Appendix F

| mplementing evolution

F.1 Koopmania

THE wAy In which time evolution acts on observables may be rephrased
the language of functional analysis, by introducing Koepman operator,
whose action on a state space functgx is to replace it by its downstream
value timet later,a(x) — a(x(t)) evaluated at the trajectory poir(t):

Kla(x) = a(fi(x)). (F.1)

Observablea(x) has no explicit time dependence; all the time dependence
comes from its evaluation aft) rather than ak = x(0).

Suppose we are starting with an initial density of represrg pointsp(X):
then the average value afx) evolves as

_ 1 t _ 1 t
@ = — fM dxa(f'(9p() = fM dx [K'a(x)| p(x).

An alternative point of view (analogous to the shift from tHeisenberg to the
Schrodinger picture in quantum mechanics) is to push dycalnafects into the
density. In contrast to the Koopman operator which advatioegrajectory by
timet, the Perron-Frobenius operator (16.10) depends on theetoay point time
t in the past, so the Perron-Frobenius operator is the adjbitite Koopman op-
erator

fM dx [K'a(3)] p(x) = fM dxa(x) [£Lp(9)] - (F.2)

Checking this is an easy change of variables exercise. Htg iimensional de-
terministic invertible flows the Koopman operator (F.1)iragly the inverse of the
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Perron-Frobenius operator (16.6), so in what follows wel st distinguish the
two. However, for infinite dimensional flows contractingvi@rd in time and for
stochastic flows such inverses do not exist, and there yalitod®e more careful.

The family of Koopman'’s operator{s‘Kt}tER+ forms a semigroup parameter-
ized by time

(@) K°=1
(b) KK =™ >0 (semigroup property) ,

with the generator of the semigroup, the generator of infinitesimal time transl
tions defined by

Aty o).

(If the flow is finite-dimensional and invertiblel is a generator of a group). The
explicit form of A follows from expanding dynamical evolution up to first order
asin (2.5):

Aa(x) = t|Lrg+%(a(ft(x)) —a(¥) = vi()dia(x). (F.3)

Of course, that is nothing but the definition of the time datixe, so the equation
of motion fora(x) is

d
— —-Ala(x) = 0. E.4
(& - ) (F.a)
appendix F.2
The finite time Koopman operator (F.1) can be formally expedsby exponenti-
ating the time evolution generatot as
K=", (F.5)
exercise F.1

The generatorA looks very much like the generator of translations. Indeed,
for a constant velocity field dynamical evolution is nothibigt a translation by
time x velocity: exercise 16.10

dVika(x) = a(x + tv). (F.6)

As we will not need to implement a computational formula fengrale” in
what follows, we relegate making sense of such operatorppgeralix F.2. Here appendix F.2
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we limit ourselves to a brief remark about the notion of “dpam” of a linear
operator.

The Koopman operatdK acts multiplicatively in time, so it is reasonable to
suppose that there exist constaMs> 0, 3 > 0 such thal|X"|| < Me?® for all
t > 0. What does that mean? The operator norm is define in the Sainiteirs
which we defined the matrix norms in sect. J.2: We are assuthizigno value
of K'p(x) grows faster than exponentially for any choice of functigr), so that
the fastest possible growth can be bounded@*ya reasonable expectation in the
light of the simplest example studied so far, the exact escafe (17.20). If that
is so, multiplyingk* by ™% we construct a new operater? %" = e(“*-#) which
decays exponentially for large||e"#)|| < M. We say thae"¥k" is an element
of a bounded semigroup with generatqfl — 81. Given this bound, it follows by
the Laplace transform

fo dte‘%(t:ﬁ, Res> j3, (F.7)

that theresolvent operator § — A)~! is bounded (“resolvent= able to cause section J.2
separation into constituents)

1 00
H H sf dteSMe” = l
S—A 0 s—-p

If one is interested in the spectrum%f, as we will be, the resolvent operator is a
natural object to study. The main lesson of this brief assdthat for the continu-
ous time flows the Laplace transform is the tool that bringsrmthe generator in
(16.29) into the resolvent form (16.31) and enables us ysits spectrum.

F.2 Implementing evolution

(R. Artuso and P. Cvitanovit)

,
J We now come back to the semigroup of operatkits We have introduced
the generator of the semigroup (16.27) as

d t
ﬂ—a‘K

t=0

If we now take the derivative at arbitrary times we get

(%W)m jim YEO0) — (1)

n—0 n

w(F(0) a%w(%)

(%' Aw) (%

%=14(%)
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which can be formally integrated like an ordinanffdrential equation yielding exercise F.1
K= e, (F.8)

This guarantees that the Laplace transform manipulatioesét. 16.5 are correct.
Though the formal expression of the semigroup (F.8) is gsiitgple one has to
take care in implementing its action. If we express the egptial through the
power series

K=y A, (F.9)

we encounter the problem that the infinitesimal generatér2(@) contains non-
commuting pieces, i.e., there drg combinations for which the commutator does
not satisfy

0
6—Xi,Vj(X)] =0.

To derive a more useful representation, we follow the siratased for finite-
dimensional matrix operators in sects. 4.2 and 4.3 and @ssetimigroup property
to write

t/oT

¥t = 1_[ ¥

m=1

as the starting point for a discretized approximation todbatinuous time dy-
namics, with time stepr. Omitting terms from the second order onwards in the
expansion ofK’" yields an error of orde©(672). This might be acceptable if the
time stepst is suficiently small. In practice we write the Euler product

t/oT
K= | | @+ 6tAm) + O (F.10)

m=1

where

Amp) () = (E() S—Z

K= T (x)
As far as thex dependence is concernel7™ acts as
X1 X1
) L ' ) (F.11)

X X + 0TVi(X)
X4 X4

appendMeasure - 220ct2009 ChaosBook.org version13, Dec 31 2009



APPENDIX F. IMPLEMENTING EVOLUTION 790

exercise 2.6

We see that the product form (F.10) of the operator is notkisg but a prescrip-
tion for finite time step integration of the equations of matk in this case the
simplest Euler type integrator which advances the trajgchy srxvelocity at
each time step.

F.2.1 A symplecticintegrator

,
J The procedure we described above is only a starting poiniriore so-
phisticated approximations. As an example on how to get gpehdound on the

error term consider the Hamiltonian fla# = 8+ C, 8 = pi%, C= —aiV(q)%.

Clearly the potential and the kinetic parts do not commute.ritéke sense of theexercise F.2
formal solution (F.10) by splitting it into infinitesimalegds and keeping terms up

to 672 in

,\ 1
KT = KT+ (07 [B+2C.[B.CI +- - (F.12)
where
RO = HITBPHTC B (F.13)

The approximate infinitesimal Liouville operatéf” is of the form that now gen-
erates evolution as a sequence of mappings induced by 1@ 3fee flight by
1678, scattering byraV(q'), followed again by:s78 free flight:

oty - {5)-(+)

p o4 p

S Bl P R PR,
a4 P’ P+ orov(a)
’” 17 r_ 0T 7

on{t) - (-
p”’ P p’

Collecting the terms we obtain an integration rule for tliset of symplectic flow
which is better than the straight Euler integration (F.14)itais accurate up to
orderst?:

S 2
On+1 On — 07 Pn — %8V (On — 67pn/2)

Prsr = Pn+ 07OV (OQn — 6TPn/2) (F.15)

The Jacobian matrix of one integration step is given by

L —67/2 1 0)(1 —ot/2
M:(O 1 )(&av(q’) 1)(0 1 ) (F.16)
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Note that the billiard flow (8.11) is an example of such syrofiteintegrator. In
that case the free flight is interrupted by instantaneousreféctions, and can be
integrated out.

Commentary

Remark F.1 Koopman operators.  The “Heisenberg picture” in dynamical systems
theory has beenintroduced by Koopman and Von Neumann [R]L sEe also ref. [16.12].
Inspired by the contemporary advances in quantum mechataogpman [F.1] observed
in 1931 thatX" is unitary onL?(x) Hilbert spaces. The Koopman operator is the classical
analogue of the quantum evolution operatorékfn/h) —the kernel of£!(y, x) introduced

in (16.16) (see also sect. 17.2) is the analogue of the Gsdencttion discussed here in
chapter 31. The relation between the spectrum of the Koopspanator and classical
ergodicity was formalized by von Neumann [F.2]. We shall ns¢ Hilbert spaces here
and the operators that we shall stugiyl not be unitary. For a discussion of the relation
between the Perron-Frobenius operators and the Koopmaatopefor finite dimensional
deterministic invertible flows, infinite dimensional camtting flows, and stochastic flows,
see Lasota-Mackey [16.12] and Gaspard [1.8].

Remark F.2 Symplectic integration. The reviews [F.12] and [F.13]ffer a good start-
ing point for exploring the symplectic integrators litareg. For a higher order integrators
of type (F.13), check ref. [F.18].

Exercises
F.1. Exponential form of semigroup elements. Check (F.12) are not vanishing by showing that
that the Koopman operator and the evolution generator
commute,K'A = AK", by considering the action of [8,C] = _p(vni _ V'ﬁ) .
both operators on an arbitrary state space funcioi ap aq

F.3. Symplectic leapfrog integrator. Implement (F.15)
for 2-dimensional Hamiltonian flows; compare it with
Runge-Kutta integrator by integrating trajectories in
F.2. Non-commutativity. Check that the commutators in some (chaotic) Hamiltonian flow.
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