
Chapter 14

Walkabout: Transition graphs

I think I’ll go on a walkabout
find out what it’s all about [...] take a ride to the other side

—Red Hot Chili Peppers, ‘Walkabout’

I 11 12 we learned that invariant manifolds partition the state
space in invariant way, and how to name distinct orbits. We have established
and related thetemporallyandspatially ordered topological dynamics for a

class of ‘stretch & fold’ dynamical systems, and discussed pruning of inadmissi-
ble trajectories.

Here we shall use these results to generate the totality of admissible itineraries.
This task will be particularly easy for repellers with complete Smale horseshoes
and for subshifts of finite type, for which the admissible itineraries are generated
by finite transition matrices, and the topological dynamicscan be visualized by
means of finite transition graphs. We shall then turn topological dynamics into a
linear multiplicative operation on the state space partitions by means of transition
matrices, the simplest examples of ‘evolution operators.’They will enable us – in
chapter 15 – tocountthe distinct orbits.

14.1 Matrix representations of topological dynamics

The allowed transitions between the regions of a partition{M1,M2, · · · ,Mm} are
encoded in the [m×m]-dimensional transition matrix whose elements take values

Ti j =

{

1 if the transitionM j →Mi is possible
0 otherwise. (14.1)

The transition matrix is an explicit linear representationof topological dynam-
ics. If the partition is a dynamically invariant partition constructed from sta-
ble/unstable manifolds, it encodes the topological dynamics asan invariant law

271

CHAPTER 14. WALKABOUT: TRANSITION GRAPHS 272

Figure 14.1: Points from the regionM21 reach re-
gions {M10,M11,M12}, and no other regions, in one
time step. Labeling exemplifies the ‘shift map’ of ex-
ample 11.7 and (11.20).

of motion, with the allowed transitions at any instant independent of the trajectory
history, requiring no memory.

Several related matrices as well will be needed in what follows. Often it is
convenient to distinguish between two or more paths connecting the same two
regions; that is encoded by theadjacencymatrix with non-negative integer entries,

Ai j =

{

k if a transitionM j →Mi is possible ink ways
0 otherwise. (14.2)

More generally, we shall encounter [m×m] matrices which assign different real or
complex weights to different transitions,

Li j =

{

Li j ∈ R or C if M j →Mi is allowed
0 otherwise. (14.3)

As in statistical physics, we shall refer to these astransfermatrices.

Mi is accessiblefrom M j in k steps if (Lk)i j , 0. A matrix L is called
reducibleif there exists one or more index pairs{i, j} such that (Lk)i j = 0 for all
k, otherwise the matrix isirreducible. This means that a trajectory starting in any
partition region eventually reaches all of the partition regions, i.e., the partition
is dynamically transitive or indecomposable, as assumed in(2.2). The notion of
topological transitivity is crucial in ergodic theory: a mapping is transitive if it
has a dense orbit. If that is not the case, state space decomposes into disconnected
pieces, each of which can be analyzed separately by a separate irreducible matrix.
RegionMi is said to betransientif no trajectory returns to it. RegionM j is said
to beabsorbingif no trajectory leaves it,L j j , 0, Li j = 0 for all i , j. Hence it
suffices to restrict our considerations to irreducible matrices.

If L has strictly positive entries,Li j > 0, the matrix is calledpositive; if Li j ≥

0, the matrix is callednon-negative. Matrix L is said to beeventually positiveor
Perron-Frobeniusif Lk is positive for some powerk (as a consequence, the matrix
is transitive as well). A non-negative matrix whose columnsconserve probability,
∑

i Li j = 1, is calledMarkov, probability or stochasticmatrix.

Markov - 2feb2009 ChaosBook.org version13, Dec 31 2009

CHAPTER 14. WALKABOUT: TRANSITION GRAPHS 273

Figure 14.2: Topological dynamics: shrink each state
space partition region figure 14.1 to anode, and indi-
cate the possibility of reaching a region by adirected
link. The links stand for transition matrix elements
T10,21 = T11,21 = T12,21 = 1; remainingTi j,21 = 0.

21

10

11

10

12

21
21

11

12

Example 14.1 Markov chain. The Google PageRank of a webpage is computed by
a Markov chain, with a rather large Markov matrix M.

A subshift (11.22) of finite type is atopological dynamical system(Σ, σ),
where the shiftσ acts on the space of all admissible itineraries (sk)

Σ =
{

(sk)k∈Z : Tsk+1sk = 1 for all k
}

, sk ∈ {a, b, c, · · · , z} . (14.4)

The task of generating the totality of admissible itineraries is particularly easy for
subshifts of finite type, for which the admissible itineraries are generated by finite
transition matrices, and the topological dynamics can be visualized by means of
finite transition graphs.

14.2 Transition graphs: wander from node to node

Let us abstract from a state space partition such as figure 14.1 its topological
essence: indicate a partition regionMa by anode, and indicate the possibility of
reaching the regionMb, Lba , 0 by adirected link, as in figure 14.2. Do this for
all nodes. The result is atransition graph.

A transition graph(or digraph, or simply ‘graph’) consists of a set ofnodes
(or vertices, or states), one for each letter in the alphabetA = {a, b, c, · · · , z},
connected by a set of directedlinks (edges, arcs, arrows). A directed link starts
out from node j and terminates at nodei whenever the matrix element (14.3)
takes valueLi j , 0. A link connects two nodes, or originates and terminates on
the same node (a ‘self-loop’). For example, if a partition includes regions labeled
{· · · ,M101,M110, · · ·}, the transition matrix element connecting the two is drawn
asL101,110 = 110101 , whereasL0,0 = 0 . Here a dotted link indicates that the
shift σ(x011···) = x11··· involves symbol 0, and a full one a shiftσ(x110···) = x10···

that involves 1. Aj → · · · → k walk (path, itinerary) traverses a connected set
of directed links, starting at nodej and ending at nodek. A loop (periodic orbit,
cycle) is a walk that ends at the starting node (which can be any nodealong the
loop), for example

t011 = L110,011L011,101L101,110 =

101

011

110

. (14.5)

Markov - 2feb2009 ChaosBook.org version13, Dec 31 2009

CHAPTER 14. WALKABOUT: TRANSITION GRAPHS 274

Our convention for ordering indices is that the successive steps in a visitation se-
quencej → i → k are generated by matrix multiplication from the left,Tk j =
∑

TkiTi j . Two graphs areisomorphicif one can be obtained from the other by
relabeling links and nodes. As we are interested in recurrent (transitive, indecom-
posable) dynamics, we restrict our attention toirreducible or strongly connected
graphs, i.e., graphs for which there is a path from any node toany other node.

A transition graph describes compactly the ways in which thestate space re-
gions map into each other, accounts for finite memory effects in dynamics, and
generates the totality of admissible trajectories as the set of all possible walks
along its links.

Construction of a good transition graph is, like combinatorics, unexplainable.
The only way to learn is by some diagrammatic gymnastics, so we work our way
through a sequence of exercises in lieu of plethora of baffling definitions.

Example 14.2 Full binary shift. Consider a full shift on two-state partition A =
{0, 1}, with no pruning restrictions. The transition matrix and the corresponding transi-
tion graph are

T =
(

1 1
1 1

)

= 0 1 . (14.6)

Dotted links correspond to shifts originating in region 0, and the full ones to shifts origi-
nating in 1. The admissible itineraries are generated as walks on this transition graph.
(continued in example 14.8)

Example 14.3 Complete N-ary dynamics: If all transition matrix entries equal
unity (one can reach any region from any other region in one step),

Tc =

1 1 . . . 1
1 1 . . . 1
.
.
.
.
.
.
. . .

.

.

.

1 1 . . . 1

, (14.7)

the symbolic dynamics is called complete, or a full shift. The corresponding transition
graph is obvious, but a bit tedious to draw for arbitrary N.

Example 14.4 Pruning rules for a 3-disk alphabet: As the disks are convex, there
can be no two consecutive reflections off the same disk, hence the covering symbolic
dynamics consists of all sequences which include no symbol repetitions 11, 22, 33.
This is a finite set of finite length pruning rules, hence, the dynamics is a subshift of
finite type (see (11.23) for definition), with the transition matrix / graph given by

T =

0 1 1
1 0 1
1 1 0

=
3 1

2

. (14.8)

Markov - 2feb2009 ChaosBook.org version13, Dec 31 2009

CHAPTER 14. WALKABOUT: TRANSITION GRAPHS 275

The complete unrestricted symbolic dynamics is too simple to be illuminating,
so we turn next to the simplest example of pruned symbolic dynamics, the finite
subshift obtained by prohibition of repeats of one of the symbols, let us say11 .
This situation arises, for example, in studies of the circlemaps, where this kind of
symbolic dynamics describes “golden mean” rotations. exercise 15.6

exercise 15.8

Example 14.5 ‘Golden mean’ pruning. Consider a subshift on two-state partition
A = {0, 1}, with the simplest grammar G possible, a single pruned block b = 11
(consecutive repeat of symbol 1 is inadmissible): the stateM0 maps both ontoM0 and
M1, but the stateM1 maps only ontoM0. The transition matrix and the corresponding
transition graph are

T =
(1 1
1 0

)

= 0 1 . (14.9)

Admissible itineraries correspond to walks on this finite transition graph. (continued in
example 14.9)

In the completeN-ary symbolic dynamics case (see example 14.3) the choice
of the next symbol requires no memory of the previous ones. However, any further
refinement of the state space partition requires finite memory.

Example 14.6 Finite memory transition graphs. For the binary labeled repeller with
complete binary symbolic dynamics, we might chose to partition the state space into
four regions {M00,M01,M10,M11}, a 1-step refinement of the initial partition {M0,M1}.
Such partitions are drawn in figure 12.3, as well as figure 1.9. Topologically f acts
as a left shift (12.11), and its action on the rectangle [.01] is to move the decimal
point to the right, to [0.1], forget the past, [.1], and land in either of the two rectangles
{[.10], [.11]}. Filling in the matrix elements for the other three initial states we obtain the
1-step memory transition matrix/graph acting on the 4-regions partition exercise 11.7

T =

T00,00 0 T00,10 0
T01,00 0 T01,10 0

0 T10,01 0 T10,11

0 T11,01 0 T11,11

=

01

10

1100 . (14.10)

(continued in example 15.7)

By the same token, forM-step memory the only nonvanishing matrix elements
are of the formTs1s2...sM+1,s0s1...sM , sM+1 ∈ {0, 1}. This is a sparse matrix, as
the only non vanishing entries in thea = s0s1 . . . sM column of Tba are in the
rows b = s1 . . . sM0 andb = s1 . . . sM1. If we increase the number of stepsexercise 15.1

remembered, the transition matrix grows large quickly, as the N-ary dynamics
with M-step memory requires an [NM+1 × NM+1] matrix. Since the matrix is
very sparse, it pays to find a compact representation forT. Such representation
is afforded by transition graphs, which are not only compact, but also give us an
intuitive picture of the topological dynamics.

Markov - 2feb2009 ChaosBook.org version13, Dec 31 2009

CHAPTER 14. WALKABOUT: TRANSITION GRAPHS 276

Figure 14.3: Transition graph (graph whose links cor-
respond to the nonzero elements of a transition matrix
Tba) describes which regionsb can be reached from the
regiona in one time step. The 7 nodes correspond to
the 7 regions of the partition (14.11). The links repre-
sent non-vanishing transition matrix elements, such as
T101,110 = 110101 . Dotted links correspond to a shift
by symbol 0, and the full ones by symbol 1.

00 010

100

101

011

110

111

Figure 14.4: The self-similarity of the complete bi-
nary symbolic dynamics represented by a binary tree:
trees originating in nodesB, C, · · · (actually - any
node) are the same as the tree originating in nodeA.
Level m = 4 partition is labeled by 16 binary strings,
coded by dotted (0) and full (1) links read down the
tree, starting fromA. See also figure 11.14.

A

B C

0011

0010

0110

0111

0101

0100

1100

1101

1111

1110

1010

1011

1001

1000

0001

0000

Example 14.7 A 7-state transition graph. Consider a state space partitioned into 7
regions

{M00,M011,M010,M110,M111,M101,M100} . (14.11)

Let the evolution in time map the regions into each other by acting on the labels as
shift (12.11):M011→ {M110,M111} , M00→ {M00,M011,M010} · · · , with nonvanishing
L110,011, L011,00, This is compactly summarized by the transition graph of figure 14.3.
(continued as example 15.6)

14.3 Transition graphs: stroll from link to link
exercise 15.1

What do finite graphs have to do with infinitely long trajectories? To understand
the main idea, let us construct a graph that enumerates all possible itineraries for
the case of complete binary symbolic dynamics. In this construction the nodes
will be unlabeled, links labeled, signifying different kinds of transitions.

Example 14.8 Complete binary topological dynamics. Mark a dot ‘·’ on a piece of
paper. Draw two short lines out of the dot, end each with a dot. The full line will signify
that the first symbol in an itinerary is ‘1,’ and the dotted line will signifying ‘0.’ Repeat
the procedure for each of the two new dots, and then for the four dots, and so on. The
result is the binary tree of figure 14.4. Starting at the top node, the tree enumerates
exhaustively all distinct finite itineraries of lengths n = 1, 2, 3, · · ·

{0, 1} {00, 01, 10, 11}

{000, 001, 010, 011, 100, 101, 111,110} · · · .

The n = 4 nodes in figure 14.4 correspond to the 16 distinct binary strings of length
4, and so on. By habit we have drawn the tree as the alternating binary tree of fig-
ure 11.14, but that has no significance as far as enumeration of itineraries is concerned

Markov - 2feb2009 ChaosBook.org version13, Dec 31 2009

CHAPTER 14. WALKABOUT: TRANSITION GRAPHS 277

Figure 14.5: The self-similarity of the00 pruned bi-
nary tree: trees originating from nodesC andE are the
same as the entire tree.

0
1
1
0

0
1
1
1

0
1
0
1

1
1
0
1

1
1
1
1

1
1
1
0

1
0
1
0

1
0
1
1

A

E

B C

- a binary tree with labels in the natural order, as increasing binary ‘decimals’ would
serve just as well.

The trouble with an infinite tree is that it does not fit on a piece of paper. On
the other hand, we are not doing much - at each node we are turning either left or
right. Hence all nodes are equivalent. In other words, the tree is self-similar; the trees
originating in nodes B and C are themselves copies of the entire tree. The result of
identifying B = A, C = A is a single node, 2-link transition graph with adjacency matrix
figure 14.2

A = (2) = A=B=C . (14.12)

An itinerary generated by the binary tree figure 14.4, no matter how long, corresponds
to a walk on this graph.

This is the most compact encoding of the complete binary symbolic dynamics.
Any number of more complicated transition graphs such as the2-node (14.6) and
the 4-node (14.10) graphs generate all itineraries as well,and might be sometimes
preferable. exercise 15.6

exercise 15.5

We turn next to the simplest example of pruned symbolic dynamics, the finite
subshift obtained by prohibition of repeats of one of the symbols, let us say00 .

Example 14.9 ‘Golden mean’ pruning. (a link-to-link version of example 14.5) Now
the admissible itineraries are enumerated by the pruned binary tree of figure 14.5.
Identification of nodes A = C = E leads to the finite 2-node, 3-links transition graph

T =
(

0 1
1 1

)

= A=C=EB . (14.13)

As 0 is always followed by 1, the walks on this graph generate only the admissible
itineraries. This is the same graph as the 2-node graph (14.9). (continued in exam-
ple 15.4)

Markov - 2feb2009 ChaosBook.org version13, Dec 31 2009

CHAPTER 14. WALKABOUT: TRANSITION GRAPHS 278

Figure 14.6: Conversion of the pruning front of
figure 12.11 (b) into a finite transition graph. (a)
Starting with the initial node “.”, delineate all
pruning blocks on the binary tree. A solid line
stands for “1” and a dashed line for “0”. The ends
of forbidden strings are marked with×. Label
all internal nodes by reading the bits connecting
“.”, the base of the tree, to the node. (b) Indi-
cate all admissible starting blocks by arrows. (c)
Recursively drop the leading bits in the admissi-
ble blocks; if the truncated string corresponds to
an internal node in (a), connect them. (d) Delete
the transient, non-circulating nodes; all admissi-
ble sequences are generated as walks on this finite
transition graph. (e) Identify all distinct loops and
construct the determinant (15.20).

14.3.1 Converting pruning blocks into transition graphs

Suppose now that, by hook or crook, you have been so lucky fishing for pruning
rules that you now know the grammar (11.23) in terms of a finiteset of pruning
blocksG = {b1, b2, · · · bk}, of lengths≤ m. Our task is to generate all admissible
itineraries. What to do?

We have already seen the main ingredients of a general algorithm: (1) tran-
sition graph encodes self-similarities of the tree of all itineraries, and (2) if we
have a pruning block of lengthm, we need to descendm levels before we can start
identifying the self-similar sub-trees.

Finite grammar transition graph algorithm.

1. Starting with the root of the tree, delineate all branchesthat correspond to
all pruning blocks; implement the pruning by removing the last node in each

Markov - 2feb2009 ChaosBook.org version13, Dec 31 2009

CHAPTER 14. WALKABOUT: TRANSITION GRAPHS 279

pruning block (marked ‘x’ in figure 14.6 (a)).

2. Label all nodes internal to pruning blocks by the itinerary connecting the
root point to the internal node, figure 14.6 (b). Why? So far wehave pruned
forbidden branches by lookingmb steps into future for a given pruning
block, let’s sayb = 10110. However, the blocks with a right combina-
tion of past and future [1.0110], [10.110], [101.10] and [1011.0] are also
pruned. In other words, any node whose near past coincides with the begin-
ning of a pruning block is potentially dangerous - a branch further down the
tree might get pruned.

3. Add to each internal node all remaining branches allowed by the alphabet,
and label them, figure 14.6 (c). Why? Each one of them is the beginning
point of an infinite tree, a tree that should be similar to another one origi-
nating closer to the root of the whole tree.

4. Pick one of the free external nodes closest to the root of the entire tree,
forget the most distant symbol in its past. Does the truncated itinerary cor-
respond to an internal node? If yes, identify the two nodes. If not, forget
the next symbol in the past, repeat. If no such truncated pastcorresponds to
any internal node, identify with the root of the tree.

This is a little bit abstract, so let’s say the free external node in question is
[1010.]. Three time steps back the past is [010.]. That is not dangerous, as
no pruning block in this example starts with 0. Now forget thethird step in
the past: [10.] is dangerous, as that is the start of the pruning block [10.110].
Hence the free external node [1010.] should be identified with the internal
node [10.].

5. Repeat until all free nodes have been tied back into the internal nodes.

6. Clean up: check whether every node can be reached from every other node.
Remove the transient nodes, i.e., the nodes to which dynamics never returns.

7. The result is a transition graph. There is no guarantee that this is the
smartest, most compact transition graph possible for givenpruning (if you
have a better algorithm, teach us), but walks around it do generate all ad-
missible itineraries, and nothing else.

Example 14.10 Heavy pruning.

We complete this training by examples by implementing the pruning of fig-
ure 12.11 (b). The pruning blocks are

[100.10], [10.1], [010.01], [011.01], [11.1], [101.10]. (14.14)

Blocks 01101, 10110contain the forbidden block 101, so they are redundant as pruning
rules. Draw the pruning tree as a section of a binary tree with 0 and 1 branches and
label each internal node by the sequence of 0’s and 1’s connecting it to the root of the
tree (figure 14.6 (a). These nodes are the potentially dangerous nodes - beginnings of
blocks that might end up pruned. Add the side branches to those nodes (figure 14.6 (b).

Markov - 2feb2009 ChaosBook.org version13, Dec 31 2009

CHAPTER 14. WALKABOUT: TRANSITION GRAPHS 280

As we continue down such branches we have to check whether the pruning imposes
constraints on the sequences so generated: we do this by knocking off the leading bits
and checking whether the shortened strings coincide with any of the internal pruning
tree nodes: 00→ 0; 110→ 10; 011→ 11; 0101→ 101(pruned); 1000→ 00→ 00→ 0;
10011→ 0011→ 011→ 11; 01000→ 0.

The trees originating in identified nodes are identical, so the tree is “self-similar.”
Now connect the side branches to the corresponding nodes, figure 14.6 (d). Nodes “.”
and 1 are transient nodes; no sequence returns to them, and as you are interested here
only in infinitely recurrent sequences, delete them. The result is the finite transition
graph of figure 14.6 (d); the admissible bi-infinite symbol sequences are generated as
all possible walks on this graph.

Résum é

The set of all admissible itineraries is encoded multiplicatively by transition ma-
trices, diagrammatically by transition graphs. Pruning rules for inadmissible se-
quences are implemented by constructing corresponding transition matrices and/or
transition graphs.

Commentary

Remark 14.1 Transition graphs. We enjoyed studying Lind and Marcus [14.1] in-
troduction to symbolic dynamics and transition graphs. Finite transition graphs or finite
automata are discussed in refs. [14.2, 14.3, 14.4]. They belong to the category of regular
languages. Transition graphs for unimodal maps are discussed in refs. [14.8, 14.9, 14.10].
(see also remark 11.1)

Remark 14.2 Inflating transition graphs. In the above examples the symbolic dy-
namics has been encoded by labeling links in the transition graph. Alternatively one can
encode the dynamics by labeling the nodes, as in example 14.6, where the 4 nodes refer
to 4 Markov partition regions{M00,M01,M10,M11}, and the 8 links to the 8 non-zero
entries in the 2-step memory transition matrix (14.10).

Remark 14.3 The unbearable growth of transition graphs. A construction of finite
Markov partitions is described in refs. [14.11, 14.12], as well as in the innumerably many
other references.

If two regions in a Markov partition are not disjoint but share a boundary, the bound-
ary trajectories require special treatment in order to avoid overcounting, see sect. 21.3.1.
If the image of a trial partition region cuts across only a part of another trial region and
thus violates the Markov partition condition (11.2), a further refinement of the partition is
needed to distinguish distinct trajectories.

Markov - 2feb2009 ChaosBook.org version13, Dec 31 2009

CHAPTER 14. WALKABOUT: TRANSITION GRAPHS 281

The finite transition graph construction sketched above is not necessarily the minimal
one; for example, the transition graph of figure 14.6 does notgenerate only the “funda-
mental” cycles (see chapter 20), but shadowed cycles as well, such ast00011 in (15.20). For
methods of reduction to a minimal graph, consult refs. [14.8, 12.49, 14.9]. Furthermore,
when one implements the time reversed dynamics by the same algorithm, one usually gets
a graph of a very different topology even though both graphs generate the same admissi-
ble sequences, and have the same determinant. The algorithmdescribed here makes some
sense for 1− dimensionaldynamics, but is unnatural for 2− dimensionalmaps whose
dynamics it treats as 1-dimensional. In practice, generic pruning grows longer and longer,
and more plentiful pruning rules. For generic flows the refinements might never stop,
and almost always we might have to deal with infinite Markov partitions, such as those
that will be discussed in sect. 15.5. Not only do the transition graphs get more and more
unwieldy, they have the unpleasant property that every timewe add a new rule, the graph
has to be constructed from scratch, and it might look very different form the previous
one, even though it leads to a minute modification of the topological entropy. The most
determined effort to construct such graphs may be the one of ref. [12.14]. Still, this seems
to be the best technology available, unless the reader alerts us to something superior.

Markov - 2feb2009 ChaosBook.org version13, Dec 31 2009

EXERCISES 282

Exercises

14.1. Time reversibility.∗∗ Hamiltonian flows are time re-
versible. Does that mean that their transition graphs are
symmetric in all node→ node links, their transition
matrices are adjacency matrices, symmetric and diago-
nalizable, and that they have only real eigenvalues?

14.2. Alphabet {0,1}, prune 1000 , 00100, 01100.
This example is motivated by the pruning front descrip-
tion of the symbolic dynamics for the Hénon-type map-
sremark 12.3.

step 1. 1000 prunes all cycles with a000 subse-
quence with the exception of the fixed point0; hence we
factor out (1− t0) explicitly, and prune 000 from the
rest. This means thatx0 is an isolated fixed point - no
cycle stays in its vicinity for more than 2 iterations. In
the notation of sect. 14.3.1, the alphabet is{1, 2, 3; 0},

and the remaining pruning rules have to be rewritten in
terms of symbols 2=10, 3=100:

step 2. alphabet{1, 2, 3; 0}, prune 33 , 213 , 313 .
This means that the 3-cycle3 = 100 is pruned and no
long cycles stay close enough to it for a single100
repeat. As in example 1?!, prohibition of33 is imple-
mented by dropping the symbol “3” and extending the
alphabet by the allowed blocks 13, 23:

step 3. alphabet{1, 2, 13, 23; 0}, prune 213 , 2313 ,
1313 , where 13= 13, 23= 23 are now used as single

letters. Pruning of the repetitions1313 (the 4-cycle
13= 1100 is pruned) yields the

result: alphabet{1, 2, 23, 113; 0}, unrestricted 4-ary
dynamics. The other remaining possible blocks213 ,
2313 are forbidden by the rules of step 3.

References

[14.1] D.A. Lind and B. Marcus,An introduction to symbolic dynamics and cod-
ing (Cambridge Univ. Press, Cambridge 1995).

[14.2] A. Salomaa,Formal languages(Academic Press, San Diego1973).

[14.3] J.E. Hopcroft and J.D. Ullman,Introduction to automata theory, lan-
guages, and computation(Addison-Wesley, Reading MA 1979).

[14.4] D.M. Cvetković, M. Doob and H. Sachs,Spectra of graphs(Academic
Press, New York 1980).

[14.5] C.J. Puccia and R. Levins,Qualitative modeling of complex systems: An
introduction to loop analysis and time averaging(Harvard Univ. Press, Cam-
bridge MA 1986).

[14.6] E.D. Sontag,Mathematical control theory: Deterministic finite dimen-
sional systems(Springer, New York 1998).

[14.7] J. Bang-Jensen and G. Gutin,Digraphs: Theory, algorithms and applica-
tions (Springer, London 2002).

[14.8] P. Grassberger, “On the symbolic dynamics of the one-humped map of the
interval” Z. Naturforsch. A43, 671 (1988).

[14.9] P. Grassberger, R. Badii and A. Politi, “Scaling lawsfor invariant measures
on hyperbolic and nonhyperbolic attractors,”J. Stat. Phys.51, 135 (1988).

refsMarkov - 5oct2008 ChaosBook.org version13, Dec 31 2009

References 283

[14.10] S. Isola and A. Politi, “Universal encoding for unimodal maps,” J. Stat.
Phys. 61, 259 (1990).

[14.11] A. Boyarski and M. Skarowsky,Trans. Am. Math. Soc.225, 243 (1979);
A. Boyarski,J.Stat. Phys.50, 213 (1988).

[14.12] C.S. Hsu, M.C. Kim,Phys. Rev. A31, 3253 (1985); N. Balmforth, E.A.
Spiegel, C. Tresser,Phys. Rev. Lett.72, 80 (1994).

refsMarkov - 5oct2008 ChaosBook.org version13, Dec 31 2009

