Chapter 15

Averaging

For it, the mystic evolution;
Not the right only justified
—what we call evil also justified.
—Walt Whitman,
Leaves of Grass: Song of the Universal

chaotic dynamics, and then cast the formulas for averagesintiplicative
form that motivates the introduction of evolution operatand further
formal developments to come. The main result is that dyiyamicalaverage
measurable in a chaotic system can be extracted from thesmeaf an appropriately
constructed evolution operator. In order to keep our toesetlto the ground,
in sect.15.3 we try out the formalism on the first quantitative diagnosiatta
system’s got chaos, Lyapunov exponents.

WE piscuss FIRST the necessity of studying the averages of observables in

15.1 Dynamical averaging

In chaotic dynamics detailed prediction is impossible, g fnitely specified
initial condition, no matter how precise, will fill out the tne accessible state
space. Hence for chaotic dynamics one cannot follow ind&didrajectories for a
long time; what is attainable is a description of the geoynetthe set of possible
outcomes, and evaluation of long time averages. Examplesatf averages are
transport cofficients for chaotic dynamical flows, such as escape rate, ardan
and dffusion rate; power spectra; and a host of mathematical emtstsuch
as generalized dimensions, entropies and Lyapunov expmnEelere we outline
how such averages are evaluated within the evolution opefi@mework. The
key idea is to replace the expectation values of observdhlehe expectation
values of generating functionals. This associates an gwonlwperator with a
given observable, and relates the expectation value oftbereable to the leading
eigenvalue of the evolution operator.
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CHAPTER 15. AVERAGING 255

15.1.1 Time averages

Let a = a(x) be anyobservable a function that associates to each point in state
space a number, a vector, or a tensor. The observable repoesproperty of
the dynamical system. It is a device, such as a thermometkrser Doppler
velocitometer. The device itself does not change duringnteasurement. The
velocity field gj(x) = vi(X) is an example of a vector observable; the length of
this vector, or perhaps a temperature measured in an exg@rah instant are
examples of scalar observables. We defineitivegrated observable ‘Aas the
time integral of the observabbeevaluated along the trajectory of the initial point

Xo,
t
Al(xg) = fo dra(f7(xg)). (15.1)

If the dynamics is given by an iterated mapping and the tindissretet — n,
the integrated observable is given by

n-1

A'(x0) = Y a(f (o)) (15.2)

k=0

(we suppress possible vectorial indices for the time being)

Example 15.1 Integrated observables. If the observable is the velocity, a(X) =
Vi(x), its time integral Al(xo) is the trajectory Al(Xo) = Xi(t).

For Hamiltonian flows the action associated with a trajectory x(t) = [q(t), p(t)]
passing through a phase space point Xo = [q(0), p(0)] is:

t
() = fo dri(x) - p(r). (15.3)

Thetime averagef the observable along a trajectory is defined by
—— .1,
a(Xg) = tI|m YA (x0) . (15.4)

If adoes not behave too wildly as a function of time — for examiple,(x) is the
Chicago temperature, bounded betwe®&PF and+13C°F for all times —A'(xg)
is expected to grow not faster thgnand the limit (5.4 exists. For an example
of a time average - the Lyapunov exponent - see 4é&cB

The time average depends on the trajectory, but not on ttial ipoint on that
trajectory: if we start at a later state space pdihfxy) we get a couple of extra
finite contributions that vanish in the— oo limit:

1 t+T
lim - dra(f"(xo))
tJr

t—oo
T t+T
= a6 - im 1| [ dratt oo - [ dra(t o))

= a(xo).

a(fT(x0))
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CHAPTER 15. AVERAGING 256

Figure 15.1: (a) A typical chaotic trajectory
explores the phase space with the long time
visitation frequency building up the natural
measurepg(X). (b) time average evaluated along
an atypical trajectory such as a periodic orbit
fails to explore the entire accessible state space.

(A. Johansen) @ M (b)

The integrated observabfé(xg) and the time averagi xo) take a particularly
simple form when evaluated on a periodic orbit. Define

[exercise 4.6]
Tp
flows: A, = apTp= f dra(f"(xg)) , X0 € P
0
np—1
maps: = aynp = Z a(f'(xo)) . (15.5)

i=0

where p is a prime cycle,T, is its period, anch, is its discrete time period in
the case of iterated map dynamids, is a loop integral of the observable along
a single traversal of a prime cyclg so it is an intrinsic property of the cycle,
independent of the starting poirg € p. (If the observabla is not a scalar but a
vector or matrix we might have to be more careful in definingpaerage which
is independent of the starting point on the cycle). If théettory retraces itself
r times, we just obtairA, repeated times. Evaluation of the asymptotic time
average 15.4) requires therefore only a single traversal of the cycle:

However,a(xo) is in general a wild function okg; for a hyperbolic system

ergodic with respect to a smooth measure, it takes the salme (e for almost

all initial Xo, but a diferent value 15.6) on any periodic orbit, i.e., on a dense set of
points (figurel5.1(b)). For example, for an open system such as the Sinai gas of
sect.24.1 (an infinite 2-dimensional periodic array of scatteringd)sthe phase
space is dense with initial points that correspond to perinthaway trajectories.
The mean distance squared traversed by any such trajeatomns @sx(t)? ~
t2, and its contribution to the flusion rateD ~ x(t)?/t, (15.4) evaluated with
a(x) = x(t)?, diverges. Seemingly there is a paradox; even though iotugiays
the typical motion should be filusive, we have an infinity of ballistic trajectories.

[chapter 24]

For chaotic dynamical systems, this paradox is resolvedbyst averaging,
i.e., averaging also over the initiad and worrying about the measure of the
“pathological” trajectories.

15.1.2 Space averages

The space averagef a quantitya that may depend on the poirtof state space
M and on the time is given by thed-dimensional integral over theécoordinates
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CHAPTER 15. AVERAGING 257

of the dynamical system:

@) f dx a(f'(x)

IM|
f dx = volume of M. (15.7)
M

M|

The spaceM is assumed to have finite dimension and volume (open systkens |
the 3-disk game of pinball are discussed in s&6t1.3.

What is it wereally do in experiments? We cannot measure the time average
(15.4), as there is no way to prepare a single initial conditiorifinite precision.
The best we can do is to prepare some initial densi®) perhaps concentrated
on some small (but always finite) neighborhook) = p(x,0), so one should
abandon the uniform space avera$B.{), and consider instead

(@,(0) = 37 | dxp(0a(r'(0). (15.8)

M

We do not bother to lug the initigh(x) around, as for the ergodic and mixing
systems that we shall consider hemey smooth initial density will tend to the
asymptotic natural measute- oo limit p(X,t) — po(X), SO we can just as well
take the initialo(X) = const. The worst we can do is to start out wi{x) = const.,
as in (L5.7); so let us take this case and define éxpectation valué€a) of an
observablea to be the asymptotic time and space average over the state Spa

(a) = I'_TOM dx - fdra(f (X)) . (15.9)

We use the same- -) notation as for the space averadé.()), and distinguish the
two by the presence of the time variable in the argument: éfgbantity(a)(t)
being averaged depends on time, then it is a space averaiggods not, it is the
expectation valuéa).

The expectation value is a space average of time averagisewvaryx € M
used as a starting point of a time average. The advantageaging over space is
that it smears over the starting points which were problenfat the time average
(like the periodic points). While easy to define, the exp@mtavalue(a) turns
out not to be particularly tractable in practice. Here cormaesmple idea that
is the basis of all that follows: Such averages are more coendy studied by
investigating instead gf) the space averages of form

Ay 1 A
(¢ >_|M|fdeéf . (15.10)

In the present contegtis an auxiliary variable of no particular physical significa.
In most application® is a scalar, but if the observable igsladimensional vector
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CHAPTER 15. AVERAGING 258

ai(x) € RY, theng is a conjugate vectg € RY: if the observable is d x d tensor,
B is also a rank-2 tensor, and so on. Here we will mostly limét tonsiderations
to scalar values @8.

If the limit a(xo) for the time averagel6.4) exists for “almost all” initial g
and the system is ergodic and mixing (in the sense of 4e8t]), we expect
the time average along almost all trajectories to tend tséme valu@, and the
integrated observabi to tend tata. The space averag&éq.10 is an integral over
exponentials, and such integral also grows exponentially time. So ag — o
we would expect the space average(exp( - A)) itself to grow exponentially
with time

<eB-A‘> « etsw)’
and its rate of growth to go to a limit
(B) = lim 5|n<e8'At> (15.11)
t—oo t ’ ’

Now we understand one reason for why it is smarter to com@axp( - A"))
rather thana): the expectation value of the observall®.Q) and the moments of
the integrated observabl&g.1) can be computed by evaluating the derivatives of

s(B)

g—; = tIim %(At> =(a),

ﬁ=0 —00

Pl im T ((mat - (A (A1) (15.12)
B |5-0 tooo t

lim = ((At t@)?) .

and so forth. We have written out the formulas for a scalaenlable; the vector
case is worked out in the exerci&g.2 If we can compute the functiog(s), we
have the desired expectation value without having to esfiraay infinite time
limits from finite time data.

[exercise 15.2]

Suppose we could evaluas3) and its derivatives. What are such formulas
good for? Atypical application is to the problem of desartha particle scattering
elastically df a 2-dimensional triangular array of disks. If the disks aficently
large to block any infinite length free flights, the particldl wi ffuse chaotically,
and the transport céigcient of interest is the éliusion constant given b&x(t)Z) ~
4Dt. In contrast toD estimated numerically from trajectoriegt) for finite but
larget, the above formulas yield the asymptobcwithout any extrapolations to
thet — oo limit. For example, forg; = v; and zero mean driftv;) = 0, ind
dimensions the diusion constant is given by the curvatures(d) atg = 0,

(15.13)

1 & #2s
D = lim —— (x(v?) = = ,
o 2dt<x() ) 2d Z;‘ 2 5-0
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CHAPTER 15. AVERAGING 259

[section 24.1]
so if we can evaluate derivatives sf3), we can compute transport dbeients
that characterize deterministicfilision. As we shall see in chapte4, periodic
orbit theory yields an explicit closed form expression for

fast track:
W sect. 15.2, p. 261
15.1.3 Averaging in open systems

,
J If the M is a compact region or set of regions to which the dynamics
is confined for all times,15.9 is a sensible definition of the expectation value.
However, if the trajectories can exil without ever returning,

f dyo(y— Fl0) =0 fort>texts %o € M,
M

we might be in trouble. In particular, for a repeller the épry f'(xp) will
eventually leave the regioM, unless the initial pointg is on the repeller, so
the identity

f dys(y - fi(x) =1, t>0, iff Xxo € non—wandering set (15.14)
M

might apply only to a fractal subset of initial points a seteffo Lebesgue measure.
Clearly, for open systems we need to modify the definitioteféxpectation value
to restrict it to the dynamics on the non—wandering set,¢hefdrajectories which
are confined for all times.

Note by M a state space region that encloses all interesting inibiaitg, say
the 3-disk Poincaré section constructed from the disk darias and all possible
incidence angles, and denote || the volume ofM. The volume of the state
space containing all trajectories which start out withia thate space regiom
and recur within that region at the tinbe

IM(®)] = fM dxdys(y - f'(x) ~ IMe™ (15.15)

is expected to decrease exponentially, with the escape/rat€he integral over _

. .. . . . [section 1.4.3]
x takes care of all possible initial points; the integral oyehecks whether their
trajectories are still withinV by the timet. For example, any trajectory that fall?

off the pinball table in figurd. 1is gone for good. section 20.1]

The non—wandering set can be veryfidult object to describe; but for any
finite time we can construct a normalized measure from theefiitne covering
volume (15.19, by redefining the space averad® (10 as
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) 0.5 i

Figure 15.2: A piecewise-linear repelledf.17): All

trajectories that land in the gap between fhand f; ou ST
branches escapa{ = 4, A; = -2). .
() = f dx—_epA0) . L f dx @AMt (15.16)

M IM@)I Ml Im

in order to compensate for the exponential decrease of thdeuof surviving
trajectories in an open system with the exponentially gngwiactore”. What
does this mean? Once we have computade can replenish the density lost to
escaping trajectories, by pumpingeati in such a way that the overall measure is
correctly normalized at all timegl) = 1.

Example 15.2 A piecewise-linear repeller: (continuation of example 14.1) What is
gained by reformulating the dynamics in terms of “operators?” We start by considering
a simple example in which the operator is a [2x2] matrix. Assume the expanding 1-d
map f(X) of figure 15.2, a piecewise-linear 2—branch repeller with slopes Ay > 1 and
Al <-1:

fo = AoX if xe Mp= [0, 1/A0]
f(x) = (15.17)

fi=Ai(x=1) if xeMi=[1+1/An1]

Both f(Mp) and f(Mi) map onto the entire unit interval M = [0,1]. Assume a
piecewise constant density

| po ifxe Mo
o(X) = { o1 ifxe My - (15.18)

There is no need to define p(X) in the gap between My and Ma, as any point that lands
in the gap escapes.

The physical motivation for studying this kind of mapping is the pinball game: f
is the simplest model for the pinball escape, figure 1.8, with fy and f1 modelling its two
strips of survivors.

As can be easily checked using (14.9), the Perron-Frobenius operator acts on

this piecewise constant function as a [2x2] “transfer” matrix with matrix elements .
[exercise 14.1]

[exercise 14.5]

)% 300

Aol A/ \PL

stretching both po and p1 over the whole unit interval A, and decreasing the density
at every iteration. In this example the density is constant after one iteration, so £ has
only one non-zero eigenvalue €® = 1/|A¢| + 1/|A1|, with constant density eigenvector
po = p1. The quantities 1/|Aol, 1/|A1] are, respectively, the sizes of the | Mo|, |IMi|
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CHAPTER 15. AVERAGING 261

Figure 15.3: Space averaging pieces together thg
time average computed along the> o trajectory
of figure 15.1 by a space average over infinitely '
many shortt trajectory segments starting at all
initial points at once. (A. Johansen)

intervals, so the exact escape rate (1.3) — the log of the fraction of survivors at each
iteration for this linear repeller — is given by the sole eigenvalue of L:

Y =-% = —In(1/|Ac + 1/IA4]). (15.20)

Voila! Here is the rationale for introducing operators — in one time step we have solved
the problem of evaluating escape rates at infinite time. This simple explicit matrix
representation of the Perron-Frobenius operator is a consequence of the piecewise
linearity of f, and the restriction of the densities p to the space of piecewise constant
functions. The example gives a flavor of the enterprise upon which we are about to
embark in this book, but the full story is much subtler: in general, there will exist no
such finite-dimensional representation for the Perron-Frobenius operator.

We now turn to the problem of evaluatirfg?*').

15.2 Evolution operators

The above simple shift of focus, from studyit to studying(exp( - A")) is the
key to all that follows. Make the dependence on the flow ek rewriting this
quantity as

() = ﬁ fM dx fM dys(y - f1(x)) A0, (15.21)

Here o(y — f'(x)) is the Dirac delta function: for a deterministic flow an ialti
point x maps into a unique pointat timet. Formally, all we have done above is
to insert the identity

1= fM dys(y - () . (15.22)

into (15.10 to make explicit the fact that we are averaging only ovetithjectories

that remain inM for all times. However, having made this substitution weehav
replaced the study of individual trajectori€¥x) by the study of the evolution of
density ofthe totality of initial conditions. Instead of trying to extract a temalbr
average from an arbitrarily long trajectory which explattes phase space ergodically,
we can now probe the entire state space with short (and dabli) finite time
pieces of trajectories originating from every pointt.
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CHAPTER 15. AVERAGING 262

As a matter of fact (and that is why we went to the trouble ofrdefj the
generator14.27 of infinitesimal transformations of densitiggjinitesimallyshort
time evolution can sfice to determine the spectrum and eigenvalues!of

We shall refer to the kernel of the operatid5(21) as Ll(y, X).
Ly %) = oy - fi(x) A0 (15.23)

The evolution operator acts on scalar functigis) as
) = f dxa(y - £00) @AMg(x) (15.24)
M

In terms of the evolution operator, the space average of ¢nergting function
(15.2)) is given by

(&%) =0,

and, if the spectrum of the linear operatgt can be described, byi%.11) this
limit

1 1
%) = fim 3 In{ L)
yields the leading eigenvalue &§(8), and, through it, all desired expectation

values (5.129.

The evolution operator is fierent for diferent observables, as its definition
depends on the choice of the integrated observAbla the exponential. Its job
is deliver to us the expectation valueatut before showing that it accomplishes
that, we need to verify the semigroup property of evolutiperators.

By its definition, the integral over the observahblis additive along the trajectory

X(t1+t2) /> X(t1+t2)
x(O)J - xS W
ty ty+to
At (xg) = dr + dr
0 t
= A(x) + A%(fi(x)).

[exercise 14.3]
If A'(X) is additive along the trajectory, the evolution operatemeyates a semigroup

[section 14.5]

£t1+t2(y, X) — f dZLtZ(y, Z).Ltl (Z X) , (1525)
M
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d%

Figure 15.4: A long-time numerical calculation
of the leading Lyapunov exponent requires rescaling
the distance in order to keep the nearby trajectory
separation within the linearized flow range.

as is easily checked by substitution
LeL%(y) = f dxa(y - F())e™ 09 (L1a)(x) = L4+2aly).
M

This semigroup property is the main reason why.2J) is preferable to15.9 as
a starting point for evaluation of dynamical averages:dasts averaging in form
of operators multiplicative along the flow.

15.3 Lyapunov exponents

(J. Mathiesen and P. Cvitanovic)

Let us apply the newly acquired tools to the fundamentalrthatics in this subject:
Is a given system “chaotic”? And if so, how chaotic? If allpisiin a neighborhoogexamjle 23]
of a trajectory converge toward the same trajectory, thacttr is a fixed point or res

a limit cycle. However, if the attractor is strange, any twajectories eection 13.1]

X(t) = fi{(xo) and x(t) + 6x(t) = f(xo + 6Xo) (15.26)

that start out very close to each other separate exporgntidh time, and in
a finite time their separation attains the size of the acbkssiate space. This
sensitivity to initial conditiongan be quantified as

16X(t)] ~ 50| (15.27)

where 1, the mean rate of separation of trajectories of the systeroalled the
Lyapunov exponent

15.3.1 Lyapunov exponent as a time average

We can start out with a smallk and try to estimata from (15.27), but now that we
have quantified the notion of linear stability in chaptemd defined the dynamical
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Figure 15.5: The symmetric matri><J‘)TJl maps a x(H)+J5x
swarm of initial points in an infinitesimal spherical
neighborhood of into a cigar-shaped neighborhoo%_,_éx
finite time t later, with semiaxes determined by the
local stretchingshrinking |Az|, but local individual
trajectory rotations by the complex phaselbignored.

time averages in sect5.1.], we can do better. The problem with measuring the
growth rate of the distance between two points is that as dirdpseparate, the
measurement is less and less a local measurement. In stedpefimental time
series this might be the only option, but if we have the eguatiof motion, a
better way is to measure the growth rate of vectors trans\era given orbit.

The mean growth rate of the distariég(t)|/|6%o| between neighboring trajectories
(15.27 is given by theLyapunov exponent

A= fim %In 15X()1/16%0l (15.28)

(For notational brevity we shall often suppress the depecelef quantities such
asd = A(Xg), 6x(t) = 6x(xo,t) on the initial pointxy and the timet). One
can take 15.29 as is, take a small initial separatidng, track distance between
two nearby trajectories untibx(t1)| gets significantly bigger, then recotdt; =
In(l6X(t1)]/16%0l), rescalesx(ty) by factor|dxo|/|0x(t1)], and continue add infinitum,
with the leading Lyapunov exponent given by

t—oo

1
A= lim = Zti/u. (15.29)

However, we can do better. Given the equations of motion amithdp numerical
problems (such as evaluating the fundamental madri&3 for high-dimensional
flows), for infinitesimalox we know thesx;(t)/ox;(0) ratio exactly, as this is by
definition the fundamental matrix 43

oK) _ ox
5450 6%5(0)  a%;(0)

'Jitj (%0),

so the leading Lyapunov exponent can be computed from thargpproximation

(4.29

1 0% 1 g T e
A= im $In e = lim |n|n IHT3 n| : (15.30)

In this formula the scale of the initial separation drops, @y its orientation
given by the initial orientation unit vectar = 6x/|6x| matters. The eigenvalues
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Figure 15.6: A numerical estimate of the leading
Lyapunov exponent for the Rossler flo@.{7) from

the dominant expanding eigenvalue formuls.30.
The leading Lyapunov exponent~ 0.09 is positive,

S0 numerics supports the hypothesis that the Rossler
attractor is strange. (J. Mathiesen) ’

of J are either real or come in complex conjugate pairs. JAS in general
not symmetric and not diagonalizable, it is more conventenivork with the
symmetric and diagonalizable matedx= (J%)" J!, with real positive eigenvalues
{IA1%> > ... > |Agl?}, and a complete orthonormal set of eigenvectofsiof . . , ug).
Expandlng the initial orientation = Y (A-u)u; in theJu; = u; eigenbasis, we have

d
IR = Z A= U)PIAP = (- up)?eht (14 O(e2h—ah) | (15.31)
i=1

wheret; = In|Aj(Xp, )], with exponents ordered byy > A, > A3---. For long
times the largest Lyapunov exponent dominates exponbn(ieb.30, provided
the orientationn”of the initial separation was not chosen perpendicular & th
dominant expanding eigendirectian. The Lyapunov exponent is the time average

Axo) = lim = = {|n|n Ug| + I [A (X0, 1)] + O(e21-12))

lim = L 1AL (0. 1. (15.32)

whereA(xo, t) is the leading eigenvalue df(xg). By choosing the initial displacement
such than’is normal to the firsti¢1l) eigendirections we can define not only the
leading, but all Lyapunov exponents as well:

(%) = Jim 1|n|A(XO o, i=12---.d. (15.33)

The leading Lyapunov exponent now follows from the fundatalematrix by
numerical integration of4.9).

The equations can be integrated accurately for a finite traece the infinite
time limit of (15.30 can be only estimated from plots éln |AT JA| as function of
time, such as the figurks.6for the Rossler flowZ.17).

As the local expansion and contraction rates vary along tive the temporal
dependence exhibits small and large humps. The sudderofalllow level is
caused by a close passage to a folding point of the attractaltustration of why
numerical evaluation of the Lyapunov exponents, and ppthie very existence
of a strange attractor is a veryfidcult problem. The approximately monotone
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part of the curve can be used (at your own peril) to estimatéetading Lyapunov
exponent by a straight line fit.

As we can already see, we are courtinfidilties if we try to calculate the
Lyapunov exponent by using the definitiobb(32 directly. First of all, the state
space is dense with atypical trajectories; for exampleg tiappened to lie on a
periodic orbitp, 2 would be simply INApl/Tp, a local property of cyclep, not
a global property of the dynamical system. Furthermorenélveg happens to
be a “generic” state space point, it is still not obvious timgi\ (X, t)|/t should
be converging to anything in particular. In a Hamiltoniasteyn with coexisting
elliptic islands and chaotic regions, a chaotic trajectgis every so often captured
in the neighborhood of an elliptic island and can stay thereafbitrarily long
time; as there the orbit is nearly stable, during such egisop\ (X, t)|/t can dip
arbitrarily close to 0. For state space volume non-preserving flows the trajectory
can traverse locally contracting regions, andAlfxo, t)|/t can occasionally go
negative; even worse, one never knows whether the asymptttctor is periodic

or “strange,” so any finite estimate @fmight be dead wrong. fexercise 15.1]

15.3.2 Evolution operator evaluation of Lyapunov exponers

A cure to these problems wastered in sectl5.2 We shall now replace time
averaging along a single trajectory by action of a multgtive evolution operator
on the entire state space, and extract the Lyapunov expdrmntits leading
eigenvalue. If the chaotic motion fills the whole state spaeeare indeed computing
the asymptotic Lyapunov exponent. If the chaotic motionrassient, leading
eventually to some long attractive cycle, our Lyapunov exqmi, computed on
non-wandering set, will characterize the chaotic trarisihs is actually what
any experiment would measure, as even very small amounttefre noise
will suffice to destabilize a long stable cycle with a minute immediasin of
attraction.

Due to the chain rule4(51]) for the derivative of an iterated map, the stability
of a 1d mapping is multiplicative along the flow, so the integrab(l) of the
observablea(x) = In|f’(X)|, the local trajectory divergence rate, evaluated along
the trajectory ofxg is additive:

n-1
A"(x0) = In| " (x0)| = Z In [ (x)] - (15.34)
k=0

The Lyapunov exponent is then the expectation valiiedj given by a spatial
integral (L5.8 weighted by the natural measure

A={n|f'(X)]) = f dxpo(X) In|f"(X)|. (15.35)
M
The associated (discrete time) evolution operatérd3 is

L(y.x) = 5(y— f(x)) MO (15.36)
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Here we have restricted our considerations-td tnaps, as for higher-dimensional
flows only the fundamental matrices are multiplicative, thetindividual eigenvalues.
Construction of the evolution operator for evaluation of thyapunov spectra

in the general case requires more cleverness than warrahteds stage in the
narrative: an extension of the evolution equations to a flothé tangent space.

All that remains is to determine the value of the Lyapunovoment

A== 228 e (15.37)

B lg=1

from (15.12, the derivative of the leading eigenvalsgg) of the evolution oper-
ator (15.39.

[example 18.1]

The only question is: how?

Résum é

The expectation valuéa) of an observabl@(x) measuredd!(x) = fot dra(x(r))
and averaged along the flaw— f!(X) is given by the derivative

0s
a) = —
(@) B0

of the leading eigenvalugés®) of the corresponding evolution operatst.

Instead of using the Perron-Frobenius operdtdr{0 whose leading eigenfunction,
the natural measure, once computed, yields expectatiae {al.20 of any observable
a(x), we construct a specific, hand-tailored evolution operaidor each and
every observable. However, by time we arrive to chaft&rthe scéolding
will be removed, both{'s and their eigenfunctions will be gone, and only t
explicit and exact periodic orbit formulas for expectatisalues of observables
will remain.

chapter 18
ﬁe p ]

The next question is: how do we evaluate the eigenvalues?fWe saw
in examplel5.2 in the case of piecewise-linear dynamical systems, thesgeth
operators reduce to finite matrices, but for generic smootsi| they are infinite-
dimensional linear operators, and finding smart ways of eding their eigenvalues
requires some thought. In chapiérwe undertook the first step, and replaced the
ad hocpartitioning (L4.14 by the intrinsic, topologically invariant partitioning.
In chapterl3 we applied this information to our first application of theokition
operator formalism, evaluation of the topological entrde growth rate of the
number of topologically distinct orbits. This small vicyowill be refashioned
in chapters16 and 17 into a systematic method for computing eigenvalues of
evolution operators in terms of periodic orbits.

average - 13jun2008.tex



EXERCISES 268
Commentary

Remark 15.1 “Pressure” The quantitKexp(- A'))is called a “partition function” by
Ruelle [l]. Mathematicians decorate it with considerably more Graedt Gothic letters
than is the case in this treatise. Ruellpgnd Bowen P] had given name “pressur®{a)

to s(B) (wherea is the observable introduced here in sdé.1.), defined by the “large
system” limit (L5.17). As we shall apply the theory also to computation of the ptals
gas pressure exerted on the walls of a container by a boupaitigle, we prefer to refer
to 5(B) as simply the leading eigenvalue of the evolution opeliatooduced in sectl4.5
The “convexity” properties such @a) < P(|a) will be pretty obvious consequence of
the definition (5.1]). In the case thaf is the Perron-Frobenius operatd®(10, the
eigenvalue$s(B), s1(B), - - -} are called th&kuelle-Pollicott resonancds, 4, 5], with the
leading ones(8) = (B) being the one of main physical interest. In order to aid
the reader in digesting the mathematics literature, wd siyab point out the notational
correspondences whenever appropriate. The rigorous fisrmia replete with lims, sups,
infs, Q-sets which are not really essential to understanding afhtéery, and are avoided
in this presentation.

Remark 15.2 Microcanonical ensemble. In statistical mechanics the space average
(15.7 performed over the Hamiltonian system constant energasaiinvariant measure
p(X)dx = dqdps(H(q, p) — E) of volumew(E) = fqud pé(H(a, p) - E)

1
@) = = [ dadps(H(a.p) - E)a(a. p.y (15.38)
w(E) Im
is called thanicrocanonical ensemble average

Remark 15.3 Lyapunov exponents. The Multiplicative Ergodic Theorem of Oseledét |
states that the limitsl6.36-15.33 exist for almost all pointgg and all tangent vectors ~
There are at mogt distinct values oft as we letn'range over the tangent space. These
are the Lyapunov exponentd [1;(Xo).

There is much literature on numerical computation of thepyeav exponents, see
for example refs.14, 15, 16].

Remark 15.4 State space discretization. Ref.[17] discusses numerical discretizatons
of state space, and construction of Perron-Frobenius tggsras stochastic matrices, or
directed weighted graphs, as coarse-grained models ofdhelglynamics, with transport
rates between state space partitions computed using thi wigtransition probabilities;

a rigorous discussion of some of the former features is detin Ref. [L.g].

Exercises
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15.1. How unstable is the Henon attractor? (d) compute the fourth derivative assuming that the
mean in ((5.39 vanishes({a;) = 0. The 4-th order
(a) Evaluate numerically the Lyapunov expongbly moment formula
iterating the H&non map (x“(t))
[ X |_[1-a+y K() = PO) 3 (15.41)
y || bx
that you have derived is known d&airtosis it
fora=14,b=0.3. measures a deviation from what the 4-th order

moment would be were the distribution a pure
Gaussian (see2¢.2) for a concrete example).
If the observable is a vector, the kurtosigt) is

(b) Now check how robust is the Lyapunov exponent
for the Hénon attractor? Evaluate numerically the
Lyapunov exponent by iterating the HEnon map

for a = 1.39945219b = 0.3. How much do given by
you trust now your result for the part (a) of this i [(AiAiAjAj> + 2(<A5A,-><Ain> _ <A5Ai><A,-,
exercise? ’
(Zi (AA))
15.2. Expectation value of a vector observable. 15.3. Pinball escape rate from numerical simulatiori.
Check and extend the expectation value formulas  Estimate the escape rate fir: a = 6 3-disk pinball
(15.12 by evaluating the derivatives &fg) up to 4-th by shooting 100,000 randomly initiated pinballs into the

3-disk system and plotting the logarithm of the number
of trapped orbits as function of time. For comparison,
a numerical simulation of ref.3] yieldsy = .410.. ..

order for the space averagexp(s - A")) with a; a vector
quantity:
(@) 15.4. Rossler attractor Lyapunov exponents.

ﬁ
Opi

(a) Evaluate numerically the expanding Lyapunov
exponentl, of the Rodssler attractoR(17).

(b) Plotyour own version of figurg5.6 Do notworry
(b) if it looks different, as long as you understand why
your plot looks the way it does. (Remember the
1 ((A}At> B (A}) (At >) nonuniform contractiofexpansion of figuré.3))
8=0 oo ] : (c) Give your best estimate af. The literature gives
1, ¢ surprisingly inaccurate estimates - see whether
bty (A - tcan (A - t{apya) you can do better.
L . , (d) Estimate the contracting Lyapunov exponggat
N_oltg thﬁt the _formafllsm |shsmart. it autohma'uﬁally Even though it is much smaller thai, a glance
y!e s thevariance from zt e mean, rather than at the stability matrix4.4) suggests that you can
simply the 2nd momer(a?). probably get it by integrating the infinitesimal
(c) compute the third derivative ofp). volume along a long-time trajectory, as #.47).

= lim %(A}> = (&), (15.39)

t—oo

8=0

8%s
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