Chaos: Classical and Quantum

Volume |l: Semiclassical Chaos

Chapter 29

Prologue

Anyone who uses words “quantum” and “chaos” in the
same sentence should be hung by his thumbs on a tree in
the park behind the Niels Bohr Institute.

—Joseph Ford

(G. Vattay, G. Tanner and P. Cvitanovic)

play a game of classical pinball, and a skilled neuros@ertan poke

rat brains. We learned that information about chaotic dyinaran be
obtained by calculating spectra of linear operators sudhesvolution operator
of sect.15.2 or the associated partialftBrential equations such as the Liouville
equation {4.37). The spectra of these operators can be expressed in terms of
periodic orbits of the deterministic dynamics by meansaxdérformulas and cycle
expansions.

Y ou HAVE READ the first volume of this book. So far, so good — anyone can

But what happens quantum mechanically, i.e., if we scattefew rather than
point-like pinballs? Can we turn the problem round and stliggar PDE’s in
terms of the underlying deterministic dynamics? And, ig¢he link between
structures in the spectrum or the eigenfunctions of a PDEtheddynamical
properties of the underlying classical flow? The answer & Yit... things
Predrag Cvitanovi¢ — Roberto Artuso — Per Dahlqvist — Ronnie Mainieri — are becoming somewhat more complicated when studying 2rigber order
Gregor Tanner — Gabor Vattay —Niall Whelan — Andreas Wirzba linear PDE's. We can find classical dynamics associated witmear PDE,
just take geometric optics as a familiar example. Propagatf light follows a
second order wave equation but may in certain limits be vestdbed in terms of
geometric rays. A theory in terms of properties of the ctzgiynamics alone,
referred to here as theemiclassical theorywill not be exact, in contrast to the
classical periodic orbit formulas obtained so far. Wavdsleknew phenomena,
such as interference, fetiaction, and highef: corrections which will only be
partially incorporated into the periodic orbit theory.
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CHAPTER 29. PROLOGUE 502

29.1 Quantum pinball

In what follows, we will restrict the discussion to the natativistic Schrodinger
equation.  The approach will be very much in the spirit of tlhelyedays of
guantum mechanics, before its wave character has beenfidiyvered by Schrodinger
in the mid 1920’s. Indeed, were physicists of the period aslfar with classical
chaos as we are today, this theory could have been devel@gzh&s ago. It was
the discrete nature of the hydrogen spectrum which inspire@®ohr - de Broglie
picture of the old quantum theory: one places a wave instéadparticle on a
Keplerian orbit around the hydrogen nucleus. The quaiizatondition is that
only those orbits contribute for which this wave is statigndrom this followed
the Balmer spectrum and the Bohr-Sommerfeld quantizatisictweventually led
to the more sophisticated theory of Heisenberg, Schr@diagd others. Today
we are very aware of the fact that elliptic orbits are an igihasacy of the Kepler
problem, and that chaos is the rule; so can the Bohr quaiotizhe generalized
to chaotic systems?

The question was answereffiamatively by M. Gutzwiller, as late as 1971: a
chaotic system can indeed be quantized by placing a waveatmadaheinfinity
of unstable periodic orbits. Due to the instability of théits the wave does not
stay localized but leaks into neighborhoods of other périotbits. Contributions
of different periodic orbits interfere and the quantization ciolican no longer
be attributed to a single periodic orbit: A coherent sumarativer the infinity of
periodic orbit contributions gives the desired spectrum.

The pleasant surprise is that the zeros of the dynamicalfaatdion (L.9)

derived in the context of classical chaotic dynamics, )
[chapter 17]

1@ =] |a-1).
p

also yield excellent estimates gfiantunresonances, with the quantum amplitude
associated with a given cycle approximated semiclasgibglthe weight

t = — ek Sprimy/2 (29.1)
p

IApl?
whose magnitude is the square root of the classical weight.Q

ie‘f'Ap‘STp

t, =
TN

and the phase is given by the Bohr-Sommerfeld action int&yatogether with
an additional topological phasep, the number of caustics along the periodic

trajectory, points where the naive semiclassical appration fails. )
[chapter 32]
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In this approach, the quantal spectra of classically cbatythamical systems
are determined from the zeros of dynamical zeta functicefned by cycle expansions
of infinite products of form

ve=[la-t=1->t-> c (29.2)
P f k

with weightt, associated to every prime (non-repeating) periodic odsitycle
p.

The key observation is that the chaotic dynamics is oftermmgd around
a few fundamentalcycles. These short cycles capture the skeletal topology of
the motion in the sense that any long orbit can approximaielpieced together
from the fundamental cycles. In chaptes it was shown that for this reason the
cycle expansion9.2) is a highly convergent expansion dominated by short cycles
grouped intofundamentalkontributions, with longer cycles contributing rapidly
decreasingcurvature corrections.  Computations with dynamical zeta functions
are rather straightforward; typically one determines teagand stabilities of a
finite number of shortest periodic orbits, substitutes tim(29.2), and estimates
the zeros of 1/ from such polynomial approximations.

From the vantage point of the dynamical systems theory,rttee tformulas
(both the exact Selberg and the semiclassical Gutzwiltretiformula) fit into
a general framework of replacing phase space averages by euen periodic
orbits. For classical hyperbolic systems this is possilolessthe invariant density
can be represented by sum over all periodic orbits, with ktsigelated to their
instability. The semiclassical periodic orbit sum#feli from the classical ones
only in phase factors and stability weights; suclietences may be traced back
to the fact that in quantum mechanics the amplitudes raktzar the probabilities
are added.

[chapter 33]

The type of dynamics has a strong influence on the convergehcgcle
expansions and the properties of quantal spectra; thisssiéaes development
of different approaches forférent types of dynamical behavior such as, on one
hand, the strongly hyperbolic and, on the other hand, tregnmittent dynamics
of chaptersl8 and23. For generic nonhyperbolic systems (which we shall not
discuss here), with mixed phase space and marginally stahites, periodic orbit
summations are hard to control, and it is still not clear thatperiodic orbit sums
should necessarily be the computational method of choice.

Where is all this taking us? The goal of this part of the bodk idemonstrate
that the cycle expansions, developed so far in classidaigstare also a powerful
tool for evaluation ofjuantumresonances of classically chaotic systems.

First, we shall warm up playing our game of pinball, this timea quantum
version. Were the game of pinball a closed system, quantuohamécally one
would determine its stationary eigenfunctions and eigergges. For open systems
one seeks instead complex resonances, where the imagaraof the eigenenergy
describes the rate at which the quantum wave function leak®fothe central
scattering region. This will turn out to work well, except evtiuly wants to know
accurately the resonances of a quantum pinball? )

[chapter 34]
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Figure 29.1: A typical collinear helium trajectory in
ther; —r, plane; the trajectory enters along theaxis
and escapes to infinity along theaxis. r,

29.2 Quantization of helium

Once we have derived the semiclassical weight associatedhvei periodic orbip
(29.1), we will finally be in position to accomplish something @ether remarkable.
We are now able to put together all ingredients that make #meegof pinball
unpredictable, and compute a “chaotic” part of the heliumcsium to shocking
accuracy. From the classical dynamics point of view, helisran example of
Poincaré’s dreaded and intractable 3-body problem. Umteay we forge ahead
and consider theollinear helium, with zero total angular momentum, and the
two electrons on the+J(r)pposite sides of the nucleus.

We set the electron mass to 1, the nucleus mass, tihe helium nucleus c:hargefCha ter 36]
to 2, the electron charges to -1. The Hamiltonian is oe

(29.3)

Due to the energy conservation, only three of the phase sjacdinatesr(, r,, p1, p2)
are independent. The dynamics can be visualized as a mottbe §1,r2), ri > 0
quadrant, figure29.1, or, better still, by a well chosen 2-dimensional Poincaré
section.

The motion in ther, ry) plane is topologically similar to the pinball motion
in a 3-disk system, except that the motion is not free, buténGoulomb potential.
The classical collinear helium is also a repeller; almdsifahe classical trajectories
escape. Miraculously, the symbolic dynamics for the samgvturns out to be
binary, just as in the 3-disk game of pinball, so we know whates need to
be computed for the cycle expansioh10). A set of shortest cycles up to a
given symbol string length then yields an estimate of theuhebpectrum. This
simple calculation yields surprisingly accurate eigengal even though the cycl
expansion was based on themiclassical approximatiof29.1) which is expected
to be good only in the classical large energy limit, the e@gemgies are good to
1% all the way down to the ground state.

échamer 36]

Before we can get to this point, we first have to recapitulateesbasic notions
of quantum mechanics; after having defined the main quanhjetts of interest,
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the quantum propagator and the Green’s function, we wiiteethe quantum
propagation to the classical flow of the underlying dynatrggatem. We will then
proceed to construct semiclassical approximations totla@tym propagator and
the Green'’s function. A rederivation of classical Hamiltondynamics starting
from the Hamilton-Jacobi equation will béfered along the way. The derivation
of the Gutzwiller trace formula and the semiclassical zetefion as a sum and as
a product over periodic orbits will be given in chap&% In subsequent chapters
we buttress our case by applying and extending the theorycle expansion
calculation of scattering resonances in a 3-disk billiardhapte34, the spectrum
of helium in chapteB6, and the incorporation of firaction dfects in chapteB7.

Commentary

Remark 29.1 Guide to literature. A key prerequisite to developing any theory of
“quantum chaos” is solid understanding of Hamiltonian naagbs. For that, Arnol'd
monograph §6] is the essential reference. Ozorio de Almeida’s monogfaphoffers a
compactintroduction to the aspects of Hamiltonian dynamequired for the quantization
of integrable and nearly integrable systems, with emphasiperiodic orbits, normal
forms, catastrophy theory and torus quantization. The bmoBrack and Bhaduril]

is an excellent introduction to the semiclassical metho@stzwiller's monograph4]

is an advanced introduction focusing on chaotic dynami¢h oclassical Hamiltonian
settings and in the semiclassical quantization. This beakadrth browsing through for
its many insights and erudite comments on quantum and @lestchanics even if one
is not working on problems of quantum chaos. More suitabie gaduate course text is
Reichl's exposition ).

This book does not discuss the random matrix theory apprwachaos in quantal
spectra; no randomness assumptions are made here, rabeeatlis to milk the deterministic
chaotic dynamics for its full worth. The book concentratastte periodic orbit theory.
For an introduction to “quantum chaos” that focuses on tmeloan matrix theory the
reader is referred to the excellent monograph by Hadkefnong others.

Remark 29.2 The dates.  Schrodinger’s first wave mechanics papéf (hydrogen
spectrum) was submitted 27 January 1926. Submission datdddelung’s ‘quantum
theory in hydrodynamical form’ papef]was 25 October 1926.
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E START WITH a review of standard quantum mechanical concepts prertguis
to the derivation of the semiclassical trace formula.

In coordinate representation the time evolution of a quannechanical wave
function is governed by the Schrddinger equation

0 ~ hd
'h&kﬂ(qs t) = H(q, i—%)lﬂ(qa t), (30.1)

where the Hamilton operatét(q, —inidg) is obtained from the classical Hamiltonian
by substitutionp — —i7zdy. Most of the Hamiltonians we shall consider here are
of form

H@.p) =T(P)+ V(D).  T(p) = p°/2m, (30.2)

describing dynamics of a particle in-dimensional potential/(q). For time
independent Hamiltonians we are interested in findingastatly solutions of the
Schrddinger equation of the form

Un(a.1) = € E (). (30.3)

whereE, are the eigenenergies of the time-independent Schradéuyetion

He(a) = E¢(a). (30.4)
If the kinetic term can be separated out as30.9), the time-independent Schrodinger
equation
",
~ om0 (@ + V(@)¢(a) = E¢(a) (30.5)
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CHAPTER 30. QUANTUM MECHANICS, BRIEFLY 508

can be rewritten in terms of a local wavenumber

@ +K@)¢ =0, 7K@ = v2mE - V(d). (30.6)

For bound systems the spectrum is discrete and the eigeitiusdorm an
orthonormal,

| daon(cdsicd = oo, (30.7)
and complete,
> ea@en(@) = 6a- ), (30.8)
n
set of functions in a Hilbert space. Here and throughouteRg t

qu:qulqu...qu. (30.9)

For simplicity we will assume that the system is bound, altto most of the
results will be applicable to open systems, where one haplesnmesonances
instead of real energies, and the spectrum has continuoogarents.

A given wave function can be expanded in the energy eigesbasi

W@t = ) ce 5 g0(q), (30.10)

where the expansion cfigient c, is given by the projection of the initial wave
functiony (g, 0) onto thenth eigenstate

&= [ dasi(@u(a.0) (30.11)

By substituting 80.1J) into (30.10, we can cast the evolution of a wave function
into a multiplicative form

v@d - [ ddK@q.0ud.0).
with the kernel
K(G.d,1) = > én(a) €& gr () (30.12)
n
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called the quantum evolution operator, or fitepagator Applied twice, first for
time t; and then for timey, it propagates the initial wave function froghto g,
and then frong” to q

KO ooty ) = f dq’ K(@. " )K" . 12) (30.13)

forward in time, hence the name “propagator.” In non-reistic quantum mechanics
the range ofy” is infinite, meaning that the wave can propagate at any speed,;
relativistic quantum mechanics this is rectified by resitigg the propagation to
the forward light cone.

Since the propagator is a linear combination of the eigatfons of the
Schrddinger equation, it also satisfies the Schrodingeaton

Ko .0 = A+ Lk q
ingK@d.0 = A 7K@ 0. (30.14)

and is thus a wave function defined for> 0; from the completeness relation
(30.8) we obtain the boundary condition tat 0:

lim K@.q.1) = (@ -d). (30.15)

The propagator thus represents the time evolution of a watkep which starts
out as a configuration space delta-function localized inpthiat g’ at the initial
timet = 0.

For time independent Hamiltonians the time dependenceeafitive functions
is known as soon as the eigenenergigand eigenfunctiong, have been determined.
With time dependence rendered “trivial,” it makes senseotu$ on theGreen's
function the Laplace transformation of the propagator

GO.d.E+ig = fo dteF K@ . = Y 7‘2"5‘“)&"2 . (30.16)
n

Here e is a small positive number, ensuring the existence of thegnal. The
eigenenergies show up as poles in the Green'’s function esidues corresponding
to the wave function amplitudes. If one is only interestethespectrum, one may
restrict the considerations to the (formal) trace of thee@iefunction,

/ 1
trG(q,q,E)=quG(q,q, B=2 g (30.17)
n

whereE is complex, with a positive imaginary part, and we have ukecetgenfunction
orthonormality 80.7). This trace is formal, since as it stands, the sun8h17)
is often divergent. We shall return to this point in set$.1.1and33.1.2
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CHAPTER 30. QUANTUM MECHANICS, BRIEFLY 510 EXERCISES 511

d(e) NeE)
3 Exercises
Figure 30.1: Schematic picture o) the density I(E ]
of statesd(E), and b) the spectral staircase ) ety | ' 30.1. Dirac delta function, Lorentzian representation. 30.2. Green’s function.  Verify Green'’s function Lapla
function N(E). The dashed lines denote the L Derive the representatio8(.19 transform 80.19,
mean density of statesl(E) and the average e € E e T E E
number of statesl(E) discussed in more detail in 1 L 3 W =3 _ — i 1 1 / i - l W i Et- 7t /
sect33.11 O(E ~En) =~ lim ~Im =— ETic Ga.q.E+ie) = = i dte="7"'K(g.q. 1)
o ) o of a delta function as imaginary part ofx. = %
A_ useful chargcterlzatlon of Fhe set of elgenva!ues is gwete_rms of the (Hint: read up on principal parts, positive and negative —Entle
density of stateswith a delta function peak at each eigenenergy, figiré (a), frequency part of the delta function, the Cauchy theorem  argue that positives is needed (hint: read a gc¢
in a good quantum mechanics textbook). quantum mechanics textbook).
d(E) = Z 8(E - En). (30.18)
n
Using the identity [exercise 30.1]
.1 1
6(E-Ep) =—- lim =Im (30.19)

e—»+0or  E-E,+ie

we can express the density of states in terms of the traceeddthen’s function,
that is

1
d(E) =Z§(E—En) = - lim ~ImtrG(q o, E + e). (30.20)
n
[section 33.1.1]

As we shall see after "some” work, a semiclassical formutaifght hand side of
this relation will yield the quantum spectrum in terms ofipdic orbits.

The density of states can be written as the derivati{fe) = dN(E)/dE of the
spectral staircaséunction

N(E) = )" O(E - En) (30.21)

which counts the number of eigenenergies befovigure30.1(b). Here® is the
Heaviside function

O(x)=1 ifx>0;, O(X) =0 ifx<0. (30.22)
The spectral staircase is a useful quantity in many contbrts experimental

and theoretical. This completes our lightning review ofrfuan mechanics.
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Chapter 31

WKB quantization

Tm: WwAVE FUNCTION for a particle of energf moving in a constant potentis
is

v = AeiPd (31.1)

with a constant amplitudé, and constant wavelength= 2r/k, k = p/n,
andp = +/2m(E - V) is the momentum. Here we generalize this solution
to the case where the potential varies slowly over many eagghs. This

semiclassical (or WKB) approximate solution of the Scimgdr equation fails at
classical turning points, configuration space points whieggparticle momentum
vanishes. In such neighborhoods, where the semiclasgipabximation fails,
one needs to solve locally the exact quantum problem, i éodsmpute connection
codficients which patch up semiclassical segments into an ajppate global
wave function.

Two lessons follow. First, semiclassical methods can bg pewerful -
classical mechanics computations yield suprisingly aateuestimates of quantal
spectra, without solving the Schrodinger equation. Seéceemiclassical quantization
does depend on a purely wave-mechanical phenomena, theenblagldition of
phases accrued by all fixed energy phase space trajectbaesdnnect pairs
of coordinate points, and the topological phase loss atyettening point, a
topological property of the classical flow that plays no fialelassical mechanics.

31.1 WKB ansatz
Consider a time-independent Schrodinger equation in tiadpmension:

hz ” _
~ o (@ + V(@ () = Ey(a). (312
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V(x)

Figure 31.1: A 1-dimensional potential, location of
the two turning points at fixed energy

with potential V(g) growing suficiently fast asq — +oo so that the classical
particle motion is confined for anlg. Define the local momenturp(g) and the
local wavenumbek(q) by

p(a) =+ v2m(E - V(d)), p(q) = 7k(q). (31.3)
The variable wavenumber form of the Schrodinger equation
W'+ K3y =0 (31.4)

sugests that the wave function be writtenjas AeiS, A andS real functions of
g. Substitution yields two equations, one for the real anéofbr the imaginary
part:

(8 = p2+h2A— (31.5)
A
" o Ldo o
S"A+2S'N = Adq(SA)_O. (31.6)

The Wentzel-Kramers-BrillouifWKB) or semiclassicalpproximation consists
of dropping thei? term in 31.5. Recalling thaip = 7k, this amounts to assuming
thatk? > AT”, which in turn implies that the phase of the wave functiorhiarging
much faster than its overall amplitude. So the WKB approxiomecan interpreted
either as a short wavelengiigh frequency approximation to a wave-mechanical
problem, or as the semiclassichlx 1 approximation to quantum mechanics.

Settingh = 0 and integrating31.5 we obtain the phase increment of a wave
function initially atq, at energye

q
S0.6.6)= | dd'p(a). (317)

This integral over a particle trajectory of constant engogfied theaction will
play a key role in all that follows. The integration &1(.6) is even easier

—C . coip@ybu). (31.8)

AQ) =
[p(a)I2
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CHAPTER 31. WKB QUANTIZATION 514

Figure 31.2: A 1-dof phase space trajectory of a )
particle moving in a bound potential. { i

where the integration consta@tis fixed by the value of the wave function at the
initial point g’. TheWKB (or semiclassicglansatzwave function is given by

¥sdaq, E) = Lle*s(“'*‘*f). (31.9)

[p(q)I2

In what follows we shall suppress dependence on the initalt@nd energy in
such formulas,q, d’, E) — (q).

The WKB ansatz generalizes the free motion wave functginij, with the
probability densitylA(qg)[? for finding a particle at] now inversely proportional
to the velocity at that point, and the phagq p replaced by} [ dqa), the
integrated action along the trajectory. This is fine, exapany turning point
Jo, figure31.1, where all energy is potential, and

p(q -0 as g-— qo, (31.10)

so that the assumption tHet > AT” fails. What can one do in this case?

For the task at hand, a simple physical picture, due to Maslogs the job.
In the g coordinate, the turning points are defined by the zero kinetiergy
condition (see figurg1.1), and the motion appears singular. This is not so in
the full phase space: the trajectory in a smooth confiningriedsional potential
is always a smooth loop, with the “special” role of the tumimintsq , gr seen
to be an artifact of a particular choice of thg |p) coordinate frame. Maslov’s
idea was to proceed from the initial poirf (p’) to a point €ja, pa) preceeding the
turning point in they(q) representation, then switch to the momentum representati

~ 1 i
= —— | daei%Py(g), 31.11
i = < [ daei®u (31.11)
continue from @a, pa) to (gs, Ps), switch back to the coordinate representation,
w(Q) = ifdpeﬁ“”’i(p), (31.12)
V2nh

and so on.
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The only rub is that one usually cannot evaluate these wamsfexactly. But,
as the WKB wave function3(.9 is approximate anyway, it flices to estimate
these transforms to leading order finaccuracy. This is accomplished by the
method of stationary phase.

31.2 Method of stationary phase

All “semiclassical” approximations are based on saddlatmialuations of integrals
of the type

I = f dxAX) E*W | x d(x) eR, (31.13)

wheresis assumed to be a large, real parameterdjlis a real-valued function.
In our applicationss = 1/ will always be assumed large.

For larges, the phase oscillates rapidly and “averages to zero” evesysy
except at thextremal pointsd’(xo) = 0. The method of approximating an integral
by its values at extremal points is called thethod of stationary phas€onsider
first the case of a 1-dimensional integral, and expé(ey + 6X) aroundXp to
second order idXx,

I = f dx A(X) @SO00)+30(0)5x+.) (31.14)

Assume (for time being) thab” (xp) # 0, with either sign, sg”’] = @ /|®”| =
+1. If in the neighborhood ok, the amplitudeA(x) varies slowly over many
oscillations of the exponential function, we may retain kdading term in the
Taylor expansion of the amplitude, and approximate thegialeup to quadratic
terms in the phase by

|~ A(xg)dsP0) f dx 1S (0)0-x) (31.15)

Using theFresnel integral formula [exercise 31.1]

1 fm x2 - iz a
i dxem = \/E = |a]1/2e'4\a\ (31.16)
V27 J-oo
we obtain
Y2 iz
I ~ A(Xo ‘—‘ gsrioiz 31.17
00| 5760 (31.17)

wherex+ corresponds to the positifreegative sign 060" (o).
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31.3 WKB quantization

We can now evaluate the Fourier transforrg$. (1), (31.12) to the same order in
h as the WKB wave function using the stationary phase method,

Tadp) = = [ el
Var Ip(q)\z
_Cc e (S@)- qpf S (@) q)z (31.18)
Nz |p()?

whereq* is given implicitly by the stationary phase condition
0=S(q)-p=p)-p

and the sign ofS”(q") = p’(q*) determines the phase of the Fresnel integral
(31.19

Todp) = —C—_eilS@)-apl+ fsuns @) (31.19)
Ip(@)p' ()2

As we continue from da, pa) to (gs, ps), Nothing problematic occurrs p(q*)
is finite, and so is the acceleratigi(g*). Otherwise, the trajectory would take
infinitely long to get across. We recognize the exponent@tégendre transform

S(p) = S(a(p) - a(p)P
which can be used to expresses everything in terms of tregiable,

pdg(p)

q l_dq dp

a’ = q(p). =q(Pp@). (31.20)

dg

As the classical trajectory crossgs the weight in 81.19,

%pz(qL) = 2p(aL)p'(aL) = —2mV/(a)., (31.21)

is finite, andS”(q") = p'(g*) < 0 for any point in the lower left quadrant,
including @a, pa). Hence, the phase loss i81(19 is 4. To go back from
the p to theq representation, just turn figuBs.290° anticlockwise. Everything
is the same if you replacey(p) — (-p,q); so, without much ado we get the
semiclassical wave function at the poigg(ps),

e E()+ap)-5 C i
Ysd) = = — Usdp’) = R (31.22)
lo(p*)I2 Ip(a)I?
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Figure 31.3: Sy(E), the action of a periodic orbjt at
energyE, equals the area in the phase space traced
by the 1-dof trajectory.

The extralp’ (g°)|Y? weight in 31.19 is cancelled by théy (p*)|/? term, by the
Legendre relation31.20).

The message is that going through a smooth potential tupoing the WKB
wave function phase slips by%. This is equally true for the right and the left
turning points, as can be seen by rotating figdke?by 18, and flipping coordinates
(@, p) — (-9,—p). While a turning point is not an invariant concept (for a
sufficiently short trajectory segment, it can be undone by’audi®), for a complete
period @, p) = (¢, p’) the total phase slip is alway - 7/2, as a loop always has
m = 2 turning points.

TheWKB quantization conditiofollows by demanding that the wave function
computed after a complete period be single-valued. Witimdmmalization 81.9),
we obtain

(@) = y() = @

The prefactor is 1 by the periodic orbit condition= ¢, so the phase must be a
multiple of 2,

7 § pda=21(n+ 7). (31.23)

wherem is the number of turning points along the trajectory - forsthidof
problem,m = 2.

The action integral in31.23 is the area (see figurgl.3 enclosed by the
classical phase space loop of figus&.2 and the quantization condition says
that eigenenergies correspond to loops whose action istegeinmultiple of the
unit quantum of action, Planck’s constantThe extra topological phase, which,
although it had been discovered many times in centuries et to wait for its
most recent quantum chaotic (re)birth until the 1970’s. itests derivation in a
noninvariant coordinate frame, the final result involvelymanonically invariant
classical quantities, the periodic orbit acti8nand the topological indem.
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Figure 31.4: Airy function Ai(q). Bk 4 2 00 4
31.3.1 Harmonic oscillator quantization

Let us check the WKB quantization for one case (the only gas@®se quantum
mechanics we fully understand: the harmonic oscillator

E- %q(pﬁ(qu)z)-

The loop in figure31.2is now a circle in therfwa, p) plane, the action is its area
S = 2rE/w, and the spectrum in the WKB approximation

En = fiw(n + 1/2) (31.24)

turns out to be theexactharmonic oscillator spectrum. The stationary phase
condition 31.18 keepsV(q) accurate to ordeg?, which in this case is the whole
answer (but we were simply lucky, really). For many 1-doflpems the WKB
spectrum turns out to be very accurate all the way down to tbengl state.
Surprisingly accurate, if one interprets dropping #ieerm in 31.5 as a short
wavelength approximation.

31.4 Beyond the quadratic saddle point

We showed, with a bit of Fresn®laslov voodoo, that in a smoothly varying
potential the phase of the WKB wave function slips by /& for each turning

point. Thisz/2 came from aVi in the Fresnel integral3(L.16), one such factor

for every time we switched representation from the configomaspace to the
momentum space, or back. Good, but what does this mean?

The stationary phase approximatid@i (14 fails wheneved” (x) = 0, or, in
our the WKB ansatz31.18, whenever the momentumf(q) = S”(q) vanishes.

In that case we have to go beyond the quadratic approximédibij to the first
nonvanishing term in the Taylor expansion of the exponédnb’I(xp) # 0, then

. 0 o x-x0)3
| ~ A(xo)e>0o) f dx 50”00 (31.25)
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Airy functions can be represented by integrals of the form

2

Ai(x) = % f wdyé(xy‘z (31.26)

Derivations of the WKB quantization condition given in sfand quantum
mechanics textbooks rely on expanding the potential clo$leet turning point

V(@) = V(do) + (@ — Go)V'(do) + -,

solving the Airy equation

sz (31.27)

and matching the oscillatory and the exponentially de@ayforbidden” region
wave function pieces by means of théKB connection formulas That requires
staring at Airy functions and learning about their asymipgota challenge that we
will have to eventually overcome, in order to incorporatirection phenomena
into semiclassical quantization.

2) what does the wave function look like?
3) generically useful when Gaussian approximations fail

The physical origin of the topological phase is illustrabgdthe shape of the
Airy function, figure31.4 For a potential with a finite slop¥’(q) the wave
function pentrates into the forbidden region, and accoresda bit more of a
stationary wavelength then what one would expect from thesital trajectory
alone. For infinite walls (i.e., billiards) a fiérent argument applies: the wave
function must vanish at the wall, and the phase slip due t@awsar reflection is
—n, rather than-r/2.

Résumé

The WKB ansatz wave function for 1-degree of freedom prokléails at the
turning points of the classical trajectory. While in theepresentation the WKB
ansatz a turning point is singular, along theélirection the classical trajectory in
the same neighborhood is smooth, as for any smooth boundtjabtée classical
motion is topologically a circle around the origin in thg ) space. The simplest
way to deal with such singularities is as follows; follow ttlassical trajectory in
g-space until the WKB approximation fails close to the tugnpoint; then insert
fdplp)(pl and follow the classical trajectory in thespace until you encounter
the nextp-space turning point; go back to tlespace representation, an so on.
Each matching involves a Fresnel integral, yielding anesxtr/4 phase shift, for
a total ofe™™ phase shift for a full period of a semiclassical particle ingvin a
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soft potential. The condition that the wave-function beyirvalued then leads to
the 1-dimensional WKB quantization, and its lucky coudire, Bohr-Sommerfeld
quantization.

Alternatively, one can linearize the potential around thraing pointa, V(q) =
V(a)+(g—a)V’(a)+- - -, and solve the quantum mechanical constant linear potentia
V(q) = qF problem exactly, in terms of an Airy function. An approxireatave
function is then patched together from an Airy function athed&urning point,
and the WKB ansatz wave-function segments inbetween viMiKB connection
formulas. The single-valuedness condition again yiel@slttimensional WKB
quantization. This a bit more work than tracking the clessi@jectory in the full
phase space, but it gives us a better feeling for shapes ofuquaigenfunctions,
and exemplifies the general strategy for dealing with otheguarities, such
as wedges, bifurcation points, creeping and tunnelingchptiigether the WKB
segments by means of exact QM solutions to local approximsitto singular
points.

Commentary

Remark 31.1 Airy function. The stationary phase approximation is all that is needed
for the semiclassical approximation, with the proviso tha (32.39 has no zero eigenvalues.
The zero eigenvalue case would require going beyond thes@ausaddle-point approximation,
which typically leads to approximations of the integralsgmms of Airy functions {0].

[exercise 31.4]

Remark 31.2 Bohr-Sommerfeld quantization. Bohr-Sommerfeld quantization condition
was the key result of the old quantum theory, in which the tebectrajectories were
purely classical. They were lucky - the symmetries of the I&eproblem work out in
such a way that the total topological index= 4 amount &ectively to numbering the
energy levels starting witm = 1. They were unlucky - because the hydrogen=

4 masked the topological index, they could never get theuhebpectrum right - the
semiclassical calculation had to wait for until 1980, whemwpold and Percivab] added

the topological indices.
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value of n! for large n using the stationary phase
approximation. Hintn! = fo‘” dtthet.

31.4. Airy function for large arguments.
b

‘ Important contributions as stationary phase
points may arise from extremal points where the first
non-zero term in a Taylor expansion of the phase is of
third or higher order. Such situations occur, for example,
at bifurcation points or in diraction dfects, (such

as waves near sharp corners, waves creeping around
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obstacles, etc.). In such calculations, one meets
functions integrals of the form

Ai(x):% f dy d0o-5) (31.28

Calculate the Airy functionAi(x) using the stationa
phase approximation. What happens when consic
the limit x — 0. Estimate for which value ok the
stationary phase approximation breaks down.

Exercises

|

31.1. WKB ansatz. J Try to show that no other
ansatz other thar8@.1) gives a meaningful definition of
the momentum in thé — O limit.

31.3. Sterling formula for n!. Compute an approximate
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31.2. Fresnel integral. Derive the Fresnel integral

1 fw 2 . ira
— | dxe = Via=|aY%ia.
Vor J-
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Chapter 32

Semiclassical evolution

William Rowan Hamilton was born in 1805. At three
he could read English; by four he began to read Latin,
Greek and Hebrew, by ten he read Sanskrit, Persian,
Arabic, Chaldee, Syrian and sundry Indian dialects. At
age seventeen he began to think about optics, and worked
out his great principle of “Characteristic Function.”

— Turnbull, Lives of Mathematicians

(G. Vattay, G. Tanner and P. Cvitanovic)

where the de Broglie wavelength ~ 7/p of a particle with momentum

p is much shorter than the length scales across which the taitehthe
system changes significantly. In the short wavelength aqmetion the particle
is a point-like object bouncingfbpotential walls, the same way it does in the
classical mechanics. The novelty of quantum mechaniceigthrference of the
point-like particle with other versions of itself travediralong diferent classical
trajectories, a feat impossible in classical mechanics. e ghort wavelength —
or semiclassical — formalism is developed by formally takihe limitz — 0 in
guantum mechanics in such a way that quantum quantities gfeetoclassical
counterparts.

SMICLASSICAL APPROXIMATIONS tO quantum mechanics are valid in the regime

[remark 32.1]

32.1 Hamilton-Jacobi theory

We saw in chapteB1that for a 1-dof particle moving in a slowly varying poteftia
it makes sense to generalize the free particle wave fungBaril) to a wave
function

¥(a.1) = Ag,y)eR@n, (32.1)

with slowly varying (real) amplitudé(q, t) and rapidly varying (real) phas¥a, t).

its phase and magnitude. The time evolution of the phasetenthagnitude of )
[exercise 31.1]
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¢ follows from the Schrodinger equatioBQ.1)

2 a2
(m2 N V(q)) w(t) = 0. (32.2)

AssumeA # 0, and separate out the real and the imaginary parts. We get tw
equations: The real part governs the time evolution of tresgh

2 2 2
R 1 ((’)R) V(g el o 0. (32.3)

ot omlag) TV AT

and the imaginary part the time evolution of the amplitude )
[exercise 32.6]

[exercise 32.7]

+ —AZ_ = 0. (32.4)

OA L IAIR 1R
ot m &4 9q; ag  2m I

[exercise 32.8]
In this way a linear PDE for a complex wave function is coreeiinto a set of
coupled non-linear PDE's for real-valued functidR@ndA. The coupling term
in (32.3 is, however, of ordeh? and thus small in the semiclassical lirit- 0.

Now we generalize th&Ventzel-Kramers-BrillouifWKB) ansatzfor 1-dof
dynamics to the Van Vlecinsatan arbitrary dimension: we assume the magnitude
A(g, t) varies slowly compared to the phaR, t) /7, so we drop théi-dependent
term. In this approximation the phaR¥qg, t) and the corresponding “momentum
field” %(q, t) can be determined from the amplitude independent equation

oR oR
E+H(q,a—q) ~o0. (32.5)

In classical mechanics this equation is known asHlaenilton-Jacobi equation
We will refer to this step (as well as all leading order7irapproximations to
follow) as thesemiclassical approximatioto wave mechanics, and from now on
work only within this approximation.

32.1.1 Hamilton’s equations

We now solve the nonlinear partialfféirential equation32.5) in a way the 17
year old Hamilton might have solved it. The main step is tlep $eading from
the nonlinear PDE32.9) to Hamilton’s ODEs 82.10. If you already understand
the Hamilton-Jacobi theory, you can safely skip this sectio

fast track:
W sect. 32.1.3, p. 526
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R(a.t) R(a.t)

Figure 32.1: (a) A phaseR(qg,t) plotted as a
function of the positiorg for two infinitesimally

close times. (b) The phad®(q,t) transported by 9 Gt+dq q

J
a swarm of “particles”; The Hamilton’s equations slope J

(32.10 constructR(q, t) by transportingjo — q(t)
and the slope oR(qp, to), that ispg — p(t). (@)

The wave equation3Q.1) describes how the wave functian evolves with
time, and if you think ofy as an (infinite dimensional) vector, positigrplays a
role of an index. In one spatial dimension the phBgdotted as a function of the
positionq for two different times looks something like figu82.1(a): The phase
R(q, tp) deforms smoothly with time into the phaB¥g,t) at timet. Hamilton's
idea was to let a swarm of particles transg@rnd its slopeR/dq at g at initial
timet = tp to a corresponding(qg, t) and its slope at timég figure 32.1(b). For
notational convenience, define

R
P=p@n =2, i=12....D. (32.6)

We saw earlier thaB.3 reduces in the semiclassical approximation to the Hamilto

Jacobi equation3R.5. To make life simple, we shall assume throughout this
chapter that the Hamilton’s functidr(q, p) does not depend explicitly on tine
i.e., the energy is conserved.

To start with, we also assume that the functigfu, t) is smooth and well
defined for everyq at the initial timet. This is true for sfficiently short times;
as we will see laterR develops folds and becomes multi-valued asogresses.
Consider now the variation of the functid®(q,t) with respect to independent
infinitesimal variations of the time and space coordindtemddq, figure32.1(a)

OR. OR
dr= L+ LBdq. 32.7
at ot g (32.7)

Dividing through bydt and substituting32.5 we obtain the total derivative of
R(q, t) with respect to timalong the as yet arbitrary directioq, that is,

drR . )
E(q, a.t)=-H(@.p)+4q-p. (32.8)

Note that the “momentump = dR/dq is a well defined function of] andt.
In order to integrateR(q,t) with the help of 82.8 we also need to know how
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p = dR/dq changes along. 'Varying p with respect to independent infinitesimal
variationsdt anddg and substituting the Hamilton-Jacobi equatida.f) yields

dt+ 6—pdq.

R &R X R dH Hap
aq

q " agot o \aq " apaa

Note thatH(q, p) depends om also throughp(g, t) = dR/dq, hence the% term
in the above equation. Dividing again throughditywe get the time derivative of
0R/dq, that is,

o GH (. oM\dp
paay+ 5 = (a- ) 5. (329

Time variation ofp depends not only on the yet unknogybut also on the second
derivatives oR with respect tay with yet unknown time dependence. However, if
we choos&] (which was arbitrary, so far) such that the right hand sidibbefabove
equation vanishes, we can calculate the funcR(m t) along a specific trajectory
(q(t), p(t)) given by integrating the ordinary ftiérential equations

. _ 9H(@.p) __ 0H(@.p)
4= =7 (32.10)

with initial conditions

/ / (9R /
q(to) =4, plto) = p' = ﬁ(q  to). (32.11)

[section 7.1]
We recognize 32.10 as Hamilton’s equations of motion of classical mechanics.
The miracle happens in the step leading frd@8.f) to (32.9 — if you missed it,
you have missed the point. Hamilton derived his equatiomsecoplating optics
- it took him three more years to realize that all of Newtonimamics can be
profitably recast in this form.

g is no longer an independent function, and the phaggt) can now be
computed by integrating equatio®2.8) along the trajectoryq(t), p(t))
Rt = R, t)+R(@td,t)
t
R@.t;q,t) = flo dr [g(7) - p(r) - H(q(7), p(7))] . (32.12)

with the initial conditions 82.11). In this way the Hamilton-Jacolpiartial differential
equation 82.3 is solved by integrating a set ofdinary differential equations,
Hamilton’s equations. In order to determiRéq, t) for arbitraryq andt we have
to find aq’ such that the trajectory starting i/ (p’ = dqR(d', 1)) reachegy in
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timet and then comput® along this trajectory, see figu2.1(b). The integrand
of (32.12 is known as thé.agrangian

L@t =94 -p-H(p1). (32.13)

A variational principle lurks here, but we shall not make iméwss about it as yet.

Throughout this chapter we assume that the energy is catseand that the
only time dependence &f(q, p) is through §(7), p(r)), so the value oR(q, t; ¢, to)
does not depend dp, but only on the elapsed tinte-ty. To simplify notation we
will settyg = 0 and write

R(a,d.t) =R(a,t;d’,0).

The initial momentum of the particle must coincide with théial momentum of
the trajectory connecting’ andq;

; 6_ ’ _ _6_ ,
P= 5 R0 = —5RE@d.0. (32.14)

[exercise 32.5]

The functionR(q, d’, t) is known asHamilton’s principal function [exercise 32.9]

To summarize: Hamilton’s achievement was to trade in the iti@mJacobi
partial differential equation32.5 describing the evolution of a wave front for a
finite number ofordinary differential equations of motion, with the initial phase
R(q, 0) incremented by the integrédZ.12) evaluated along the phase space trajectory

(9(@). p(@))-

32.1.2 Action

Before proceeding, we note in passing a few facts about Hamain dynamics
that will be needed for the construction of semiclassicaeis functions. If the
energy is conserved, thﬁH(q, p)dr integral in 32.12 is simply Et. The first
term, or theaction

t q
SM¢B=LmMﬂmm=qup (32.15)

is integrated along a trajectory froghto q with a fixed energye. By (32.12) the
action is a Legendre transform of Hamilton’s principal ftioc

S(a.9.E) =R(q. 4, t) + Et. (32.16)
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The time of flightt along the trajectory connectirgg — q with fixed energyE is
given by

2] , B
a—ES(q, q,E)=t. (32.17)

The way to think about the formul&2.16 for action is that the time of flight is a
function of the energy, = t(q, q', E). The left hand side is explicitly a function of
E; the right hand side is an implicit function & through energy dependence of
the flight timet.

Going in the opposite direction, the energy of a trajectBry= E(q, ', t)
connectingg — g with a given time of flightt is given by the derivative of
Hamilton’s principal function

a /
FR@q.0=-E, (32.18)

and the second variations BfandS are related in the standard way of Legendre
transforms:

92 52
—R(q,q,t)=—S(9,9, E) = -1. 32.19
R4 02=5S(0.d. E) (32.19)
A geometric visualization of what the phase evolution lobks is very helpful
in understanding the origin of topological indices to beadticed in what follows.
Given an initial phas&(q, to), the gradiendyR defines éD-dimensionalagrangian
manifold (g, p = 94R(g)) in the full 2d dimensional phase space, f). The
defining property of this manifold is that any contractibéep y in it has zero
action,

O:SEdq-p,
Y

a fact that follows from the definition gf as a gradient, and the Stokes theorem.
Hamilton’s equations of motion preserve this property arapra Lagrangian
manifold into a Lagrangian manifold at a later tinte.

[section 32.1.4]

Returning back to the main line of our argument: so far we fi®termined
the wave function phasiB(qg,t). Next we show that the velocity field given by
the Hamilton’s equations together with the continuity e@pradetermines the
amplitude of the wave function.

32.1.3 Density evolution

To obtain the full solution of the Schrédinger equati@d.(), we also have to
integrate 82.4).

p(a.t) = A2 = y'y
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plays the role of a density. To the leding orderzinthe gradient oR may be
interpreted as the semiclassical momentum density

et = Al R
V@) (CnGU@ ) = -IhAZC +pg.

Evaluated along the trajectorg(f), p(t)), the amplitude equatior3®.4) is equivalent
to the continuity equationl@.36 after multiplying 32.4) by 2A, that is

9 9y
it 3—qi(pv,) =0. (32.20)

Here,v; = ¢ = pi/mdenotes a velocity field, which is in turn determined by the
gradient ofR(q, t), or theLagrangian manifoldq(t), p(t) = d4R(a. 1)),

10
= =2 R(@.1).
v maq @9

As we already know how to solve the Hamilton-Jacobi equatBh5), we can
also solve for the density evolution as follows:

The densityp(q) can be visualized as the density of a configuration space
flow q(t) of a swarm of hypothetical particles; the trajectorigt are solutions
of Hamilton’s equations with initial conditions given bg(0) = o', p(0) = p’ =
9qR(q’, 0)).

If we take a small configuration space voludRg around some poirgat time
t, then the number of particles in itigq, t)d®dq. They started initially in a small
volumedPq’ around the point of the configuration space. For the moment, we
assume that there is only one solution, the case of seveta pdl be considered
below. The number of particles at tinhén the volume is the same as the number
of particles in the initial volume dt= 0,

(). 9)d%q = p(df, 0)d°q ,
see figure32.2 The ratio of the initial and the final volumes can be exprésse

p(At).1) = \deti—‘g o(d.0). (32.21)

[section 14.2]

As we know how to compute trajectorieg(t), p(t)), we know how to compute
this Jacobian and, by32.21), the density(q(t), t) at timet.
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.y

Figure 32.2: Density evolution of an initial surface
.0 = 94R(q,0) into (@Q(t), p(t)) surface timet
later, sketched in 1 dimension. While the number ¢
trajectories and the phase space Liouville volume a
conserved, the density of trajectories projected on t/==
g coordinate varies; trajectories which startedl at

time zero end up in the intervelb.

32.1.4 Semiclassical wave function

Now we have all ingredients to write down the semiclassicalevfunction at
time t. Consider first the case when our initial wave function carwbéen in

terms of single-valued functior®q’, 0) andR(q', 0). For stficiently short times,
R(g,t) will remain a single-valued function af, and everyd®q configuration
space volume element keeps its orientation. The evolvea faction is in the
semiclassical approximation then given by

V@) = Adg DER@I - /det’;_‘g A, 0)eRE-0)+R@d D)/

laet?d. gr@a 0/
det 2 éd W(d,0).

As the time progresses the Lagrangian manii@|&(q,t) can develop folds, so
for longer times the value of the phaRfg, t) is not necessarily unique; in general
more than one trajectory will connect poigtandg’ with different phaseR(q, d', t)
accumulated along these paths, see figz&

We thus expect in general a collection offdrent trajectories frong to
q which we will index by j, with different phase incremen®j(q,¢/,t). The
hypothetical particles of the density flow at a given confégion space point can
move with diferent momentag = d4Rj(q.t). This is not an ambiguity, since in
the full (g, p) phase space each particle follows its own trajectory witiigue
momentum.

Whenever the Lagrangian manifold develops a fold, the tien$ithe phase
space trajectories in the fold projected on the configunatimordinates diverges.
As illustrated in figure32.3 when the Lagrangian manifold develops a fold at
g = ¢1; the volume elementiqg in the neighborhood of the folding point is
proportional tom instead oflg . The Jacobiadq'/dqdiverges like 1 /a1 — q(t)
when computed along the trajectory going trough the foldiomt atq;. After
the folding the orientation of the intervalq has changed when being mapped
into dep; in addition the functiorR, as well as its derivative which defines the
Lagrangian manifold, becomes multi-valued. Distinctdcapries starting from
different initial pointsg’ can now reach the same final pomt. (That is, the
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Figure 32.3: Folding of the Lagrangian surface
(9, 9qR(a. 1)).

point ¢ may have more than one pre-image.) The projection of a sifiofde
or of an envelope of a family of phase space trajectoriesallsd acaustic this
expression comes from the Greek word for “capable of burhiegoking the
luminous patterns that one observes swirling across therhodf a swimming
pool.

The folding also changes the orientation of the pieces df lugangian manifold
(9. 94R(q, 1)) with respect to the initial manifold, so the eigenvaluéthe Jacobian
determinant change sign at each fold crossing. We can kaelp of the signs by
writing the Jacobian determinant as

detﬂ‘ = g mMi(@.d.Y det(;_(i‘,‘ ,
i

i

wherem;(g, ¢, t) counts the number of sign changes of the Jacobian detenmina
on the way fromg’ to g along the trajectory indexed with see figure32.3  We
shall refer to the integem;(qg, o', t) as thetopological of the trajectory. So in
general the semiclassical approximation to the wave fands thus a sum over
possible trajectories that start at any infjand end img in time t

9|2 R smimmad /2,
usdan) = [ 3 |derZd| ematomimadozyg o) (222
j ]

each contribution weighted by corresponding density, @hasrement and the
topological index.

That the correct topological index is obtained by simplyrding the number
of eigenvalue sign changes and taking the square root ishvidus - the careful
argument requires that quantum wave functions evaluategsthe folds remain
single valued.

32.2 Semiclassical propagator

We saw in chapteBO that the evolution of an initial wave functios(g,0) is
completely determined by the propagat®®.(19. As K(q, q', t) itself satisfies the

VanVleck - 28dec2004.tex

CHAPTER 32. SEMICLASSICAL EVOLUTION 531

Schrddinger equatior3(.14, we can treat it as a wave function parameterized
by the configuration poing/. In order to obtain a semiclassical approximation
to the propagator we follow now the ideas developed in thedastion. There
is, however, one small complication: the initial conditi(80.15 demands that
the propagator dt = 0 is as-function atq = ¢, that is, the amplitude is infinite
at g and the phase is not well defined. Our hypothetical cloud dfighes is
thus initially localized aty = g with any initial velocity. This is in contrast
to the situation in the previous section where we assumedhbaparticles at a
given pointq have well defined velocity (or a discrete set of velocitieisgg by

g = dpH(a. p). We will now derive at a semiclassical expressionKdg, q', t) by
considering the propagator for short times first, and exlegmg from there to
arbitrary timed.

32.2.1 Short time propagator

For infinitesimally short timegt away from the singular poirit= 0 we assume
that it is again possible to write the propagator in terms wofedl defined phase
and amplitude, that is

K(a.d',6t) = AG. o, st)er 7.
As all particles start af = ¢, R(q, ¢, 6t) will be of the form 382.12), that is
R(g. ¢, 6t) = past — H(a, p)dt, (32.23)

with g ~ (Q—q’)/ét. For Hamiltonians of the fornB0.2) we haveq = p/m, which
leads to

R(a.9',6t) =

_ )2
%—V(q)&.

HereV can be evaluated any place along the trajectory fgamq’, for example
at the midway poin¥((q+q’)/2). Inserting this into our ansatz for the propagator
we obtain

Ksdd o, 0t) ~ A, o, styer (Fi@-a*-vaa) (32.24)

For infinitesimal times we can neglect the tekig)st, so Ks(q, d', 6t) is ad-
dimensional Gaussian with widi"? = i7it/m. This Gaussian is a finite width
approximation to the Dirac delta function

6@ = lim %e*zz/zﬂz (32.25)

-0 \/270
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if A= (m/2rinst)P/2, with A(g, g, 6t) fixed by the Dirac delta function normalization
condition.  The correctly normalized propagator for infisimal timesst is

exercise 32.1
therefore : !

Y-
Ksdoh .00 = (5 ) el 5V, (32.26)

The short time dynamics of the Lagrangian manifaddgR) which corresponds
to the quantum propagator can now be deduced fR2r2@3; one obtains

OR_~ m |

B_q =p= ﬁ(q -q),
i.e., is the particles start for short times on a Lagrangiamifold which is a plane
in phase space, see figus8.4 Note, that forst — 0, this plane is given by
the conditiong = ¢, that is, particles start on a plane parallel to the momentum
axis. As we have already noted, all particles starjat g but with different
velocities fort = 0. The initial surfaced’, p’ = d4R(d, 0)) is mapped into the
surface (t), p(t)) some timet later. The slope of the Lagrangian plane for a short
finite time is given as

op _ R _ 9p _m
ogj g0 ag; ot

The prefactorif/6t)®/2 in (32.26 can therefore be interpreted as the determinant
of the Jacobian of the transformation from final positionrdaatesq to initial
momentum coordinateg, that is

/ L o\ ragan
Ksda, d', ot) = @rnp? dEt% , (32.27)

where

op| _ 9*R(@.q.4t)

. (32.28)
aqj o ﬁqjaqi

The subscript - | o indicates that the partial derivatives are to be evaluatigal w
t,q fixed.

The propagator in32.27 has been obtained for short times. It is, however,
already more or less in its final form. We only have to evolve short time
approximation of the propagator according 3@.229

09 Y2 5 (o 0tV himm (@ at
Ksc(q”,q’at/ + 60 — Z ldet%‘ e'Rj(q Q') /h=izm;(q”,q.t )/ZK(q’ q;’(st) )
i J
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Ph

Figure 32.4: Evolution of the semiclassical
propagator. The configuration which corresponds

the initial conditions of the propagator is a Lagrangia
manifoldq = ¢, that is, a plane parallel to theaxis.

The hypothetical particles are thus initially all placed &

q but take on all possible momenpa. The Jacobian ___
matrix C (32.29 relates an initial volume element in
momentum spacelp to a final configuration space
volumedaq.

and we included here already the possibility that the phaserhes multi-valued,
that is, that there is more than one path frghto g”. The topological indexn; =
m;j(q”,q’,t) is the number of singularities in the Jacobian along thgedtary j
from ¢ to g”. We can writeKs(q”, ¢, t’ + 6t) in closed form using the fact that
R(g”’,q,t") + R(a.q,6t) = R(”,q,t" + 6t) and the multiplicativity of Jacobian
determinants, that is

det 2| ger 92| _ger 2P| (32.29)
g Iy 0 Iy st 0" gy 4ot
The final form of the semiclassical ®¥an Vleck propagatoris thus
S 1 39"1/2 iRj () /h—imj /2
Ksc(q,q,t)—zj: DG ‘det 5] © : (32.30)

This Van Vleck propagator is the essential ingredient os#raiclassical quantization
to follow.

The apparent simplicity of the semiclassical propagatadeseptive. The
wave function is not evolved simply by multiplying by a complnumber of
magnitude y/det dp’/dq and phaser(q, ¢/, t); the more dificult task in general
is to find the trajectories connectingandg in a given timet.

In addition, we have to treat the approximate propagat@r3Q) with some
care. Unlike the full quantum propagator, which satisfies gnoup property
(30.13 exactly, the semiclassical propagator performs this aplgroximately,
that is

Ked@. 0ot 4 1) ~ f A0/ Ked@ 0" )K" 0. 1) (32.31)

The connection can be made explicit by the stationary phgs®aimation, sec1.2
Approximating the integral in32.31) by integrating only over regions near points
g’ at which the phase is stationary, leads to the stationargepbandition

dR(q.9",t2) N IR, q,tr) _ 0

7 - (32.32)
ﬁqi ﬁqi
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Classical trajectories contribute whenever the final mdomarfor a path frong’

to g” and the initial momentum for a path frog¥ to g coincide. Unlike the
classical evolution of sect5.2 the semiclassical evolution is not an evolution by
linear operator multiplication, but evolution supplermeghby a stationary phase
condition poyt = Pin that matches up the classical momenta at each evolution
step.

32.2.2 Free particle propagator

To develop some intuition about the above formalism, cardide case of a free
particle. For a free particle the potential energy vanislies kinetic energy is
ng, and the Hamilton’s principal functior8®.12) is

R(@.9.t) = m(%q’)z. (32.33)

The weight de%’]’ from (32.28 can be evaluated explicitly, and the Van Vleck
propagator is

b2
Ksdq. ', t) = (%) gmia-a)?/2nt (32.34)

identical to the short time propagat®2(26, with V(g) = 0. This case is rather
exceptional: for a free particle the semiclassical propgageirns out to be the
exact quantum propagatdt(qg, ', t), as can be checked by substitution in the
Schrodinger equation3@.2. The Feynman path integral formalism uses trﬂis
. . . remark 32.3]
fact to construct an exact quantum propagator by integyatie free particle
propagator (withv(q) treated as constant for short times) along all possiblé (no

necessarily classical) paths fraghto g. [exercise 32.10]

[exercise 32.11]
[exercise 32.12]

32.3 Semiclassical Green’s function

So far we have derived semiclassical formulas for the timsution of wave
functions, that is, we obtained approximate solutionsédithe dependent Schrodinger
equation 80.1). Even though we assumed in the calculation a time independe
Hamiltonian of the special forn80.2), the derivation would lead to the same final
result 32.30 were one to consider more complicated or explicitly timpetaent
Hamiltonians. The propagator is thus important when we rtiereésted in finite

time quantum mechanicaltfects. For time independent Hamiltonians, the time
dependence of the propagator as well as of wave functiohsvgever, essentially
given in terms of the energy eigen-spectrum of the systenm &30.10. It is
therefore advantageous to switch from a time representtdian energy representation,
that is from the propagator3Q.12 to the energy dependent Green’s function
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(30.16. A semiclassical approximation of the Green’s funct®gy(q, q', E) is
given by the Laplace transforn3@.16 of the Van Vleck propagatdfsJ{(q, q', t):

1>
Gsda 0, E) = 17 fo dt €5V K0, o, 1) . (32.35)

The expression as it stands is not very useful; in order thuat@the integral, at
least to the leading order iy we need to turn to the method of stationary phase
again.

32.3.1 Stationary phase in higher dimensions
[exercise 31.1]

Generalizing the method of se@l.2to d dimensions, consider stationary phase
points fulfilling

d .
d—)qll)(x) =0 Vvi=1,...d.

X=Xo

An expansion of the phase up to second order involves nowythengtric matrix
of second derivatives @b(x), that is

82
Dij(%0) = MCD(X)

X=Xo

After choosing a suitable coordinate system which diageesD, we can approximate
the d-dimensional integral byl 1-dimensional Fresnel integrals; the stationary
phase estimate 08(.13 is then

| ~ Z (21 /992 |detD(xo)| " Y2A(xg) €50 00)-Fm0) (32.36)
Xo

where the sum runs over all stationary phase poiptsf ®(x) andm(xp) counts

the number of negative eigenvaluesiixo). [exercise 26.2]

The stationary phase approximation is all that is needethiosemiclassical E:Z:E:ZZ zig
approximation, with the proviso th& in (32.36 has no zero eigenvalues. '

32.3.2 Long trajectories

When evaluating the integre82.35 approximately we have to distinguish between
two types of contributions: those coming from stationaringoof the phase and
those coming from infinitesimally short times. The first typlecontributions
can be obtained by the stationary phase approximation ahtenreated in this
section. The latter originate from the singular behaviahefpropagator for — 0
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where the assumption that the amplitude changes slowly agedpto the phase
is not valid. The short time contributions therefore havéédreated separately,
which we will do in sect32.3.3

The stationary phase points of the integrand in 32.39 are given by the
condition

%R(q, q,t)+E=0. (32.37)

We recognize this condition as the solution 82(19, the timet* = t*(g,q', E) in
which a particle of energ starting out ing’ reacheg). Taking into account the
second derivative of the phase evaluated at the statiofegeppoint,

52

RO )+

R(G,q.t) + Et=R(q, ¢, t") + Et* + %(t —t)?

the stationary phase approximation of the integral comadimg to a classical
trajectory j in the Van Vleck propagator sur3Z.30 yields

1/2

PR YT ok
Gj(a.9.E) = detcj[ ‘] erSimEm (32.38)

ot2

1
in(2ini)P-D72

wherem; = m;(q, g, E) now includes a possible additional phase arising from the
time stationary phase integratiod1(16, andC; = Cj(q.q'.t"), Rj = Rj(a. ¢, t")

are evaluated at the transit tirtie We re-express the phase in terms of the energy
dependent actiorB@.16

S(@.9.E)=R(q.q.t") + Et",  with t"=t"(q,q,E), (32.39)

the Legendre transform of Hamilton’s principal function.otl that the partial
derivative of the action32.39 with respect tay

0S(a.9.E) _ 9R(q.q,t) +(0R(q, q.9 +E) ot
aq; aq; ot g

is equal to

0S(a.9.E) _ 9R(q.q,t")
o aq;

. (32.40)

due to the stationary phase conditi@&2 (37, so the definition of momentum as a
partial derivative with respect tg remains unaltered by the Legendre transform
from time to energy domain.
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Next we will simplify the amplitude term in32.39 and rewrite it as an
explicit function of the energy. Consider thé[¢ 1)x(D + 1)] matrix

82S 82S op ap’
aq’ o g OE ~93aq T~ 9E

D(@.q.E) =( g0 I ):[ nOE ] : (32.41)
J90E  oE2 aq  OE

whereS = S(q, q', E) and we used32.14-32.17) here to obtain the left hand side
of (32.47). The minus signs follow from observing from the definition(82.15
that S(g,q’, E) = —=S(d, q, E). Note thatD is nothing but the Jacobian matrix
of the coordinate transformatiow, ) — (p’,t) for fixed g’. We can therefore
use the multiplication rules of determinants of Jacobiartsch are just ratios of
volume elements, to obtain

detD = (—1)D+1(det"(p"t)) _(_1)o+1(det6(p’,t) a(q,t))
;

aG By (1) (. E)
op ot PR\

_ _1\D+1 -

= (-1) (det—aq )Lq, (det—aE)q,'q detC( atZ) .

We use here the notatig¢det.),  for a Jacobian determinant with partial derivatives
evaluated at, g’ fixed, and likewise for other subscripts. Using the relaf@h 19
which relates the terrdt to 92Rwe can write the determinant &f as a product

of the Van Vleck determinant3@.2§ and the amplitude factor arising from the
stationary phase approximation. The amplitude3in.89 can thus be interpreted
as the determinant of a Jacobian of a coordinate transfamathich includes
time and energy as independent coordinates. This causesdigase in the
dimensionality of the matri relative to the Van Vleck determinartZ.29.

We can now write down the semiclassical approximation ofcibvetribution
of the jth trajectory to the Green’s functioZ.39 in explicitly energy dependent
form:

|detD;|*/% erSi-%m . (32.42)

Gi(G.q.E) =~
i@9.8) = Gz

However, this is still not the most convenient form of the &r's function.

The trajectory contributing t@;(q,q’, E) is constrained to a given energy
E, and will therefore be on a phase space manifold of consteergg, that is
H(q, p) = E. Writing this condition as a partial fierential equation foB(q, ', E),
that is

S
H(g —)=E
@5 = E:
one obtains
d AHap; . 9°S
—H(q, =0= ——— =
aq (@ p) ap; oq qj&qjﬁqi
i) %S
—H({,p) =0= ——(, 32.43
5@ P) 5o (32.43)
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that is the sub-matrig?S/dqdq; has (left- and right-) eigenvectors corresponding
to an eigenvalue 0. Rotate t‘1e local coordinate system atither end of the
trajectory

(01, 02,03, - -+, Gd) = (G A1, a2, -+ u(D-1))

so that one axis points along the trajectory and all otherparpendicular to it

(61, G2, G5, -+ - Ga) — (§,0,0,---,0).

With such local coordinate systems at both ends, with thgifodinal coordinate
axis g pointing along the velocity vector of magnitudgthe stability matrix of
S(g,d, E) has a column and a row of zeros 88 (43 takes form

4 ?s s §=0
aqaq;  9Gi9q

The initial and final velocities are non-vanishing exceptfoints|g| = 0. These
are the turning points (where all energy is potential), aechgsume that neithgr
norq’ is a turning point (in our application - periodic orbits - wencalways chose
g = g not a turning point). In the local coordinate system with emés along
the trajectory and all other perpendicular to it the deteamt of 32.41) is of the
form

ey
0 0 GEaq]
, 2
detD(q.q.E) = (-1)°**|{det 0 ﬁ . (32.44)
%S «
dq0E

The corner entries can be evaluated usBigy17)

%S 9 1 %S 1

do0E ~ dq G OEdq o

As theq) axis points along the velocity direction, velocitigsy” are by construction
almost always positive non-vanishing numbers. In this va@ydeterminant of the
[(D+1)x(D+1)] dimensional matrixD(q, o', E) can be reduced to the determinant
of a[(D - 1)x(D - 1)] dimensionaktransversematrix D, (q,d’, E)

detD(q.q.E) = % detD, (9,9, E)
4°S(a.9, E)
D.(0.. E) _¥S@a.B) 32.45
1@, E)x R (32.45)
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Putting everything together we obtain tfth trajectory contribution to the semiclassical

Green’s function

[exercise 32.15]

1 1
in(2aiR) D72 oy 12

1/2 i
| eisimim, (32.46)

Gj(a.q,E) = |detD),

where the topological indem; = m;j(q, d’, E) now counts the number of changes

of sign of deID'L along the trajectoryj which connectsy to q at energyE.

The endpoint velocitieg, ¢’ also depend org(q', E) and the trajectory.

32.3.3 Short trajectories

The stationary phase method cannot be used whensmall, both because we
cannot extend the integration i81.16 to —co, and because the amplitude of
K(g,d',t) is divergent. In this case we have to evaluate the integvalving the
short time form of the exact quantum mechanical propag&@@£0

1~ m \P/2 i ma-ay?
/ == — i -V(a)t+E)
Go(a. ', E) ihfo dt(Zﬂth) ez . (32.47)

By introducing a dimensionless variahte= t y/2m(E — V(q))/miq - d|, the
integral can be rewritten as

Nlo

-1
ey M V2m(E - V) © Ot isoqd. B+
S0t~ g (gt ) Sy ’

whereSo(q, q', E) = vV2m(E - V)|g — /| is the short distance form of the action.
Using the integral representation of the Hankel functiofirsf kind

: 0o
H‘T(Z) — 7|_efivzr/2f e%iz(‘rJrl/r)T—v—ldT
n 0

we can write the short distance form of the Green’s functien a

D-2

} im [ VZME=V)\ 2 ,
Go@q.B) > -2 (m) H%(So(q, q.E)/n). (32.48)

Hankel functions are stabdard, and their the short wavéteagymptotics is described
in standard reference books. The short distance Greerd$idanapproximation
is valid whenSy(q, ¢, E) < 7.
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Résumé

The aim of the semiclassical or short-wavelength methods &pproximate a
solution of the Schrddinger equation with a semiclassi@le function

Usa ) = ) Aj(g neRi@on,
i

accurate to the leading order #in Here the sum is over all classical trajectories
that connect the initial poirg’ to the final pointg in time t. “Semi-" refers tas,
the quantum unit of phase in the exponent. The quantum m&shanters only
through this atomic scale, in units of which the variatiortte# phase across the
classical potential is assumed to be large. “—classicédrseo the rest - both the
amplitudesA(g, t) and the phaseR;(q, t) - which are determined by the classical
Hamilton-Jacobi equations.

In the semiclassical approximation the quantum time eimiubperator is
given by thesemiclassical propagator

/1172
‘Zp erRi—Em
q

1

KSC(qv q,, t) = W Z ‘det J
where the topological index;(q, d', t) counts the number of the direction reversal
along thejth classical trajectory that connecfs— qin timet. Until very recently

it was not possible to resolve quantum evolution on quantore scales (such as
one revolution of electron around a nucleus) - physical megsents are almost
always done at time scales asymptotically large compartitetimtrinsic quantum
time scale. Formally this information is extracted by meafresLaplace transform
of the propagator which yields the energy dependenticlassical Green’s function

Gsdd.q.E) = Go(a.q.E)+ » Gj(a.d.E)
j

1 V2 o
Gjad.B) = ——%5 erSim7m (32.49)

1 et%
in(2nin) %2199 0dL

i
whereGop(q, ', E) is the contribution of short trajectories wiy(q,q', E) < #,

while the sum is over the contributions of long trajectoi{@8.46 going fromq’
to g with fixed energyE, with Sj(g,q, E) > 7.

Commentary

Remark 32.1 Limit7i — 0. The semiclassical limit# — 0" discussed in secB2.1
is a shorthand notation for the limit in which typical quaies like the actionsR or
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S in semiclassical expressions for the propagator or the ri@éenction become large
compared tgi. In the world that we live in the quantity is a fixed physical constant
whose value{] is 1.054571596(82) 164 Js.

Remark 32.2 Madelung’s fluid dynamics. Already Schrodingerd] noted that

p=p(t) = A =y"y

plays the role of a density, and that the gradienRofmay be interpreted as a local
semiclassical momentum, as the momentum density is

s - —inalA 4 7R
¥(g.t) (—lh@)w(q. t) = 'hAaq +p3q .

A very different interpretation 0f32.3-32.4 has been given by Madelung][ and then
built upon by Bohm §] and others §, 7]. Keeping theZ dependent term in3@.3,
the ordinary diferential equations driving the flowd2.10Q have to be altered; if the
Hamiltonian can be written as kinetic plus potential teva) as in 0.2, thes? term
modifies thep equation of motion as

. ad
=5 (V(a) + Q(@.1) , (32.50)

where, for the example at hand,

o1

Qa.t) = “Im VG aF VP

(32.51)

interpreted by Bohmd] as the “quantum potential.” Madelung observed that Hamié
equation for the momentun32.50 can be rewritten as

v ( 6)\,'_ 10v 19 - (32.52)

ot """ 5a)" = "maa " mpag;”

whereoj = %g;l;cf, is the “pressure” stress tensur= p;/m, andp = A? as defined]
in sect.32.1.3 We recall that the Euleriaﬁ+%ﬁ% is the ordinary derivative of Lagrangian

mechanics, that i% . For comparison, the Euler equation for classical hydradyies is

v a\ 1oV 14
ﬁ+(V-%)V.— maa ny>0q,(p6”)’

wherepg;; is the pressure tensor.
The classical dynamics corresponding to quantum evoligithus that of an “hypothetical

fluid” experiencingi andp dependent stresses. The “hydrodynamic” interpretation of
guantum mechanics has, however, not been very fruitfulacge.
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Remark 32.3 Path integrals. The semiclassical propagat82(3(Q can also be derived
from Feynman’s path integral formalism. Dirac was the fiostliscover that in the short-
time limit the quantum propagatos2.39 is exact. Feynman noted in 1946 that one can
construct the exact propagator of the quantum Schrodewgeation by formally summing
over all possible (and emphatically not classical) patbmfg’ toq .

Gutzwiller started from the path integral to rederive VarsK’'s semiclassical expression
for the propagator; Van Vleck’s original derivation is venych in the spirit of what has
presented in this chapter. He did, however, not considgualsibility of the formation of
caustics or folds of Lagrangian manifolds and thus did ncitide the topological phases
in his semiclassical expression for the propagator. Somged@s later Gutzwiller4]
added the topological indices when deriving the semiataspropagator from Feynman’s
path integral by stationary phase conditions.

Remark 32.4 Applications of the semiclassical Green’s function. The semiclassical
Green’s function is the starting point of the semiclassiggdroximation in many applications.
The generic semiclassical strategy is to express physieaitgies (for example scattering
amplitudes and cross section in scattering theory, osmilirength in spectroscopy, and
conductance in mesoscopic physics) in terms of the exactr@rdunction and then
replace it with the semiclassical formula.

Remark 32.5 The quasiclassical approximation  The quasiclassicabpproximation
was introduced by Maslo@]. The term ‘quasiclassical’ is more appropriate than séamgical
since the Maslov type description leads to a pure classucdliton operator in a natural
way. Following mostly ref.?], we give a summary of the quasiclassical approximation,
which was worked out by Maslo¢] in this form. One additional advantage of this
description is that the wave function evolves along onelsictassical trajectory and
we do not have to compute sums over increasing numbers dicdhsrajectories as in
computations involving Van Vleck formulaf].
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Exercises
32.1. Dirac delta function, Gaussian representation. 32.6. 1-dimensional harmonic oscillator. Take a 1

32.2.

32.3.

32.4.

32.5.

Consider the Gaussian distribution function

1 _2/202
6,.(2) = ——e7/%
@ V2ro?

Show that in- — 0 limit this is the Dirac delta function

f dxd(x) = 1if 0 e M, zero otherwise
M

32.7.

Stationary phase approximation in higher dimensions.

All semiclassical approximations are based on saddle

point evaluations of integrals of type

32.8.
I = f dPxA(X) PN/ (32.53)
for small values ofa. Obtain the stationary phase32.9.
estimate
(2nin)P/2
Ix )y APt =,
Zn: VdetD?(x,) 32.10.

whereD?d(x,) denotes the second derivative matrix.

Schrddinger equation in the Madelung form.

Verify the decomposition of Schrddinger equation in82.11.

real and imaginary parts, eq82.3 and 32.4.
)

Transport equations. J Write the wave-
function in the asymptotic form

32.12.

w(a.t) = e ROV S () A(x. ).

n=0

Derive the transport equations for thg by substituting

this into the Schradinger equation and then collecting™ ™"

terms by orders ofi. Notice that equation foA, only
requires knowledge of,_; andR.

Easy examples of the Hamilton’s principal function. 32.14.

CalculateR(q, g, t) for

a) aD-dimensional free particle

13

b) a3-dimensional particle in constant magnetic field

c) a l-dimensional harmonic oscillator. 32.15.

(Continuation: exercisg2.13)

exerVanVleck - 20jan2005.tex

dimensional harmonic oscillatdd(q) = %qu Take
WKB wave function of formA(q, t) = a(t) andR(q, t) =
r(t) + b(t)g + c(t)g?, wherer(t),a(t), b(t) and c(t) ar
time dependent cdicients. Derive ordinary dlierentic
equations by using3@.3 and 2.4 and solve ther
(Continuation: exercisg2.9)

1-dimensional linear potential. Take a 1-dimensior
linear potentialU(q) = -Fg. Take a WKB wav
function of formA(g, t) = a(t) andR(q, t) = r(t) +b(t)g+
c(t)g?, wherer(t), a(t), b(t) andc(t) are time depende
codficients. Derive and solve the ordinaryfférentic
equations from32.3 and 382.4.

D-dimensional quadratic potentials. Generaliz
the above method to generf@tdimensional quadra
potentials.

Time evolution of R, (Continuation of exercis&2.6
Calculate the time evolution 6(g, 0) = a+ bg+ cc? fo
a 1-dimensional harmonic oscillator using2(129 ant
(32.19.

D-dimensional free particle propagator.  Verify the
results in sect32.2.2 show explicitly that 82.39, the
semiclassical Van Vleck propagator i dimension
solves the Schrodinger’s equation.

Propagator, charged particle in constant magnet
field. Calculate the semiclassical propagato
a charged particle in constant magnetic field
dimensions. Verify that the semiclassical expre:
coincides with the exact solution.

1-dimensional harmonic oscillator propagato
Calculate the semiclassical propagator for @
dimensional harmonic oscillator and verify that i
identical to the exact quantum propagator.

Free particle action. Calculate the energy depenc
action for a free particle, a charged particle in a con
magnetic field and for the harmonic oscillator.

3

Zero length orbits. J Derive the classic
trace (L6.1) rigorously and either add the— 0, zert
length contribution to the trace formula, or show tf
vanishes. Send us a reprint@fiys. Rev. Lettwith the
correct derivation.

Free particle semiclassical Green’s functior
Calculate the semiclassical Green’s functions fo
systems of exercisg2.13
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WE DERIVE HERE the Gutzwiller trace formula and the semiclassical zetafun

33.1 Trace formula

Our next task is to evaluate the Green’s function tr&e1(7) in the semiclassical
approximation. The trace

UGw®) = [ PaGia.aE) =uGE)+ Y] [ Paci@ar)
i

receives contributions from “long” classical trajectsri@beled byj which start
and end inqg after finite time, and the “zero length” trajectories whosedths
approach zero ag — Q.

First, we work out the contributions coming from the finitené returning
classical orbits, i.e., trajectories that originate and aha given configuration
pointg. As we are identifyingy with ¢, taking of a trace involves (still another!)
stationary phase condition in tigg — q limit,

oSi@d.B)l | 95/@9q.E)

-0,
aq oo

a=q

a=q
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Figure 33.1: A returning trajectory in the P

configuration space. The orbit is periodic in the ful
phase space only if the initial and the final momenta
areturning trajectory coincide as well.

Figure 33.2: A romanticized sketch ofS,(E) = $2,9,8>
S(9,9.E) = fp(q, E)dq landscape orbit. Unstable o

periodic orbits traverse isolated ridges and saddles P %Y
the mountainous landscape of the act®(g,q,,E). ' )‘#
Along a periodic orbit Sy(E) is constant; in 5 — QW
the transverse directions it generically change “;;.: ,“}}\:ﬁs\\&d
quadratically. AR

meaning that the initial and final momenta2(4Q of contributing trajectories
should coincide

pi(g.9.E) - pi(g.0.E) =0, g € jth periodic orbit (33.1)

so the trace receives contributions only from those longsital trajectories which
areperiodicin the full phase space.

For a periodic orbit the natural coordinate system is thenisic one, withg
axis pointing in theg direction along the orbit, anq, , the rest of the coordinates
transverse tg. The jth periodic orbit contribution to the trace of the semicieals
Green’s function in the intrinsic coordinates is

1 dg 41 i 1/2058i-F
trGj(E):WﬁF\fj‘d q.[detD! [V2er=i2M,

where the integration igy goes from 0 td_j, the geometric length of small tube
around the orbit in the configuration space. As always, insta¢gionary phase
approximation we worry only about the fast variations in pieseS;(q;. q.., E),
and assume that the density varies smoothly and is well ajppated by its
value D (g, 0, E) on the classical trajectoryy, = 0 . The topological index
m;(qy. q., E) is an integer which does not depend on the initial pgjnand not
change in the infinitesimal neighborhood of an isolatedquiéci orbit, so we set
m;(E) = mj(q, d., E).

The transverse integration is again carried out by theostaty phase method,
with the phase stationary on the periodic orgit,= 0. The result of the transverse
integration can depend only on the parallel coordinate

1 rd
rGj(E) = 595%

1/2
iSi—Em;

detD, j(q, 0, E)
detD’Lj(q”, 0, E)
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where the new determinant in the denominator,mEt:

det(azsm, q9.E) , #S(@q.E)  #°S@q.E)  #S@d, E)]
990 0q';00.j 6qliﬁqu aqliaqu ’

is the determinant of the second derivative matrix comirmnfithe stationary
phase integral in transverse directions. Mercifully, thtegral also removes most
of the 2th prefactors in (?7?).

The ratio deD, j/detD’ . is here to enforce the periodic boundary condition
for the semiclassical Green'’s function evaluated on a geriorbit. It can be given
a meaning in terms of the monodromy matrix of the periodidtds following
observations

ap, a(d,, p))
ded, = |22 H_
* Hﬁm a(qu.q,)
, dp. _9pL  dp.  9p. Ha(pl—p;,qi—ql),‘
detD|, = |[—- +—=- =||l—
* ‘Bm dq. o9, od, (0. q,)

Defining the 2D — 1)-dimensional transverse vectgr = (q., p.) in the full
phase space we can express the ratio

detD} _ Ha(m - P - Hﬂ(xi -X)
detD, g, pL) X,
= det(M-1), (33.2)

in terms of the monodromy matrikl for a surface of section transverse to the
orbit within the constant enerdy = H(q, p) shell.

The classical periodic orbit actidy(E) = f p(qy, E)dg; is an integral around
a loop defined by the periodic orbit, and does not depend oatéréng pointoy,
along the orbit, see figurg3.2 The eigenvalues of the monodromy matrix are
also independent of wheid; is evaluated along the orbit, so det{M;) can also
be taken out of the the, integral

1 1 ig _in dQ|
rG(E) == ——_dGSi—zm) ¢y 21
rGiE) |th:|det(1— Mj)L/2 o a

Here we have assumed thltj has no marginal eigenvalues. The determinant
of the monodromy matrix, the actid®,(E) = gﬁp(qu, E)dq, and the topological
index are all classical invariants of the periodic orbit.eThtegral in the parallel
direction we now do exactly.

First, we take into account the fact that any repeat of a giriorbit is also
a periodic orbit. The action and the topological index areditac along the
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trajectory, so forrth repeat they simply get multiplied by The monodromy
matrix of therth repeat of a prime cycle is (by the chain rule for derivatives)
My, where My is the prime cycle monodromy matrix. Let us denote the time
period of the prime cyclg, the single, shortest traversal of a periodic orbifly
The remaining integral can be carried out by change of viasatt = dg/¢(t)

Lp dq pr
N dt =Tp.
fo aw)  Jo .

Note that the spatial integral corresponds tirgletraversal. If you do not see
why this is so, rethink the derivation of the classical trémenula (16.23 - that
derivation takes only three pages of text. Regrettablyhénquantum case we do
not know of an honest derivation that takes less than 30 pafes final result,
the Gutzwiller trace formula

(5Sp-13mp)
tr Ge(E) = tr Go(E) + hz pz‘det(l i )|1/ze' =5m)  (33.3)

an expression for the trace of the semiclassical Greeniifumin terms of periodic
orbits, is beautiful in its simplicity and elegance.

The topological indexmp(E) counts the number of changes of sign of the
matrix of second derivatives evaluated along the primeopéiorbit p. By
now we have gone through so many stationary phase approaimatat you
have surely lost track of what the total,(E) actually is. The rule is this: The
topological index of a closed curve in ®2hase space is the sum of the number
of times the partial derlvatlve%p—' for each dual paird, pi),i = 1,2,...,D (no
sum oni) change their signs as one goes once around the curve.

33.1.1 Average density of states

We still have to evaluate &o(E), the contribution coming from the infinitesimal
trajectories. The real part of Gy(E) is infinite in theq” — g limit, so it makes
no sense to write it down explicitly here. However, the inmagy part is finite,
and plays an important role in the density of states formutagch we derive next.

The semiclassical contribution to the density of sta®® 17 is given by
the imaginary part of the Gutzwiller trace formula3(3 multiplied with —-1/7.
The contribution coming from the zero length trajectorethie imaginary part of
(32.49 for ' — qintegrated over the configuration space

1
do(E) = —;deqlm Go(g, 0, E),

The resulting formula has a pretty interpretation; it esties the number of
guantum states that can be accommodated up to the eBebyycounting the
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available quantum cells in the phase space. This numberéas gy theweyl rule
, as the ratio of the phase space volume bounded by effediyided byh®, the
volume of a quantum cell,

Ne(E) = f d®pdPqo(E - H(G. p)). (33.4)

where®(X) is the Heaviside functior80.29. Ns((E) is an estimate of the spectral
staircase 30.2J), so its derivative yields the average density of states

B(E) = SEN®) = o [ PpPas(E - HEa ). (33:5)

precisely the semiclassical resui3(6).  For Hamiltonians of typep?/2m +
V(q), the energy shell volume i138.5) is a sphere of radiug/2m(E - V(q)). The
surface of al-dimensional sphere of radiuss 79/2r4-1/1'(d/2), so the average

; o ise 33.3
density of states is given by [exercise 33.3]

__2m D _ D/2-1
) = 5302 (D7) e O ARTE ~ VO (33.6)
and
NsdE) = i dPq[2m(E - V(@)]°. (33.7)

hD I'(1+D/2) Jv<e

Physically this means that at a fixed energy the phase spacsup@ortNs<(E)
distinct eigenfunctions; anything finer than the quantuthi&cannot be resolved,
so the quantum phase spacefieetively finite dimensional. The average density

of states is of a particularly simple form in one spatial disien )
[exercise 33.4]

TE)

Go(E) = 5

(33.8)
whereT (E) is the period of the periodic orbit of fixed ener@y In two spatial
dimensions the average density of states is

mA(E)

do(E) = >

(33.9)

whereA(E) is the classically allowed area of configuration space toichvV(q) <
E.

[exercise 33.5]
The semiclassical density of states is a sum of the averaggtylef states and

the oscillation of the density of states around the averdgE) = do(E)+dosdE),
where

1 o COSESp(E)/h — rmpm/2)
doseE) = — ;Tp; et (1- VD)2 (33.10)

follows from the trace formula33.3).
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33.1.2 Regularization of the trace

The real part of thef — g zero length Green’s functiorB.49 is ultraviolet
divergent in dimensionsl > 1, and so is its formal trace3Q.17. The short
distance behavior of the real part of the Green’s functiam loa extracted from
the real part of§2.48 by using the Bessel function expansion for snzall

Y,(2) ~ —%F(V)(g)iv forv#0
"7 Ain@2)+y) forv=0"

wherey = 0.577.. is the Euler constant. The real part of the Green’s functan f
short distance is dominated by the singular part

e q'ld 3 ford# 2

ﬁ(ln(Zm(E -V)g-ql/2n) +y) ford=2

Gsing(|q - q/|’ E) =

TheregularizedGreen'’s function

Greg(Qs q.E)=G(a.9.E) - Gsing(|q -q|.E)

is obtained by subtracting tl®¢ — g ultraviolet divergence. For the regularized
Green'’s function the Gutzwiller trace formula is

~ 5 mp(E))
tr Greg(E) = ~indo(E) + ZTpZ et (1 M')|1/2 (33.11)

Now you stand where Gutzwiller stood in 1990. You hold thedréormula in
your hands. You have no clue how good is the» 0 approximation, how to
take care of the sum over an infinity of periodic orbits, ancethier the formula
converges at all.

33.2 Semiclassical spectral determinant

The problem with trace formulas is that they diverge wherensed them, at
the individual energy eigenvalues. What to do? Much of thantum chaos
literature responds to the challenge of wrestling the tfaocmulas by replacing
the delta functions in the density of stat@9.(1§ by Gaussians. But there is no
need to do this - we can compute the eigenenergies withoufuather ado by
remembering that the smart way to determine the eigenvalligsear operators
is by determining zeros of their spectral determinants.
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Figure 33.3: A sketch of how spectral determinants
convert poles into zeros: The trace show§éEl- E,)

type singularities at the eigenenergies while the spe
tral determinant goes smoothly through zeroes. determinant=

-1 Hracs }

A sensible way to compute energy levels is to construct teetsgl determin-
ant whose zeroes yield the eigenenergies, ldet E)sc = 0. A first guess might
be that the spectral determinant is the Hadamard productiorf f

det( - E) = [ |(E-En),

but this product is not well defined, since for fixedve multiply larger and larger
numbers E — E,). This problem is dealt with byegularization discussed below
in appendix33.1.2 Here we d@er an impressionistic sketch of regularization.

The logarithmic derivative of det{ — E) is the (formal) trace of the Green’s
function

d ~
~gg/ndetti -~ E) = Zn: EE = trG(E).

This quantity, not surprisingly, is divergent again. Thiatien, however, opens a
way to derive a convergent version of det ¢ E)sc, by replacing the trace with
the regularized trace

d ~
_E IndetH — E)sc = tr Greg(E)~

The regularized trace still hag(E — E,) poI:ss at the semiclassical eigenenergies,
poles which can be generated only if dét{ E)sc has a zero aE = E;, see
figure33.3 By integrating and exponentiating we obtain

E
det — E)sc = exp(—f dE/ trGreg(E’))

Now we can use3d3.1]) and integrate the terms coming from periodic orbits,
using the relation32.17) between the action and the period of a periodic orbit,
dSp(E) = Tp(E)dE, and the relation30.21) between the density of states and the
spectral staircaselNs(E) = do(E)dE. We obtain thesemiclassical zeta function

© 1 dr(Sp/i-mpr/2)

det ("A| —BE)sc= gmNeel®) eXp[_ Z Z
p r=

= (33.12)
47 [det (1- M2

[chapter 18]
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We already know from the study of classical evolution opmrapectra of chaptelr7
that this can be evaluated by means of cycle expansions. &aetp of this
formula is that everything on the right side — the cycle acg, the topological
indexmjp, and monodromy matriM, determinant —is intrinsic, coordinate-choice
independent property of the cygbe

33.3 One-dof systems

It has been a long trek, a stationary phase upon stationagephLet us check
whether the result makes sense even in the simplest cagpjdotum mechanics
in one spatial dimension.

In one dimension the average density of states follows fiwriltdof form of
the oscillating density33.10 and of the average densit$3.9

ToE) 5 TolE)

dB) =~ 7h

cos€Sy(E)/h — rmp(E)n/2). (33.13)

The classical particle oscillates in a single potentiall wéth period T(E). There
is no monodromy matrix to evaluate, as in one dimension tisesely the parallel
coordinate, and no transverse directions. Thepetition sum in§3.13 can be
rewritten by using the Fourier series expansion of a delteegpain

oo o0

Z S(x—n) = Z grkx =1 4 i 2 cos(zrkx).
=)

n=—co k=—co
We obtain

To(E)

4B =2

> 6(Sp(E)/2xh — my(E) /4~ 1). (33.14)

This expression can be simplified by using the relatié?. 17 betweenT, and
Sp, and the identity 14.7) §(x — x*) = |f/(x)6(f(x)), wherex* is the only zero of
the functionf(x*) = 0 in the interval under consideration. We obtain

d(E) = ) 6(E - En).

n

where the energiels, are the zeroes of the arguments of delta function83n1)

Sp(En)/2nh = n—my(E)/4,
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wherem,(E) = m, = 2 for smooth potential at both turning points, amg(E) =
m, = 4 for two billiard (infinite potential) walls. These are pisaly theBohr-
Sommerfeld quantized energies, Elefined by the condition

56 p(a, En)dg = h(n - %) (33.15)

In this way the trace formula recovers the well known 1-do&mfiration rule.
In one dimension, the average of states can be expressedHeoguantization
condition. AtE = E, the exact number of statesriswhile the average number
of states i1 — 1/2 since the staircase functidf(E) has a unit jump in this point

Ns«(E) = n— 1/2 = Sp(E)/2rh — my(E) /4 — 1/2. (33.16)

The 1-dof spectral determinant follows fro88(12) by dropping the monodromy
matrix part and using33.16

det — E)sc = exp(—lﬁsp + Igmp) exp[— Z %e%rsr%”rmp] . (33.17)
r

Summation yields a logarithm by, t"/r = —In(1 - t) and we get

det(|:| —BE)sc = e’zirﬁsp‘r"nTp*%(l_ e%spfi?)
= 25sin(Sp(E)/h - my(E)/4) .

So in one dimension, where there is only one periodic orbitifgiven energy E,
nothing is gained by going from the trace formula to the sjaédeterminant. The
spectral determinant is a real function for real energied,it zeros are again the
Bohr-Sommerfeld quantized eigenenergig3.{(5.

33.4 Two-dof systems

For flows in two configuration dimensions the monodromy malfi, has two
eigenvalues\p and JAp, as explained in sect.2. Isolated periodic orbits can
be elliptic or hyperbolic. Here we discuss only the hyperbohse, when the
eigenvalues are real and their absolute value is not equaleo The determinant
appearing in the trace formulas can be written in terms oéxpanding eigenvalue
as

Idet (1- MpIY/2 = |ALM? (1= 1/A,) |

and its inverse can be expanded as a geometric series

)

1 ‘Z 1
det (1- MpIY2 &4 AL[Y2AK
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With the 2-dof expression for the average density of st&i8<)the spectral
determinant becomes

‘5

g (Sp/h- mpn/z)]

dettd - E)sc = w p[ Zp:zz rIALI2AK

r=1 k=0
© L —Zm,
j MAE en>p p
. Ip[ Ik—ol [1 A |1/2Ak] e

Résum é

Spectral determinants and dynamical zeta functions ange in classical and
guantum mechanics because in both the dynamical evolugiofe described by
the action of linear evolution operators on infinite-dimenal vector spaces. In
guantum mechanics the periodic orbit theory arose fromesuaf semi-conductors,
and the unstable periodic orbits have been measured inimeges on the very
paradigm of Bohr’s atom, the hydrogen atom, this time inrgjrexternal fields.

In practice, most “quantum chaos” calculations take thigostary phase approximation
to quantum mechanics (the Gutzwiller trace formula, pdgsibproved by including
tunneling periodic trajectories, filiaction corrections, etc.) as the point of departure.
Once the stationary phase approximation is made, whatfslisclassicalin the
sense that all quantities used in periodic orbit calcufetio actions, stabilities,
geometrical phases - are classical quantities. The protddhen to understand
and control the convergence of classical periodic orbinfdas.

While various periodic orbit formulas are formally equisat, practice shows
that some are preferable to others. Three classes of pewobit formulas are
frequently used:

Trace formulasThe trace of the semiclassical Green'’s function

tr Ge(E) = f do Gs(g, 0. E)

is given by a sum over the periodic orbit33(11). While easiest to derive, in
calculations the trace formulas are inconvenient for angtbther than the leading
eigenvalue estimates, as they tend to be divergent in th@regphysical interest.
In classical dynamics trace formulas hide under a variegppkellations such as
the f —a or multifractal formalism; in quantum mechanics they arewn as the
Gutzwiller trace formulas.

Zeros ofRuelle or dynamical zeta functions

er 7 Sp—inmp/2

1
V@ = [a-t). b=
p p
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yield, in combination with cycle expansions, the semidtzd®stimates ofjuantum
resonances. For hyperbolic systems the dynamical zetddnadave good convergence
and are a useful tool for determination of classical and twamechanical averages.

Spectral determinants, Selberg-type zeta functions, Haked determinants,
functional determinantare the natural objects for spectral calculations, witlveagence
better than for dynamical zeta functions, but with lessdpament cycle expansions.
The 2-dof semiclassical spectral determin&®. {8

0 ejSp/h inmp/2
det (H E)sc = eMNSC(E) ]_I ]_l[ 1/2 Ak ]
0 [AplteAg

is atypical example. Most periodic orbit calculations aasdxl on cycle expansions
of such determinants.

As we have assumed repeatedly during the derivation of #we tformula
that the periodic orbits are isolated, and do not form fasil{as is the case
for integrable systems or in KAM tori of systems with mixedagk space), the
formulas discussed so far are valid only for hyperbolic dhiptie periodic orbits.

For deterministic dynamical flows and number theory, spécteterminants
and zeta functions are exact. The quantum-mechanical deeged by the Gutzwiller
approach, are at best only the stationary phase approxginsat the exact quantum
spectral determinants, and for quantum mechanics an iangadnceptual problem
arises already at the level of derivation of the semiclas$icmulas; how accurate
are they, and can the periodic orbit theory be systematicaibroved?

Commentary

Remark 33.1 Gutzwiller quantization of classically chaotic systems. The derivation
given here and in sect82.3 and 33.1follows closely the excellent expositio][ by
Martin Gutzwiller, the inventor of the trace formula. Therigation presented here is self
contained, but refs 3] 1] might also be of help to the student.

Remark 33.2 Zeta functions. For “zeta function” nomenclature, see remark4on
page296
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Exercises
33.1. Monodromy matrix from second variations of the by (33.89
action. Show that
a(e) = S
D,j/D}j =(1-M) (33.19) T 2nh’

where T(E) is the time period of the 1-dimensional
motion and show that

S(E)

33.2. Jacobi gymnastics. Prove that the ratio of
determinants in$.48 can be expressed as

detD’, (g, 0, E) M M N(E) = 5" (33.21)
2T ey a9 9 ) _ det(1-M), (33.20)
detD,(qy, 0, E) ~Mpg 1= Mpp ; = i i i

.0, whereS(E) = ¢ p(q, E) dqis the action of the orbit.

whereM; is the monodromy matrix of the periodic orbit.33.5. Average density of states in 2 dimensions. Show that
in 2 dimensions the average density of states is given by

33.3. Volume of d-dimensional sphere. Show that the (339
volume of ad-dimensional sphere of radiusequals e - mA(E)
29219/ T(1 + d/2). Show thal'(L + d/2) = [(d/2)d/2. (B)=— 7 -

33.4. Average density of states in 1 dimension. Show that where A(E) is the classically allowed area of
in one dimension the average density of states is given  configuration space for whidd(q) < E.
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Chapter 34

Quantum scattering

Scattering is easier than gathering.
—Irish proverb

(A. Wirzba, P. Cvitanovi¢ and N. Whelan)

consideration is bound. As we shall now see, we are in luok séimiclassics

of bound systems is all we need to understand the semicdafsiopen,
scattering systems as well. We start by a brief review of tentum theory of
elastic scattering of a point particle from a (repulsivegmtial, and then develop
the connection to the standard Gutzwiller theory for boursiesns. We do this in
two steps - first, a heuristic derivation which helps us usi@ded in what sense
density of states is “density,” and then we sketch a genegdlation of the
central result of the spectral theory of quantum scattetimgKrein-Friedel-Lloyd
formula. The end result is that we establish a connectiowdsst the scattering
resonances (both positions and widths) of an open quantsterayand the poles
of the trace of the Green function, which we learned to araiyzarlier chapters.

S raR the trace formulas have been derived assuming that thensystder

34.1 Density of states

For a scattering problem the density of stat86.{8 appear ill defined since
formulas such as3@.6) involve integration over infinite spatial extent. What we
will now show is that a quantity that makes sense physicallthé diference of
two densities - the first with the scatterer present and tbensbwith the scatterer
absent.

In non-relativistic dynamics the relative motion can beasefed from the
center-of-mass motion. Therefore the elastic scatterfrigv@ particles can be
treated as the scattering of one particle from a static piatev{q). We will study
the scattering of a point-particle of (reduced) masby a short-range potential
V(q), excludinginter alia the Coulomb potential. (The Coulomb potential decays
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slowly as a function of) so that various asymptotic approximations which apply
to general potentials fail for it.) Although we can choose #patial coordinate
frame freely, it is advisable to place its origin somewheearnthe geometrical
center of the potential. The scattering problem is solved,scattering solution
to the time-independent Schrodinger equati®d.§)

w9
(e * V(@) = E0@ (34.)

can be constructed. Hefeis the energyg = 7K the initial momentum of the
particle, andk the corresponding wave vector.

When the argument = |g| of the wave function is large compared to the
typical sizea of the scattering region, the Schrodinger equatiteatively becomes
a free particle equation because of the short-range nafutieeqpotential. In
the asymptotic domaim > a, the solutiongy(q) of (34.1) can be written as
superposition of ingoing and outgoing solutions of the foeeticle Schrodinger
equation for fixed angular momentum:

#(@) = AsO)(q) + Bp™(g),  (+ boundary conditions)

where in 1-dimensional problems)(q), ¢(*)(q) are the “left,” “right” moving
plane waves, and in higher-dimensional scattering probta “incoming,” “outgoing”
radial waves, with the constant matric&sB fixed by the boundary conditions.
What are the boundary conditions? The scatterer can modifythe outgoing
waves (see figurg4.1), since the incoming ones, by definition, have yet to enaunt
the scattering region. This defines the quantum mechargedtesing matrix, or
theS matrix

#m(r) = ¢5(1) + SmmetD(r) . (34.2)

All scattering éfects are incorporated in the deviation®from the unit matrix,
the transition matrixi

S=1-iT. (34.3)

For concreteness, we have specialized to two dimensidghsuaih the final formula
is true for arbitrary dimensions. The indicesandn are the angular momenta
quantum numbers for the incoming and outgoing state of tla¢tesing wave
function, labeling theS-matrix elementsSy,y. More generally, given a set of
quantum numberg, y, the S matrix is a collectionSg, of transition amplitudes

B — y normalized such thaS,|? is the probability of theg — y transition. The
total probability that the ingoing stafeends up in some outgoing state must add
up to unity

DlspP=1, (34.4)
Y
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into an obstacle. (b) Superposition

@

(b)
so theS matrix is unitary:SfS=SS = 1.

We have already encountered a solution to the 2-dimensfmodlem; free
particle propagation Green’s functioB2 49 is a radial solution, given in terms
of the Hankel function

Go(r.0.E) = 55 HS (ko).

where we have usesy(r, 0, E)/% = kr for the action. Thenth angular momentum
eigenfunction is proportional m(ﬁ)(q) oc Hﬁni)(kr), and given a potential (g) we
can in principle compute the infinity of matrix elemei@gn;. We will not need
much information abodt-l,(ﬁ,)(kr). other than that for largeits asymptotic form is

H* o e+ikr

In general, the potentidl(q) is not radially symmetric and3¢.1) has to be
solved numerically, by explicit integration, or by diagtimg a large matrix in
a specific basis. To simplify things a bit, we assume for theetbeing that a
radially symmetric scatterer is centered at the origin; fthal formula will be
true for arbitrary asymmetric potentials. Then the sohdiof the Schrodinger
equation B0.5 are separablegm(q) = #(r)e™, r = |q|, the scattering matrix
cannot mix dfferent angular momentum eigenstates, & diagonal in the
radial basis 4.2 with matrix elements given by

Sim(k) = e2on®), (34.5)

The matrix is unitary so in a diagonal basis all entries are phases. This means
that an incoming state of the forhlf{)(kr)eim" gets scattered into an outgoing state
of the formSm(k)Hﬁ,T)(kr)eimg, whereHﬁf)(z) are incoming and outgoing Hankel
functions respectively. We now embed the scatterer in aiiefgylindrical well

of radiusR, and will later takeR — co. Angular momentum is still conserved so
that each eigenstate of this (now bound) problem corresptmsome value ah.
For larger > a each eigenstate is of the asymptotically free form

Q

()~ €™ (SmHE (kr) + HE (k)

---coskr + m(K) — xm) » (34.6)

Q
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b "

Figure 34.2: The “difference” of two boundedf‘ ® ".

reference systems, one with and one without the
scattering system.

where-: - - is a common prefactor, angh = mr/2+n/4 is an annoying phase factor
from the asymptotic expansion of the Hankel functions thiéitplay no role in
what follows.

The state 4.6) must satisfy the external boundary condition that it viargs
r = R. This implies the quantization condition

kaR+ 6m(kn) —xm =7 (n+12) .

We now ask for the dierence in the eigenvalues of two consecutive states of
fixedm. SinceRis large, the density of states is high, and the pl#agk) does
not change much over such a small interval. Therefore, @ingeorder we can
include the &ect of the change of the phase on statel by Taylor expanding. is

kne1R + Sm(Kkn) + (Kns1 — Kn)om(kn) = xm ~ 7 + 7(n + 12).

Taking the dfference of the two equations we obtaik ~ (R + §j,(k))"*. This
is the eigenvalue spacing which we now interpret as the $avef the density of
states withirm angular momentum sbuspace

dm(k) = 7% (R+61,(K)) -

TheRterm is essentially the 2 d Weyl term 33.8), appropriate to + d radial
guantization. For largR, the dominant behavior is given by the size of the circular
enclosure with a correction in terms of the derivative ofghattering phase shift,
approximation accurate to ordefR. However, not all is well: the area under
consideration tends to infinity. We regularize this by satting from the result
from the free particle density of statdg(k), for the same size container, but this
time without any scatterer, figufit.2 We also sum over ath values so that

1 1 d
d(k) ~ do(K) = %mo = 5 zm] S10gSm

- Ly (sT d—s). (34.7)

The first line follows from the definition of the phase shiftg (5 while the second
line follows from the unitarity ofS so thatS—! = S*. We can now take the limit
R — oo since theR dependence has been cancelled away.

scattering - 29dec2004.tex



CHAPTER 34. QUANTUM SCATTERING 562

This is essentially what we want to prove since for the lefachaide we
already have the semiclassical theory for the trace of ttferdnce of Green’s
functions,

d(k) — do(k) = —%(lm (tr (G(K) - Go(K)) - (34.8)

There are a number of generalizations. This can be done imamjper of
dimensions. It is also more common to do this as a functionnefgy and not
wave numbek. However, as the asymptotic dynamics is free wave dynamics
labeled by the wavenumbég we have adaptell as the natural variable in the
above discussion.

Finally, we state without proof that the relatiod¥(7) applies even when there
is no circular symmetry. The proof is morefittult since one cannot appeal to the
phase shift$, but must work directly with a non-diagon8l matrix.

34.2 Quantum mechanical scattering matrix

The results of the previous section indicate that there @naection between the
scattering matrix and the trace of the quantum Green'’s iomg¢more formally
between the dierence of the Green’s function with and without the scatteri
center.) We now show how this connection can be derived in g migorous
manner. We will also work in terms of the enerByrather than the wavenumber
k, since this is the more usual exposition. Suppose particlesact via forces of
sufficiently short range, so that in the remote past they werelieeadarticle state
labeleds, and in the distant future they will likewise be free, in astmbeledy.

In the Heisenberg picture ti&-matrix is defined a$ = Q,Qi in terms of the
Mgller operators

Q. = lim ht/igriHot/h (34.9)

t—+oo

where H is the full Hamiltonian, whereasly is the free Hamiltonian. In the
interaction picture th&-matrix is given by

S

QZQ, — |im gHot/ng-2iHt/ngHot/n
t—oo

T exp(—i f :0 dtH’(t)) , (34.10)

whereH’ =V = H — Hg is the interaction Hamiltonian andis the time-ordering
operator. In stationary scattering theory tenatrix has the following spectral
representation

S = fde S(E)6(Ho — E)
0
S(E) = Q.(E)Q-YE), Q.(E)=1+(Ho-E=xie)tV, (34.11)
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such that

1 B 1
Ho—-E-ie H-E-ie

Tr [ST(E)d—C:ES(E)] = Trl —(e & —€)| .(34.12)

The manipulations leading t84.12 are justified if the operator€..(E) can be
linked to trace-class operators.

We can now use this result to derive the Krein-Lloyd formulaich is the
central result of this chapter. The Krein-Lloyd formula yides the connection
between the trace of the Green’s function and the poles af¢htering matrix,
implicit in all of the trace formulas for open quantum syssemhich will be
presented in the subsequent chapters.

34.3 Krein-Friedel-Lloyd formula

The link between quantum mechanics and semiclassics ftiesog problems is
provided by the semiclassical limit of the Krein-Frieddéyd sum for the spectral
density which we now derive. This derivation builds on theutts of the last
section and extends the discussion of the opening section.

In chapter32 we linked the spectral density (s€(18) of a bounded system

d(E) = Z §(En - E) (34.13)

n

via the identity

1 1
0 -8) = -lm ime—e T
- —En
1 1
= —lim = Im(Ey|]=————|E
iy = "Ml e e B
1 1 1
= —i E — — —|E 34.14
ol e'_r%< "[E-H-ic E-H+ic "> (34.14)

to the trace of the Green'’s functioB3.1.]). Furthermore, in the semiclassical
approximation, the trace of the Green’s function is giverth® Gutzwiller trace
formula (33.17) in terms of a smooth Weyl term and an oscillating contrityutof
periodic orbits.

Therefore, the task of constructing the semiclassics oa#esing system is
completed, if we can find a connection between the spectraityed(E) and
the scattering matriXs. We will see that 84.12 provides the clue. Note that
the right hand side of34.12 has nearly the structure 084.14 when the latter
is inserted into §4.13. The principal diference between these two types of
equations is that th8 matrix refers tooutgoingscattering wave functions which
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are not normalizable and which have@ntinuousspectrum, whereas the spectral
densityd(E) refers to a bound system with normalizable wave functioith &
discrete spectrum. Furthermore, the bound system is diesizad by ehermitian
operator, the Hamiltoniakl, whereas the scattering system is characterized by a
unitary operator, theS-matrix. How can we reconcile these completelffefient
classes of wave functions, operators and spectra? Thediickput our scattering
system into a finite box as in the opening section. We choopbexisal conatiner
with radiusR and with its center at the center of our finite scatteringesystOur
scattering potentia¥/ () will be unaltered within the box, whereas at the box walls
we will choose an infinitely high potential, with the Dirietlboundary conditions
at the outside of the box:

¢(Mlr=r=0. (34.15)

In this way, for any finite value of the radilR of the box, we have mapped
our scattering system into a bound system with a spectradityet(E; R) over
discrete eigenenergi&s,(R). It is therefore important that our scattering potential
was chosen to be short-ranged to start with. (Which exphaimg the Coulomb
potential requires special care.) The hope is that in th& IRn— o we will
recover the scattering system. But some care is requirechpeimenting this.
The smooth Weyl terrd(E; R) belonging to our box with the enclosed potental
diverges for a spherical 2-dimensional box of radRiguadratically, agR?/(4x)
or asR® in the 3-dimensional case. This problem can easily be ctited spectral
density of an empty reference box of themesize (radiusR) is subtracted (see
figure 34.2). Then all the divergences linked to the increasing radiua the
limit R — oo drop out of the dierence. Furthermore, in the linfR — oo the
energy-eigenfunctions of the box are only normalizable aglta distribution,
similarly to a plane wave. So we seem to recover a continoestspn. Still the
problem remains that the wave functions do not discrimitetisveen incoming
and outgoing waves, whereas this symmetry, namely the tieityiis broken in
the scattering problem. The last problem can be tackled ifepkace the spectral
density over discrete delta distributions by a smoothedtspledensity with a
small finite imaginary par in the energyE:

o 1 1
AE R = @;{E— ER -1 E- En(R)+in} - 19

Note thatd(E + in; R) # d(E — in; R) = —d(E + in; R). By the introduction of the
positivefinite imaginary part; the time-dependent behavior of the wave function
has dfectively been altered from an oscillating one to a decaying and the
hermiticity of the Hamiltonian is removed. Finally the limji — O can be carried
out, respecting the order of the limiting procedures. Fit& limit R — o has

to be performed for &inite value ofn, only then the limit; — 0 is allowed. In
practice, one can try to work with a finite valueRfbut then it will turn out (see
below) that the scattering system is only recoverelyfi > 1.

Let us summarize the relation between the smoothed spéetnaitiesd(E +
in; R) of the boxed potential and{®(E + iz; R) of the empty reference system and
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the S matrix of the corresponding scattering system:

lim lim (d(E+in; R) - dO(E+in; R))

n—+0R—0c0

1 d
T [s (E)ES(E)]

1_d 1 d
= 5 TrENSE) = o= J=idetSE). (34.17)

This is theKrein-Friedel-Lloyd formula It replaces the scattering problem by
the diference of two bounded reference billiards of the same raiughich
finally will be taken to infinity. The first billiard containsé scattering region
or potentials, whereas the other does not (see figdr®. Hered(E + in; R)
andd@(E + in; R) are thesmoothedspectral densities in the presence or in the
absence of the scatterers, respectively. In the semicisgpproximation, they
are replaced by a Weyl tern3%.10 and an oscillating sum over periodic orbits.
As in (33.2), the trace formula34.17) can be integrated to give a relation between
the smoothed staircase functions and the determinant &-thatrix:

lim _lim (N(E+in; R) - NOE+im; R) = %IndetS(E). (34.18)

n—+0R—c0

Furthermore, in both versions of the Krein-Friedel-Lloyatriulas the energy
argumentE + in can be replaced by the wavenumber argunientin’. These
expressions only make sense for wavenumbers on or abovedhk-axis. In
particular, ifk is chosen to be realy’ must be greater than zero. Otherwise, the
exact left hand sides34.19 and 4.17) would give discontinuous staircase or
even delta function sums, respectively, whereas the righd Isides are continuous
to start with, since they can be expressed by continuousep$tafis. Thus the
order of the two limits in 84.18 and @4.17) is essential.

The necessity of thein prescription can also be understood by purely phenomeiwaliog

considerations in the semiclassical approximation: Wittbein term there is no
reason why one should be able to neglect spurious perioditsavhich are there
solely because of the introduction of the confining bounddiye subtraction of
the second (empty) reference system removes those sppedosdic orbits which
never encounter the scattering region — in addition to threoxal of the divergent
Weyl term contributions in the limiR — oo. The periodic orbits that encounter
both the scattering region and the external wall would stilivive the first limit
R — oo, if they were not exponentially suppressed by #ig term because of
their

LR V2m(E+in) _ JLRK o LRI

behavior. As the length(R) of a spurious periodic orbit grows linearly with the
radiusR. The boundRyy’ > 1 is an essential precondition on the suppression of
the unwanted spurious contributions of the container ifKngin-Friedel-Lloyd
formulas B4.17) and 34.19 are evaluated at a finite value Rf

Finally, the semiclassical approximation can also helpwutbé interpretation
of the Weyl term contributions for scattering problems. &attering problems
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the Weyl term appears with a negative sign. The reason isuhgagtion of

the empty container from the container with the potentidfl.thé potential is
a dispersing billiard system (or a finite collection of dispeg billiards), we
expect an excluded volume (or the sum of excluded volumét)we to the empty
container. In other words, the Weyl term contribution of #mepty container
is larger than of the filled one and therefore a negative netriboition is left

over. Second, if the scattering potential is a collectiom éihite number of non-
overlapping scattering regions, the Krein-Friedel-Lidypdmulas show that the
corresponding Weyl contributions are completely indeenaf the position of
the single scatterers, as long as these do not overlap.

34.4 Wigner time delay

The term £ IndetS in the density formula34.17) is dimensionally time. This
suggests another physically important interpretatiosueh formulas for scattering
systems, the Wigner delay, defined as

iArgdet (k)

= dk Iog det S(k)

= —itr (s‘ K= (k)) (34.19)

d(k)

and can be shown to equal the total delay of a wave packet iateesng system.
We now review this fact.

A related quantity is the total scatteripbase shif®(k) defined as
detS(k) = 0K |

so thatd(k) = £O(K).

The time delay may be both positive and negative, reflectingaiive respectively
repulsive features of the scattering system. To elucideeconnection between
the scattering determinant and the time delay we study aplave:

The phase of a wave packet will have the form:
p=K-R-wt + 0.

Here the term in the parenthesis refers to the phase shifttthaccur if scattering
is present. The center of the wave packet will be determiryetthdd principle of
stationary phase:

O0=d¢ =dk-X—dwt + dO.
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Hence the packet is located at

_Ow, 00
K ok

The first term is just the group velocity times the given tim&hus the the packet
is retarded by a length given by the derivative of the phagewith respect to the
wave vectork. The arrival of the wave packet at the positigmvill therefore be

delayed. Thigime delay can similarly be found as

() = 0®(w)

To show this we introduce thelownessf the phases = k/w for which §- Vg = 1
wherevy is the group velocity to get

dk- %= & Xdw = = dw,
Vg

since we may assumg is parallel to the group velocity (consistent with the
above). Hence the arrival time becomes

X 6®(w)
t=— .
Vg ow

If the scattering matrix is not diagonal, one interprets

(9 e
Aty = Re( is;t S’) Re(—”)
ow

as the delay in thg¢th scattering channel after an injection in ttie The probability
for appearing in channgl goes agS;j|? and therefore the average delay for the
incoming states in channels

S
(At) = ZJ:lS.JIZAt.J_Re(lz ”5 =Re(is'- —w)"

)

where we have used the derivatidégw, of the unitarity relatiors- S' = 1 valid
for real frequencies. This discussion can in particular laelenfor wave packets
related to partial waves and superpositions of these like@ming plane wave
corresponding to free motion. The total Wigner delay treetorresponds to the
sum over all channel delay34.19.
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EXERCISES 568
Commentary

Remark 34.1 Krein-Friedel-Lloyd formula. The third volume of Thirring ], sections
3.6.14 (Levison Theorem) and 3.6.15 (the proof), or P. Safsethesis [ 5] (appendix)
discusses the Levison Theorem.

It helps to start with a toy example or simplified example éast of the general
theorem, namely for the radially symmetric potential in engyetric cavity. Have a look
at the book of K. Huang, chapter 10 (on the "second virialfitcoient”), or Beth and
Uhlenbeck ], or Friedel [7]. These results for the correction to the density of states a
particular cases of the Krein formul2][ The Krein-Friedel-Lloyd formula34.17) was
derived in refs. §, 7, 8, 9], see also refs.1[1, 14, 15, 17, 18]. The original papers are by
Krein and Birman §, 4] but beware, they are mathematicans.

Also, have a look at pages 15-18 of Wirzba’s talk on the Caséfiiect [L6]. Page
16 discusses the Beth-Uhlenbeck formulfp fhe predecessor of the more general Krein
formula for spherical cases.

Remark 34.2 Weyl term for empty container. For a discussion of why the Weyl term
contribution of the empty container is larger than of theéllbne and therefore a negative
net contribution is left over, see ref.q].

Remark 34.3 Wigner time delay. Wigner time delay and the Wigner-Smith time delay
matrix, are powerful concepts for a statistical descriptid scattering. The diagonal
elementsQ,, of the lifetime matrixQ = —iS19S/dw, whereSis the [2Nx2N] scattering
matrix, are interpreted in terms of the time spent in thetedag region by a wave packet
incident in one channel.  As shown by Smithd], they are the sum over all ouput
channels (both in reflection and transmissionAf, = Re [(—i/Sap)(San/dw)] weighted
by the probability of emerging from that channel. The sunhefQ., over all 2N channels

is the Wigner time delayw = Y Qaa, Which is the trace of the lifetime matrix and is
proportional to the density of states.

Exercises

34.1. Spurious orbits under the Krein-Friedel-Lloyd 34.2. The one-disk scattering wave function. Derive the
contruction. Draw examples for the three one-disk scattering wave function.
types of period orbits under the Krein-Friedel-Lloyd (Andreas Wirzba)
construction: (a) the genuine periodic orbits of th
; . ) o ] . Compute the
scattering region, (b) spurious periodic orbits which cal
be removed by the subtraction of the reference system,

4.3. Quantum two-disk scattering.
quasiclassical spectral determinant

(c) spurious periodic orbits which cannot be removed tp i+l
by this subtraction. What is the role of the double limit Z(e) = l—[ [1 - W]
n — 0, container sizé — «o? p.jl p

for the two disk problem. Use the geometry
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determinant of the matrix

1) Inka)
2 H(ka)

M = 6o + (HRWKR + (1)

where J, is the nth Bessel function and-lﬁ,l) is the

Hankel function of the first kind. Find the zeros of

determinant closest to the origin by solving dk) =

R 0. (Hints: notice the structud = | + Ato approxima
the determinant; or readhaos2, 79 (1992))

34.4. Pinball topological index. Upgrade your pinb:s
The full quantum mechanical version of this problem simulator so that it computes the topological inde;
can be solved by finding the zeros i for the each orbit it finds.
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particle moves freely between the static scatterers, iteeitidependent Schrodinger
equation outside the scattering regions is the Helmholtzton:

(5? + EZ) w(F) =0, F outside the scattering regions. (35.1)

Herey(F) is the wave function of the point particle at spatial pasit’ andE =

Chapter 35 72k2/2m s its energy written in terms of its massand the wave vectdt of the
incident wave. For reflecting wall billiards the scatterimgblem is a boundary
value problem with Dirichlet boundary conditions:

Chaotic multiscatteri ng y()=0,  ronthe billiard perimeter (35.2)

As usual for scattering problems, we expand the wave fumati@) in the
(2-dimensional) angular momentum eigenfunctions basis

(A. Wirzba and P. Cvitanovic) o )
pr)= . uk(r)e ™, (35.3)
m=—co
E DIscUSS HERE the semiclassics of scattering in open systems with a finite
W number of non-overlapping finite scattering regions. Whiisinteresting wherek and®y are the length and angle of the wave vector, respectivelyiahep
atall? The semiclassics of scattering systems has five taty@sicompared wave in two dimensions expaned in the angular momentum lsasis
to the bound-state problems such as the helium quantizdisonssed in chapt&6.
gk _ gkr cosfor-ay) _ Z Jm(kr)em(@r =) (35.4)
m=—-co
e For bound-state problem the semiclassical approximatass ehot respect
quantum-mechanical unitarity, and the semi-classicareigergies are not wherer and®, denote the distance and angle of the spatial vattsr measured
real. Here we construetmanifestly unitarsemiclassical scattering matrix. in the global 2-dimensional coordinate system.

The Weyl-term contributions decouple from the multi-serifig system. Themth angular componemk,(kr)e™® of a plane wave is split into a superposition

The close relation to the classical escape processes ststirschaptet. of incoming and outgoing 2-dimensional spherical waves egothposing the
ordinary Bessel functiodm(z) into the sum

For scattering systems the derivation of cycle expans®n®ie direct and

controlled than in the bound-state case: the semiclassicl expansion is (1) @

the saddle point approximation to the cumulant expansidesfieterminant In(d) =3 (HY@ +HP@) (35.5)
of the exact quantum-mechanical multi-scattering matrix.

« The region of convergence of the semiclassical spectrattiumis larger of the Hankel function$iy’(2) andH{(2) of the first and second kind. Faf > 1

than is the case for the bound-state case. the Hankel functions behave asymptotically as:
We start by a brief review of the elastic scattering of a ppanticle from finite Hr(ﬁ)(z) ~ liefi(zf%"kﬁ) incoming,
collection of non-overlapping scattering regions in teohthe standard textbook z
scattering theory, and then develop the semiclassicaksicef trace formulas and &) 2 Liz-3m-1) .
’ . ; ) H(@ ~ +/—=e"¥2™%) outgoing. 35.6
spectral determinants for scatteringj N disks in a plane. () nz going ( )

Thus forr — o andk fixed, themth angular componeniy,(kr)é™® of the plane

35.1 Quantum mechanical Scattering matrix wave can be written as superposition of incoming and outp@iaimensional
spherical waves:

We now specialize to the elastic scattering of a point garfrom finite collection

. 1 gy iz o]
md; —i(kr-Zm-%) (kr—=Zm-2)| Jmd,
of N non-overlapping reflecting disks in a 2-dimensional plares the point Im(kr)e ok [e 2a) + e ]e' . (35.7)
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In terms of the asymptotic (angular momentum) compongfjtsf the wave
functiony(F), the scattering matrix34.3 is defined as

1 i Iny—Z i Ipy—z i’ @,
E (5mme ikr=3 7) + Smmel( =2 4)]el " (358)
V2rk m= oo[

Uk~

The matrix elemer®myy describes the scattering of an incoming wave with angular
momentumm into an outgoing wave with angular momentunh If there are no
scatterers, the8 = 1 and the asymptotic expression of the plane vak@in two
dimensions is recovered frog(r’).

35.1.1 1-disk scattering matrix

In general Sis nondiagonal and nonseparable. An exception is the 1sdatterer.
If the origin of the coordinate system is placed at the ceoft¢he disk, by 85.5
themth angular component of the time-independent scatteringsfnction is a

superposition of incoming and outgoing 2-dimensional sphewaves [exercise 34.2]

1 ima®,
Ui = 5 (k) + SmoHi (k) €

(3mkn) = S TmaHP (k) €™
The vanishing 5.2 of the wave function on the disk perimeter
_ i W
0= Jm(ka) - ETmmHm (ka)

yields the 1-disk scattering matrix in analytic form:

St » (35.9)

2n(kag) |, HR(ka)
" ke "
m

SE (k) =|1- ==
9 ( HE (kas)
wherea = as is radius of the disk and the ix S indicates that we are dealing

with a disk whose label is. We shall derive a semiclassical approximation to this
1-disk S-matrix in sect.35.3

35.1.2 Multi-scattering matrix

Consider next a scattering region consisting\Nofion-overlapping disks labeled
se{l,2,---,N}, following the notational conventions of set0.5 The strategy
is to construct the fulllT-matrix (34.3 from the exact 1-disk scattering matrix
(35.9 by a succession of coordinate rotations and translatiook that at each
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step the coordinate system is centered at the origin of a diskn theT-matrix
iN Smm = dmm — i Tmm €an be split into a product over three kinds of matrices,

N

Tom® = > > Cor (MRS, D} (K).

lely
s.8=1lglg=—c0

The outgoing spherical wave scattered by the dis& obtained by shifting the
global coordinates origin distané® to the center of the disk, and measuring
the angle®s with respect to directiork of the outgoing spherical wave. As in
(35.9, the matrixC*® takes form

o 2 IR o,

= (35.10)
ms  rag H|(sl)(kas)

If we now describe the ingoing spherical wave in the diskoordinate frame by
the matrixD$

D} 1y = —8s Jnr 1, (KRe)Jy, (kag)e ™ P (35.11)

and apply the Bessel function addition theorem

Iny+2) = Y Inc)A(,

(=0

we recover thél-matrix (35.9 for the single disks = s, M = 1 scattering. The
Bessel function sum is a statement of the completness optrerisal wave basis;
as we shift the origin from the dis&to the disks' by distanceRy , we have to
reexpand all basis functions in the new coordinate frame.

The labelsmandn refer to the angular momentum quantum numbers of the
ingoing and outgoing waves in the global coordinate systerd|s, |y refer to the
(angular momentum) basis fixed at thth ands'th scatterer, respectively. Thus,
Cs andDS depend on the origin and orientation of the global cooreirsystem
of the 2-dimensional plane as well as on the internal coatdsof the scatterers.
As they can be made separable in the scatterer Ighthley describe the single
scatterer aspects of what, in general, is a multi-scageroblem.

The matrixM is called themulti-scattering matrix If the scattering problem
consists only of one scatterey] is simply the unit matrixMISi = 655§|5|§.
For scattering from more than one scatterer we separate ‘Sinigle traversal”
matrix A which transports the scattered wave from a scattering mefyig to the
scattering region\ly,

ss
lsly

My =86, - ATy - (35.12)
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Figure 35.1: Global and local coordinates for a

general 3-disk problem.

The matrixAS® reads:

8 3.K&) |y p o dlasloen) (3513

s sg
AISSI =-(1-6") = Is—I
’ 3 H(kas)

Here, as is the radius of thesth disk. R and®s are the distance and angle,
respectively, of the ray from the origin in the 2-dimensigplane to the center of
disk s as measured in the global coordinate system. FurtherrRate= Rys is
the separation between the centers ofdheands'th disk andvy s of the ray from
the center of disks to the center of disls’ as measured in the local (body-fixed)
coordinate system of disk(see figure35.1).

Expanded as a geometrical series about the unit mattixe inverse matrix
M~ generates a multi-scattering series in powers of the singlersal matrix.
All genuine multi-scattering dynamics is contained in thetiix A; by construction
A vanishes for a single-scatterer system.

35.2 N-scatterer spectral determinant

In the following we limit ourselves to a study of the speciebdperties of thes-
matrix: resonances, time delays and phase shifts. Thearses are given by the
poles of theS-matrix in the lower complex wave numbé) plane; more precisely,

by the poles of thé& on the second Riemann sheet of the complex energy plane.
As the S-matrix is unitary, it is also natural to focus on its totalagk shifty(k)
defined by de§ = exp?®. The time-delay is proportional to the derivative of
the phase shift with respect to the wave number

As we are only interested in spectral properties of the sgatf problem, it
suffices to study de®. This determinant is basis and coordinate-system indegrend
whereas th&s-matrix itself depends on the global coordinate system anthe
choice of basis for the point particle wave function.

As the S-matrix is, in general, an infinite dimensional matrix, itnet clear

whether the corresponding determinant exists at all-tfiatrix is trace-class, the
determinant does exist. What does this mean?
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35.2.1 Trace-class operators

An operator (an infinite-dimensional matrix) is callgdce-classif and only if,
for any choice of orthonormal basis, the sum of the diagonaidrisn elements
converges absolutely; it is called “Hilbert-Schmidt,” ifet sum of the absolute
squared diagonal matrix elements converges. Once an op&aliagnosed as
trace-class, we are allowed to manipulate it as we manpfiiaite-dimensional
matrices. We review the theory of trace-class operatorpperdixJ; here we
will assume that th& -matrix (34.3) is trace-class, and draw the conlusions.

If A is trace-class, the determinant det{ zA), as defined by the cumulant
expansion, exists and is an entire functiorzofFurthermore, the determinant is
invariant under any unitary transformation.

The cumulant expansion is the analytical continuation g4dF expansion in
the book-keeping variablg of the determinant

det (L — zA) = exp[tr In(1 — zA)] = exp[— i ;tr (A")] .
n=1
That means
det( - zA) := i 2"Qm(A) (35.14)
m=0

where the cumulant®m(A) satisfy the Plemelj-Smithies recursion formulal©,
a generalization of Newton’s formula to determinants ofiidé-dimensional matrices,

Qo(A) 1

Qm(A)

—EZQM(A)U(AJ') form>1, (35.15)
m &

in terms of cumulants of order < m and traces of order < m. Because of the
trace-class property &, all cumulants and traces exist separately.

For the general case bf < oo non-overlapping scatterers, tiiematrix can be
shown to be trace-class, so the determinant ofSneatrix is well defined. What
does trace-class property mean for the corresponding aea@?, DS and ASS?
Manipulating the operators as though they were finite medrieve can perform
the following transformations:

detS det(1-iCM™'D)

Det (1-iM~'DC) = Det(M~}(M -iDC))

_ Det(M -iDC)

= ~bae) (35.16)
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In the first line of 35.16 the determinant is taken over smdll(the angular
momentum with respect to the global system). In the remainti¢35.16 the
determinant is evaluated over the multiple inditgs= (s,ls). In order to signal
this difference we use the following notation: det and tr... refer to the|()
space, Det.. and Tr... refer to the multiple index space. The matrices in the
multiple index space are expanded in the complete Bisjs = {|s, {s)} which
refers for fixed indexs to the origin of thesth scatterer and not any longer to the
origin of the 2-dimensional plane.

Let us explicitly extract the product of the determinantstted subsystems
from the determinant of the total systeB5(19:

Det(M —iDC)
Det(M)

Det(M —iDC) [Ty, dets®
DetM [N, detss

N DetM —iDC)/ [TV, detS®
[ [ dets® ™ /M=t . (35.17)
1 DetM

detS

The final step in the reformulation of the determinant of Samatrix of the N-
scatterer problem follows from the unitarity of tl&ematrix. The unitarity of
Sf(k*) implies for the determinant

det (k")) = 1/detS(K) (35.18)

where this manipulation is allowed becauseThmatrix is trace-class. The unitarity
condition should apply for th&matrix of the total systent, as for the each of
the single subsystem§&®, s = 1,---,N. In terms of the result of35.17, this
implies

Det (M (k) - iD(K)C(K))
1Y, detss

= DetM (k"))

since all determinants ir85.17) exist separately and since the determinantsStlet
respect unitarity by themselves. Thus, we finally have

N .
DetM (k*)*
— S
detS(k) = {Slll (detS (k))} DetMK) (35.19)
where all determinants exist separately.
In summary: We assumed a scattering system &hiee number ofnon-

overlappingscatterers which can be offtirent shape and size, but are all of
finite extent. We assumed the trace-class character of imatrix belonging to
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the total system and of the single-traversal ma#fiand finally unitarity of the
S-matrices of the complete and all subsystems.

What can one say about the point-particle scattering fromigefnumber of
scatterers of arbitrary shape and size? As long as eadhofo single scatterers
has a finite spatial extent, i.e., can be covered by a finite die total system
has a finite spatial extent as well. Therefore, it too can hermided a circular
domain of finite radiu®, e.g., inside a single disk. If the impact parameter of the
point particle measured with respect to the origin of thikds larger than the disk
size (actually larger thare(2) x b), then theT matrix elements of th&l-scatterer
problem become very small. If the wave numkés kept fixed, the modulus of
the diagonalmatrix elements|Tmy| with the angular momentum > (e/2)kb, is
bounded by the corresponding quantity of the covering disk.

35.2.2 Quantum cycle expansions

In formula 35.19 the genuine multi-scattering terms are separated frorsittigge-
scattering ones. We focus on the multi-scattering terres, @n the ratio of the
determinants of the multi-scattering mathkix= 1-A in (35.19, since they are the
origin of the periodic orbit sums in the semiclassical reuc The resonances
of the multi-scattering system are given by the zeros ofND@ in the lower
complex wave number plane.

In order to set up the problem for the semiclassical redngtice express the
determinant of the multi-scattering matrix in terms of theces of the powers
of the matrixA, by means of the cumulant expansi@b (4. Because of the
finite numberN > 2 of scatterers tiA"™) receives contributions corresponding to
all periodic itinerariess; $S3 - - - Sh-1S, of total symbol lengtm with an alphabet
s €1{1,2,...,N}. of N symbols,

trASZATS . AS-1TATS: (35.20)
- i i i AT ARSI AT @
ey | aly lgls si-als Talsy
gowolgmco  lg=—co

Remember our notation that the trace- tr) refers only to thel) space. By
constructionA describes only scatterer-to-scatterer transitions, scsyimbolic
dynamics has to respect the no-self-reflection pruning fateadmissible itineraries
the successive symbols have to b@atent. This rule is implemented by the factor
1-6%%in (35.13.

The trace tA" is the sum of all itineraries of lengtin

trAD = Z tr ASIZASS . ASISIASS | (35.21)
(1%}

We will show for theN-disk problem that these periodic itineraries correspond
in the semiclassical limitkas > 1, to geometricalperiodic orbits with the same
symbolic dynamics.
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For periodic orbits with creeping sections the symbolichalpet has to be
extended, see se@d5.3.1 Furthermore, depending on the geometry, there might
be nontrivial pruning rules based on the so called ghostorbee secB85.4.1

35.2.3 Symmetry reductions

The determinants over the multi-scattering matrices ruer thve multiple index
of the multiple index space. This is the proper form for thesyetry reduction
(in the multiple index space), e.g., if the scatterer coméiian is characterized
by a discrete symmetry group, we have

DetM = ﬂ(detM b, (K%

where the indexr runs over all conjugate classes of the symmetry gi@ugnd
D, is the ath representation of dimensiay,. The symmetry reduction on the
exact quantum mechanical level is the same as for the cidssiolution oper-
ators spectral determinant factorizatid® (17 of sect.19.4.2

35.3 Semiclassical 1-disk scattering

We start by focusing on the single-scatterer problem. Ieotd be concrete, we
will consider the semiclassical reduction of the scatteaha single disk in plane.

Instead of calculating the semiclassical approximatiotheéodeterminant of
the one-disk system scattering mat®6(9, we do so for

dk) = %% In detS'(ka) = %%n (InSika)) (35.22)

the so calledime delay

d(k)

1d ey L (HPka) d HY(ka)
o " (IndetS'(kd) = 5 Zm: (Hg(ka) KD ka)

a v (HPka) HY (ka)
ﬁ% HOka) Hﬁ%’(ka)] ' (3529

Here the prime denotes the derivative with respect to thenaegt of the Hankel
functions. Let us introduce the abbreviation

H? ka)  H' (ka)
Xv = - .
HP(ka)  HY(Kka)

(35.24)
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We apply the Watson contour method 85(23

IR S 156 e
9 = o m;m =20 % RY St (35.25)

Here the contou€ encircles in a counter-clockwise manner a small semiifinit
strip D which completely covers the realaxis but which only has a small finite
extent into the positive and negative imaginangirection. The contou€ is then
split up in the path above and below the realxis such that

a +ootie g vt +oo—i€e e
dk) = — dy ———x, — dv —— .
® 4 {j:mif v sm(wr)X Im_if g sm(wr)XV}

Then, we perform the substitution— —v in the second integral so as to get

a +oo+€ e—iwr e+iv7r
d(k — dy ——y, + dv ———x -,
® 4n {]_‘mm Vsm(wr))( * Vsm(wr)X }

a +oo+i€e e2iwr +o0
B ﬁ{zﬁwf dv —1—92‘V”XV+LQ dvxv} . (35.26)

where we used the fact thgt, = y,. The contour in the last integral can be
deformed to pass over the reaixis since its integrand has no Watson denominator.

We will now approximate the last expression semiclassicak., under the
assumptiorka > 1. As the two contributions in the last line &85.29 differ by
the presence or absence of the Watson denominator, thelzavél to be handled
semiclassically in dferent ways: the first will be closed in the upper complex
plane and evaluated at the poleypfthe second integral will be evaluated on the
realy-axis under the Debye approximation for Hankel functions.

We will now work out the first term. The poles gf in the upper complex
plane are given by the zeros B (ka) which will be denoted by, (ka) and by

the zeros OHSZ)(ka) which we will denote by-v,(ka), ¢ = 1,2,3,---. In the Airy
approximation to the Hankel functions they are given by

ve(ka) = ka+iac(kd), (35.27)
-veka) = —Ka+i(er(k'a)’ = - (ve(k'a)" , (35.28)

with

y 1/3 y 13 2 3
aka) = éa("—"") q/—e*'a(e) & 1 (1_%]

6 ka/ 180 ~ 7ka
5
5(6) 1 (200 281
i ela(ka) 3150( 62  180-63 (35.29)
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Hereq, labels the zeros of the Airy integral
AQ) = f dr costr - %) = 3 M37Ai(-330)
o

with Ai(2) being the standard Airy function; approximatety, ~ 63[3x(¢ —
1/4)]%3/2. In order to keep the notation simple, we will abbreviate=s v,(ka)
andv, = v(ka). Thus the first term 0f35.26 becomes finally

)

a +oo+ie e2|wr e2|vm e—2i7f7r
—12 dv v =2a — .
2m{ L,He 1- ez'v”"} Z(1 e 1_e—2wm)

In the second term of36.26 we will insert the Debye approximations for the
Hankel functions:

2
HY2 () ~ _ exp(ii VX2 =2 % ivarccos. ¥ |—) for || > v
VX2 — 2 X
(35.30)
2
HY2 () ~ =i — exp(— Vv2 — X2 + vArcCosh;:() for x| < v.
TNVE —

Note that fory > kathe contributions iry, cancel. Thus the second integral of
(35.26 becomes

a [ a (™ (2)d( S5 v
ﬁj:m dvy, —.f:ka dv—d—k(\/ka -y —varCCosk—a)+

2ni a

ka 2
—if dvvkea? 124 = Sk, (35.31)
Kt Ja 2

where- - - takes care of the polynomial corrections in the Debye appration
and the boundary correction terms in thimtegration.

In summary, the semiclassical approximatiordtk) reads
s 92| ver e—2i\7[7r a2
d(k)—zaz(l eZIV[Ir m)—3k+

Using the definition of the time dela®$.22, we get the following expression for
detSt(ka):

In detSt(ka) — Iim In detSt(koa) (35.32)

j2nv,(ka) —i2rv; (ka)
- 2ria dk ——+22 e R |
1— g2, (ka) 1 — g-i2mv(ka)

~ —2niN(k)+2Zfo dR@{—In(l—eiz"”(ﬁa))+In(l—e‘iZ”V/(Ra))}+~~~,
=1
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where in the last expression it has been used that semtcziﬁ;ssgd—kvz(ka) ~
%jg(ka) ~ a and that the Weyl term for a single disk of radiasgoes like
N(K) = na?k?/(4r) + --- (the next terms come from the boundary terms in the
v-integration in 85.31)). Note that for the lower limitky, — 0, we have two
simplifications: First,

—HP (kod)
1
I|m S (ko) = kIO N H(l)(koa)

- ||m0 detSl(koa)

———0mm = 1X&mm vm, m

|
=

Secondly, folkg — 0, the two terms in the curly bracket &§%.32 cancel.

35.3.1 1-disk spectrum interpreted; pure creeping

To summarize: the semiclassical approximation to the detemtS(ka) is given
by

- 2
o (1 _ a-2inve(ka)
7.ank)H€:1(1 e anilka)

detS!(k _— 35.33
e Aoy 3
with
vika) = ka+ioika) = ka+e'3(ka/6) 3+ -
vekka) = ka-i(ac(k'a)* = ka+e™3(ka/6)Y3q + -
= (k@)

andN(ka) = (7a?k?)/4r + --- the leading term in the Weyl approximation for
the staircase function of the wavenumber eigenvalues idileinterior. From
the point of view of the scattering particle, the interiomtiins of the disks are
excluded relatively to the free evolution without scatigrobstacles. Therefore
the negative sign in front of the Weyl term. For the same neae subleading
boundary term has here a Neumann structure, although tke ldésre Dirichlet
boundary conditions.

Let us abbreviate the r.h.s. &%.33 for a disks as

s g imN(kas) 2 Z K aS) Zr (k*as)
detS®(kas) ~ (e ) —z, o T (35.34)

whereZ(S(kas) andZ$(kas) are thediffractional zeta functions (here and in the
following we will label semiclassical zeta functiongth diffractive corrections
by a tilde) for creeping orbits around thsth disk in the left-handed sense and
the right-handed sense, respectively (see fi@#&). The two orientations of
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Figure 35.3: The shape resonances of the 1-disk
system in the complex plane in units of the
disk radiusa. The boxes label the exact quantum
mechanical resonances (given by the zeros of
H®(ka) for m = 0,1,2), the crosses label the
diffractional semiclassical resonances (given by
the zeros of the creeping formula in the Airy
approximation 85.39 up to the ordeO([ka*?)).

Figure 35.2: Right- and left-handed dractive
creeping paths of increasing mode numbeor
a single disk.

the creeping orbits are the reason for the exponentsZ5i39. Equation 85.33
describes the semiclassical approximation to the incolbgaat & the curly bracket
on the r.h.s.) of the exact expressi@b(19 for the case that the scatterers are
disks.

In the following we will discuss the semiclassical resoreni the 1-disk
scattering problem with Dirichlet boundary condition®. ithe so-called shape
resonances. The quantum mechanical resonances are teeptiieS-matrix in
the complexk-plane. As the 1-disk scattering problem is separableStheatrix
is already diagonalized in the angular momentum eigenlaasigakes the simple
form (35.9. The exact quantummechanical poles of the scatteringixmaite
therefore given by the the zerdéeS, of the Hankel functionsi{® (ka) in the lower
complexk plane which can be labeled by two indicesandn, wherem denotes
the angular quantum number of the Hankel function and a radial quantum
number. As the Hankel functions have to vanish at spekifialues, one cannot
use the usual Debye approximation as semiclassical appatixn for the Hankel
function, since this approximation only works in case thenkéd function is
dominated by only one saddle. However, for the vanishinh@Hankel function,
one has to have the interplay of two saddles, thus an Airyeqpiation is needed
as in the case of the creeping poles discussed above. Thappnpximation of
the Hankel functiorH{?(ka) of complex-valued index reads

1/3
WO - 2675 (8) Aq®
ke ~ e AT
with
(1) _ ik 6)\"° -1
e (v—ka) + O((ka) ).

Hence the zeros, of the Hankel function in the complex plane follow from
the zerogy, of the Airy integral A(q) (see 85.3. Thus if we sety, = m (with m
integer), we have the following semiclassical conditiorkf

m ~ K+ io(Ke%)

_as[Ke)” s 6\ 1
- 6 ) %~ ¢ \ikea) T80
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the de-Broglie condition on the wave function that encsdlee disk. Thus the
semiclassical resonances of the 1-disk problem are givethéyzeros of the
following product

e

(1 _ e(ik—m)Zna) .

IR
N

which is of course nothing else thah-gisk(k), the semiclassical firaction zeta
function of the 1-disk scattering problem, s&5.(34. Note that this expression
includes just the pure creeping contribution and no gengeemetrical parts.
Because of

HO(ka) = (-1)"HP(ka),
the zeros are doubly degeneratenif« 0, corresponding to right- and left handed

creeping turns. The case = 0 is unphysical, since all zeros of the Hankel
function Hgl)(ka) have negative real value.

From figure35.30ne notes that the creeping terms in the Airy oxdgka]*/3),

which are used in the Keller construction, systematicafigerestimate the magnitude
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Figure 35.4: Same as in figur&5.3 However,
the subleading terms in the Airy approximation
(35.39 are taken into account up to the order
O([ka] /%) (upper panel) and up to ordé([ka] )
(lower panel).

QM (oacy @
Semiciass.creeping (. 151 Aty cor); +

Imk ()
ink ()

of the imaginary parts of the exact data. However, the creepata become
better for increasing Reand decreasingmk|, as they should as semiclassical
approximations.

In the upper panel of figur85.4 one sees the change, when the next order
in the Airy approximation §5.39 is taken into account. The approximation is
nearly perfect, especially for the leading row of resonanc&he second Airy
approximation using35.39 up to orderO([ka] 1) is perfect up to the drawing
scale of figure35.4 (lower panel).

35.4 From quantum cycle to semiclassical cycle

The procedure for the semiclassical approximation of aigéperiodic itinerary
(35.20 of lengthn is somewhat laborious, and we will only sketch the procedure
here. It follows, in fact, rather closely the methods depetbfor the semiclassical
reduction of the determinant of the 1-disk system.

The quantum cycle

o0

o

trASS2 ... ASS — Z Z Aislle Smsll
| S1's2 smisy
s,

=0 lgn=—co

still has the structure of a “multi-trace” with respect t@atar momentum.

Each of the sumif;’:fm — as in the 1-disk case — is replaced byatson
contourresummation in terms of complex angular momenimThen the paths
below the reals-axes are transformed to paths above these axes, and thaiate
split into expressionwith andwithoutan explicit Watson sing ) denominator.

1. In the sin¢sn) -independent integrals we replace all Hankel and Bessel
functions by Debye approximations. Then we evaluate theessjon in
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Figure 35.5: A 4-disk problem with three specular
reflections, one ghost tunneling, and distinct creeping
segments from which all associated creeping paths can
be constructed.

ltinerary:

i=i-i—ia
[

the saddle point approximation: either left or rigigecular reflectiorat
disks or ghost tunnelinghrough disks result.

2. For the singg ) -dependent integrals, we close the contour in the upger
plane and evaluate the integral at the resiﬂiﬁﬁ(kas):o. Then we use
the Airy approximation fod, (kas) and H&)(kas): left and rightcreeping
pathsaround disks result.

In the above we have assumed that no grazing geometriced pafear. If
they do show up, the analysis has to be extended to the casmintitling saddles
between the geometrical paths witf2 angle reflection from the disk surface and
paths with direct ghost tunneling through the disk.

There are three possibilities of “semiclassical” contdcthe point particle
with the disks:

1. either geometrical which in turn splits into three altgives

(a) specular reflectioro the right,
(b) specular reflectiorto the left,

(c) or ‘ghost tunneling’where the latter induce the nontrivial pruning
rules (as discussed above)

2. orright-handed creeping turns

3. orleft-handed creeping turnps

see figure35.5 The specular reflection to the right is linked to left-hashdeseping
paths with at least one knot. The specular reflection to tfierlatches a right-
handed creeping paths with at least one knot, whereas thgshieft- and right-
handed creeping paths in the ghost tunneling case are tppally trivial. In
fact, the topology of the creeping paths encodes the chateden the three
alternatives for the geometrical contact with the disk. sTisi the case for the
simple reason that creeping sections have to be positivaitgefin length: the
creeping amplitude has to decrease during the creepingsspas tangential rays
are constantly emitted. In mathematical terms, it mearisttigacreeping angle
has to be positive. Thus, the positivity of tiveo creeping angles for the shortest
left andright turn uniquely specifies the topology of the creepinctises which
in turn specifies which of the three alternatives, eithecs(ae reflection to the
right or to the left or straight “ghost” tunneling throughsKij, is realized for the
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Figure 35.6: (a) The ghost tinerary (2, 3, 4). (b) °
The parent itinerary (B, 4).

semiclassical geometrical path. Hence, the existence ofcue saddle point is
guaranteed.

In order to be concrete, we will restrict ourselves in thdofeing to the
scattering fromN < oo non-overlappingdisksfixed in the 2-dimensional plane.
The semiclassical approximation of the periodic itinerary

tr ASIR2ASRS ... AS-1S A SSL

becomes a standard periodic orbit labeled by the symbolesegs;s, - - - Sy.
Depending on the geometry, the individual legs, — s — S result either
from a standard specular reflection at dsskr from a ghost path passing straight
through disks. If furthermore creeping contributions are taken into actp
the symbolic dynamics has to be generalized from singterlsymbols{s} to
triple-letter symbolgs, o x £} with ¢ > 1 integer valued and = 0,+1 * By
definition, the valuer; = O represents the non-creeping case, such{a x

6} = {s,0} = {s} reduces to the old single-letter symbol. The magnitude of
a nonzeral; corresponds to creeping sections of mode nunfemwhereas the
signoj = +1 signals whether the creeping path turns around the sligk the
positive or negative sense. Additional full creeping tuansund a disks can be
summed up as a geometrical series; therefore they do notdehd introduction
of a further symbol.

35.4.1 Ghost contributions

An itinerary with a semiclassical ghost section at, sayk discan be shown to
have the same weight as the corresponding itinerary withfeis th symbol.
Thus, semiclassically, they cancel each other in the fir 40f) expansion, where
they are multiplied by the permutation factofr with the integer counting the
repeats. For example, let,@ 3,4) be a non-repeated periodic itinerary with a
ghost section at disk 2 steming from the 4th-order traéé.tBy convention, an
underlined disk index signals a ghost passage (as in figfufa), with corresponding
semiclassical ghost traversal matrices also underliddéitA*Li+2  Then its
semiclassical, geometrical contribution to trlir{ A) cancels exactly against the
one of its “parent” itinerary (13, 4) (see figure5.6) resulting from the 3rd-order
trace:

_% (4A12A23434%) % (3AL3A34A%Y)

LActually, these are double-letter symbolsoasandl; are only counted as a product.
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= (+1-1)AX3A3a%l =0,

The prefactors-1/3 and-1/4 are due to the expansion of the logarithm, the
factors 3 and 4 inside the brackets result from the cyclioypgation of the periodic
itineraries, and the cancellation stems from the rule

C L AIARLIZ ,”(_Ai,i+2)”. ' (35.36)

The reader might study more complicated examples and coeviarself that the
rule (35.36.is suficient to cancel any primary or repeated periodic orbit with
one or more ghost sections completely out of the expansidnionfl — A) and
therefore also out of the cumulant expansion in the sensicialslimit: Any
periodic orbit of lengthm with n(< m) ghost sections is cancelled by the sum
of all ‘parent’ periodic orbits of lengthm — i (with 1 < i < nandi ghost
sections removed) weighted by their cyclic permutatiomdiaand by the prefactor
resulting from thetrace-log expansion. This is the way in which the nontrivial
pruning for theN-disk billiards can be derived from the exact quantum meiclaan
expressions in the semiclassical limit. Note that theretrexst at least one
indexi in any givenperiodicitinerary which corresponds to a non-ghost section,
since otherwise the itinerary in the semiclassical limitldoonly be straight and
therefore nonperiodic. Furthermore, the series in thetgtasxelation has to stop
at the 2nd-order trace, A?, as trA itself vanishes identically in the full domain
which is considered here.

35.5 Heisenberg uncertainty

Where is the boundarya ~ 2™ /a coming from?

This boundary follows from a combination of the uncertaiptinciple with
ray optics and the non-vanishing value for the topologicetapy of the 3-disk
repeller. When the wave numblkis fixed, quantum mechanics can only resolve
the classical repelling set up to the critical topologicalesn. The quantum wave
packet which explores the repelling set has to disentanylgifierent sections
of sized ~ a/2" on the “visible” part of the disk surface (which is of ord&r
between any two successive disk collisions. SuccessiVisiook are separated
spatially by the mean flight length, and the flux spreads with a factbya. In
other words, the uncertainty principle bounds the maxireakible truncation in
the cycle expansion order by the highest quantum resolattamable for a given
wavenumbek.

Commentary

Remark 35.1 Sources.  This chapter is based in its entirety on ref];[the reader
is referred to the full exposition for the proofs and disioissof details omitted here.
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sect.35.3is based on appendix E of rei][ We follow Franz [L9] in applying the Watson
contour method4(] to (35.23. The Airy and Debye approximations to the Hankel
functions are given in ref.Z[1], the Airy expansion of the 1-disk zeros can be found
in ref. [27].For details see refs1p, 22, 23, 1]. That the interior domains of the disks
are excluded relatively to the free evolution without seditty obstacles was noted in
refs. 24, 15].

The procedure for the semiclassical approximation of a igéneeriodic itinerary
(35.20 of lengthn can be found in ref.]] for the case of thé&\-disk systems. The reader
interested in the details of the semiclassical reducti@ulissed to consult this reference.

The ghost orbits were introduced in refs2[ 24].

Remark 35.2 Krein-Friedel-Lloyd formula.  In the literature (see, e.g., refs.4 15]
based on ref.][1] or ref. [1]) the transition from the quantum mechanics to the sensadas
of scattering problems has been performed via the semiicédtimit of the left hand sides
of the Krein-Friedel-Lloyd sum for the (integrated) spatttensity |, 6, 8, 9]. See also
ref. [13) for a modern discussion of the Krein-Friedel-Lloyd forrmuaind refs. ], 17] for
the connection of34.17 to the the Wigner time delay.

The order of the two limits in34.19 and @4.17) is essential, see e.g. Balian and
Bloch [11] who stress that smoothed level densities should be irsérte the Friedel
sums.

The necessity of theie in the semiclassical calculation can be understood by ypurel
phenomenological considerations: Without théerm there is no reason why one should
be able to neglect spurious periodic orbits which solelytfaeee because of the introduction
of the confining boundary. The subtraction of the second {gmpference system helps
just in the removal of those spurious periodic orbits whielier encounter the scattering
region. The ones that do would still survive the first lilmit> oo, if they were not damped

out by the+ie term. )
[exercise 34.1]

Remark 35.3 T, CS, DS and ASS matrices are trace-class Inrefs. [1] it has explicitly
been shown that th&-matrix as well as theCs, D and ASS-matrices of the scattering
problem fromN < oo non-overlapping finite disks are all trace-class. The cpoading
properties for the single-disk systems is particulary g¢agrove.
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Chapter 36

Helium atom

“But,” Bohr protested, “nobody will believe me unless |

can explain every atom and every molecule.” Rutherford

was quick to reply, “Bohr, you explain hydrogen and you

explain helium and everybody will believe the rest.”
—John Archibald Wheeler (1986)

(G. Tanner)

other curious but rather idealized dynamical systems. Uf lyave become

impatient and started wondering what good are the meth@asdd so far
in solving real physical problems, we have good news for y@ée will show
in this chapter that the concepts of symbolic dynamics,alistperiodic orbits,
and cycle expansions are essential tools to understandaémdate classical and
guantum mechanical properties of nothing less than therela dreaded three-
body Coulomb problem.

SFAR much has been said about 1-dimensional maps, game of paufcll

This sounds almost like one step too much at a time; we all kmawrich and
complicated the dynamics of the three-body problem is — careally jump from
three static disks directly to three charged particles mgpuinder the influence of
their mutually attracting or repelling forces? It turns ,ome can, but we have to
do it with care. The full problem is indeed not accessibleliitsidetail, but we
are able to analyze a somewhat simpler subsystem — colliediam. This system
plays an important role in the classical dynamics of the thulee-body problem
and its quantum spectrum.

The main work in reducing the quantum mechanics of heliunstraiclassical
treatment of collinear helium lies in understanding why e @lowed to do so.
We will not worry about this too much in the beginning; aftély 80 years and
many failed attempts separate Heisenberg, Bohr and othéng i1920ties from
the insights we have today on the role chaos plays for helinchis quantum
spectrum. We have introduced collinear helium and learred to integrate
its trajectories in sec6.3. Here we will find periodic orbits and determine the
relevant eigenvalues of the fundamental matrix in sé6tl. We will explain in
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Figure 36.1: Coordinates for the helium three body ++
problem in the plane. He
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Figure 36.2: Collinear helium, with the two electrons
on opposite sides of the nucleus. 1 I’2

sect.36.5why a quantization of the collinear dynamics in helium willable us
to find parts of the full helium spectrum; we then set up theiskassical spectral
determinant and evaluate its cycle expansion. A full quarnjustification of this
treatment of helium is briefly discussed in se8.5.1

36.1 Classical dynamics of collinear helium

Recapitulating briefly what we learned in se6t3: the collinear helium system
consists of two electrons of masg and charge-e moving on a line with respect
to a fixed positively charged nucleus of charg2e, as in figure36.2

The Hamiltonian can be brought to a non—dimensionalizeoh for

2
P

P, PR_2_ 2 -1 36.1
2 2 I Io ri+ro ( )

The case of negative energies chosen here is the most tiigrese for us. It
exhibits chaos, unstable periodic orbits and is respomsibslthe bound states and
resonances of the quantum problem treated in 8éch

There is another classical quantity important for a seragital treatment of
guantum mechanics, and which will also feature promineintijre discussion in
the next section; this is the classical acti2.(L which scales with energy as

1/2
s®= e pE = To s (36.2)

with S being the action obtained fron3§.1) for E = —1, and coordinateg =
(r1,r2), p = (p1, p2). For the Hamiltonian 36.1), the period of a cycle and its
action are related by8@.17), Ty = 3S,.

After a Kustaanheimo—Stiefel transformation

P P2

=20 =30 (36.3)

2 2
rn = Q. r=Q3, p1
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Figure 36.3: (a) A typical trajectory in the; — B
r, plane; the trajectory enters here along the |
axis and escapes to infinity along theaxis; (b)
Poincaré mapr{=0) for collinear helium. Strong
chaos prevails for small near the nucleus.
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a) b)

and reparametrization of time loy = dt/ryrp, the equations of motion take form

(6.19

. P2 2 .

Py =2Q; [2 - EZ - Q§(1+ %H ; Q1= %PlQE (36.4)
2

. P2 ? :

P2:2Q2[2—§1—Q§(1+ %]] Qz:%PzQi-
2

Individual electron-nucleus collisions af = Q> = O orr, = Q3 = 0 no
longer pose a problem to a numerical integration routinee &huationsg.19
are singular only at the triple collisioR;2 = 0, i.e., when both electrons hit the
nucleus at the same time.

The new coordinates and the Hamiltoni&ril@ are very useful when calculating
trajectories for collinear helium; they are, however, lessitive as a visualization
of the three-body dynamics. We will therefore refer to the @bordinates, r
when discussing the dynamics and the periodic orbits.

36.2 Chaos, symbolic dynamics and periodic orbits

Let us have a closer look at the dynamics in collinear heliuhie electrons
are attracted by the nucleus. During an electron—nuclellisioo momentum is
transferred between the inner and outer electron. The &laetron has a maximal
screening #ect on the charge of the nucleus, diminishing the attradtivee on
the outer electron. This electron — electron interactionegligible if the outer
electron is far from the nucleus at a collision and the oVelgiamics is regular
like in the 1-dimensional Kepler problem.

Things change drastically if both electrons approach tloéems nearly simultaneously.

The momentum transfer between the electrons depends naitiway on how

the particles approach the origin. Intuitively, these hearissed triple collisions
render the dynamics chaotic. A typical trajectory is pldtta figure 36.3 (a)
where we used; andr; as the relevant axis. The dynamics can also be visualized
in a Poincaré surface of section, see figgée3 (b). We plot here the coordinate
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Figure 36.4: The cycle 011 in the fundamental
domainr; > rp (full line) and in the full domain
(dashed line).

and momentum of the outer electron whenever the inner fmHits the nucleus,
i.e,, rp orrp = 0. As the unstructured gray region of the Poincaré section f
smallry illustrates, the dynamics is chaotic whenever the outetrele is close to
the origin during a collision. Conversely, regular motiaizsninate whenever the
outer electron is far from the nucleus. As one of the elestestapes for almost
any starting condition, the system is unbounded: one eledgay electron 1)
can escape, with an arbitrary amount of kinetic energy takeithe fugative.
The remaining electron is trapped in a Kepler ellipse wittalt@nergy in the
range F1, —]. There is no energy barrier which would separate the botord f
the unbound regions of the phase space. From general kiiceangtiments one
deduces that the outer electron will not return wipgn- 0,r, < 2 atp, = 0, the
turning point of the inner electron. Only if the two electscapproach the nucleus
almost symmetrically along the lime = r,, and pass close to the triple collision
can the momentum transfer between the electrons be largeylero kick one of
the particles out completely. In other words, the electrscepe originates from
the near triple collisions.

The collinear helium dynamics has some important progentieich we now
list.

36.2.1 Reflection symmetry

The Hamiltonian §.10) is invariant with respect to electron—electron exchange;
this symmetry corresponds to the mirror symmetry of the m@ealong the line

ri = rp, figure36.4 As a consequence, we can restrict ourselves to the dynamics
in thefundamental domainir> rp and treat a crossing of the diagomal= r, as

a hard wall reflection. The dynamics in the full domain camtbe reconstructed
by unfolding the trajectory through back-reflections. Asplaeined in chaptei9,

the dynamics in the fundamental domain is the key to the feettion of spectral
determinants, to be implemented heredf.(5. Note also the similarity between
the fundamental domain of the collinear potential figses, and the fundamental
domain figure?? (b) in the 3—disk system, a simpler problem with the samerpina
symbolic dynamics.

in depth:
” sect. 19.6, p. 331
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36.2.2 Symbolic dynamics

We have already made the claim that the triple collisiongieerthe collinear
helium fully chaotic. We have no proof of the assertion, I &nalysis of the
symbolic dynamics lends further credence to the claim.

The potential in 86.1) forms a ridge along the ling; = r,. One can show
that a trajectory passing the ridge must go through at leestwo-body collision
ri = 0 orrp = 0 before coming back to the diagomal = r,.  This suggests
a binary symbolic dynamics corresponding to the dynamics in the domehtal
domainry > ry; the symbolic dynamics is linked to the Poincaré mag: 0 and
the symbols 0 and 1 are defined as

0: if the trajectory is not reflected from the ling = r, between two collisions
with the nucleus, = 0;

1: if atrajectory is reflected from the limg = r, between two collisions with
the nucleus, = 0.

Empirically, the symbolic dynamics is complete for a Ponécenap in the
fundamental domain, i.e., there exists a one-to-one quuretence between binary
symbol sequences and collinear trajectories in the fundeahdomain, with exception
of theO cycle.

36.2.3 Periodic orbits

The existence of a binary symbolic dynamics makes it easptotcthe number
of periodic orbits in the fundamental domain, as in s&8t5.2 However, mere
existence of these cycles does ndfise to calculate semiclassical spectral deter-
minants. We need to determine their phase space trajectanmig calculate their
periods, topological indices and stabilities. A restdntiof the periodic orbit
search to a suitable Poincaré surface of sectionrg.g.0 orr; = rp, leaves us
in general with a 2-dimensional search. Methods to find péiorbits in multi-
dimensional spaces have been described in chagteThey depend sensitively
on good starting guesses. A systematic search for all arhitshe achieved only
after combining multi-dimensional Newton methods wittenpiolation algorithms
based on the binary symbolic dynamics phase space pairiiiorll cycles up
to symbol length 16 (some 8000 primitive cycles) have beenprded by such
methods, with some examples shown in fig@@&5 All numerical evidence
indicates that the dynamics of collinear helium is hypady@nd that all periodic
orbits are unstable.

Note that the fixed poir@ cycle is not in this list. Th@ cycle would correspond
to the situation where the outer electron sits at rest ifiyfiar from the nucleus
while the inner electron bounces back and forth into theeusl The orbit is
the limiting case of an electron escaping to infinity witha&imetic energy. The
orbit is in the regular (i.e., separable) limit of the dynasiand is thus marginally
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000001 | 000011 |

Figure 36.5: Some of the shortest cycles in T T
collinear helium. The classical collinear electron r 001011 | r 011111 r 0010110 |
motion is bounded by the potential barriet = 0110111
—2/r1—2/r,+1/(r1 + rp) and the conditiom; > 0.
The orbits are shown in the full—, domain, the
itineraries refers to the dynamics in the > r,
fundamental domain. The last figure, the 14-cycle
00101100110111, is an example of a typical cycle
with no symmetry.

stable. The existence of this orbit is also related to intiéemt behavior generating
the quasi—regular dynamics for langethat we have already noted in figug6.3(b).

Search algorithm for an arbitrary periodic orbit is quiterhersome to program.
There is, however, a class of periodic orbits, orbits witmsyetries, which can be
easily found by a one-parameter search. The only symmétriptehe dynamics
in the fundamental domain is time reversal symmetry; a tievensal symmetric
periodic orbit is an orbit whose trajectory in phase spacmapped onto itself
when changingffi, p2) — (—p1, —p2), by reversing the direction of the momentum
of the orbit. Such an orbit must be a “libration” or self-ggting cycle, an orbit
that runs back and forth along the same path inthe£) plane. The cycle§, 01
and001 in figure36.5are examples of self-retracing cycles. Luckily, the shatrte
cycles that we desire most ardently have this symmetry.

Why is this observation helpful? A self-retracing cycle ratart perpendicular
to the boundary of the fundamental domain, that is, on eitfi¢he axisro = 0
orry = ry, or on the potential boundaPy% - % + rl£r2 = —1. By shooting &
trajectories perpendicular to the boundaries and monidtie orbits returning to
the boundary with the right symbol length we will find time eesal symmetric

cycles by varying the starting point on the boundary as tHg parameter. But
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how can we tell whether a given cycle is self-retracing or?néil the relevant
information is contained in the itineraries; a cycle is selfacing if its itinerary
is invariant under time reversal symmetry (i.e., read bagkls) and a suitable
number of cyclic permutations. All binary strings up to lém§ fulfill this condition.
The symbolic dynamics contains even more information; we tedl at which
boundary the total reflection occurs. One finds that an odnitssout perpendicular

e to the diagonat; = r if the itinerary is time reversal invariant and has an
odd number of 1's; an example is the cyfl in figure36.5

e to the axisrp = 0 if the itinerary is time reversal invariant and has an even
number of symbols; an example is the cyB@L1 in figure36.5

e to the potential boundary if the itinerary is time reversadariant and has
an odd number of symbols; an example is the cgdi2 in figure36.5

All cycles up to symbol length 5 are time reversal invariding, first two non-time
reversal symmetric cycles are cyclé81011 andd01101 in figure36.5 Their
determination would require a two-parameter search. Thecjwles are mapped
onto each other by time reversal symmetry, i.e., they hageséime trace in the
ri—t, plane, but they trace out distinct cycles in the full phasecep

We are ready to integrate trajectories for classical cedimhelium with the
help of the equations of motion§.(9 and to find all cycles up to length 5. Ther‘[%Bxercise 36.5]
is only one thing not yet in place; we need the governing eégustfor the matrix )
elements of the fundamental matrix along a trajectory ireptd calculate stability
indices. We will provide the main equations in the next settiwith the details
of the derivation relegated to the appen8ix.

36.3 Local coordinates, fundamental matrix

In this section, we will derive the equations of motion foe flandamental matrix
along a collinear helium trajectory. The fundamental magi4-dimensional; the

two trivial eigenvectors corresponding to the conservetifenergy and displacements
along atrajectory can, however, be projected out by s@tatthogonal coordinates
transformations, see appendixWe will give the transformation to local coordinates
explicitly, here for the regularized coordinatésl(7), and state the resulting equations
of motion for the reduced [ 2] fundamental matrix.

The vector locally parallel to the trajectory is pointingtire direction of the
phase space velocity (7)

. oH
Vi = Xm(t) = wmnﬂ = (Hp,, Hp,, —Hq,, _HQz)Ta

with Hg, = g—H, and Hp, = g—;'l, i = 1,2. The vector perpendicular to a trajectory

X(t) = (Qu(t), Qz(t), P1(t), P2(t)) and to the energy manifold is given by the gradient
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of the Hamiltonian §.18
y=VH= (HQI’ HQz’ HPI’ HPz)T .

By symmetryyym = wmn%% = 0, so the two vectors are orthogonal.

Next, we consider the orthogonal matrix

O = (y1.72,7/RV) (36.5)

-Hp,/R  Hg, Hg,/R Hp,
Hp,/R  -Hg, Hq,/R Hp,
-Hg,/R —-Hp, Hp,/R —Hg,
Ho/R Hp,  Hp,/R -Hgq,

with R= [VHP? = (H(Z31 + Hé2 +H3 +H2 ), which provides a transformation to
local phase space coordinates centered on the trajedtym@iong the two vectors
(y,v). The vectorsy; , are phase space vectors perpendicular to the trajec{or
and to the energy manifold in the 4-dimensional phase spacellmear helium.
The fundamental matrix(6) rotated to the local coordinate system®yhen has
the form

M1 M *
Mpy NMpo *
0 0 1

*

* *

m = , M=0"TmoO

P oOOoO

The linearized motion perpendicular to the trajectory om éhergy manifold is
described by the [% 2] matrix m; the ‘trivial’ directions correspond to unit
eigenvalues on the diagonal in the 3rd and 4th column and row.

The equations of motion for the reduced fundamental matrare given by
m = I(t)m(t), (36.6)

with m(0) = 1. The matrixl depends on the trajectory in phase space and has the
form

l11 112 =

[=| la l2
0O 0 O
*

£ £

[e¥ex=X=)

where the relevant matrix elemesare given by

1
la = E[ZHQ1Q2(HQ2HP1+HQ1HP2) (36.7)
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p Sp/2r  In|Ay| op My
1] 1.82900 0.6012 0.5393
01| 3.61825 1.8622 1.0918
001 | 5.32615 3.4287 1.6402
011| 5.39451 1.8603 1.6117
0001| 6.96677 4.4378 2.1710
0011| 7.04134 23417 2.1327
0111| 7.25849 3.1124 2.1705
00001| 8.56618 5.1100 2.6919
00011| 8.64306 2.7207 2.6478
00101| 8.93700 5.1562 2.7291
00111| 8.94619 4.5932 2.7173
01011| 9.02689 4.1765 2.7140
01111| 9.07179 3.3424 2.6989
000001| 10.13872 5.6047 3.2073
000011| 10.21673 3.0323 3.1594
000101| 10.57067 6.1393 3.2591
000111| 10.57628 5.6766 3.2495
001011| 10.70698 5.3251 3.2519
001101| 10.70698 5.3251 3.2519
001111| 10.74303 4.3317 3.2332
010111| 10.87855 5.0002 3.2626
011111} 10.91015 4.2408 3.2467

NNRNNNNNNNOOOOCOOWmwoo RN

e e g g g g S g N W N

Table 36.1: Action S, (in units of 2r), Lyapunov exponerii\y|/T, for the motion in the collinear
plane, winding numbesr,, for the motion perpendicular to the collinear plane, andttp®logical
indexm, for all fundamental domain cycles up to topological length 6

+(HQ1HP1 - HQzHF’z)(HQ1Q1 - HQzQz - HP1P1 + szpz)]
iz = -2Hq,0,(HoHo, — He,Hp,)
+(Hél " ng)(HQZQZ +Hewp,) + (Héz + H§1)(HQ1Q1 +Hp,p,)

1
o1 = 5[2(Hoip, + Hopy)(Ho He, + Ho,Hey)

_(Hgl + ng)(HQlQl + HQzQz) - (Hél + Héz)(HPlpl + HPZPZ)]
I = —li1.

Here HQ,QJ, lepl, i, j = 1,2 are the second partial derivativestbfwith respect
to the coordinate§);, P;, evaluated at the phase space coordinate of the classical
trajectory.

36.4 Getting ready

Now everything is in place: the regularized equations ofiamtan be implemented
in a Runge—Kutta or any other integration scheme to caleutajectories. We
have a symbolic dynamics and know how many cycles there atdan to find
them (at least up to symbol length 5). We know how to compugeithdamental
matrix whose eigenvalues enter the semiclassical speetaiminant33.12. By
(32.17) the actionSy, is proportional to the period of the orb®,, = 2T .
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There is, however, still a slight complication. Collinealibm is an invariant
4-dimensional subspace of the full helium phase space. tégteict the dynamics
to angular momentum equal zero, we are left with 6 phase spandinates. That
is not a problem when computing periodic orbits, they arévihls to the other
dimensions. However, the fundamental matrix does pick ugesontributions.
When we calculate the fundamental matrix for the full prableve must also
allow for displacements out of the collinear plane, so thefftndamental matrix
for dynamics forL = 0 angular momentum is 6 dimensional. Fortunately, the
linearized dynamics in andffothe collinear helium subspace decouple, and the
fundamental matrix can be written in terms of two distinc[2] matrices, with
trivial eigendirections providing the remaining two dinseans. The submatrix
related to displacementdtdhe linear configuration characterizes the linearized
dynamics in the additional degree of freedom, @eoordinate in figure6.1 It
turns out that the linearized dynamics in teoordinate is stable, corresponding
to a bending type motion of the two electrons. We will needRlugjuet exponents
for all degrees of freedom in evaluating the semiclassigatsal determinant in
sect.36.5

The numerical values of the actions, Floguet exponentbjlisgzeangles, and
topological indices for the shortest cycles are listed inlet&6.3 These numbers,
needed for the semiclassical quantization implementeldeiméxt section, an also
be helpful in checking your own calculations.

36.5 Semiclassical quantization of collinear helium

Before we get down to a serious calculation of the helium tuarenergy levels
let us have a brief look at the overall structure of the spectrThis will give us

a preliminary feel for which parts of the helium spectrum aceessible with the
help of our collinear model — and which are not. In order takiéee discussion as
simple as possible and to concentrate on the semiclasspatts of our calculations
we dfer here only a rough overview. For a guide to more detailedwats see
remark36.4

36.5.1 Structure of helium spectrum

We start by recalling Bohr's formula for the spectrum of rogkn like one-
electron atoms. The eigenenergies form a Rydberg series

e'me 72
En=——— 36.8
N 2 o2 (36.8)

whereZeis the charge of the nucleus and is the mass of the electron. Through
the rest of this chapter we adopt the atomic uaitsme = 71 = 1.

The simplest model for the helium spectrum is obtained batitng the two
electrons as independent particles moving in the potesfttake nucleus neglecting
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the electron—electron interaction. Both electrons are tieind in hydrogen like
states; the inner electron will see a charge 2, screening at the same time the
nucleus, the outer electron will move in a Coulomb potemntigh effective charge

Z - 1= 1. In this way obtain a first estimate for the total energy

2 1 .
Enn = N o with n> N. (36.9)

This double Rydberg formula contains already most of thermftion we need to
understand the basic structure of the spectrum. The (¢pivezations thresholds
En = —% are obtained in the limit — oo, yielding the ground and excited states
of the helium ionHe". We will therefore refer toN as the principal quantum
number. We also see that all statgg, with N > 2 lie above the first ionization
threshold forN = 1. As soon as we switch on electron-electron interactiosehe
states are no longer bound states; they turn into resoreessthich decay into
a bound state of the helium ion and a free outer electron. Mgkt not come as
a big surprise if we have the classical analysis of the ptes/gection in mind: we
already found that one of the classical electrons will alnabsays escape after
some finite time. More remarkable is the fact that the fiXst: 1 series consists
of true bound states for ati, an @fect which can only be understood by quantum
arguments.

The hydrogen-like quantum energi€x5(8) are highly degenerate; states with
different angular momentum but the same principal quantum nukhlsbare the
same energy. We recall from basic quantum mechanics of bgdratom that
the possible angular momenta for a givdrspanl = 0,1...N — 1. How does
that dfect the helium case? Total angular momenturfor the helium three-
body problem is conserved. The collinear helium is a sulespécthe classical
phase space fdr = 0; we thus expect that we can only quantize helium states
corresponding to the total angular momentum zero, a subspeof the full
helium spectrum. Going back to our crude estim&t& g we may now attribute
angular momenta to the two independent electrgremdl, say. In order to obtain
total angular momenturo = 0 we need; = I, = | andly = —l, that is, there are
N different states correspondinglto= 0 for fixed quantum numbens, n. That
means that we exped{ different Rydberg series converging to each ionization
thresholdEy = —2/N2. This is indeed the case and thedifferent series can
be identified also in the exact helium quantum spectrum, seeefB6.6 The
degeneracies between thdfdientN Rydberg series corresponding to the same
principal quantum numbeX, are removed by the electron-electron interaction.
We thus already have a rather good idea of the coarse seusfttine spectrum.

In the next step, we may even speculate which parts of.tke0 spectrum
can be reproduced by the semiclassical quantization aheall helium. In the
collinear helium, both classical electrons move back amthfalong a common
axis through the nucleus, so each has zero angular momenrentherefore
expect that collinear helium describes the Rydberg serigslw= 11 = [, = 0.
These series are the energetically lowest states for fiXed)( corresponding to
the Rydberg series on the outermost left side of the spedtnfigure 36.6 We
will see in the next section that this is indeed the case aaidltie collinear model
holds down to theN = 1 bound state series, including even the ground state
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Figure 36.6: The exact quantum helium spectrum N=
for L = 0. The energy levels denoted by bars have

been obtained from full 3-dimensional quantum
calculations f].

of helium! We will also find a semiclassical quantum numberesponding to
the angular momenturhand show that the collinear model describes states for

moderate angular momentunas long a$ < N. .
[remark 36.4]

36.5.2 Semiclassical spectral determinant for collineardlium

Nothing but lassitude can stop us now from calculating ot Bemiclassical
eigenvalues. The only thing left to do is to set up the spede®erminant in terms
of the periodic orbits of collinear helium and to write oué thirst few terms of its
cycle expansion with the help of the binary symbolic dynamithe semiclassic-
al spectral determinan88.12 has been written as product over all cycles of the
classical systems. The energy dependence in collineamhelnters the classical
dynamics only through simple scaling transformations dieed in sect.6.3.1
which makes it possible to write the semiclassical spedetdrminant in the form

. > 1 eir(sSp—mF.g)
det -E)sc = exp[- > > = ,(36.10)
4 £4 T (~det (1- MF, )2 det (1- T, )72

r=1
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with the energy dependence absorbed into the variable

obtained by using the scaling relatioB6(2) for the action. As explained in
sect.36.3 the fact that the [4« 4] fundamental matrix decouples into twoX22]
submatrices corresponding to the dynanmiabe collinear space anqmbrpendicular
to it makes it possible to write the denominator in terms ofredpct of two
determinants. Stable and unstable degrees of freedomtbeténace formula in
different ways, reflected by the absence of the modulus sign anaitius sign
in front of det(1- M_). The topological indexm, corresponds to the unstable
dynamics in the collinear plane. Note that the fac6M(®) present in §3.19

is absent in36.10. Collinear helium is an open system, i.e., the eigeneasrgi
are resonances corresponding to the complex zeros of thielassical spectral
determinant and the mean energy stairdd€€) not defined. In order to obtain a
spectral determinant as an infinite product of the foB® {8 we may proceed as
in (17.9 by expanding the determinants i86(10 in terms of the eigenvalues of
the corresponding fundamental matrices. The matrix reptésy displacements
perpendicular to the collinear space has eigenvalues ofoitme expé2ric),
reflecting stable linearized dynamigs s the full winding number along the orbit
in the stable degree of freedom, multiplicative under migtirepetitions of this
orbit .The eigenvalues corresponding to the unstable digsaaong the collinear
axis are paired ajg\, 1/A} with |A| > 1 and real. As in17.9 and 33.18 we may
thus write

[~det (1- M)idet (1- M| 2 (36.11)
- [7(1 _ Ar)(l _ A—r)l(l _ e27rinr)(1 _ e—27rir(r)]’1/2

)

_ Z r1}2 rke—ir(i+l/2)u-'
o |A"|Y2A

The =+ sign corresponds to the hyperbdgiiwerse hyperbolic periodic orbits with
positivgnegative eigenvalues. Using the relation36.12 we see that the sum
overr in (36.10 is the expansion of the logarithm, so the semiclassicaitsge
determinant can be rewritten as a product over dynamical fzeictions, as in

(17.9:

det@ — E)sc = ﬂ Gk = 1_[ ﬂ ﬂ(1 — tlmy (36.12)
k=0 m=0 k=0 m=0 p

where the cycle weights are given by

km _ 1 j(sSp—mp3—4n((+1/2
tp ™= mé(s p=Mp§ ~4r((+1/2)e7p) s (36.13)
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andmy is the topological index for the motion in the collinear @amhich equals
twice the topological length of the cycle. The two indepertdbrections perpendicular
to the collinear axis lead to a twofold degeneracy in thiseegf freedom which
accounts for an additional factor 2 in front of the windingmhero. The values

for the actions, winding numbers and stability indices @& #hortest cycles in
collinear helium are listed in tabl&s.3

The integer indice$ andk play very diferent roles in the semiclassical spec-
tral determinant36.12. A linearized approximation of the flow along a cycle
corresponds to a harmonic approximation of the potentighévicinity of the
trajectory. Stable motion corresponds to a harmonic @goillpotential, unstable
motion to an inverted harmonic oscillator. The indéxvhich contributes as
a phase to the cycle weights in the dynamical zeta functiamstlerefore be
interpreted as a harmonic oscillator quantum number; fesponds to vibrational
modes in thé coordinate and can in our simplified picture developed ih 86c5.1
be related to the quantum numbee I; = |, representing the single particle
angular momenta. Every distinétvalue corresponds to a full spectrum which
we obtain from the zeros of the semiclassical spectral ohétent /¢, keeping
¢ fixed. The harmonic oscillator approximation will eventyddreak down with
increasing @-line excitations and thus increasiig The indexk corresponds to
‘excitations’ along the unstable direction and can be iifiedtwith local resonances
of the inverted harmonic oscillator centered on the givenitor  The cycle
contributionstS‘m) decrease exponentially with increasiagHigherk terms in an
expansion of the determinant give corrections which beconpertant only for
large negative imaginargvalues. As we are interested only in the leading zeros
of (36.19), i.e., the zeros closest to the real energy axis, itfS@ent to take only
thek = 0 terms into account.

Next, let us have a look at the discrete symmetries discuissedct.36.2
Collinear helium has &, symmetry as it is invariant under reflection across
ther; = ry line corresponding to the electron-electron exchange sstmymAs
explained in sectsl9.1.1and 19.5 we may use this symmetry to factorize the
semiclassical spectral determinant. The spectrum cameipg to the states
symmetric or antisymmetric with respect to reflection cambined by writing
the dynamical zeta functions in the symmetry factorizednfor

100 =[Ta-w?] Ja-d. (36.14)

Here, the first product is taken over all asymmetric primdesd.e., cycles that
are not self-dual under th€, symmetry. Such cycles come in pairs, as two
equivalent orbits are mapped into each other by the symntetnsformation.
The second product runs over all self-dual cycles; thesésodooss the axis
ri = rp twice at a right angle. The self-dual cycles close in the &mental
domainr; < r, already at half the period compared to the orbit in the futhdn,
and the cycle weight in (36.14) are the weights of fundamental domain cycles.
TheC, symmetry now leads to the factorization 66(14 1/¢ = £;17%, with

10 = [la-w]]a-.
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1y = J]a-w]]a+t), (36.15)

settingk = 0 in what follows. The symmetric subspace resonances asn giv
by the zeros of /]gff), antisymmetric resonances by the zeros ,q;ﬂ’i, with the
two dynamical zeta functions defined as products over oifitse fundamental
domain. The symmetry properties of an orbit can be redlicectly from its
symbol sequence, as explained in s8ét2 An orbit with an odd number of 1's
in the itinerary is self-dual under th& symmetry and enters the spectral deter-
minant in 86.15 with a negative or a positive sign, depending on the symmetr
subspace under consideration.

36.5.3 Cycle expansion results

So far we have established a factorized form of the semickdsspectral det-
erminant and have thereby picked up tgm@od quantum numbershe quantum
numberm has been identified with an excitation of the bending vibratj the
exchange symmetry quantum numhselr corresponds to states being symmetric
or antisymmetric with respect to the electron-electronhexge. We may now
start writing down the binary cycle expansiot8(7) and determine the zeros of
spectral determinant. There is, however, still anotheblero: there is no cycle 0

in the collinear helium. The symbol sequetceorresponds to the limit of an outer
electron fixed with zero kinetic energyrat= oo, the inner electron bouncing back
and forth into the singularity at the origin. This introdsdatermittency in our
system, a problem discussed in chagi@r We note that the behavior of cycles
going far outin the channe} orr, — oo is very diferent from those staying in the
near core region. A cycle expansion using the binary alphapeoduces states
where both electrons are localized in the near core regitrese are the lowest
states in each Rydberg series. The states converging toatfey ionization
thresholdsEy = —2/N? correspond to eigenfunctions where the wave function
of the outer electron is stretched far out into the ionizatbannelr;,r, — co.
To include those states, we have to deal with the dynamickerimit of large
ri,ro. This turns out to be equivalent to switching to a symboliaaiyics with
an infinite alphabet. ~ With this observation in mind, we maytevthe cycle
expansion (....) for a binary alphabet without theycle as

9= 1 ~tO -t +0 {0

001 011
SO @ 00 (O (00 (36.16)

0001 © 0011 0011 0111 01171

The Weightstg) are given in 86.19, with contributions of orbits and composite
orbits of the same total symbol length collected within squaackets. The cycle
expansion depends only on the classical actions, staliilitices and winding

numbers, given for orbits up to length 6 in tatd8.3 To get reacquainted with
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j=1 j=4 j=8 j=12 j=16 -Egn
3.0970 2.9692 2.9001 2.9390 2.9248 2.9037
0.8044 0.7714 0.7744 0.7730 0.7727 0.7779
— 05698 05906 0.5916 0.5902 0.5899
— — — 05383 0.5429 0.5449
0.3622 0.3472 0.3543 0.3535 0.3503 0.3535
— — 02812 0.2808 0.2808 0.2811
— — 02550 0.2561 0.2559 0.2560
— — —  0.2416 0.2433 0.2438
0.2050 0.1962 0.1980 0.2004 0.2012 0.2010
— 01655 0.1650 0.1654 0.1657 0.1657
— — 01508 0.1505 0.1507 0.1508
— — 01413 0.1426 0.1426 0.1426

ADAAMNWWWWNNNRE Z
~No Mo whwNR S

Table 36.2: Collinear helium, real part of the symmetric subspace r@soes obtained by a cycle
expansion §6.16 up to cycle length. The exact quantum energi€g fre in the last column. The
states are labeled by their principal quantum numbers. A dasan entry indicates a missing zero
at that level of approximation.

the cycle expansion formul&@§.16, consider a truncation of the series after the
first term

19 ~1-t1.
The quantization condition/Z((s) = 0 leads to

(S1/2n)?

BT gN=012..., (36.17)
[m+ 3 +2(N+ 3)oq]?

Emn =

with S1/27 = 1.8290 for the action ana; = 0.5393 for the winding number, see
table36.3 the 1 cycle in the fundamental domain. This cycle can berdest as
theasymmetric stretcbrbit, see figur&6.5 The additional quantum numbirin
(36.17 corresponds to the principal quantum number defined in 36d.1 The
states described by the quantization conditi®® {7) are those centered closest to
the nucleus and correspond therefore to the lowest statescim Rydberg series
(for a fixedm and N values), in figure36.6 The simple formula36.17) gives
already a rather good estimate for the ground state of heliResults obtained
from (36.17) are tabulated in tabld6.2 see the 3rd column undér= 1 and the
comparison with the full quantum calculations.

In order to obtain higher excited quantum states, we needdode more
orbits in the cycle expansio3.16, covering more of the phase space dynamics
further away from the center. Taking longer and longer cyafto account, we
indeed reveal more and more states in edederies for fixedn. This is illustrated
by the data listed in tabl@6.2for symmetric states obtained from truncations of
the cycle expansion of/Z..

Results of the same quality are obtained for antisymmetattes by calculating
the zeros of 1{@. Repeating the calculation with = 1 or higher in 86.19
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reveals states in the Rydberg series which are to the rigktiteoenergetically
lowest series in figur86.6

Résum é

We have covered a lot of ground starting with consideratiohshe classical
properties of a three-body Coulomb problem, and ending thighsemiclassical
helium spectrum. We saw that the three-body problem réstrito the dynamics
on a collinear appears to be fully chaotic; this implies theditional semiclassical
methods such a8VKBquantization will not work and that we needed the full
periodic orbit theory to obtain leads to the semiclassipat&rum of helium. As a
piece of unexpected luck the symbolic dynamics is simpld,tha semiclassical
quantization of the collinear dynamics yields an importpatt of the helium
spectrum, including the ground state, to a reasonable @acyuA sceptic might
say: “Why bother with all the semiclassical considerat®na straightforward
numerical quantum calculation achieves the same goal véttetbprecision.”
While this is true, the semiclassical analysfieos new insights into thstructure
of the spectrum. We discovered that the dynamics perpeladituthe collinear
plane was stable, giving rise to an additional (approxiingtgantum number
¢. We thus understood the origin of theffdrent Rydberg series depicted in
figure 36.6 a fact which is not at all obvious from a numerical solutidntte
quantum problem.

Having traversed the long road from the classical game dfgiirall the way
to a credible helium spectrum computation, we could decla®ry and fold
down this enterprise. Nevertheless, there is still muchittktabout - what about
such quintessentially quantunffects as diraction, tunnelling, ...? As we shall
now see, the periodic orbit theory has still much of intetesiffer.

Commentary

Remark 36.1 Sources. The full 3-dimensional Hamiltonian after elimination ofeth
center of mass coordinates, and an account of the finite msichass #ects is given in
ref. [2]. The general two—body collision regularizing KustaamheiStiefel transformatiors],
a generalization of Levi-Civita's1[3] Pauli matrix two—body collision regularization for
motion in a plane, is due to Kustaanheimd][ who realized that the correct higher-
dimensional generalization of the “square root removatkt(6.15, by introducing a
vectorQ with propertyr = |Q[2, is the same as Dirac’s trick of getting linear equation
for spin J2 fermions by means of spinors. Vector spaces equipped wittoduct and

a known satisfyQ - Q| = |QJ? definenormed algebrasThey appear in various physical
applications - as quaternions, octonions, spinors. THenigoe was originally developed
in celestial mechanics] to obtain numerically stable solutions for planetary rons.
The basic idea was in place as early as 1931, when H. Heptised a KS transformation
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in order to illustrate a Hopf's invariant. The KS transfotioa for the collinear helium
was introduced in refq).

Remark 36.2 Complete binary symbolic dynamics. No stable periodic orbit and no
exception to the binary symbolic dynamics of the collinegiim cycles have been found
in numerical investigations. A proof that all cycles aretabte, that they are uniquely
labeled by the binary symbolic dynamcis, and that this dyinais complete is, however,
still missing. The conjectured Markov partition of the paapace is given by the triple
collision manifold, i.e., by those trajectories which staror end at the singular point
r; =r2 =0. See also ref]].

Remark 36.3 Spin and particle exchange symmetry. In our presentation of collinear
helium we have completely ignored all dynamicfibets due to the spin of the particles
involved, such as the electronic spin-orbit coupling. Elmus are fermions and that
determines the symmetry properties of the quantum statdee tdtal wave function,
including the spin degrees of freedom, must be antisymmetriler the electron-electron
exchange transformation. That means that a quantum statmelyic in the position
variables must have an antisymmetric spin wave functien, the spins are antiparallel
and the total spin is zero (singletstate). Antisymmetrite have symmetric spin wave
function with total spin 1 (tripletstates). The threefokbeneracy of spin 1 states is lifted
by the spin-orbit coupling.

Remark 36.4 Helium quantum numbers.  The classification of the helium states in
terms of single electron quantum numbers, sketched in 86ci.1, prevailed until the
1960's; a growing discrepancy between experimental resuld theoretical predictions
made it necessary to refine this picture. In particular, ifffei@nt Rydberg series sharing
a givenN-quantum number correspond, roughly speaking, to a quaitizof the inter
electronic angl®, see figure36.1, and can not be described in terms of single electron
guantum numbelig, |,. The fact that something is slightly wrong with the singleatton
picture laid out in sec836.5.1is highlighted when considering the collinear configunatio
where both electrons are on tekameside of the nucleus. As both electrons again have
angular momentum equal to zero, the corresponding quartatessshould also belong
to single electron quantum numbelsg [2) = (0, 0). However, the single electron picture
breaks down completely in the lim@ = 0 where electron-electron interaction becomes
the dominant #ect. The quantum states corresponding to this classicéigewation are
distinctively diferent from those obtained from the collinear dynamics wigicteons on
different sides of the nucleus. The Rydberg series related wabsical® = 0 dynamics
are on the outermost rigth side in ealhsubspectrum in figur86.6 and contain the
energetically highest states for givéhn quantum numbers, see also remaks A
detailed account of the historical development as well a®dem interpretation of the
spectrum can be found in refl][

Remark 36.5 Beyond the unstable collinear helium subspace. ~ The semiclassical
quantization of the chaotic collinear helium subspacessuised in refs/[ 8, 9]. Classical
and semiclassical considerations beyond what has beeunsd&t in sect36.5 follow
several other directions, all outside the main of this book.

A classical study of the dynamics of collinear helium wheothbelectrons are on
the same side of the nucleus reveals that this configuragidally stable both in the
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collinear plane and perpendicular to it. The correspondirantum states can be obtained
with the help of an approximate EBK-quantization which r@senelium resonances with
extremely long lifetimes (quasi - bound states in the cantin). These states form
the energetically highest Rydberg series for a given ppadcijuantum numbeN, see
figure36.6 Details can be found in refsL(), 11].

In order to obtain the Rydberg series structure of the specti.e., the succession
of states converging to various ionization thresholds, wednto take into account the
dynamics of orbits which make large excursions alongrther r, axis. In the chaotic
collinear subspace these orbits are characterized by dywatpeences of formraQ") where
a stands for an arbitrary binary symbol sequence dhid @ succession af 0's in a row.
A summation of the forn} " taor, Wheret, are the cycle weights ir36.19, and cycle
expansion of indeed yield all Rydberg states up the varioniation thresholds, see
ref. [4]. For a comprehensive overview on spectra of two-electtoma and semiclassical

treatments ref.1].

Exercises

36.1.

36.2.

36.3.

36.4.

Kustaanheimo—Stiefel transformation. Check
the Kustaanheimo—-Stiefel regularization for collinear
helium; derive the Hamiltoniar6(18 and the collinear
helium equations of motior6(19.

Helium in the plane. Starting with the helium
Hamiltonian in the infinite nucleus mass approximation
Mhe = oo, and angular momentum = 0, show that 36.5.
the three body problem can be written in terms of
three independent coordinates only, the electron-nucleus
distances; andr, and the inter-electron angl®, see
figure6.1

Helium trajectories. Do some trial integrations of
the collinear helium equations of motiof.(9. Due

to the energy conservation, only three of the phase
space coordinatesQq, Q., P1, P,) are independent.
Alternatively, you can integrate in 4 dimensions and use
the energy conservation as a check on the quality of your
integrator.

The dynamics can be visualized as a motion in the
original configuration spaceir,), ri > 0 quadrant,

or, better still, by an appropriately choser Roincaré
section, exercis€6.4 Most trajectories will run away,
do not be surprised - the classical collinear helium is
unbound. Try to guess approximately the shortest cycle
of figure36.4

A Poincaré section for collinear Helium. ~ Construct
a Poincaré section of figur86.3 that reduces the 36.6.
helium flow to a map. Try to delineate regions which
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correspond to finite symbol sequences, i.e. il
conditions that follow the same topological itine
in the figure 36.3a space for a finite number
bounces. Such rough partition can be used to ir
2—dimensional Newton-Raphson method searche
helium cycles, exercisé6.5

Collinear helium cycles.  The motion in the I(y, I,
plane is topologically similar to the pinball motion |
3-disk system, except that the motion is in the Cou
potential.

Just as in the 3-disk system the dynamics is simg
if viewed in thefundamental domaijnin this case tt
region betweem; axis and the; = r, diagonal. Modif
your integration routine so the trajectory bouncésio
diagonal as fi a mirror. Miraculously, the symba
dynamics for the survivors again turns out to be bil
with 0 symbol signifying a bouncefibther; axis, an
1 symbol for a bouncefbthe diagonal. Just as in
3-disk game of pinball, we thus know what cycles |
to be computed for the cycle expansi@®(19.

Guess some short cycles by requiring that topolog
they correspond to sequences of bounces
returning to the same; axis or reflecting & the
diagonal. Now either Use special symmetries of ¢
such as self-retracing to find all orbits up to length
a 1-dimensional Newton search.

Collinear helium cycle stabilities. Compute th
eigenvalues for the cycles you found in exerch&es
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as described in sec36.2 You may either integrate the 36.7. Helium eigenenergies. Compute the lowest

reduced 2x 2 matrix using equations36.6 together
with the generating functiohgiven in local coordinates
by (36.7) or integrate the full 4<x 4 Jacobian matrix,
see sect22.1 Integration in 4 dimensions should
give eigenvalues of the form (1, A, 1/Ap); The
unit eigenvalues are due to the usual periodic orbit
invariances; displacements along the orbit as well as
perpendicular to the energy manifold are conserved; the
latter one provides a check of the accuracy of your
computation. Compare with tablg6.3 you should
get the actions and Lyapunov exponents right, but
topological indices and stability angles we take on faith.

eigenenergies of singlet and triplet states of helium by
substituting cycle data into the cycle expansigf.(§

for the symmetric and antisymmetric zeta functions
(36.19. Probably the quickest way is to plot the
magnitude of the zeta function as function of real
energy and look for the minima. As the eigenenergies
in general have a small imaginary part, a contour plot
such as figuré 8.1, can yield informed guesses. Better
way would be to find the zeros by Newton method,
sect.18.2.3 How close are you to the cycle expansion
and quantum results listed in tat8é.2? You can find
more quantum data in ref3[.
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Chapter 37

Diffraction distraction

(N. Whelan)

IFFRACTION EFFECTs Characteristic to scatteringfovedges are incorporated
into the periodic orbit theory.

37.1 Quantum eavesdropping

As noted in chapteB6, the classical mechanics of the helium atom is undefined
at the instant of a triple collision. This is a common phenpare- there is often
some singularity or discontinuity in the classical mecharaf physical systems.
This discontinuity can even be helpful in classifying theawics. The points in
phase space which have a past or future at the discontirarity ihanifolds which
divide the phase space and provide the symbolic dynamiasg@&heral rule is that
guantum mechanics smoothes over these discontinuitiepriocass we interpret
as difraction. We solve the local firaction problem quantum mechanically and
then incorporate this into our global solution. By doing 8@ reconfirm the
central leitmotif of this treatise: think locally - act glaly.

While being a well-motivated physical example, the helidonmais somewhat
involved. In fact, so involved that we do not have a clue hovdaoit. In its
place we illustrate the concept offilactive dfects with a pinball game. There
are various classes of discontinuities which a billiard bawe. There may be a
grazing condition such that some trajectories hit a smootfase while others
are undtected - this leads to the creeping described in ch&aptethere may be a
vertex such that trajectories to one side bounéedintly from those to the other
side. There may be a point scatterer or a magnetic flux link twat we do not
know how to continue classical mechanics through the dismaities. In what
follows, we specialize the discussion to the second examiblat of vertices or
wedges. To further simplify the discussion, we considersthecial case of a half
line which can be thought of as a wedge of angle zero.

611
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Figure 37.1: Scattering of a plane wavéfa half line. 1

We start by solving the problem of the scattering of a planeendt a half
line (see figure37.1). This is the local problem whose solution we will use to
construct a global solution of more complicated geometiés define the vertex
to be the origin and launch a plane wave at it from an anglgVhat is the total
field? This is a problem solved by Sommerfeld in 1896 and csoudision closely
follows his.

The total field consists of three parts - the incident fiel@ téflected field
and the difractive field. Ignoring the third of these for the moment, we ¢hat
the space is divided into three regions. In region | thereoth lan incident and a
reflected wave. In region Il there is only an incident field.région Il there is
nothing so we call this the shadowed region. However, becafidiffraction the
field does enter this region. This accounts for why you cantmas a conversation
if you are on the opposite side of a thick wall but with a dooew fmeters away.
Traditionally such &ects have been ignored in semiclassical calculations becau
they are relatively weak. However, they can be significant.

To solve this problem Sommerfeld worked by analogy with thieline case,
so let us briefly consider that much simpler problem. Therekn@v that the
problem can be solved by images. An incident wave of amm@ifuts of the form

v(r, ) = Aerikrcosy (37.1)

wherey = ¢ — @ andg¢ is the angular coordinate. The total field is then given by
the method of images as

Viot = V(1. ¢ — @) = V(1. ¢ + ), (37.2)

where the negative sign ensures that the boundary condifiaero field on the
line is satisfied.

Sommerfeld then argued thafr,y) can also be given a complex integral
representation

v(r.u) = A fc dB1(B.u)e ™ 0%, (37.3)

This is certainly correct if the functiof(B, ¢) has a pole of residue/2ri atp =
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Figure 37.2: The contour in the compleX plane.
The pole is a8 = —y (marked byx in the figure)
and the integrand approaches zero in the shaded
regions as the magnitude of the imaginary part of
B approaches infinity.

W

—y and if the contouC encloses that pole. One choice is

1 &8

=g e

(37.4)

(We choose the pole to be@t —y rather tharB = ¢ for reasons discussed later.)
One valid choice for the contour is shown in figu#®.2 This encloses the pole
and vanishes gim g| — « (as denoted by the shading). The sectibasandD;
are congruent because they are displacedhyHowever, they are traversed in
an opposite sense and cancel, so our contour consists @hgusection<C; and
C,. The motivation for expressing the solution in this comgtierd manner should
become clear soon.

What have we done? We extended the space under considdrgtafactor
of two and then constructed a solution by assuming that tiseadso a source
in the unphysical space. We superimpose the solutions flmmwo sources
and at the end only consider the solution in the physicalespabde meaningful.
Furthermore, we expressed the solution as a contour ihtegieh reflects the 2
periodicity of the problem. The half line scattering prabléllows by analogy.

Whereas for the full line the field is periodic int2for the half line it is
periodic in 4. This can be seen by the fact that the field can be expanded in a
series of the forntsin(g/2), sin(@), sin(3¢/2), - - -}. As above, we extend the space
by thinking of it as two sheeted. The physical sheet is as shodigure37.1and
the unphysical sheet is congruent to it. The sheets are ghgether along the half
line so that a curve in the physical space which interseetf#f line is continued
in the unphysical space and vice-versa. The boundary ¢onsliare that the total
field is zero on both faces of the half line (which are physjcdistinct boundary
conditions) and that as — oo the field is composed solely of plane waves and
outgoing circular waves of the form(¢) exp(kr)/ Vkr. This last condition is a
result of Huygens’ principle.

We assume that the complete solution is also given by theadethimages
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Figure 37.3: The contour used to evaluate the
diffractive field after the contribution of possible
poles has been explicitly evaluated. The cufve

is traversed twice in opposite directions and has no
net contribution.

as
Vot = U(r, ¢ —a) — u(r. ¢ + ). (37.5)

whereu(r,y) is a 4r-periodic function to be determined. The second term is
interpreted as an incident field from the unphysical spackthe negative sign
guarantees that the solution vanishes on both faces of thénea Sommerfeld
then made the ansatz thats as given in equatior3{.3 with the same contour
Cy + C, but with the 4 periodicity accounted for by replacing equatid@v (4)
with

1 b

Ar @Bl2 — g w2 (37.6)

f(B.v) =

(We divide by 4 rather than 2 so that the residue is properly normalized.) The
integral 87.3 can be thought of as a linear superposition of an infinity lahp
waves each of which satisfies the Helmholtz equatiéh«( k?)v = 0, and so their
combination also satisfies the Helmholtz equation. We &l that the dfracted
field is an outgoing circular wave; this being a result of cting the pole g =

—y rather tharnB = ¢ in equation 87.4). Therefore, this ansatz is a solution of
the equation and satisfies all boundary conditions andftivereonstitutes a valid
solution. By uniqueness this is the only solution.

In order to further understand this solution, it is usefultassage the contour.
Depending ory there may or may not be a pole betwger —r andg = . In
region |, both functions(r, ¢ + @) have poles which correspond to the incident
and reflected waves. In region Il, onlfr, ¢ — @) has a pole corresponding to the
incident wave. In region Ill there are no poles because oftialow. Once we
have accounted for the geometrical waves (i.e., the palesgxtract the diracted
waves by saddle point analysis@at +x. We do this by deforming the contours
C so that they go through the saddles as shown in figudr2
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ContourC; becomesE, + F while contourC, becomesE; — F where the
minus sign indicates that it is traversed in a negative seAisa resultF has no
net contribution and the contour consists of jHstandE,.

As a result of these machinations, the cureare simply the curve® of
figure37.2but with a reversed sense. Since the integrand is no longeer2odic,
the contributions from these curves no longer cancel. Wriat@both stationary
phase integrals to obtain

dr/4 gkr
u(r,y) ~ —~-A——=sec(/2)— 37.7
(r.v) N v/2) N (37.7)
so that the total diracted field is
- gn/4 d—a o +ay) e
Vaift = ~A~ 2= (sed*5") -sed*5)) N (37:8)

Note that this expression breaks down wigen @ = 7. These angles correspond
to the borders among the three regions of figdirel and must be handled more
carefully - we can not do a stationary phase integral in thinity of a pole.

However, the integral representatidv (3) and 37.6) is uniformly valid. [exercise 37.1]

We now turn to the simple task of translating this result ithte language of
semiclassical Green'’s functions. Instead of an incidesmt@lave, we assume a
source at poink’ and then compute the resulting field at the receiver position
If xis in region I, there is both a direct term, and a reflected térmis in region
Il there is only a direct term and K s in region Ill there is neither. In any event
these contributions to the semiclassical Green’s funaierknown since the free
space Green'’s function between two poirtsandx; is

G (%2, X1, K) = —‘%Hé*)(kd) ~ - expli(kd + 7/4)), (37.9)

1
V8rkd

whered is the distance between the points. For a reflection, we resdittiply
by —1 and the distance is the length of the path via the reflect@ntp Most
interesting for us, there is also aftlactive contribution to the Green’s function.
In equation 87.9), we recognize that the cirientA is simply the intensity at the
origin if there were no scatterer. This is therefore repldmgethe Green’s function
to go from the source to the vertex which we lake! Furthermore, we recognize
that expikr)/ Vkr is, within a proportionality constant, the semiclassicaé@h’s
function to go from the vertex to the receiver.

Collecting these facts, we say
Gy (% X', K) = G¢(x, xv. K)d(6, 8")G¢ (xv. X, K), (37.10)

where, by comparison with equatior&7(8 and 37.9, we have

d0.0) = sec(e‘zel) _Sec(g_;g/)‘ (37.11)
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Here¢’ is the angle to the source as measured from the vertex &nthe angle

to the receiver. They were denoted @sand ¢ previously. Note that there is
a symmetry between the source and receiver as we expect foreardversal
invariant process. Also the filiaction codicient d does not depend on which
face of the half line we use to measure the angles. As we vellsgery important
property ofGy;q is that itis a simple multiplicative combination of othenselassical

Green’s functions. )
[exercise 37.2]

We now recover our classical perspective by realizing theatan still think of
classical trajectories. In calculating the quantum Greé&mction, we sum over
the contributions of various paths. These include the idaktajectories which
connect the points and also paths which connect the poiatheivertex. These
have diferent weights as given by equatio®s (9 and @7.10 but the concept of
summing over classical paths is preserved.

For completeness, we remark that there is an exact integpedsentation for
the Green'’s function in the presence of a wedge of arbitragning angle 15).
It can be written as

G(x, X, k) =g(r,r',k, ¢ —6) —g(r,r',k, ¢ + 6) (37.12)

where ¢,0) and ¢’, ") are the polar coordinates of the poimtandx’ as measured
from the vertex and the angles are measured from either fate evedge. The
functiong s given by

, i HY (ky/r2 + 172 — 2rr’ cosp)
o(r. k) = — 0

(37.13)
8mv Jeire, 1-exp(itt)

wherev = y/x andy is the opening angle of the wedge. fie= 2x in the case of
the half plane). The conto@; + C; is the same as shown in figus&.2

The poles of this integral give contributions which can beniified with
the geometric paths connectingand X'. The saddle points & = =+ give
contributions which can be identified with theffdactive path connecting and
X'. The saddle point analysis allows us to identify th@réction constant as

- N
4sinZ siny sin<;

de,¢) = - (37.14)

v (cosZ - cos® ) (cosZ - cosﬂ)’

v v

which reduces to37.11) wheny = 2. Note that the diraction codficient vanishes
identically if v = 1/n wheren is any integer. This corresponds to wedge angles
of y = n/n (eg. r=1 corresponds to a full line and=@ corresponds to a right
angle). This demonstration is limited by the fact that it eafrom a leading
order asymptotic expansion but the result is quite genEalsuch wedge angles,
we can use the method of images (we will require-21 images in addition to
the actual source point) to obtain the Green'’s function &wedetis no diractive
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Figure 37.4: The billiard considered here. The
dynamics consists of free motion followed by specular
reflections & the faces. The top vertex induces
diffraction while the bottom one is a right angle and
induces two specular geometric reflections. A

contribution to any order. Classically this correspondshi fact that for such
angles, there is no discontinuity in the dynamics. Trajéesogoing into the vertex
can be continued out of them unambiguously. This meshesthétidiscussion in
the introduction where we argued thafftictive éfects are intimately linked with
classical discontinuities.

The integral representation is also useful because it allog/to consider
geometries such that the angles are near the optical boesdarthe wedge angle
is close tar/n. For these geometries the saddle point analysis leadingj/ta4
is invalid due to the existence of a nearby pole. In that ewgatrequire a more
sophisticated asymptotic analysis of the full integraresentation.

37.2 An application

Although we introduced dliraction as a correction to the purely classidé¢ets;

it is instructive to consider a system which can be quantizelély in terms

of periodic difractive orbits. Consider the geometry shown in fig@re4 The
classical mechanics consists of free motion followed bycslze reflections i
faces. The upper vertex is a source dfrdiction while the lower one is a right
angle and induces no fifiaction. This is an open system, there are no bound
states - only scattering resonances. However, we canedillthe &ectiveness

of the theory in predicting them. Formally, scattering remuces are the poles
of the scatterindS matrix and by an identity of Balian and Bloch are also poles
of the quantum Green’s function. We demonstrate this fachapter34 for 2-
dimensional scatterers. The poles have complex wavenuknlksrfor the 3-disk
problem.

Let us first consider how firactive orbits arise in evaluating the trace of
G which we callg(k). Specifying the trace means that we must consider all
paths which close on themselves in the configuration spade sthtionary phase
arguments for large wavenumbleextract those which are periodic - just as for
classical trajectories. In generg(k) is given by the sum over all firactive and
geometric orbits. The contribution of the simpléfdictive orbit labeled shown
in figure 37.5to g(k) is determined as follows.

We consider a poin® just a little df the path and determine the semiclassical

Green’s function to return tB via the vertex using37.9 and @87.10. To leading
order iny the lengths of the two geometric paths connectthgndV ared. =
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Figure 37.5: The dashed line shows a simple periodiy}
diffractive orbity. Between the verte¥ and a poinf

close to the orbit there are two geometric legs label §
+. The origin of the coordinate system is chosen to t\
atR. &

(L+xX)+y?/(L+x)?/2 so that the phase factién(d, +d_) equals &L+iky?/(L2-x?).
The trace integral involves integrating over all poiRtand is

d(@kLin/2)

f dyd ) (37.15)

We introduced an overall negative sign to account for thecgdin at the hard wall
and multiplied by 2 to account for the two traversal sens88PV andVPRV.
In the spirit of stationary phase integrals, we have negtethey dependence
everywhere except in the exponential. Thérdction constand, is the one
corresponding to the firactive periodic orbit. To evaluate tlygntegral, we use
the identity

f " dedae — gt \/g (37.16)

and thus obtain a factor which precisely cancelsttependence in theintegral.
This leads to the rather simple result

i, ( d )
~ e|(kly+rr/£l) 37.17
o~ 5 {—m} (37.17)

wherel, = 2L is the length of the periodic firactive orbit. A more sophisticated
analysis of the trace integral has been ddfjeuping the integral representation
(37.13. Itis valid in the vicinity of an optical boundary and alswr fvedges with
opening angles close ign.

Consider a periodic diractive orbit withn, reflections @ straight hard walls
andy, diffractions each with a ffraction constant, j. The total length of the
orbit L, = X1, is the sum of the various filfactive legs and, is the length of
the corresponding prime orbit. For such an ordf.(L7 generalizes to

} expli(kL, + 0,z — 3u,7/4)). (37.18)

6,09 = é{ﬂ i

[exercise 37.3]

Each difraction introduces a factor of %k and multi-ditractive orbits are thereby
suppressed.
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If the orbity is prime therL, = |,. If y is ther’th repeat of a prime orbj§ we
havel, = rlg, n, = rpg andu, = rop, wherelg, pg andoy all refer to the prime
orbit. We can then write

=g = g’i (37.19)
where
s
{]_[ \/8ﬂ_'m} expli(kls + pgr — 30g7/4)). (37.20)

It then makes sense to organize the sum ov@raditive orbits as a sum over the
prime difractive orbits and a sum over the repetitions

- . .
i = > > Gor = —i > Iﬁr’*tﬁ. (37.22)
B =1 B

We cast this as a logarithmic derivativé7(7) by noting thatdk = lgtg -
optg/2k and recognizing that the first term dominates in the sensidablimit. It
follows that

9gifK) = %( %( {m []a- tﬁ)} . (37.22)
B

In the case that there are onlyffdactive periodic orbits - as in the geometry of
figure 37.4- the poles ofy(k) are the zeros of a dynamical zeta function

e =] Ja-1). (37.23)
B

For geometric orbits, this function would be evaluated vaittycle expansion as
discussed in chaptel8. However, here we can use the multiplicative nature of
the weightdi to find a closed form representation of the function using akigla
graph, as in secf.0.4.1 This multiplicative property of the weights follows from
the fact that the diractive Green’s function3(7.10 is multiplicative in segment
semiclassical Green'’s functions, unlike the geometrie cas

There is a reflection symmetry in the problem which meansathetsonances
can be classified as even or odd. Because of this, the dyrlapeizafunction
factorizes as & = 1/¢,{- (as explained in sect$9.5and19.1.1) and we determine
1/¢, and J/{_ separately using the ideas of symmetry decomposition gfteh#.

In the Markov graph shown in figurg7.6 we enumerate all processes. We
start by identifying the fundamental domain as just thetrludf of figure 37.4
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1
Figure 37.6: The two-node Markov graph with all the
diffractive processes connecting the nodes.

There are two nodes which we cdllandB. To get to another node from, we

can difract (always via the vertex) in one of three directions. Wedifract back

to B which we denote as process 1. We cdirdct toB’s image pointB’ and then
follow this by a reflection. This process we denote2aghere the bar indicates
that it involves a reflection. Third, we canflidact to nodeA. Starting atA we can

also difract to a node in three ways. We caffidict to B which we denote as 4.

We can difract toB’ followed by a reflection which we denote 4s Finally, we

can difract back toA which we denote as process 5. Each of these processes has
its own weight which we can determine from the earlier dis@us First though,

we construct the dynamical zeta functions.

The dynamical zeta functions are determined by enumeratirdpsed loops
which do not intersect themselves in figud€.6 We do it first for 1/, because
that is simpler. In that case, the processes with bars atetten an equal footing
as the others. Appealing back to séd@.5we find

1/, = 1-t1—t5—t5 —taty — tatz + tsty + tst5,
1- (tl + t§+ t5) - 2t3t4 + ts(tl + ti) (3724)

where we have used the fact that t; by symmetry. The last term has a positive
sign because it involves the product of shorter closed lodscalculate 17,
we note that the processes with bars have a relative negagivelue to the group
theoretic weight. Furthermore, process 5 is a boundary (sbé sectl9.3.1 and
only afects the even resonances - the terms involt4rage absent from/L_. The
result is

1/

1-t +t5 —tats + tatz,
1-(th—t3). (37.25)

Note that these expressions have a finite number of termsrambain the form

: ) ise 37.4
of a curvature expansion, as for the 3-disk problem. [exercise 37.4]

It now just remains to fix the weights. We use equati®n.20 but note that
each weight involves just oneffiaction constant. It is then convenient to define
the quantities

Ui\ _ expli(2kL + 2r)} UZB _ exp{i(ZkH+7r)}~ (37.26)
16rkL 16rkH

The lengthd andH = L/ V2 are defined in figur87.4 we setl = 1 throughout.

Bouncing inside the right angle Atcorresponds to two specular reflections so that

whelan - 30nov2001.tex

CHAPTER 37. DIFFRACTION DISTRACTION 621

complex k-plane

Figure 37.7: The even resonances of the wedge .s
scatterer of figur&87.4plotted in the complek—plane, 20
with L = 1. The exact resonances are represented =2s
as circles and their semiclassical approximations as -o,; i ™ o
crosses.

p = 2. We therefore explicitly include the factor exgs) in (37.26 although it is
trivially equal to one. Similarly, there is one speculareefion at pointB giving
p = 1 and therefore a factor of exixf. We have definedin and ug because,
together with some éaction constants, they can be used to construct all of the
weights. Altogether we define four fifiaction codficients: dag is the constant
corresponding to diracting fromB to Aand is found from37.11) with ¢’ = 3r/4
andéd = m and equals 2 sea(8) ~ 2.165. With analogous notation, we hadga
anddgg = dg'g Which equal 2 and £ V2 respectivelyd;; = dj due to the Green’s
function symmetry between source and receiver referreddgee Finally, there
is the difractive phase factos = exp (-i37/4) each time there is aftiiaction.
The weights are then as follows:

= Sd:g,BUZB t; = SdgrBUZB ta=t4=1;= SdagUAUR
ts = SthaUa. (37.27)

Each weight involves twars and oned. Theu's represent the contribution to
the weight from the paths connecting the nodes to the vertdxteed gives the
diffraction constant connecting the two paths.

The equality oflgg anddg g implies thatt; = t5. From 37.25 this means that
there are no odd resonances because 1 can never equal e Evethresonances
equation 87.24) is an implicit equation fok which has zeros shown in figus&.7.

For comparison we also show the result from an exact quanaloulation.
The agreement is very good right down to the ground state s as bften the
case with semiclassical calculations. In addition we canais dynamical zeta
function to find arbitrarily high resonances and the resadtsially improve in that
limit. In the same limit, the exact numerical solution beesnmore diicult to
find so the dynamical zeta function approximation is paldidy useful in that

case.
[exercise 37.5]

In general a system will consist of both geometric antralctive orbits. In
that case, the full dynamical zeta function is the producthef geometric zeta
function and the diractive one. The diractive weights are typically smaller by
orderO(1/ VK) but for smallk they can be numerically competitive so that there is
a significant difractive éfect on the low-lying spectrum. It might be expected that
higher in the spectrum, thefect of difraction is weaker due to the decreasing
weights. However, it should be pointed out that an analybthe situation for
creeping difraction [/] concluded that the diraction is actuallymoreimportant
higher in the spectrum due to the fact that an ever greatetidraof the orbits
need to be corrected forftliactive éfects. The equivalent analysis has not been
done for edge diraction but a similar conclusion can probably be expected.
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To conclude this chapter, we return to the opening paragaaghdiscuss the
possibility of doing such an analysis for helium. The impatt point which
allowed us to successfully analyze the geometry of figkifel is that when a
trajectory is near the vertex, we can extract iffrdction constant without reference
to the other facets of the problem. We say, therefore, thatgla “local” analysis
for the purposes of which we have “turneff"ahe other aspects of the problem,
namely sidesAB and AB'. By analogy, for helium, we would look for some
simpler description of the problem which applies near thregtbody collision.
However, there is nothing to “turnfid’ The local problem is just as fiiicult as
the global one since they are precisely the same probletrglaged by scaling.
Therefore, it is not at all clear that such an analysis isiptesgor helium.

Résumé

In this chapter we have discovered new types of periodidsdaintributing to the
semiclassical traces and determinants. Unlike the periodiits we had seen so
far, these are not true classical orbits. They are genetstesihgularities of the
scattering potential. In these singular points the classignamics has no unique
definition, and the classical orbits hitting the singulastcan be continued in
many diferent directions. While the classical mechanics does notvkmhich
way to go, quantum mechanics solves the dilemma by allowsgpcontinue
in all possible directions. The likelihoods offi#irent paths are given by the
guantum mechanical weights calledftiction constants. The total contribution to
atrace from such orbit is given by the product of transmissimplitudes between
singularities and diraction constants of singularities. The weights dfrdctive
periodic orbits are at least of ordef ¢k weaker than the weights associated with
classically realizable orbits, and their contribution aigke energies is therefore
negligible. Nevertheless, they can strongly influence tive liying resonances
or energy levels. In some systems, such asNhdisk scattering the éiraction
effects do not only perturb semiclassical resonances, butlsarcieeate new low
energy resonances. Therefore it is always important tadecthe contributions of
diffractive periodic orbits when semiclassical methods aréexppt low energies.

Commentary

Remark 37.1 Classical discontinuities. Various classes of discontinuities for billiard
and potential problems discussed in the literature:

e a grazing condition such that some trajectories hit a smsatface while others
are undfected, refs. T, 2, 3, 7]

e avertex such that trajectories to one side bounfferdintly from those to the other
side, refs. P, 4,5, 8, 9].

e a point scattererl[), 11] or a magnetic flux line]2, 1] such that we do not know
how to continue classical mechanics through the discoititasu
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Remark 37.2 Geometrical theory of diffraction. In the above discussion we borrowed
heavily from the ideas of Keller who was interested in extegdhe geometrical ray
picture of optics to cases where there is a discontinuity. ntééntained that we could
hang onto that ray-tracing picture by allowing rays to &rike vertex and then leave at
any angle with amplitude3(7.9. Both he and Sommerfeld were thinking of optics and not
guantum mechanics and they did not phrase the results irs tefsemiclassical Green’s
functions but the essential idea is the same.

Remark 37.3 Generalizations  Consider the fect of replacing our half line by a
wedge of angle; and the right angle by an arbitrary angte If y2 > y1 andy, > /2 this

is an open problem whose solution is given by equati@is2) and @7.29 (there will
then be odd resonances) but with modified weights refleciagchanged geometr{][
(Fory, < nr/2, more difractive periodic orbits appear and the dynamical zeta fanst
are more complicated but can be calculated with the sameineagt) Wheny, = y1, the
problem in fact has bound statesl[ 27]. This last case has been of interest in studying
electron transport in mesoscopic devices and in microwaxeguides. However we can
not use our formalism as it stands because theadiive periodic orbits for this geometry
lie right on the border between illuminated and shadowebregso that equatior8{.7)

is invalid. Even the more uniform derivation df][fails for that particular geometry, the
problem being that the fifactive orbit actually lives on the edge of a family of georizet
orbits and this makes the analysis still mor&idult.

Remark 37.4 Diffractive Green’s functions. The result 87.17 is proportional to the
length of the orbit times the semiclassical Green’s fumc(®7.9 to go from the vertex
back to itself along the classical path. The mult#dictive formula87.19 is proportional
to the total length of the orbit times the product of the séasisical Green's functions to
go from one vertex to the next along classical paths. Thidtrgeneralizes to any system
— either a pinball or a potential — which contains point silagities such that we can
define a difraction constant as above. The contribution to the trackesemiclassical
Green’s function coming from afiliactive orbit which hits the singularities is proportional
to the total length (or period) of the orbit times the prodattsemiclassical Green’s
functions in going from one singularity to the next. Thisuiedirst appeared in reference
[2] and a derivation can be found in referené [A similar structure also exists for
creeping .

Remark 37.5 Diffractive orbits for hydrogenic atoms. An analysis in terms of diractive
orbits has been made in affdirent atomic physics system, the response of hydrogenic
atoms to strong magnetic fieldsd. In these systems, a single electron is highly excited
and takes long traversals far from the nucleus. Upon retgria a hydrogen nucleus, it is
re-ejected with the reversed momentum as discussed inertgptHowever, if the atom

is not hydrogen but sodium or some other atom with one valetesron, the returning
electron feels the charge distribution of the core elestramd not just the charge of the
nucleus. This so-called quantum defect induces scattémiregldition to the classical
re-ejection present in the hydrogen atom. (In this case dballanalysis consists of
neglecting the magnetic field when the trajectory is neamtigeus.) This is formally
similar to the vertex which causes both specular reflectrahdifraction. There is then
additional structure in the Fourier transform of the quamgpectrum corresponding to
the induced diractive orbits, and this has been observed experimentafly [
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EXERCISES 624
Exercises
37.1. Stationary phase integral. Evaluate the two that a slight variation of the ffractive orbit only #ects

37.2.

37.3.

stationary phase integrals corresponding to contBurs
andE; of figure 37.3and thereby verify%7.7).

(N. Whelan)

Scattering from a small disk Imagine that instead

of a wedge, we have a disk whose radaiss much
smaller than the typical wavelengths we are considering.
In that limit, solve the quantum scattering problem - find
the scattered wave which result from an incident plane
wave. You can do this by the method of partial waves -
the analogous three dimensional problem is discussed in
most quantum textbooks. You should find that only the
m = 0 partial wave contributes for small Following

the discussion above, show that thédiction constant

1S 37.5.

s S
Iog(%)—yﬁ—i%

whereye = 0.577--- is Euler’s constant. Note that in
this limit d depends weakly okbut not on the scattering
angle.

(37.28)

(N. Whelan)

Several difractive legs. Derive equationd7.19. The
calculation involves considering slight variations of the
diffractive orbit as in the simple case discussed above.
Here it is more complicated because there are more
diffractive arcs - however you should convince yourself
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Epilogue

Nowadays, whatever the truth of the matter may be (and
we will probably never know), the simplest solution is
no longer emotionally satisfying. Everything we know
about the world militates against it. The concepts of
indeterminacy and chaos have filtered down to us from the
higher sciences to confirm our nagging suspicions.

—L. Sante, “Review of ‘American Tabloid’ by James
Ellroy,” New York Review of Bookilay 11, 1995)

by sequences of nearby shorter periodic orbits. This ndtashere been

made precise by approximating orbits by prime cycles, araueting
associated curvatures. A curvature measures the dev@telong cycle from its
approximation by shorter cycles; the smoothness of therdiga system implies
exponential fall-df for (almost) all curvatures. We propose that the theorkdice
experimental non—wandering sets be expressed in termsg sfythbol sequences
of short cycles (a topological characterization of the igpdayout of the non—
wandering set) and their eigenvalues (metric structure)

A MOTION ON & Strange attractor can be approximated by shadowinglditg

Cycles as the skeleton of chaos

We wind down this all-too-long treatise by asking: why cyxle

We tend to think of a dynamical system as a smooth system wéadetion
can be followed by integrating a set offfdirential equations. Traditionally one
used integrable motions as zeroth-order approximatiophysical systems, and
accounted for weak nonlinearities perturbatively. Howgewhen the evolution
is actually followed through to asymptotic times, one digs that the strongly
nonlinear systems show an amazingly rich structure whictotsat all apparent
in their formulation in terms of dierential equations. In particular, the periodic
orbits are important because they form gieletononto which all trajectories
trapped for long times cling. This was already appreciateduwry ago by H. Poincaré,
who, describing ir.es méthodes nouvelles de la méchanique céhstiscovery
of homoclinic tangles, mused that “the complexity of thisufigwill be striking,
and | shall not even try to draw it.” Today such drawings areaghand plentiful;
but Poincaré went a step further and, noting that hiddehimapparent chaos is
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a rigid skeleton, a tree afycles(periodic orbits) of increasing lengths and self-
similar structure, suggested that the cycles should bedhédkchaotic dynamics.

The zeroth-order approximations to harshly chaotic dycaraie very dferent
from those for the nearly integrable systems: a good stpepproximation here
is the stretching and kneading of a baker's map, rather thansinding of a
harmonic oscillator.

For low dimensional deterministic dynamical systems dpson in terms of
cycles has many virtues:

[y

. cycle symbol sequences aapological invariants: they give the spatial
layout of a non—wandering set

2. cycle eigenvalues araetricinvariants: they give the scale of each piece of
a non—wandering set

3. cycles arelenseon the asymptotic non—wandering set

4. cycles are orderelierarchically. short cycles give good approximations
to a non-wandering set, longer cycles only refinements. r&moe to
neglecting long cycles can be bounded, and typically féllegponentially
or super-exponentially with the cufaycle length

5. cycles arestructurally robust for smooth flows eigenvalues of short cycles
vary slowly with smooth parameter changes

6. asymptotic averages (such as correlations, escapeqategum mechanical
eigenstates and other “thermodynamic” averages) cafiibeatly computed
from short cycles by means of/cle expansions

Points 1, 2: That the cycle topology and eigenvalues are invariant ptigse
of dynamical systems follows from elementary consideratidf the same dynamics
is given by a mapf in one set of coordinates, and a mgjn the next, thenf
andg (or any other good representation) are related by a repanaat®n and
a coordinate transformatiofi = h™! o go h. As both f and g are arbitrary
representations of the dynamical system, the explicit fofthe conjugacy is of
no interest, only the properties invariant under any tramsétionh are of general
import. The most obvious invariant properties are topaalgia fixed point must
be a fixed point in any representation, a trajectory whiclctxaeturns to the
initial point (a cycle) must do so in any representation. tf@emmore, a good
representation should not mutilate the ddtanust be a smooth transformation
which maps nearby cycle points bfnto nearby cycle points @. This smoothness
guarantees that the cycles are not only topological inmtsjdut that their linearized
neighborhoods are also metrically invariant. In partigulee cycle eigenvalues
(eigenvalues of the fundamental matrtk§"(x)/dx of periodic orbitsf"(x) = x)
are invariant.

Point 5: An important virtue of cycles is thestructural robustnessMany
quantities customarily associated with dynamical systdepend on the notion
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of “structural stability,” i.e., robustness of non—waridgrset to small parameter
variations.

Still, the suficiently short unstable cycles are structurally robust éngbnse
that they are only slightly distorted by such parameter gkanand averages
computed using them as a skeleton are insensitive to snfalindations of the
non-wandering set. In contrast, lack of structural stgbikreaks havoc with
long time averages such as Lyapunov exponents, for whick theno guarantee
that they converge to the correct asymptotic value in anyefitime numerical
computation.

The main recent theoretical advance@nt 4: we now know how to control
the errors due to neglecting longer cycles. As we seen alewes) though the
number of invariants is infinite (unlike, for example, themher of Casimir invariants
for a compact Lie group) the dynamics can be well approxichaébeany finite
accuracy by a small finite set of invariants. The origin oktbonvergence is
geometrical, as we shall see in apperdix2, and for smooth flows the convergence
of cycle expansions can even be super-exponential.

The cycle expansions such d8(7) outperform the pedestrian methods such
as extrapolations from the finite cover sur2®.Q) for a number of reasons. The
cycle expansion is a better averaging procedure than tkie baek counting algorithms
because the strange attractor is here pieced together pobgically invariant
way from neighborhoods (“space average”) rather than ezglby a long ergodic
trajectory (“time average”). The cycle expansion is cohuaite and reparametrization
invariant - a finitenth level sum 20.2) is not. Cycles are of finite period but infinite
duration, so the cycle eigenvalues are already evaluatdteim — co limit, but
for the sum 0.2 the limit has to be estimated by numerical extrapolatidxr,
crucially, the higher terms in the cycle expansids.() are deviations of longer
prime cycles from their approximations by shorter cyclesiciScombinations
vanish exactly in piecewise linear approximations and déillexponentially for
smooth dynamical flows.

In the above we have reviewed the general properties of ttle expansions;
those have been applied to a series of examples of low-dipr&ischaos: 1-
d strange attractors, the period-doubling repeller, teadt-type maps and the
mode locking intervals for circle maps. The cycle expansibave also been
applied to the irrational windings set of critical circle psa to the Hamiltonian
period-doubling repeller, to a Hamiltonian three-disk gasfpinball, to the three-
disk quantum scattering resonances and to the extracticor@lation exponents,
Feasibility of analysis of experimental non—wandering isglerms of cycles is
discussed in ref.1].

Homework assignment

“Lo! thy dread empire Chaos is restor'd, Light dies before

thy uncreating word; Thy hand, great Anarch, lets the

curtain fall, And universal darkness buries all.”
—Alexander PopeThe Dunciad
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We conclude cautiously with a homework assignment posed 22ay1990
(the original due date was May 22, 2000, but alas...):

10.

. Topology Develop optimal sequences (“continued fraction approritsia

of finite subshift approximations to generic dynamical syst. Apply to
(a) the Hénon map, (b) the Lorenz flow and (c) the Hamiltorstamdard
map.

. Non-hyperbolicity Incorporate power—law (marginal stability orbits,“int@ttency”)

corrections into cycle expansions. Apply to long-timestailthe Hamiltonian
diffusion problem.

. PhenomenologyCarry through a convincing analysis of a genuine experiaignt

extracted data set in terms of periodic orbits.

. Invariants Prove that the scaling functions, or the cycles, or the spect

of a transfer operator are the maximal set of invariants ofpdaysically
interesting) dynamically generated non—wandering set.

. Field theory Develop a periodic orbit theory of systems with many ungtabl

degrees of freedom. Apply to (a) coupled lattices, (b) ¢ailautomata, (c)
neural networks.

. Tunneling Add complex time orbits to quantum mechanical cycle exparssi

(WKB theory for chaotic systems).

. Unitarity Evaluate corrections to the Gutzwiller semiclassicalquéid orbit

sums. (a) Show that the zeros (energy eigenvalues) of thexite Selberg
products are real. (b) Find physically realistic systemswioich the “semiclassical”
periodic orbit expansions yield the exact quantization.

. Atomic spectraCompute the helium spectrum from periodic orbit expansions

(already accomplished by Wintgen and Tanner!).

. Symmetriesinclude fermions, gauge fields into the periodic orbit tlyeor

Quantum field theory Develop quantum theory of systems with infinitely
many classically unstable degrees of freedom. Apply toajkjconfinement
(b) early universe (c) the brain.

Conclusion

Good-bye. | am leaving because | am bored.
—George Saunders’ dying words

Nadie puede escribir un libro. Para Que un libro sea
verdaderamente, Se requieren la aurora y el poniente
Siglos, armas y el mar que une y separa.

—Jorge Luis Borges El Haceddriosto y los arabes

The buttler did it.
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