)]. (17.35)
M
The associated (discrete time) evolution operator (17.23) is
L(y, ) = 5(y— f(x) """, (17.36)
Here we have restricted our considerations te @l maps, as for higher-
dimensional flows only the Jacobian matrices are multipiieanot the individual
eigenvalues. Construction of the evolution operator fal@ation of the Lya-
punov spectra in the general case requires more clevernassvarranted at this

stage in the narrative: an extension of the evolution eqoatio a flow in the
tangent space.

All that remains is to determine the value of the Lyapunovaegnt

1=niren = 29 g0 (17.37)

B lg=o
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from (17.12), the derivative of the leading eigenvalyés) of the evolution oper-
ator (17.36). example 20.1

The only question is: how?

Résum é

The expectation valuéay of an observabl@(x) measuredA!(x) = fot dra(x(7))
and averaged along the flaww— ft(x) is given by the derivative

0s
a) = —
(@) 3B lso

of the leading eigenvalues®) of the corresponding evolution operatgt.

Instead of using the Perron-Frobenius operator (16.10seheading eigen-
function, the natural measure, once computed, yields eapec value (16.20) of
any observabla(x), we construct a specific, hand-tailored evolution operdio
for each and every observable. However, by time we arrivéépter 20, the scaf-chapter 20
folding will be removed, both’s and their eigenfunctions will be gone, and only
the explicit and exact periodic orbit formulas for expeictatvalues of observables
will remain.

The next question is: how do we evaluate the eigenvalug®diVe saw in ex-
ample 17.4, in the case of piecewise-linear dynamical systéhat these operators
reduce to finite matrices, but for generic smooth flows, theyiafinite-dimensi-
onal linear operators, and finding smart ways of computirgr thigenvalues re-
quires some thought. In chapter 11 we undertook the first stiegh replaced the
ad hocpartitioning (16.14) by the intrinsic, topologically iriant partitioning.
In chapter 15 we applied this information to our first apgiima of the evolution
operator formalism, evaluation of the topological entrajnwe growth rate of the
number of topologically distinct orbits. This small vicyowill be refashioned in
chapters 18 and 19 into a systematic method for computireneaues of evolu-
tion operators in terms of periodic orbits.

Commentary

Remark 17.1 “Pressure” The quantity(exp(s - A")) is called a “partition function”

by Ruelle [19.1]. Mathematicians decorate it with consididy more Greek and Gothic
letters than is the case in this treatise. Ruelle [17.1] ané [17.2] had given name
“pressure”P(a) to s(8) (wherea is the observable introduced here in sect. 17.1.1), defined
by the “large system” limit (17.11). As we shall apply thedhgalso to computation of
the physical gas pressure exerted on the walls of a containarbouncing particle, we
prefer to refer tas(B) as simply the leading eigenvalue of the evolution opeliatooduced
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in sect. 16.5. The “convexity” properties such &) < P(|al) will be pretty obvious
consequence of the definition (17.11). In the casefhatthe Perron-Frobenius operator
(16.10), the eigenvalugsy(B), s1(B), - - -} are called th&kuelle-Pollicott resonancg47.3,
17.4, 17.5], with the leading ong(8) = s9(B) being the one of main physical interest.
In order to aid the reader in digesting the mathematicsditee, we shall try to point out
the notational correspondences whenever appropriaterigbeus formalism is replete
with lims, sups, infsQ-sets which are not really essential to understanding oftt@ery,
and are avoided in this presentation.

Remark 17.2 Microcanonical ensemble. In statistical mechanics the space average
(17.7) performed over the Hamiltonian system constantggngurface invariant measure

p(X)dx=dqdps(H(qg, p) — E) of volumew(E) = fqud ps(H(qg, p) — E)

1

@a) = ﬁ

fM dqdps(H(a, p) - E)a(a, p, ) (17.38)
is called thanicrocanonical ensemble average

Remark 17.3 Lyapunov exponents. The Multiplicative Ergodic Theorem of Os-
eledec [17.6] states that the limits (17.30-17.33) existalmost all pointsx, and all
tangent vectors.” There are at mod distinct values oft as we letn"range over the
tangent space. These are the Lyapunov exponents [4,1>8).

We are doubtful of the utility of Lyapunov exponents as meahgredicting any
observables of physical significance, but that is the mipgrosition - in the literature
one encounters many provocative speculations, espetidhy context of foundations of
statistical mechanics (“hydrodynamic” modes) and theterise of a Lyapunov spectrum
in the thermodynamic limit of spatiotemporal chaotic syste

There is much literature on numerical computation of thegwyaov exponents, see for
example refs. [17.14, 17.15, 17.17]. For early numericatmeés to compute Lyapunov
vectors, see refs. [17.16, 17.17]. The drawback of the Gsatmmidt method is that
the vectors so constructed are orthogonal by fiat, whereasttble/ unstable eigen-
vectors of the Jacobian matrix are in general not orthogoHahce the Gram-Schmidt
vectors are not covariant, i.e., the linearized dynamiassdwot transport them into the
eigenvectors of the Jacobian matrix computed further dowam. For computation of
covariant Lyapunov vectors, see refs. [17.18, 17.20].

Remark 17.4 State space discretization. Ref.[17.21] discusses numerical discretiza-
tons of state space, and construction of Perron-Frobepieisitors as stochastic matrices,
or directed weighted graphs, as coarse-grained modelg @ftinal dynamics, with trans-
port rates between state space partitions computed ugmgttrix of transition proba-
bilities; a rigorous discussion of some of the former feasus included in ref. [17.22].

Exercises
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17.1. How unstable is the Henon attractor?

(a) Evaluate numerically the Lyapunov expongibly
iterating some 100,000 times or so the Hénon map
1-axX+y

[;’(:]:[bx

fora=14,b=0.3.
(b) Would you describe the result as a 'strange attrac-
tor'? Why?
How robust is the Lyapunov exponent for the
Hénon attractor? Evaluate numerically the Lya-
punov exponent by iterating the Heénon map for
a=1.39945219h = 0.3. How much do you trust
now your result for the part (a) of this exercise?

Re-examine this computation by plotting the iter-

ates, and erasing the plotted points every 1000 it-
erates or so. Keep at it until the 'strange’ attractor
vanishes like the smile of the Chesire cat. What
replaces it? Do a few numerical experiments to
estimate the length of typical transient before the
dynamics settles into this long-time attractor.

(e) Use your Newton search routine to confirm exis-
tence of this attractor. Compute its Lyapunov ex-
ponent, compare with your numerical result from
above. What is the itinerary of the attractor.

() Would you describe the result as a 'strange attrac-
tor'? Do you still have confidence in claims such
as the one made for the part (b) of this exercise~

(©

(d)

17.2. Expectation value of a vector observable.

Check and extend the expectation value formulas
(17.12) by evaluating the derivatives s(f3) up to 4-th
order for the space averadgexp( - A")) with a a vector
quantity:

17.3.

7.4.

345

Note that the formalism is smart: it automatically
yields thevariance from the mean, rather than
simply the 2nd momer(la2>.

(c) compute the third derivative a&{g).

(d) compute the fourth derivative assuming that the
mean in (17.39) vanishe&;) = 0. The 4-th order
moment formula

(xv)) )
(x2(1))?

that you have derived is known &srtosis it mea-
sures a deviation from what the 4-th order moment
would be were the distribution a pure Gaussian
(see (25.22) for a concrete example). If the ob-
servable is a vector, the kurtos{gt) is given by

i [(AAAA) +2((AA) (AA) — (AA) (A,
(Zi (AA))?

K(t) = (17.40)

Pinball escape rate from numerical simulatiori.

Estimate the escape rate far: a = 6 3-disk pinball

by shooting 100,000 randomly initiated pinballs into the
3-disk system and plotting the logarithm of the number
of trapped orbits as function of time. For comparison, a
numerical simulation of ref. [8.3] yieldg = .410....

Rossler attractor Lyapunov exponents.

(a) Evaluate numerically the expanding Lyapunov ex-
ponentl, of the Rossler attractor (2.17).

(b) Plotyour own version of figure 17.6. Do not worry
if it looks different, as long as you understand why
your plot looks the way it does. (Remember the
nonuniform contractiofexpansion of figure 4.3.)

(a)
s 1 (c) Give your best estimate at. The literature gives
B = t“j[l{ <A|> = (&), (17.39) surprisingly inaccurate estimates - see whether
Hh=0 you can do better.
(b) (d) Estimate the contracting Lyapunov expongpat
&s N TR O/ at Even though it is much smaller thaig, a glance
BioBi |40 - t“f.l t ((AiAj> h (A,) <Ai >) at the stability matrix (4.4) suggests that you can
h= 1 probably get it by integrating the infinitesimal vol-
= lim = (A = t@)(A - t(ay))) - ume along a long-time trajectory, as in (4.47).
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