Appendix D

Symbolic dynamics technigues

prime factorization for dynamical itineraries of sect. Oll2strates the
sense in which prime cycles are “prime” - the product stretaf zeta func-
tions is a consequence of the unique factorization propdrsymbol sequences.

THE KNEADING THEORY for unimodal mappings is developed in sect. D.1. The

D.1 Topological zeta functions for infinite subshifts
(P. Dahlgvist)

,

J The transition graph methods outlined in chapter 11 are sutiéd for
symbolic dynamics of finite subshift type. A sequence of wlefined rules leads
to the answer, the topological zeta function, which turnstowe a polynomial.
For infinite subshifts one would have to go through an infisi#guence of graph
constructions and it is of course venyfittult to make any asymptotic statements
about the outcome. Luckily, for some simple systems the gaalbe reached by
much simpler means. This is the case for unimodal maps.

We will restrict our attention to the topological zeta fuinat for unimodal
maps with one external parametgi(x) = Ag(X). As usual, symbolic dynamics is
introduced by mapping a time series x_1X Xi.1 . .. onto a sequence of symbols
...S-1SS+1... where

§=0 X <X
S X = X
s=1 X>X (D.1)

andx is the critical point of the map (i.e., maximumg. In addition to the usual
binary alphabet we have added a sym@dior the critical point. The kneading
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1©) top@/(A-2) |[1(C) lop@/(1-2)
1iC 1001C

101C 10011

101110T 10011C

H*(1) Mo(l-727) 10011@

1011 100C

101111T 10001@

101° (1-22)/(1+72) || 1000LC

1011111C 10001

10111 1000C

1011C 10000

10110 1000@

10C (1-z-2) 10000@

10010 107 (1-29/(1-2
10010

Table D.1: All ordered kneading sequences up to length seven, as wethirag longer kneading
sequences. Harmonic extensidff (1) is defined below.

sequenceK, is the itinerary of the critical point (11.13). The crucidiservation
is that no periodic orbit can have a topological coordinage(sect. D.1.1) beyond
that of the kneading sequence. The kneading sequence tertsim border in
the list of periodic orbits (ordered according to maximgldtogical coordinate),
cycles up to this limit are allowed, all beyond are pruned! uwlimodal maps
(obeying some further constraints) with the same kneadiggence thus have the
same set of periodic orbitsand the same topological zetdium The topological
coordinate of the kneading sequence increases with inogeas

The kneading sequence can be of one of three types

1. It maps to the critical point again, aftariterations. If so, we adopt the
convention to terminate the kneading sequence wi@) and refer to the
kneading sequence as finite.

2. Preperiodic, i.e., itis infinite but with a periodic tail.

3. Aperiodic.
As an archetype unimodal map we will choose tiré map

AX x€[0,1/2]

x> 1(X) :{ AL-% xe(1/21] ° (-2)

where the parametek € (1,2]. The topological entropy i = logA. This
follows from the fact any trajectory of the map is boundede #scape rate is
strictly zero, and so the dynamical zeta function

1@ =[] (1— |in—p|) = [T(1- (%)) = veoptzrn)
p p
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has its leading zero at= 1.

The set of periodic points of the tent map is countable. A eqoence of this
fact is that the set of parameter values for which the knepsieguence (11.13) is
periodic or preperiodic are countable and thus of measuea®d consequently
the kneading sequence is aperiodic for almost all A. For general unimodal maps
the corresponding statement is that the kneading sequsm=geiiodic for almost
all topological entropies.

For a given periodic kneading sequence of penpl , = PC =
$15...5-1C there is a simple expansion for the topological zeta funmctibhen
the expanded zeta function is a polynomial of degree

n-1 i
Yaop@ = [ [1-Z)=1-2 ) az, a=]]-1)? (D-3)
p i=0 j=1

andag = 1.

Aperiodic and preperiodic kneading sequences are acabdotedy simply
replacingn by co.

Example. Consider as an example the kneading sequé&nce 10C. From
(D.3) we get the topological zeta functionifdp(2) = (1-2)(1-z- 7), see
table D.1. This can also be realized by redefining the alphdibe only forbidden
subsequence is 100. All allowed periodic orbits, exdeptan can be built from
a alphabet with letters 18nd 1 We write this alphabet 84,0, 1; 0}, yielding the
topological zeta function /Liop(2) = (1-2)(1 -z - 7). The leading zero is the
inverse golden meary = (V5 - 1)/2.

Example. As another example we consider the preperiodic kneading se
quenceK, = 101. From (D.3) we get the topological zeta functioftp(2) =
(1-2(1-22)/(1 + 2), see table D.1. This can again be realized by redefin-
ing the alphabet. There are now an infinite number of forhiddgbsequences,
namely 102"0 wheren > 0. These pruning rules are respected by the alphabet
{012™1:1 0}, yielding the topological zeta function above. The polehia zeta
function gt;%)(z) is a consequence of the infinite alphabet.

An important consequence of (D.3) is that the sequé¢agédnas a periodic tail
if and only if the kneading sequence has one (however, thexiog may difer
by a factor of two). We know already that the kneading seqgaeésaperiodic for
almost allA.

The analytic structure of the function represented by tliaite series). az
with unity as radius of convergence, depends on whethertheft{g;} is periodic
or not. If the period of the tail ifN we can write

q(2)
1-AN7°

Yéiop(d = p@ +d@1 + 21+ 2V .. ) = p(2) +
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for some polynomialg(2) andq(z). The result is a set of poles spread out along
the unit circle. This applies to the preperiodic case. Anriapic sequence of
codficients would formally correspond to infinitd and it is natural to assume
that the singularities will fill the unit circle. There is iadd a theorem ensuring
that this is the case [12.58], provided thé&s can only take on a finite number of
values. The unit circle becomesatural boundary, already apparent in a finite
polynomial approximations to the topological zeta fungtias in figure 15.2. A
function with a natural boundary lacks an analytic conttiaraoutside it.

To conclude: The topological zeta functiopd,, for unimodal maps has the
unit circle as a natural boundary for almost all topologieatropies and for the
tent map (D.2), for almost al.

Let us now focus on the relation between the analytic streatfithe topolo-
gical zeta function and the number of periodic orbits, oneat(15.8), the number
Np, of fixed points off"(x). The trace formula is (see sect. 15.4)

1 . d 1
Np=trT" = P dzz ”OI—ZIogg"tOID

wherey; is a (circular) contour encircling the origin= 0 in clockwise direction.
Residue calculus turns this into a sum over zexoand polesz, of gt;,%)

) ] d
N, = Z z," - Z zon+% dzz ”d—zloggtop
Z0:r<|zgl<R Zpr<lzpl<R TR

and a contribution from a large circlg;. For meromorphic topological zeta func-
tions one may leR — oo with vanishing contribution fromyg, andN, will be a
sum of exponentials.

The leading zero is associated with the topological entragydiscussed in
chapter 15.

We have also seen that for preperiodic kneading there wiliddes on the unit
circle.

To appreciate the role of natural boundaries we will consaévery) special
example. Cascades of period doublings is a central conoefité description of
unimodal maps. This motivates a close study of the function

E(2) = ]—[(1 ~-7A) . (D.4)
n=0

This function will appear again when we derive (D.3).

The expansion df(2) begins a€(2) = 1-z- 2+ -2 +2°.... The radius
of convergence is obviously unity. The simple rule govegniime expansion will
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effectively prohibit any periodicity among the déeients making the unit circle
a natural boundary.

It is easy to see tha&(z) = 0 if z = exp(2rm/2") for any integerm andn.
(Strictly speaking we mean th&iz) — 0 whenz — exp(2rm/2") from inside).
Consequently, zeros are dense on the unit circle. One carsladsv that singular
points are dense on the unit circle, for instat@)| — co whenz — exp(2rm/3")
for any integermandn.

As an example, the topological zeta function at the accutionlgpoint of
the first Feigenbaum cascade(fgh(2) = (1 - 2Z(2. ThenN, = 2*1if n =
2', otherwiseN, = 0. The growth rate in the number of cycles is anything but
exponential. It is clear thall, cannot be a sum of exponentials, the contayr
cannot be pushed away to infinitiR is restricted toR < 1 and Ny is entirely
determined byfyR which picks up its contribution from the natural boundary.

We have so far studied the analytic structure for some speages and we
know that the unit circle is a natural boundary for almost/all But how does
it look out there in the complex plane for some typical pareen&alues? To
explore that we will imagine a journey from the origir= 0 out towards the unit
circle. While traveling we let the paramet&rchange slowly. The trip will have a
distinct science fiction flavor. The first zero we encounteéhéone connected to
the topological entropy. Obviously it moves smoothly armhdy. When we move
outward to the unit circle we encounter zeros in increasiegsidies. The closer
to the unit circle they are, the wilder and stranger they molikeey move from
and back to the horizon, where they are created and destitbyedgh bizarre
bifurcations. For some special values of the parameterriieiicle suddenly gets
transparent and and we get (infinitely) short glimpses oftagrovorld beyond the
horizon.

We end this section by deriving egs (D.5) and (D.6). The ingprable prose
is hopefully explained by the accompanying tables.

We know one thing from chapter 11, namely for that finite knegdequence
of lengthn the topological polynomial is of degree The graph contains a node
which is connected to itself only via the symbol 0. This ireglithat a factor
(1 -2 may be factored out angp(2) = (1-2) Z{‘:‘ol a;iZ. The problem is to find
the codficientsy.

The ordered list of (finite) kneading sequences table D.lladrdered list of
periodic orbits (on maximal form) are intimately related.thble D.2 we indicate
how they are nested during a period doubling cascade. Eweaitg fkneading
sequencd®C is bracketed by two periodic orbitB1 andP0. We haveP1 < PC <
PO if P contains an odd number of 1's, ad < PC < P1 otherwise. From
now on we will assume tha® contains an odd number of 1's. The other case
can be worked out in complete analogy. The first and seconudrac of PC
are displayed in table D.2. The periodic orBit (and the corresponding infinite
kneading sequence) is sometimes referred to as the antharmextension oPC
(denotedA™(P)) and the accumulation point of the cascade is called thadaic
extension ofPC [11.8] (denotedH*(P)).
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periodic orbits| finite kneading sequences
P1=A~(P)
PC
PO
POPC
POP1
POP1POPC
2 2
H*(P) H™(P)

Table D.2: Relation between periodic orbits and finite kneading sege®im a harmonic cascade.
The stringP is assumed to contain an odd number of 1's.

A central result is the fact that a period doubling cascad®®@fis not in-
terfered by any other sequence. Another way to expressdhisai a kneading
sequence’C and its harmonic are adjacent in the list of kneading secqeT
any order.

1(C) Liop(@/(1-2)
P, = 100C 1-z-7-7

H*(P,) = 10001001100.. |1-z-Z2-Z2-Z+2+2+7-2...
PP = 1000LC 1-z-72-2-2+7

A*(P,) = 1000110001.. |1-z-Z-Z-Z+2-2-72/-7...
P, = 1000C 1-z-2-2-7

Table D.3: Example of a step in the iterative construction of the liskiméading sequencéxC.

Table D.3 illustrates another central result in the comtairnies of kneading
sequences. We suppose tiRaC and P,C are neighbors in the list of order 5
(meaning that the shortest finite kneading sequéti€ebetweenP;C andP,C is
longer than 5.) The important result is the(t (of lengthn’ = 6) has to coincide
with the firstn’ — 1 letters of bothH*(P1) and A*(P,). This is exemplified in
the left column of table D.3. This fact makes it possible toayate the list of
kneading sequences in an iterative way.

The zeta function at the accumulation pdift(P;) is
(i (DEE") (D.5)

and just beforedA®(Py)

{p,(@/(1-27) . (D.6)
A short calculation shows that this is exactly what one waaldthin by apply-
ing (D.3) to the antiharmonic and harmonic extensions direprovided that it

applies ta/;!(2) andZ;1(2). This is the key observation,

Recall now the product representation of the zeta funciion = [Tp(1 -
Z"). We will now make use of the fact that the zeta function aisged with
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P’C is a polynomial of orden’. There is no periodic orbit of length shorter than
n + 1 betweenH*(P1) and A*(P,). It thus follows that the cd&cients of this
polynomial coincides with those of (D.5) and (D.6), see &abl3. We can thus
conclude that our rule can be applied directlyX&.

This can be used as an induction step in proving that the anebe applied
to every finite and infinite kneading sequences.

Remark D.1 How to prove things.  The explicit relation between the kneading se-
quence and the céiicients of the topological zeta function is not commonly sieetihe
literature. The result can proven by combining some thesrefrMilnor and Thurston
[11.14]. That approach is hardly instructive in the presmaitext. Our derivation was
inspired by Metropolis, Stein and Stein classical paper.glLFor further detail, consult
[15.14].

D.1.1 Periodic orbits of unimodal maps

A periodic point (cycle point) xx belonging to a cycle of periodis a real solution
of

(%) = F(FC.. F(%)...) =%, k=0,1,2,....,n—1. (D.7)

Thenth iterate of a unimodal map has at mo%t@onotone segments, and there-
fore there will be 2 or fewer periodic points of length. Similarly, the backward
and the forward Smale horseshoes intersect at nfbsti&s, and therefore there
will be 2" or fewer periodic points of length. A periodic orbit of lengthn cor-
responds to an infinite repetition of a length= np symbol string, customarily
indicated by a line over the string:

Sp=(1%83..- )" =SS S -

As all itineraries are infinite, we shall adopt conventioatth finite string itinerary
Sp = 8193 .. S stands for infinite repetition of a finite block, and routyemit
the overline.xg, its cyclic permutation

SSa1---Sns1... S1 corresponds to the poin_1 in the same cycle. A cycle

is calledprime if its itinerary S cannot be written as a repetition of a shorter block
s’

Each cyclep is a set ofn, rational-valued full tent map periodic poings It
follows from (11.9) that if the repeating strirggs; . . . s, contains an odd number
“1"s, the string of well ordered symbolaiws ... wo, has to be of the double
length before it repeats itself. The cycle-pojnis a geometrical sum which we
can rewrite as the fraction

22n 2n .
V(&S ) = a1 Z Wi/2 (D.8)
t=1
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Using this we can calculate thdS) for all short cycles. For orbits up to length 5
this is done in table 11.1.

Here we give explicit formulas for the topological coordmaf a periodic
point, given its itinerary. For the purpose of what followssi convenient to com-
pactify the itineraries by replacing the binary alphaket {0, 1} by the infinite
alphabet

{aq, @, 8, a4, --; 0} = {1,10,100,100Q.. .. ; 0} . (D.9)

In this notation the itineran® = ajajaka - -- and the corresponding topological
coordinate (11.9) are related hyS) = .1011%0' - - -. For example:

S = 11101110100100Q. = aqqaxaiaqapagas...
¥(S) = .101101001110000. = .1'0'120%1'0%130%...
Cycle points whose itineraries start with = w, = ... =w; = 0, wi;1 = 1 remain

on the left branch of the tent map foiterations, and satisfy(0. .. 0S) = y(S)/2'.

Periodic points correspond to rational valuesypbut we have to distinguish
even andodd cycles. The even (odd) cycles contain even (odd) number f
the repeating block, with periodic points given by

521100 .. 1K even
g (L+20x . 100 - 1f) odd

y(@a;- - - aar) ={ , (D.10)

wheren =i+ j+---+k+(isthe cycle period. The maximal value periodic point
is given by the cyclic permutation & with the largesta as the first symbol,
followed by the smallest availablg as the next symbol, and so on. For example:

1) = y(@) = .10101.. = .10 = 2/3
(10) = y(a) = .1%0%... = 1100 = 4/5
$(100) = y(as) = .1%0°... = 111000 = 8/9
(101) = y(apay) = .120'... = .110 = 6/7

An example of a cycle where only the third symbol determitesmaximal value
periodic point is

7(1101110)= y(apanarayas) = .11011010010016 100/129.

Maximal values of all cycles up to length 5 are given in table!
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D.2 Prime factorization for dynamical itineraries

,
J The Mobius function is not only a number-theoretic funetibut can be
used to manipulate ordered sets of noncommuting objectsasisymbol strings.
LetP = {p1, p2, p3, - - -} be an ordered set @Fime strings, and

k.
N =)= {pepses B}

j €N, k € Z,, be the set of all strings obtained by the ordered concatenation of
the “primes” p;. By construction, every string has a unique prime factorization.
We say that a string has a divisdiif it containsd as a substring, and define the
string divisionn/d asn with the substringd deleted. Now we can do things like
this: definingty := t4t}2 - -t we can write the inverse dynamical zeta function
(20.2) as

[Ta-t)=> ntta,
p n

and, if we care (we do in the case of the Riemann zeta functtbe)dynamical
zeta function as .

1
]:[ T Dt (D.11)

n

A striking aspect of this formula is its resemblance to thetdeization of nat-
ural numbers into primes: the relation of the cycle expaméin11) to the product
over prime cycles is analogous to the Riemann zeta (exet&<®) represented
as a sum over natural numbers vs. its Euler product repratiemt

We now implement this factorization explicitly by decomipasrecursively
binary strings into ordered concatenations of prime s#irihere are 2 strings of
length 1, both prime;p; = 0, p» = 1. There are 4 strings of length 2: 00, 01,
11, 10. The first three are ordered concatenations of pri@@s: p%, 01 = p1p2,
11 = pg; by ordered concatenations we mean thgb, is legal, butp,p; is not.
The remaining string is the only prime of length g3 = 10. Proceeding by
discarding the strings which are concatenations of shqntienes p'f p'éz e p'j(j,
with primes lexically ordered, we generate the standatdofigprimes, in agree-
ment with table 15.1: 0, 1, 10, 101, 100, 1000, 1001, 1011,0a0a0001,
10010, 10011, 10110, 10111, 100000, 100001, 100010, 10200110, 100111,
101100, 101110, 101111,.. This factorization is illustrated in table D.4.
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factors | string || factors | string || factors | string |- string

P1 ol 0000 || Py 00000/ =7, = 50101
P2 1 p% P2 0001 || PyP2 00001 || 1o ps | 01101
, Py | 0011 PyPp | OOOLL | paps | 11101
Py 00 || pip; | 0111 PiPp | OOLLL) pp. | 10101
P1P2 01 || pt 1111 PP; | 01111} pps | 01000
P’ 11| P, | 0010 P 11111|| pps | 11000
P3 10 || pip2ps | 0110 P;ps | 00010 pip; | 01001

. P2P3 1110|| piPz2p3 | 00110|| p2p7 11001
IO% 000 pg 1010 || P1P5ps | 01110 paps | 01011
PIP2 001 || pips 0100 || p3ps | 11110|| Pzps | 11011
p1P3 011 || pps | 1100 pip2 | 01010 Po 10000
P 111 | pips | 0101| pop? | 11010| Pro | 10001
P1P3 010 || p2ps 1101 || p2p, 00100 || P11 10010
P2P3 110 || ps 1000 || pypops | 011001 P12 10011
P4 100 P7 1001 p2 Pa 11100 P13 10110
Ps 101 Ps 1011 p:2>, Da 10100 P14 10111

Table D.4: Factorization of all periodic points strings up to lengthriioi ordered con-
catenationsp* pi - - pi' of prime stringsp; = 0, p, = 1, ps = 10, ps = 100, ... ,
p14 = 10111.

D.2.1 Prime factorization for spectral determinants

,
J Following sect. D.2, the spectral determinant cycle exjuassis obtained
by expanding- as a multinomial in prime cycle weights

(o)

F= ﬂchﬂé = ) o P2 (b-12)

p k kikoks--=0

where the sum goes over all pseudocycles. In the above wedefived

()
_ ki
Tpilp;2p§3~-~ = 1_1[ Coktp - (D.13)
1=
exercise 19.10

A striking aspect of the spectral determinant cycle exganss its resem-
blance to the factorization of natural numbers into primeswe already noted in
sect. D.2, the relation of the cycle expansion (D.12) to tteelpct formula (19.9)
is analogous to the Riemann zeta represented as a sum oueal matmbers vs.
its Euler product representation.

This is somewhat unexpected, as the cycle weights factexaetly with re-

spect tor repetitions of a prime cycldy, = tj, but only approximatelyshad-
owing) with respect to subdividing a string into prime substrings,, =~ tp, tp,.
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The codiicientsCy have a simple form only in + dimensional, given by the
Euler formula (23.5). In higher dimensioi@ can be evaluated by expanding
(19.9),F(2 = [, Fp, where

SRR
Fo=1- + = - ...
P (; rdp,r) 2(; rdp,r)

Expanding and recollecting terms, and suppressingptbgcle label for the mo-
ment, we obtain

Fp

i, Ce=(-)a/Dy
r=1

Dy = ﬁdr:ﬁﬁ(l—u; (D.14)

where evaluation of, requires a certain amount of not too luminous algebra:

=

Coz
CL =

e = 3(E-u)- U1a+ua fkl %ﬂ

1 (dyds
C3 = 3|( d2 2d1d2—3d3)

=

d
1
= 2 [1—[(1 + 2Uq + 202 + 1Y)

a=1
d d
+2 l—[(l —Up -+ ) - 31_[(1 - ug)J
a=1 a=1
etc.. For example, for a general 2-dimensional map we have

F,o=1- it U + u2t2 Urlp(1 + ug)(1 + up) + u3 n u3
P Dl D2 D3

..(D.15)

We discuss the convergence of such cycle expansions inl gect.

With v o ... defined as above, the prime factorization of symbol strisgs i

unigque in the sense thedich symbol string can be written as a unique concatena-
tion of prime strings, up to a convention on ordering of primes. This factorization
is a nontrivial example of the utility of generalized Mobiinversion, sect. D.2.

How is the factorization of sect. D.2 used in practice? Sgppwe have com-
puted (or perhaps even measured in an experiment) all piyiwieup to length
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n, i.e., we have a list of,’s and the corresponding Jacobian matrix eigenvalues
Ap1,Ap2,...Apgd. Acycle expansion of the Selberg product is obtained by gene
ating all strings in order of increasing lengjfallowed by the symbolic dynamics
and constructing the multinomial

F= Zrn (D.16)

wheren = 515, --- 55, § range over the alphabet, in the present d@s&}. Fac-
torizing every stringn = si%---s; = pepe. . p:.(j as in table D.4, and sub-
stituting Ty, W€ obtain a multinomial approximation . For example,
1 F2 .
T001001010101= 7001001010101 = T12To13, @Nd7yys, Top2 @re known functions of

the corresponding cycle eigenvalues. The zerds cdin now be easily determined
by standard numerical methods. The fact that as far as theaigrdynamics is
concerned, the cycle expansion of a Selberg product is gierphverage over all

symbolic strings makes Selberg products rather pretty.

To be more explicit, we illustrate the above by expressintatyi strings as
concatenations of prime factors. We start by compubiagthe number of terms
in the expansion (D.12) of the total cycle lengthSettingCxt§ = z** in (D.12),
we obtain

S S 1
2 N2 = [ 2,7 = gy

n=0 p k=0

So the generating function for the number of terms in the &gliproduct is the
topological zeta function. For the complete binary dynamie haveN, = 2"
contributing terms of length:

— 1 — 1 _ N n
o0 = TL@—2v) 1—2z‘nZ::4)2 z

Hence the number of distinct terms in the expansion (D.12héssame as the
number of binary strings, and conversely, the set of binayngs of lengthn
sufices to label all terms of the total cycle lengtin the expansion (D.12).
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