
Chapter 29

Prologue

Anyone who uses words “quantum” and “chaos” in the
same sentence should be hung by his thumbs on a tree in
the park behind the Niels Bohr Institute.

—Joseph Ford

(G. Vattay, G. Tanner and P. Cvitanović)

Y    the first volume of this book. So far, so good – anyone can
play a game of classical pinball, and a skilled neuroscientist can poke
rat brains. We learned that information about chaotic dynamics can be

obtained by calculating spectra of linear operators such asthe evolution operator
of sect.15.2or the associated partial differential equations such as the Liouville
equation (14.37). The spectra of these operators can be expressed in terms of
periodic orbits of the deterministic dynamics by means of trace formulas and cycle
expansions.

But what happens quantum mechanically, i.e., if we scatter waves rather than
point-like pinballs? Can we turn the problem round and studylinear PDE’s in
terms of the underlying deterministic dynamics? And, is there a link between
structures in the spectrum or the eigenfunctions of a PDE andthe dynamical
properties of the underlying classical flow? The answer is yes, but . . . things
are becoming somewhat more complicated when studying 2nd orhigher order
linear PDE’s. We can find classical dynamics associated witha linear PDE,
just take geometric optics as a familiar example. Propagation of light follows a
second order wave equation but may in certain limits be well described in terms of
geometric rays. A theory in terms of properties of the classical dynamics alone,

[chapter 37]
referred to here as thesemiclassical theory, will not be exact, in contrast to the
classical periodic orbit formulas obtained so far. Waves exhibit new phenomena,
such as interference, diffraction, and higher~ corrections which will only be
partially incorporated into the periodic orbit theory.
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29.1 Quantum pinball

In what follows, we will restrict the discussion to the non-relativistic Schrödinger
equation. The approach will be very much in the spirit of the early days of
quantum mechanics, before its wave character has been fullyuncovered by Schrödinger
in the mid 1920’s. Indeed, were physicists of the period as familiar with classical
chaos as we are today, this theory could have been developed 80 years ago. It was
the discrete nature of the hydrogen spectrum which inspiredthe Bohr - de Broglie
picture of the old quantum theory: one places a wave instead of a particle on a
Keplerian orbit around the hydrogen nucleus. The quantization condition is that
only those orbits contribute for which this wave is stationary; from this followed
the Balmer spectrum and the Bohr-Sommerfeld quantization which eventually led
to the more sophisticated theory of Heisenberg, Schrödinger and others. Today
we are very aware of the fact that elliptic orbits are an idiosyncracy of the Kepler
problem, and that chaos is the rule; so can the Bohr quantization be generalized
to chaotic systems?

The question was answered affirmatively by M. Gutzwiller, as late as 1971: a
chaotic system can indeed be quantized by placing a wave on each of theinfinity
of unstable periodic orbits. Due to the instability of the orbits the wave does not
stay localized but leaks into neighborhoods of other periodic orbits. Contributions
of different periodic orbits interfere and the quantization condition can no longer
be attributed to a single periodic orbit: A coherent summation over the infinity of
periodic orbit contributions gives the desired spectrum.

The pleasant surprise is that the zeros of the dynamical zetafunction (1.9)
derived in the context of classical chaotic dynamics,

[chapter 17]

1/ζ(z) =
∏

p

(1− tp) ,

also yield excellent estimates ofquantumresonances, with the quantum amplitude
associated with a given cycle approximated semiclassically by the weight

tp =
1

|Λp|
1
2

e
i
~
Sp−iπmp/2 , (29.1)

whose magnitude is the square root of the classical weight (17.10)

tp =
1
|Λp|

eβ·Ap−sTp ,

and the phase is given by the Bohr-Sommerfeld action integral Sp, together with
an additional topological phasemp, the number of caustics along the periodic
trajectory, points where the naive semiclassical approximation fails.

[chapter 32]
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In this approach, the quantal spectra of classically chaotic dynamical systems
are determined from the zeros of dynamical zeta functions, defined by cycle expansions
of infinite products of form

1/ζ =
∏

p

(1− tp) = 1−
∑

f

t f −
∑

k

ck (29.2)

with weight tp associated to every prime (non-repeating) periodic orbit (or cycle)
p.

The key observation is that the chaotic dynamics is often organized around
a few fundamentalcycles. These short cycles capture the skeletal topology of
the motion in the sense that any long orbit can approximatelybe pieced together
from the fundamental cycles. In chapter18 it was shown that for this reason the
cycle expansion (29.2) is a highly convergent expansion dominated by short cycles
grouped intofundamentalcontributions, with longer cycles contributing rapidly
decreasingcurvaturecorrections. Computations with dynamical zeta functions
are rather straightforward; typically one determines lengths and stabilities of a
finite number of shortest periodic orbits, substitutes theminto (29.2), and estimates
the zeros of 1/ζ from such polynomial approximations.

From the vantage point of the dynamical systems theory, the trace formulas
(both the exact Selberg and the semiclassical Gutzwiller trace formula) fit into
a general framework of replacing phase space averages by sums over periodic
orbits. For classical hyperbolic systems this is possible since the invariant density

[chapter 33]
can be represented by sum over all periodic orbits, with weights related to their
instability. The semiclassical periodic orbit sums differ from the classical ones
only in phase factors and stability weights; such differences may be traced back
to the fact that in quantum mechanics the amplitudes rather than the probabilities
are added.

The type of dynamics has a strong influence on the convergenceof cycle
expansions and the properties of quantal spectra; this necessitates development
of different approaches for different types of dynamical behavior such as, on one
hand, the strongly hyperbolic and, on the other hand, the intermittent dynamics
of chapters18 and23. For generic nonhyperbolic systems (which we shall not
discuss here), with mixed phase space and marginally stableorbits, periodic orbit
summations are hard to control, and it is still not clear thatthe periodic orbit sums
should necessarily be the computational method of choice.

Where is all this taking us? The goal of this part of the book isto demonstrate
that the cycle expansions, developed so far in classical settings, are also a powerful
tool for evaluation ofquantumresonances of classically chaotic systems.

First, we shall warm up playing our game of pinball, this timein a quantum
version. Were the game of pinball a closed system, quantum mechanically one
would determine its stationary eigenfunctions and eigenenergies. For open systems
one seeks instead complex resonances, where the imaginary part of the eigenenergy
describes the rate at which the quantum wave function leaks out of the central
scattering region. This will turn out to work well, except who truly wants to know
accurately the resonances of a quantum pinball?

[chapter 34]
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Figure 29.1: A typical collinear helium trajectory in
ther1 – r2 plane; the trajectory enters along ther1 axis
and escapes to infinity along ther2 axis.
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29.2 Quantization of helium

Once we have derived the semiclassical weight associated with the periodic orbitp
(29.1), we will finally be in position to accomplish something altogether remarkable.
We are now able to put together all ingredients that make the game of pinball
unpredictable, and compute a “chaotic” part of the helium spectrum to shocking
accuracy. From the classical dynamics point of view, heliumis an example of
Poincaré’s dreaded and intractable 3-body problem. Undaunted, we forge ahead
and consider thecollinear helium, with zero total angular momentum, and the
two electrons on the opposite sides of the nucleus.

++- -

We set the electron mass to 1, the nucleus mass to∞, the helium nucleus charge
[chapter 36]

to 2, the electron charges to -1. The Hamiltonian is

H =
1
2

p2
1 +

1
2

p2
2 −

2
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−

2
r2
+

1
r1 + r2

. (29.3)

Due to the energy conservation, only three of the phase spacecoordinates (r1, r2, p1, p2)
are independent. The dynamics can be visualized as a motion in the (r1, r2), r i ≥ 0
quadrant, figure29.1, or, better still, by a well chosen 2-dimensional Poincaré
section.

The motion in the (r1, r2) plane is topologically similar to the pinball motion
in a 3-disk system, except that the motion is not free, but in the Coulomb potential.
The classical collinear helium is also a repeller; almost all of the classical trajectories
escape. Miraculously, the symbolic dynamics for the survivors turns out to be
binary, just as in the 3-disk game of pinball, so we know what cycles need to
be computed for the cycle expansion (1.10). A set of shortest cycles up to a
given symbol string length then yields an estimate of the helium spectrum. This

[chapter 36]
simple calculation yields surprisingly accurate eigenvalues; even though the cycle
expansion was based on thesemiclassical approximation(29.1) which is expected
to be good only in the classical large energy limit, the eigenenergies are good to
1% all the way down to the ground state.

Before we can get to this point, we first have to recapitulate some basic notions
of quantum mechanics; after having defined the main quantum objects of interest,
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the quantum propagator and the Green’s function, we will relate the quantum
propagation to the classical flow of the underlying dynamical system. We will then
proceed to construct semiclassical approximations to the quantum propagator and
the Green’s function. A rederivation of classical Hamiltonian dynamics starting
from the Hamilton-Jacobi equation will be offered along the way. The derivation
of the Gutzwiller trace formula and the semiclassical zeta function as a sum and as
a product over periodic orbits will be given in chapter33. In subsequent chapters
we buttress our case by applying and extending the theory: a cycle expansion
calculation of scattering resonances in a 3-disk billiard in chapter34, the spectrum
of helium in chapter36, and the incorporation of diffraction effects in chapter37.

Commentary

Remark 29.1 Guide to literature. A key prerequisite to developing any theory of
“quantum chaos” is solid understanding of Hamiltonian mechanics. For that, Arnol’d
monograph [36] is the essential reference. Ozorio de Almeida’s monograph[11] offers a
compact introduction to the aspects of Hamiltonian dynamics required for the quantization
of integrable and nearly integrable systems, with emphasison periodic orbits, normal
forms, catastrophy theory and torus quantization. The bookby Brack and Bhaduri [1]
is an excellent introduction to the semiclassical methods.Gutzwiller’s monograph [2]
is an advanced introduction focusing on chaotic dynamics both in classical Hamiltonian
settings and in the semiclassical quantization. This book is worth browsing through for
its many insights and erudite comments on quantum and celestial mechanics even if one
is not working on problems of quantum chaos. More suitable asa graduate course text is
Reichl’s exposition [3].

This book does not discuss the random matrix theory approachto chaos in quantal
spectra; no randomness assumptions are made here, rather the goal is to milk the deterministic
chaotic dynamics for its full worth. The book concentrates on the periodic orbit theory.
For an introduction to “quantum chaos” that focuses on the random matrix theory the
reader is referred to the excellent monograph by Haake [4], among others.

Remark 29.2 The dates. Schrödinger’s first wave mechanics paper [3] (hydrogen
spectrum) was submitted 27 January 1926. Submission date for Madelung’s ‘quantum
theory in hydrodynamical form’ paper [2] was 25 October 1926.
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