Appendix B

Linear stability

Mopping up operations are the activities that engage most
scientists throughout their careers.

— Thomas KuhnThe Structure of Scientific Revolu-
tions

way beyond what we can exhaustively cover. Here we recapid few

I HE SUBJECT OF LINEAR ALGEBRA generates innumerable tomes of its own, and is
essential concepts that ChaosBook relies on. The puncisliag. (B.25):

Hamilton-Cayley equatiofi](M — 1;1) = 0 associates with each distinct root
A; of a matrixM a projection ontath vector subspace

M -4l

P = .

! n Ai — 4
j#i

B.1 Linear algebra

In this section we collect a few basic definitions. The readiyht prefer going
straight to sect. B.2.

Vector space. A setV of elementx,y, z, ... is called avector(or linear) space
over a fieldF if

(a) vector addition“+” is defined inV such thatV is an Abelian group under
addition, with identity elemer;

(b) the set ilosedwith respect tescalar multiplicationand vector addition
ax+y) = ax+ay, abeF, XxyeV
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(@a+bx = ax+bx
albx) = (abx
1x = X, 0x =0. (B.1)

Here the fieldF is eitherR, the field of reals numbers, @, the field of complex
numbers. Given a subs¥p c V, the set of all linear combinations of elements of
Vo, or thespanof Vy, is also a vector space.

Abasis. {1, ... &9} is any linearly independent subset\6fvhose span i¥.
The number of basis elemerndss thedimensiorof the vector spac¥.

Dual space, dual basis. Under a general linear transformatigre GL(n, F), the
row of basis vectors transforms by right multiplication &8 = ¥, (g1)ie®,
and the column ofxy’s transforms by left multiplication ag’ = gx. Under
left multiplication the column (row transposed) of basistegs gy transforms
asegj) = (9");ew, where thedual repg” = (g71)" is the transpose of the inverse
of g. This observation motivates introduction ofdaal representation spacé,
the space on whicL(n, F) acts via the dual reg’.

Definition. If V is a vector representation space, thendhal spaceV is the set
of all linear forms onV over the fieldF.

If (e, - .-, e} is a basis oW/, thenV is spanned by theual basisieq), - - -, &)},
the set ofd linear formsey) such that

K _
&) - €9 =4,
whereé‘lﬁ is the Kronecker symbokj‘lf = 1if j = k, and zero otherwise. The

components of dual representation space vester¥ will here be distinguished
by upper indices

LA LY. (B.2)

They transform unde@GL(n, F) as

y? = (g")2y". (B.3)

For GL(n, F) no complex conjugation is implied by tHenotation; that interpre-
tation applies only to unitary subgroupgn) c GL(n,C). In the index notation,
g can be distinguished frorg" by keeping track of the relative ordering of the
indices,

@8- g, (@) — ¢a. (B.4)
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Algebra. A set ofr elementst, of a vector spacg” forms an algebra if, in
addition to the vector addition and scalar multiplication,

(@) the set ixlosedwith respect to multiplicatioly” - 7~ — 7, so that for any
two elements,, tz € 77, the product, - tz also belongs tg:

r-1

ta'tﬁ = ZTaﬁyty’ Taﬁy eC; (BS)
y=0

(b) the multiplication operation idistributive

(ty +15) -
ty - (tz +t,)

to-t, +tg-t,

ty tg+t,-t,.

The set of numbers,z” are called thestructure constantsThey form a matrix
rep of the algebra,

(to ﬂy = Taﬂy > (B.6)

whose dimension is the dimensionf the algebra itself.

Depending on what further assumptions one makes on thepimdtion, one
obtains dfferent types of algebras. For example, if the multiplicat®associative

(ta - tg) -ty =to - (tg- 1)),
the algebra isssociative Typical examples of products are theatrix product
(te - 13)S = (L)L), taeVOV, (B.7)
and thelie product
(t - t9)3 = (LDAM)S — @I2(RE,  tac VOV (B.8)

which defines d.ie algebra

B.2 Eigenvalues and eigenvectors

Eigenvalues of a [dxd] matrix M are the roots of its characteristic polynomial

detM — A1) = ]—[ui ~2)=0. (B.9)
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Given a nonsingular matri¥, with all 2; # 0, acting ond-dimensional vectors
x, we would like to determineigenvectorsl) of M on whichM acts by scalar
multiplication by eigenvalug;

Me® = ;e (B.10)

If 4 # 4;, €V andel) are linearly independent. There are at maddistinct
eigenvalues and eigenspaces, which we assume have beentednlyy some
method, and ordered by their real parts, Re Redi,1.

If all eigenvalues are distinct &) ared linearly independent vectors which can
be used as a (non-orthogonal) basis for drgimensional vectox € RY

x=x 6+ x6? + ... 4 xq€D. (B.11)
From (B.10) it follows that
M -4 eV = (2 - 4) eV,

matrix (M — ;1) annihilatese®), the product of all such factors annihilates any
vector, and the matriM satisfies its characteristic equation (B.9),

d

rkM—mD=0- (B.12)

i=1

This humble fact has a name: the Hamilton-Cayley theoremelflelete one term
from this product, we find that the remainder projextento the corresponding
eigenspace:

rkM‘MDX:rkm‘@mém

j# j#i

Dividing through by the {; — ;) factors yields therojection operators

Rzr]Mfﬂﬂ (B.13)

which areorthogonalandcomplete

M-
!
Il
'—\

PiPj = 6ijPj, (nosum onj), (B.14)
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It follows from the characteristic equation (B.12) thiais the eigenvalue d¥1 on
P; subspace:

MP; = A;iP; (no sum on). (B.15)
UsingM = M1 and completeness relation (B.14) we can rewvitas
M = 1P1+ P2 +--- + AgPg. (816)

Any matrix functionf (M) takes the scalar valu1;) on theP; subspacef (M) P; =
f(1)) P;, and is thus easily evaluated throughdgfsectral decomposition

f(M) = > f(a)Pi. (B.17)

This, of course, is the reason why anyone but a fool works isidtlucible reps:
they reduce matrix (AKA “operator”) evaluations to manigtibns with numbers.

By (B.10) every column oP; is proportional to a right eigenvectef), and
its every row to a left eigenvectay;. In general, neither set is orthogonal, but by
the idempotence condition (B.14), they are mutually orthg,

e €V =co! . (B.18)

The non-zero constastis convention dependent and not worth fixing, unless you
feel nostalgic about Clebsch-Gordan fimgents. We shall set = 1. Then itis
convenient to collect all left and right eigenvectors intsiragle matrix as follows.

Fundamental matrix. The set of solution(t) = J!(Xo)Xo for a system of ho-
mogeneous linear flerential equations(f) = A(t)x(t) of order 1 and dimension
d forms ad-dimensional vector space. A bagest(t), ..., ed(t)} for this vector

space is called fundamental systenvery solutionx(t) can be written as

d
X(t) = Z ¢ e).
i=1

The [dxd] matrix Fﬁl = el(j) whose columns are the right eigenvectors)of

FO) ™t = @D),....e0),  FO = (ent).....eq) (B.19)

is the inverse of dundamental matrix
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Jacobian matrix. The Jacobian matrid'(xo) is the linear approximation to a
differentiable functiof'(xo), describing the orientation of a tangent plane to the
function at a given point and the amount of local rotation ahdaring caused
by the transformation. The inverse of the Jacobian matria éfinction is the
Jacobian matrix of the inverse function. fifis a map fromd-dimensional space
to itself, the Jacobian matrix is a square matrix, whoserdetent we refer to as
the ‘Jacobian.

The Jacobian matrix can be written as transformation frosisbat timetg to
the basis at timé,

J170(x0) = F(ta)F(to) " (B.20)

Then the matrix form of (B.18) i&(t)F(t)™! = 1, i.e., for zero time the Jacobian
matrix is the identity. exercise B.1

Example B.1 Fundamental matrix. If A is constant in time, the system (4.2) is
autonomous, and the solution is

x(t) = e*'x(0),

where exp(At) is defined by the Taylor series for exp(X). As the system is linear, the sum
of any two solutions is also a solution. Therefore, given d independent initial conditions,
X1(0), X2(0), . . . x4(0) we can write the solution for an arbitrary initial condition based on
its projection on to this set,

x(t) = F(t) F(0)x(0) = €',

where F(t) = (x¢(t), xo(t), . . ., X4(t)) is a fundamental matrix of the system. (J. Halcrow)
exercise B.1

Example B.2 Complex eigenvalues.  As M has only real entries, it will in general
have either real eigenvalues, or complex conjugate pairs of eigenvalues. That is not
surprising, but also the corresponding eigenvectors can be either real or complex. All
coordinates used in defining a dynamical flow are real numbers, so what is the meaning
of a complex eigenvector?

If Ak, Aks1 eigenvalues that lie within a diagonal [2 x 2] sub-block M’ c M
form a complex conjugate pair, {Ax, Aks1} = {u + lw, u — iw}, the corresponding com-
plex eigenvectors can be replaced by their real and imaginary parts, {e®,ekD} —
{(Ree® Imel}. In this 2-dimensional real representation, M’ — N, the block N is a
sum of the rescalingxidentity and the generator of SQ(2) rotations

N=(5 ) =e(o )+elt o)

Trajectories of X = N X, given by x(t) = J'x(0), where

FodNo etﬂ(c‘?s‘“t —sin “’t) , (B.21)
Sinwt  coswt
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spiral infout around (x,y) = (0,0), see figure 4.4, with the rotation period T and the
radial expansion /contraction multiplier along the €)) eigen-direction per a turn of the
spiral:

T=2nw, Avradial = e’ . (B.22)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x,y) = (0,0) is of order ~ T (and not, let us say, 1000T, or 10°2T).

Error correlation matrix.  In the sect. 17.3 calculation of Lyapunov exponents
we do not care about the orientation of the vector betweeajectiory and its per-
turbation, but only its magnitude. This magnitude is givgnHeerror correlation
matrix

|31 x0)o%0|” = 6% (3 Joxo . (B.23)

As J is in general not symmetric and not diagonalizable, it is stomes more
convenient to work with the symmetric and diagonalizablerixav = (J%)" Jt,
with real positive eigenvaluggA1/®> > ... > |Agl?}, and a complete orthonormal
set of eigenvectors dfiy, ..., uq}.

Degenerate eigenvalues. While for a matrix with generic real elements all eigen-
values are distinct with probability 1, that is not true irepence of symmetries,
or spacial parameter values (bifurcation points). Whataramsay about situation
whered, eigenvalues are degeneralg,= Ai = Aiz1 = - -+ = did,—1? Hamilton-
Cayley (B.12) now takes form

r

[[M-22% =0, >'d,=d. (B.24)

a=1

We distinguish two cases:

M can be brought to diagonal form. The characteristic equation (B.24) can be
replaced by the minimal polynomial,

[[M-2.1=0, (B.25)
a=1

where the product includes each distinct eigenvalue onbeorMatrix M acts
multiplicatively

M@k = 3e@h) (B.26)
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on ad,-dimensional subspace spanned by a linearly independérdf d&sis
eigenvectorge®d) 2 ... d*d)y This is the easy case whose discussion we
continue in appendix H.2.1. Luckily, if the degeneracy ie tlua finite or compact
symmetry group, relevaril matrices can always be brought to such Hermitian,
diagonalizable form.

M can only be brought to upper-triangular, Jordan form.  This is the messy
case, so we only illustrate the key idea in example B.3.

Example B.3 Decomposition of 2-dimensional vector spaces:  Enumeration of
every possible kind of linear algebra eigenvalue / eigenvector combination is beyond
what we can reasonably undertake here. However, enumerating solutions for the sim-
plest case, a general [2x2] non-singular matrix

_( Mz M
M_(M21 Mzz)'

takes us a long way toward developing intuition about arbitrary finite-dimensional ma-
trices. The eigenvalues

Ao = %trM + %\/(trM)Z — 4detM (B.27)

are the roots of the characteristic (secular) equation (B.9):

detM - 11) (U = V(A2 - A)

A2 —trM A1+ detM = 0.

Distinct eigenvalues case has already been described in full generality. The left/right
eigenvectors are the rows/columns of projection operators

Mol M-oul
Ap — A1

A # Ao, B.28
P 1# A2 ( )

Degenerate eigenvalues.if 1; = 1, = A, we distinguish two cases: (a) M can be
brought to diagonal form. This is the easy case whose discussion in any dimension we
continue in appendix H.2.1. (b) M can be brought to Jordan form, with zeros every-
where except for the diagonal, and some 1’s directly above it; for a [2x 2] matrix the
Jordan form is

(41 (1)_(1 @_(0
M= (g A)’ €= o)"’ ‘(1)'

v@) helps span the 2-dimensional space, (M — 1)?v® = 0, but is not an eigenvector, as
Mv @ = av@ + eV, For every such Jordan [d,xd,] block there is only one eigenvector
per block. Noting that

m_ Am mm—l
M - ( 0 /lm ’

appendStability - 5nov2009 ChaosBook.org version13, Dec 31 2009



APPENDIX B. LINEAR STABILITY 760

we see that instead of acting multiplicatively on R?, Jacobian matrix J' = exptM)

oM (u) _ e“(u + tv) (B.29)

V \%

picks up a power-low correction. That spells trouble (logarithmic term Int if we bring
the extra term into the exponent).

Example B.4 Projection operator decomposition in 2 dimensions: Let’s illus-
trate how the distinct eigenvalues case works with the [2x2] matrix

M=(4 1).

3 2

Its eigenvalues {11, A2} = {5, 1} are the roots of (B.27):
detM —11) =22 -61+5=(5-2)(1—-1) =0.

That M satisfies its secular equation (Hamilton-Cayley theorem) can be verified by
explicit calculation:

(5 2 -o(s 2)+s(o D=(5 o)

Associated with each root A; is the projection operator (B.28)

SEETE
1 1,1 -1
P, = Z(M—5-1)=Z(_3 3). (B.31)

Matrices P; are orthonormal and complete, The dimension of the ith subspace is given

by di = trP;; in case at hand both subspaces are 1-dimensional. From the charac-

teristic equation it follows that P; satisfies the eigenvalue equation M P; = A;P;. Two

consequences are immediate. First, we can easily evaluate any function of M by spec-
tral decomposition, for example

58591 1953

M7-3-1= (57 =3P+ (1-3)P> = 2ocos 19523 .

Second, as P; satisfies the eigenvalue equation, its every column is a right eigenvector,
and every row a left eigenvector. Picking first row/column we get the eigenvectors:

e ey = {(1)’(_]:'3)}
{eq), eo)} {(3 1),(1 -1)},

with overall scale arbitrary. The matrix is not hermitian , so {¢)} do not form an orthog-
onal basis. The left-right eigenvector dot products €y - e®, however, are orthogonal
as in (B.18), by inspection.
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Example B.5 Computing matrix exponentials. If A is diagonal (the system is un-
coupled), then e is given by

At et
/lzt eﬂgt
exp . -

Agt gldt

If A is diagonalizable, A = FDF 1, where D is the diagonal matrix of the eigen-
values of A and F is the matrix of corresponding eigenvectors, the result is simple:
A" = (FDFY)(FDF™Y)...(FDF1) = FD"FL. Inserting this into the Taylor series for
e* gives eM = FeP'FL,

But A may not have d linearly independant eigenvectors, making F singular and
forcing us to take a different route. To illustrate this, consider [2x2] matrices. For any
linear system in R?, there is a similarity transformation

B=UAU,

where the columns of U consist of the generalized eigenvectors of A such that B has
one of the following forms:

(4 0 (11 (u —w
B_(O ,u)’ B_(O /l)’ B_(w /J)'
These three cases, called normal forms, correspond to A having (1) distinct real eigen-
values, (2) degenerate real eigenvalues, or (3) a complex pair of eigenvalues. It follows

that
et 0 1t cosbt —sinbt
Bt _ Bt _ t Bt _ t
€ _(O e“t)’ € _eﬂ(o 1)’ € _ea(sinbt cosbt)’

and e\ = UeBU~1. What we have done is classify all [2<2] matrices as belonging to one
of three classes of geometrical transformations. The first case is scaling, the second
is a shear, and the third is a combination of rotation and scaling. The generalization of
these normal forms to RY is called the Jordan normal form. (J. Halcrow)

B.3 Eigenspectra: what to make out of them?

Well Mack the Finger said to Louie the King

| got forty red white and blue shoe strings

And a thousand telephones that don’t ring

Do you know where | can get rid of these things?

— Bob Dylan,Highway 61 Revisited

Table B.1, taken from ref. [B.1], is an example of how to tabelthe leading
Floquet eigenvalues of the stability matrix of an equilioni or relative equilib-
rium. The isotropy subgrouﬁg)Q of the corresponding eigenfunction should be

indicated. If the isotropy is trivialGU)L = (e}, it is omitted from the table. The
isotropy subgroufGeq of the solution itself needs to be noted, and for relative
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Table B.1: The first 27 least stable Floquet exponents u + i w of equilibrium EQs for plane
Couette flowRe= 400. The exponents are ordered by the decreasing real petwi zero expo-
nents, to the numerical precision of our computation, driem the two translational symmetries.
For details, see ref. [B.1].

i ks Wb 19,5
12 | 007212161 004074989 SSS
3 | 0.06209526 SAA
4 | 0.06162059 ASA
56 | 002073075 007355143 SSS
7 | 0.009925378 SAA
8,9 | 0.009654012  0.04551274  AAS
10,11 0.009600794  0.2302166  SAA
12,13 1.460798¢-06  1.542103e-06 - - A
14.15| -0.0001343539 0231129  AAS
16 | -0.006178861 ASA
17,18| -0.007785718  0.1372092  AAS
19 | -0.01064716 SAA
20,21| -0.01220116  0.2774336  SSS
22,23| -0.01539667  0.2775381  SAA
24.25| -0.03451081  0.08674062 ASA
26,27| -0.03719139  0.215319 SAA

equilibrium (10.30) the velocity along the group orbit. In addition, if the least
stable (i.e., the most unstable) eigenvalue is comple)s ftelpful to state the
period of the spiral-out motion (or spiral-in, if stabld@q = 2r/w .

Table B.2, taken from ref. [B.3], is an example of how to talbelthe lead-
ing Floquet exponents of the monodromy matrix of an periadlut or relative
periodic orbit. For a periodic orbit one states the perigd Ap = []Ape, and
the isotropy grouf,, of the orbit; for a relative periodic orbit (10.35) one state
in addition the shift parametets= (61,62, - - - 6n). Ap, the product of expanding
Floquet multipliers (5.7) is useful, ag|Ap| is the geometric weight of cyclp
in a cycle expansion (remember that each complex eigencaluigibutes twice).
We often do care abomt(p‘) = Apj/IApjl € {+1,-1}, the sign of thejth Floquet

multiplier, or, if Apj is complex, its phasﬁpw(p‘).

Surveying this multitude of equilibrium and Floquet expotseis aided by a
plot of the complex exponent plang, (v). An example are the eigenvalues of
equilibrium EQg from ref. [B.2], plotted in figure B.1. To decide how many of
the these are “physical” in the PDE case (where number ofrexis is always
infinite, in principle), it is useful to look at thej,(u()) plot. However, intelli-
gent choice of thg-axis units can be tricky for high-dimensional problemsr Fo
Kuramoto-Sivashinsky system the correct choice are theewmavnbers which,
due to the O(2) symmetry, come in pairs. For plane Couetteth@good choice
is not known as yet; one needs to group O%2p(2) wave-numbers, as well as
take care of the wall-normal node counting.

appendStability - 5nov2009 ChaosBook.org version13, Dec 31 2009



APPENDIX B. LINEAR STABILITY

Figure B.1: Eigenvalues of the plane Couette flow
equilibrium EQg, plotted according to their isotropy A
groups: ® + + +, the S-invariant subspacep- + — —, o "
<4 -+ -, and A - - +, where+ symbols stand > N
for symmetrigantisymmetric under symmetry opera- a
tion s, s, and s; respectively, defined in ref. [B.2]. 0.
For tables of numerical values of stability eigenvalue
seeChannelflow.org. 0.4

763

0.4

-0.05 0 0.05 0.1

Table B.2: The first 13 least stable Floquet exponehts u + i w of periodic orbitp = P59.77 for
plane Couette flowRe = 400, together with the symmetries of corresponding eigetove. The
eigenvalues are ordered by the decreasing real part. Theesoesigenvalue, to the numerical pre-
cision of our computation, arises from the spanwise tradiwsial SO(2) symmetry of this periodic
orbit. For details, see ref. [B.3].

Pled o Gl
1,2 0.07212161  0.04074989 D,
3 1 0.06209526 ?
4 | -1 0.06162059
5,6 0.02073075  0.07355143
7 | -1 0.009925378
8,9 0.009654012 0.04551274
10,11 0.009600794  0.2302166

B.4 Stability of Hamiltonian flows

O3

(M.J. Feigenbaum and P. Cvitanovit)

The symplectic structure of Hamilton’s equations buys usimonore than the
incompressibility, or the phase space volume conservaiiloiled to in sect. 7.1.
The evolution equations for any, g dependent quantit®) = Q(qg, p) are given by

(16.32).

In terms of the Poisson brackets, the time evolution eqondtoQ = Q(q, p)
is given by (16.34). We now recast the symplectic conditidril) in a form
convenient for using the symplectic constraintsnWriting x(t) = X' = [p/, (]
and the Jacobian matrix and its inverse

o
— aq
'V'—(w
aq

Jq; 0q;
aq’k ap((

api dpj

o omy

e 9q 99
Fi ] . M= [ N B ] : (B.32)
p I
we can spell out the symplectic invariance condition (7.11)

s

aq; aq;

op, 9q, 0

opi Ip;

op; 99,

— Bij - B.33

36 9P, ij (B.33)

aq; apj
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From (7.18) we obtain

5Qi:a_p] 5|0i:8_q] ] :_a_q’j 5|0i:_8_p’j
oo, opi’ 9p; oOqi’ 9p;  op’ od  Oq

(B.34)

Taken together, (B.34) and (B.33) imply that the flow conesithe{p, g} Poisson
brackets

g 99; _ 99 0gi _
8p{(6q{< 8p{< 8q’k
0, {pi, qj} = 6ij (B.35)

{gi,qj}

{pi, pj}

i.e., the transformations induced by a Hamiltonian flowaaeonical preserving
the form of the equations of motion. The first two relations symmetric under
i, j interchange and yiel®(D — 1)/2 constraints each; the last relation yieldi$
constraints. Hence only ()2 — 2D(D — 1)/2 — D? = d(2D + 1) elements oM
are linearly independent, as it behooves group elementseaymplectic group
S [2D).

B.5 Monodromy matrix for Hamiltonian flows

O3

(G. Tanner)

It is not the Jacobian matrid of the flow (4.6), but thenonodromy matrix M
which enters the trace formula. This matrix gives the timpehelence of a dis-
placement perpendicular to the flow on the energy manifeldeéd, we discover
some trivial parts in the Jacobian matdx An initial displacement in the direc-
tion of the flowx = wVH(X) transfers according téx(t) = x(t)ét with 6t time
independent. The projection of any displacemené»on VH(X) is constant, i.e.,
VH(x(t))ox(t) = SE. We get the equations of motion for the monodromy matrix
directly choosing a suitable local coordinate system onotibét x(t) in form of
the (non singular) transformatidi(x(t)):

J(x() = UH(x(1) I(x(t) U(x(0)) (B.36)
These lead to

LJ
U(LU - L) (B.37)

J
with L

Note that the properties a) — c) are only fulfilled fbandL if U itself is symplec-
tic.
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Choosingxe = VH(t)/|[VH(t)[? andx as local coordinates uncovers the two
trivial eigenvalues 1 of the transformed matrix in (B.36)aaty timet. Setting
U= (. X5 X],..., X, ) gives

1 =% = * 0 =« % ... =
010 0 00 O0...0
j=| 0 = : =0 = , (B.38)
. M . . |
0 = 0 =

The matrixM is now the monodromy matrix and the equation of motion arermiv
by

M=IM. (B.39)

The vectorsxy, . .., Xog_2 Must span the space perpendicular to the flow on the
energy manifold.

For a system with two degrees of freedom, the malti{x) can be written
down explicitly, i.e.,

X -y —U/¢f —V/P

_ |y x v we?
VO =0exxexd =| 4§ g~y (B.40)

v o-U Y/ X

with x™ = (x,y;u,v) andq = |VH| = [X. The matrixU is non singular and
symplectic at every phase space poingxcept the equilibrium points= 0. The
matrix elements fol are given (B.42). One distinguishes 4 classes of eigensalue
of M.

stableor elliptic, if A = €™ andv €]0, 1[.

marginal if A = 1.

hyperbolig inverse hyperbolicif A = e, A = —e*,

loxodromic if A = e*#*1« with u andw real. This is the most general case,
possible only in systems with 3 or more degree of freedoms.

For 2 degrees of freedom, i.84, is a [2<2] matrix, the eigenvalues are determined
by

1= tr(M) £ tr(M)2-4
= 5 ,

(B.41)
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i.e., tr(M) = 2 separates stable and unstable behavior.

Thel matrix elements for the local transformation (B.40) are

iy = IO = 16— 6 4 )~ )+ 20y~ P + )
~(heh + hyu) (B + Py — hug — B

T = q—lzt(hi + 1)y + P) + (0 + W) (s + i)

~2(neh + yh) (i + i) — 20y — b)) (e — P

T = —(h2+ F2)(huu + ) — (2 + ) (P + hyy)
+2(hxhy — hyhy)(hyxy = hyy) + 2(hxhy + hyhy)(hyy + hyy)
T, = Ty, (B.42)

with hj, hjj is the derivative of the HamiltoniaH with respect to the phase space
coordinates and = [VH/?.
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Exercises
B.1. Real representation of complex eigenvalues. (Ver- whereR = Pg + Py,1 andQ are matrices with real
ification of example B.2.) A, A«;1 eigenvalues form a elements.
complex conjugate paifdy, A1} = {1 + iw,u — iw}. Pe \ _1/1 i\(R
Show that © (Pk+1)_§(1 —i)(Q)'

(d) -+ APy+ A Pi1+- - - complex eigenvalue pair in
the spectral decomposition (B.16) is now replaced
by a real [2<2] matrix

(a) corresponding projection operators are complex
conjugates of each other,
P:Pk, P*:Pk+17
. . - R
where we denot® by P for notational brevity. S (” w)(Q) + -

. w u
(b) P can be written as ) ) )
or whatever you find the clearest way to write this

P= %(R +iQ), real representation.
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