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Chapter 29

Prologue

Anyone who uses words “quantum” and “chaos” in the
same sentence should be hung by his thumbs on a tree in
the park behind the Niels Bohr Institute.

—Joseph Ford

(G. Vattay, G. Tanner and P. Cvitanović)

Y    the first volume of this book. So far, so good – anyone can
play a game of classical pinball, and a skilled neuroscientist can poke
rat brains. We learned that information about chaotic dynamics can be

obtained by calculating spectra of linear operators such asthe evolution operator
of sect.15.2or the associated partial differential equations such as the Liouville
equation (14.37). The spectra of these operators can be expressed in terms of
periodic orbits of the deterministic dynamics by means of trace formulas and cycle
expansions.

But what happens quantum mechanically, i.e., if we scatter waves rather than
point-like pinballs? Can we turn the problem round and studylinear PDE’s in
terms of the underlying deterministic dynamics? And, is there a link between
structures in the spectrum or the eigenfunctions of a PDE andthe dynamical
properties of the underlying classical flow? The answer is yes, but . . . things
are becoming somewhat more complicated when studying 2nd orhigher order
linear PDE’s. We can find classical dynamics associated witha linear PDE,
just take geometric optics as a familiar example. Propagation of light follows a
second order wave equation but may in certain limits be well described in terms of
geometric rays. A theory in terms of properties of the classical dynamics alone,

[chapter 37]
referred to here as thesemiclassical theory, will not be exact, in contrast to the
classical periodic orbit formulas obtained so far. Waves exhibit new phenomena,
such as interference, diffraction, and higher~ corrections which will only be
partially incorporated into the periodic orbit theory.
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CHAPTER 29. PROLOGUE 502

29.1 Quantum pinball

In what follows, we will restrict the discussion to the non-relativistic Schrödinger
equation. The approach will be very much in the spirit of the early days of
quantum mechanics, before its wave character has been fullyuncovered by Schrödinger
in the mid 1920’s. Indeed, were physicists of the period as familiar with classical
chaos as we are today, this theory could have been developed 80 years ago. It was
the discrete nature of the hydrogen spectrum which inspiredthe Bohr - de Broglie
picture of the old quantum theory: one places a wave instead of a particle on a
Keplerian orbit around the hydrogen nucleus. The quantization condition is that
only those orbits contribute for which this wave is stationary; from this followed
the Balmer spectrum and the Bohr-Sommerfeld quantization which eventually led
to the more sophisticated theory of Heisenberg, Schrödinger and others. Today
we are very aware of the fact that elliptic orbits are an idiosyncracy of the Kepler
problem, and that chaos is the rule; so can the Bohr quantization be generalized
to chaotic systems?

The question was answered affirmatively by M. Gutzwiller, as late as 1971: a
chaotic system can indeed be quantized by placing a wave on each of theinfinity
of unstable periodic orbits. Due to the instability of the orbits the wave does not
stay localized but leaks into neighborhoods of other periodic orbits. Contributions
of different periodic orbits interfere and the quantization condition can no longer
be attributed to a single periodic orbit: A coherent summation over the infinity of
periodic orbit contributions gives the desired spectrum.

The pleasant surprise is that the zeros of the dynamical zetafunction (1.9)
derived in the context of classical chaotic dynamics,

[chapter 17]

1/ζ(z) =
∏

p

(1− tp) ,

also yield excellent estimates ofquantumresonances, with the quantum amplitude
associated with a given cycle approximated semiclassically by the weight

tp =
1

|Λp|
1
2

e
i
~
Sp−iπmp/2 , (29.1)

whose magnitude is the square root of the classical weight (17.10)

tp =
1
|Λp|

eβ·Ap−sTp ,

and the phase is given by the Bohr-Sommerfeld action integral Sp, together with
an additional topological phasemp, the number of caustics along the periodic
trajectory, points where the naive semiclassical approximation fails.

[chapter 32]
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In this approach, the quantal spectra of classically chaotic dynamical systems
are determined from the zeros of dynamical zeta functions, defined by cycle expansions
of infinite products of form

1/ζ =
∏

p

(1− tp) = 1−
∑

f

t f −
∑

k

ck (29.2)

with weight tp associated to every prime (non-repeating) periodic orbit (or cycle)
p.

The key observation is that the chaotic dynamics is often organized around
a few fundamentalcycles. These short cycles capture the skeletal topology of
the motion in the sense that any long orbit can approximatelybe pieced together
from the fundamental cycles. In chapter18 it was shown that for this reason the
cycle expansion (29.2) is a highly convergent expansion dominated by short cycles
grouped intofundamentalcontributions, with longer cycles contributing rapidly
decreasingcurvaturecorrections. Computations with dynamical zeta functions
are rather straightforward; typically one determines lengths and stabilities of a
finite number of shortest periodic orbits, substitutes theminto (29.2), and estimates
the zeros of 1/ζ from such polynomial approximations.

From the vantage point of the dynamical systems theory, the trace formulas
(both the exact Selberg and the semiclassical Gutzwiller trace formula) fit into
a general framework of replacing phase space averages by sums over periodic
orbits. For classical hyperbolic systems this is possible since the invariant density

[chapter 33]
can be represented by sum over all periodic orbits, with weights related to their
instability. The semiclassical periodic orbit sums differ from the classical ones
only in phase factors and stability weights; such differences may be traced back
to the fact that in quantum mechanics the amplitudes rather than the probabilities
are added.

The type of dynamics has a strong influence on the convergenceof cycle
expansions and the properties of quantal spectra; this necessitates development
of different approaches for different types of dynamical behavior such as, on one
hand, the strongly hyperbolic and, on the other hand, the intermittent dynamics
of chapters18 and23. For generic nonhyperbolic systems (which we shall not
discuss here), with mixed phase space and marginally stableorbits, periodic orbit
summations are hard to control, and it is still not clear thatthe periodic orbit sums
should necessarily be the computational method of choice.

Where is all this taking us? The goal of this part of the book isto demonstrate
that the cycle expansions, developed so far in classical settings, are also a powerful
tool for evaluation ofquantumresonances of classically chaotic systems.

First, we shall warm up playing our game of pinball, this timein a quantum
version. Were the game of pinball a closed system, quantum mechanically one
would determine its stationary eigenfunctions and eigenenergies. For open systems
one seeks instead complex resonances, where the imaginary part of the eigenenergy
describes the rate at which the quantum wave function leaks out of the central
scattering region. This will turn out to work well, except who truly wants to know
accurately the resonances of a quantum pinball?

[chapter 34]
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Figure 29.1: A typical collinear helium trajectory in
ther1 – r2 plane; the trajectory enters along ther1 axis
and escapes to infinity along ther2 axis.
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29.2 Quantization of helium

Once we have derived the semiclassical weight associated with the periodic orbitp
(29.1), we will finally be in position to accomplish something altogether remarkable.
We are now able to put together all ingredients that make the game of pinball
unpredictable, and compute a “chaotic” part of the helium spectrum to shocking
accuracy. From the classical dynamics point of view, heliumis an example of
Poincaré’s dreaded and intractable 3-body problem. Undaunted, we forge ahead
and consider thecollinear helium, with zero total angular momentum, and the
two electrons on the opposite sides of the nucleus.

++- -

We set the electron mass to 1, the nucleus mass to∞, the helium nucleus charge
[chapter 36]

to 2, the electron charges to -1. The Hamiltonian is

H =
1
2

p2
1 +

1
2

p2
2 −

2
r1
− 2

r2
+

1
r1 + r2

. (29.3)

Due to the energy conservation, only three of the phase spacecoordinates (r1, r2, p1, p2)
are independent. The dynamics can be visualized as a motion in the (r1, r2), r i ≥ 0
quadrant, figure29.1, or, better still, by a well chosen 2-dimensional Poincaré
section.

The motion in the (r1, r2) plane is topologically similar to the pinball motion
in a 3-disk system, except that the motion is not free, but in the Coulomb potential.
The classical collinear helium is also a repeller; almost all of the classical trajectories
escape. Miraculously, the symbolic dynamics for the survivors turns out to be
binary, just as in the 3-disk game of pinball, so we know what cycles need to
be computed for the cycle expansion (1.10). A set of shortest cycles up to a
given symbol string length then yields an estimate of the helium spectrum. This

[chapter 36]
simple calculation yields surprisingly accurate eigenvalues; even though the cycle
expansion was based on thesemiclassical approximation(29.1) which is expected
to be good only in the classical large energy limit, the eigenenergies are good to
1% all the way down to the ground state.

Before we can get to this point, we first have to recapitulate some basic notions
of quantum mechanics; after having defined the main quantum objects of interest,
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the quantum propagator and the Green’s function, we will relate the quantum
propagation to the classical flow of the underlying dynamical system. We will then
proceed to construct semiclassical approximations to the quantum propagator and
the Green’s function. A rederivation of classical Hamiltonian dynamics starting
from the Hamilton-Jacobi equation will be offered along the way. The derivation
of the Gutzwiller trace formula and the semiclassical zeta function as a sum and as
a product over periodic orbits will be given in chapter33. In subsequent chapters
we buttress our case by applying and extending the theory: a cycle expansion
calculation of scattering resonances in a 3-disk billiard in chapter34, the spectrum
of helium in chapter36, and the incorporation of diffraction effects in chapter37.

Commentary

Remark 29.1 Guide to literature. A key prerequisite to developing any theory of
“quantum chaos” is solid understanding of Hamiltonian mechanics. For that, Arnol’d
monograph [36] is the essential reference. Ozorio de Almeida’s monograph[11] offers a
compact introduction to the aspects of Hamiltonian dynamics required for the quantization
of integrable and nearly integrable systems, with emphasison periodic orbits, normal
forms, catastrophy theory and torus quantization. The bookby Brack and Bhaduri [1]
is an excellent introduction to the semiclassical methods.Gutzwiller’s monograph [2]
is an advanced introduction focusing on chaotic dynamics both in classical Hamiltonian
settings and in the semiclassical quantization. This book is worth browsing through for
its many insights and erudite comments on quantum and celestial mechanics even if one
is not working on problems of quantum chaos. More suitable asa graduate course text is
Reichl’s exposition [3].

This book does not discuss the random matrix theory approachto chaos in quantal
spectra; no randomness assumptions are made here, rather the goal is to milk the deterministic
chaotic dynamics for its full worth. The book concentrates on the periodic orbit theory.
For an introduction to “quantum chaos” that focuses on the random matrix theory the
reader is referred to the excellent monograph by Haake [4], among others.

Remark 29.2 The dates. Schrödinger’s first wave mechanics paper [3] (hydrogen
spectrum) was submitted 27 January 1926. Submission date for Madelung’s ‘quantum
theory in hydrodynamical form’ paper [2] was 25 October 1926.
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Chapter 30

Quantum mechanics, briefly

W   a review of standard quantum mechanical concepts prerequisite
to the derivation of the semiclassical trace formula.

In coordinate representation the time evolution of a quantum mechanical wave
function is governed by the Schrödinger equation

i~
∂

∂t
ψ(q, t) = Ĥ(q,

~

i
∂

∂q
)ψ(q, t), (30.1)

where the Hamilton operator̂H(q,−i~∂q) is obtained from the classical Hamiltonian
by substitutionp→ −i~∂q. Most of the Hamiltonians we shall consider here are
of form

H(q, p) = T(p) + V(q) , T(p) = p2/2m, (30.2)

describing dynamics of a particle in aD-dimensional potentialV(q). For time
independent Hamiltonians we are interested in finding stationary solutions of the
Schrödinger equation of the form

ψn(q, t) = e−iEnt/~φn(q), (30.3)

whereEn are the eigenenergies of the time-independent Schrödinger equation

Ĥφ(q) = Eφ(q) . (30.4)

If the kinetic term can be separated out as in (30.2), the time-independent Schrödinger
equation

− ~
2

2m
∂2φ(q) + V(q)φ(q) = Eφ(q) (30.5)
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can be rewritten in terms of a local wavenumber

(∂2 + k2(q))φ = 0 , ~
2k(q) =

√
2m(E − V(q)) . (30.6)

For bound systems the spectrum is discrete and the eigenfunctions form an
orthonormal,

∫
dqφn(q)φ∗m(q) = δnm , (30.7)

and complete,

∑

n

φn(q)φ∗n(q′) = δ(q− q′) , (30.8)

set of functions in a Hilbert space. Here and throughout the text,

∫
dq=

∫
dq1dq2...dqD. (30.9)

For simplicity we will assume that the system is bound, although most of the
results will be applicable to open systems, where one has complex resonances

[chapter 34]
instead of real energies, and the spectrum has continuous components.

A given wave function can be expanded in the energy eigenbasis

ψ(q, t) =
∑

n

cne−iEnt/~φn(q) , (30.10)

where the expansion coefficient cn is given by the projection of the initial wave
functionψ(q, 0) onto thenth eigenstate

cn =

∫
dqφ∗n(q)ψ(q, 0). (30.11)

By substituting (30.11) into (30.10), we can cast the evolution of a wave function
into a multiplicative form

ψ(q, t) =
∫

dq′K(q, q′, t)ψ(q′, 0) ,

with the kernel

K(q, q′, t) =
∑

n

φn(q) e−iEnt/~φ∗n(q′) (30.12)
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called the quantum evolution operator, or thepropagator. Applied twice, first for
time t1 and then for timet2, it propagates the initial wave function fromq′ to q′′,
and then fromq′′ to q

K(q, q′, t1 + t2) =
∫

dq′′ K(q, q′′, t2)K(q′′, q′, t1) (30.13)

forward in time, hence the name “propagator.” In non-relativistic quantum mechanics
the range ofq′′ is infinite, meaning that the wave can propagate at any speed;in
relativistic quantum mechanics this is rectified by restricting the propagation to
the forward light cone.

Since the propagator is a linear combination of the eigenfunctions of the
Schrödinger equation, it also satisfies the Schrödinger equation

i~
∂

∂t
K(q, q′, t) = Ĥ(q,

i
~

∂

∂q
)K(q, q′, t) , (30.14)

and is thus a wave function defined fort ≥ 0; from the completeness relation
(30.8) we obtain the boundary condition att = 0:

lim
t→0+

K(q, q′, t) = δ(q− q′) . (30.15)

The propagator thus represents the time evolution of a wave packet which starts
out as a configuration space delta-function localized in thepoint q′ at the initial
time t = 0.

For time independent Hamiltonians the time dependence of the wave functions
is known as soon as the eigenenergiesEn and eigenfunctionsφn have been determined.
With time dependence rendered “trivial,” it makes sense to focus on theGreen’s
function, the Laplace transformation of the propagator

G(q, q′,E + iǫ) =
1
i~

∫ ∞

0
dt e

i
~
Et− ǫ

~
tK(q, q′, t) =

∑

n

φn(q)φ∗n(q′)
E − En + iǫ

. (30.16)

Here ǫ is a small positive number, ensuring the existence of the integral. The
eigenenergies show up as poles in the Green’s function with residues corresponding
to the wave function amplitudes. If one is only interested inthe spectrum, one may
restrict the considerations to the (formal) trace of the Green’s function,

tr G(q, q′,E) =
∫

dqG(q, q,E) =
∑

n

1
E − En

, (30.17)

whereE is complex, with a positive imaginary part, and we have used the eigenfunction
orthonormality (30.7). This trace is formal, since as it stands, the sum in (30.17)
is often divergent. We shall return to this point in sects.33.1.1and33.1.2.
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Figure 30.1: Schematic picture ofa) the density
of states d(E), and b) the spectral staircase
function N(E). The dashed lines denote the
mean density of states̄d(E) and the average
number of states̄N(E) discussed in more detail in
sect.33.1.1.

A useful characterization of the set of eigenvalues is givenin terms of the
density of states, with a delta function peak at each eigenenergy, figure30.1(a),

d(E) =
∑

n

δ(E − En). (30.18)

Using the identity
[exercise 30.1]

δ(E − En) = − lim
ǫ→+0

1
π

Im
1

E− En + iǫ
(30.19)

we can express the density of states in terms of the trace of the Green’s function,
that is

d(E) =
∑

n

δ(E − En) = − lim
ǫ→0

1
π

Im tr G(q, q′,E+ iǫ). (30.20)

[section 33.1.1]

As we shall see after ”some” work, a semiclassical formula for right hand side of
this relation will yield the quantum spectrum in terms of periodic orbits.

The density of states can be written as the derivatived(E) = dN(E)/dE of the
spectral staircasefunction

N(E) =
∑

n

Θ(E − En) (30.21)

which counts the number of eigenenergies belowE, figure30.1(b). HereΘ is the
Heaviside function

Θ(x) = 1 if x > 0; Θ(x) = 0 if x < 0 . (30.22)

The spectral staircase is a useful quantity in many contexts, both experimental
and theoretical. This completes our lightning review of quantum mechanics.
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Exercises

30.1. Dirac delta function, Lorentzian representation.
Derive the representation (30.19)

δ(E − En) = − lim
ǫ→+0

1
π

Im
1

E− En + iǫ

of a delta function as imaginary part of 1/x.

(Hint: read up on principal parts, positive and negative
frequency part of the delta function, the Cauchy theorem
in a good quantum mechanics textbook).

30.2. Green’s function. Verify Green’s function Laplace
transform (30.16),

G(q, q′,E + iε) =
1
i~

∫ ∞

0
dt e

i
~
Et− ε

~
tK(q, q′, t)

=
∑ φn(q)φ∗n(q

′)
E − En + iε

argue that positiveǫ is needed (hint: read a good
quantum mechanics textbook).
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Chapter 31

WKB quantization

T   for a particle of energyE moving in a constant potentialV
is

ψ = Ae
i
~

pq (31.1)

with a constant amplitudeA, and constant wavelengthλ = 2π/k, k = p/~,
andp = ±

√
2m(E − V) is the momentum. Here we generalize this solution

to the case where the potential varies slowly over many wavelengths. This
semiclassical (or WKB) approximate solution of the Schrödinger equation fails at
classical turning points, configuration space points wherethe particle momentum
vanishes. In such neighborhoods, where the semiclassical approximation fails,
one needs to solve locally the exact quantum problem, in order to compute connection
coefficients which patch up semiclassical segments into an approximate global
wave function.

Two lessons follow. First, semiclassical methods can be very powerful -
classical mechanics computations yield suprisingly accurate estimates of quantal
spectra, without solving the Schrödinger equation. Second, semiclassical quantization
does depend on a purely wave-mechanical phenomena, the coherent addition of
phases accrued by all fixed energy phase space trajectories that connect pairs
of coordinate points, and the topological phase loss at every turning point, a
topological property of the classical flow that plays no rolein classical mechanics.

31.1 WKB ansatz

Consider a time-independent Schrödinger equation in 1 spatial dimension:

− ~
2

2m
ψ′′(q) + V(q)ψ(q) = Eψ(q) , (31.2)
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Figure 31.1: A 1-dimensional potential, location of
the two turning points at fixed energyE.

with potential V(q) growing sufficiently fast asq → ±∞ so that the classical
particle motion is confined for anyE. Define the local momentump(q) and the
local wavenumberk(q) by

p(q) = ±
√

2m(E − V(q)), p(q) = ~k(q) . (31.3)

The variable wavenumber form of the Schrödinger equation

ψ′′ + k2(q)ψ = 0 (31.4)

sugests that the wave function be written asψ = Ae
i
~
S, A andS real functions of

q. Substitution yields two equations, one for the real and other for the imaginary
part:

(S′)2 = p2 + ~2
A′′

A
(31.5)

S′′A+ 2S′A′ =
1
A

d
dq

(S′A2) = 0 . (31.6)

The Wentzel-Kramers-Brillouin(WKB) or semiclassicalapproximation consists
of dropping the~2 term in (31.5). Recalling thatp = ~k, this amounts to assuming
thatk2 ≫ A′′

A , which in turn implies that the phase of the wave function is changing
much faster than its overall amplitude. So the WKB approximation can interpreted
either as a short wavelength/high frequency approximation to a wave-mechanical
problem, or as the semiclassical,~≪ 1 approximation to quantum mechanics.

Setting~ = 0 and integrating (31.5) we obtain the phase increment of a wave
function initially atq, at energyE

S(q, q′,E) =
∫ q

q′
dq′′p(q′′) . (31.7)

This integral over a particle trajectory of constant energy, called theaction, will
play a key role in all that follows. The integration of (31.6) is even easier

A(q) =
C

|p(q)| 12
, C = |p(q′)| 12ψ(q′) , (31.8)
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Figure 31.2: A 1-dof phase space trajectory of a
particle moving in a bound potential.

where the integration constantC is fixed by the value of the wave function at the
initial point q′. TheWKB(or semiclassical) ansatzwave function is given by

ψsc(q, q
′,E) =

C

|p(q)| 12
e

i
~
S(q,q′,E) . (31.9)

In what follows we shall suppress dependence on the initial point and energy in
such formulas, (q, q′,E)→ (q).

The WKB ansatz generalizes the free motion wave function (31.1), with the
probability density|A(q)|2 for finding a particle atq now inversely proportional
to the velocity at that point, and the phase1

~
q p replaced by1

~

∫
dq p(q), the

integrated action along the trajectory. This is fine, exceptat any turning point
q0, figure31.1, where all energy is potential, and

p(q)→ 0 as q→ q0 , (31.10)

so that the assumption thatk2 ≫ A′′

A fails. What can one do in this case?

For the task at hand, a simple physical picture, due to Maslov, does the job.
In the q coordinate, the turning points are defined by the zero kinetic energy
condition (see figure31.1), and the motion appears singular. This is not so in
the full phase space: the trajectory in a smooth confining 1-dimensional potential
is always a smooth loop, with the “special” role of the turning pointsqL, qR seen
to be an artifact of a particular choice of the (q, p) coordinate frame. Maslov’s
idea was to proceed from the initial point (q′, p′) to a point (qA, pA) preceeding the
turning point in theψ(q) representation, then switch to the momentum representation

ψ̃(p) =
1
√

2π~

∫
dq e−

i
~
qpψ(q) , (31.11)

continue from (qA, pA) to (qB, pB), switch back to the coordinate representation,

ψ(q) =
1
√

2π~

∫
dp e

i
~
qp ψ̃(p) , (31.12)

and so on.

WKB - 18feb2004.tex

CHAPTER 31. WKB QUANTIZATION 515

The only rub is that one usually cannot evaluate these transforms exactly. But,
as the WKB wave function (31.9) is approximate anyway, it suffices to estimate
these transforms to leading order in~ accuracy. This is accomplished by the
method of stationary phase.

31.2 Method of stationary phase

All “semiclassical” approximations are based on saddle point evaluations of integrals
of the type

I =
∫

dx A(x) eisΦ(x) , x,Φ(x) ∈ R , (31.13)

wheres is assumed to be a large, real parameter, andΦ(x) is a real-valued function.
In our applicationss= 1/~ will always be assumed large.

For larges, the phase oscillates rapidly and “averages to zero” everywhere
except at theextremal pointsΦ′(x0) = 0. The method of approximating an integral
by its values at extremal points is called themethod of stationary phase. Consider
first the case of a 1-dimensional integral, and expandΦ(x0 + δx) aroundx0 to
second order inδx,

I =
∫

dx A(x) eis(Φ(x0)+ 1
2Φ
′′(x0)δx2+...) . (31.14)

Assume (for time being) thatΦ′′(x0) , 0, with either sign, sgn[Φ′′] = Φ′′/|Φ′′| =
±1. If in the neighborhood ofx0 the amplitudeA(x) varies slowly over many
oscillations of the exponential function, we may retain theleading term in the
Taylor expansion of the amplitude, and approximate the integral up to quadratic
terms in the phase by

I ≈ A(x0)eisΦ(x0)
∫

dx e
1
2 isΦ′′(x0)(x−x0)2

. (31.15)

Using theFresnel integral formula
[exercise 31.1]

1
√

2π

∫ ∞

−∞
dx e−

x2
2ia =

√
ia = |a|1/2 ei π4

a
|a| (31.16)

we obtain

I ≈ A(x0)
∣∣∣∣∣

2π
sΦ′′(x0)

∣∣∣∣∣
1/2

eisΦ(x0)±i π4 , (31.17)

where± corresponds to the positive/negative sign ofsΦ′′(x0).
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31.3 WKB quantization

We can now evaluate the Fourier transforms (31.11), (31.12) to the same order in
~ as the WKB wave function using the stationary phase method,

ψ̃sc(p) =
C
√

2π~

∫
dq

|p(q)| 12
e

i
~
(S(q)−qp)

≈ C
√

2π~

e
i
~
(S(q∗)−q∗p)

|p(q∗)| 12

∫
dq e

i
2~S

′′(q∗)(q−q∗)2
, (31.18)

whereq∗ is given implicitly by the stationary phase condition

0 = S′(q∗) − p = p(q∗) − p

and the sign ofS′′(q∗) = p′(q∗) determines the phase of the Fresnel integral
(31.16)

ψ̃sc(p) =
C

|p(q∗)p′(q∗)| 12
e

i
~
[S(q∗)−q∗p]+ iπ

4 sgn[S′′(q∗)] . (31.19)

As we continue from (qA, pA) to (qB, pB), nothing problematic occurrs -p(q∗)
is finite, and so is the accelerationp′(q∗). Otherwise, the trajectory would take
infinitely long to get across. We recognize the exponent as the Legendre transform

S̃(p) = S(q(p)) − q(p)p

which can be used to expresses everything in terms of thep variable,

q∗ = q(p),
d
dq

q = 1 =
dp
dq

dq(p)
dp

= q′(p)p′(q∗) . (31.20)

As the classical trajectory crossesqL, the weight in (31.19),

d
dq

p2(qL) = 2p(qL)p′(qL) = −2mV′(q) , (31.21)

is finite, andS′′(q∗) = p′(q∗) < 0 for any point in the lower left quadrant,
including (qA, pA). Hence, the phase loss in (31.19) is −π4. To go back from
the p to theq representation, just turn figure31.290o anticlockwise. Everything
is the same if you replace (q, p) → (−p, q); so, without much ado we get the
semiclassical wave function at the point (qB, pB),

ψsc(q) =
e

i
~
(S̃(p∗)+qp∗)− iπ

4

|q∗(p∗)| 12
ψ̃sc(p

∗) =
C

|p(q)| 12
e

i
~
S(q)− iπ

2 . (31.22)

WKB - 18feb2004.tex

CHAPTER 31. WKB QUANTIZATION 517

Figure 31.3: Sp(E), the action of a periodic orbitp at
energyE, equals the area in the phase space traced out
by the 1-dof trajectory.

The extra|p′(q∗)|1/2 weight in (31.19) is cancelled by the|q′(p∗)|1/2 term, by the
Legendre relation (31.20).

The message is that going through a smooth potential turningpoint the WKB
wave function phase slips by−π2. This is equally true for the right and the left
turning points, as can be seen by rotating figure31.2by 180o, and flipping coordinates
(q, p) → (−q,−p). While a turning point is not an invariant concept (for a
sufficiently short trajectory segment, it can be undone by a 45o turn), for a complete
period (q, p) = (q′, p′) the total phase slip is always−2 · π/2, as a loop always has
m= 2 turning points.

TheWKB quantization conditionfollows by demanding that the wave function
computed after a complete period be single-valued. With thenormalization (31.8),
we obtain

ψ(q′) = ψ(q) =
∣∣∣∣∣
p(q′)
p(q)

∣∣∣∣∣
1
2

ei( 1
~

∮
p(q)dq−π)ψ(q′) .

The prefactor is 1 by the periodic orbit conditionq = q′, so the phase must be a
multiple of 2π,

1
~

∮
p(q)dq= 2π

(
n+

m
4

)
, (31.23)

where m is the number of turning points along the trajectory - for this 1-dof
problem,m= 2.

The action integral in (31.23) is the area (see figure31.3) enclosed by the
classical phase space loop of figure31.2, and the quantization condition says
that eigenenergies correspond to loops whose action is an integer multiple of the
unit quantum of action, Planck’s constant~. The extra topological phase, which,
although it had been discovered many times in centuries past, had to wait for its
most recent quantum chaotic (re)birth until the 1970’s. Despite its derivation in a
noninvariant coordinate frame, the final result involves only canonically invariant
classical quantities, the periodic orbit actionS, and the topological indexm.
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Figure 31.4: Airy function Ai(q).

31.3.1 Harmonic oscillator quantization

Let us check the WKB quantization for one case (the only case?) whose quantum
mechanics we fully understand: the harmonic oscillator

E =
1

2m

(
p2 + (mωq)2

)
.

The loop in figure31.2is now a circle in the (mωq, p) plane, the action is its area
S = 2πE/ω, and the spectrum in the WKB approximation

En = ~ω(n+ 1/2) (31.24)

turns out to be theexact harmonic oscillator spectrum. The stationary phase
condition (31.18) keepsV(q) accurate to orderq2, which in this case is the whole
answer (but we were simply lucky, really). For many 1-dof problems the WKB
spectrum turns out to be very accurate all the way down to the ground state.
Surprisingly accurate, if one interprets dropping the~2 term in (31.5) as a short
wavelength approximation.

31.4 Beyond the quadratic saddle point

We showed, with a bit of Fresnel/Maslov voodoo, that in a smoothly varying
potential the phase of the WKB wave function slips by aπ/2 for each turning
point. Thisπ/2 came from a

√
i in the Fresnel integral (31.16), one such factor

for every time we switched representation from the configuration space to the
momentum space, or back. Good, but what does this mean?

The stationary phase approximation (31.14) fails wheneverΦ′′(x) = 0, or, in
our the WKB ansatz (31.18), whenever the momentump′(q) = S′′(q) vanishes.
In that case we have to go beyond the quadratic approximation(31.15) to the first
nonvanishing term in the Taylor expansion of the exponent. If Φ′′′(x0) , 0, then

I ≈ A(x0)eisΦ(x0)
∫ ∞

−∞
dx eisΦ′′′(x0)

(x−x0)3

6 . (31.25)
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Airy functions can be represented by integrals of the form

Ai(x) =
1
2π

∫ +∞

−∞
dy ei(xy− y3

3 ) . (31.26)

Derivations of the WKB quantization condition given in standard quantum
mechanics textbooks rely on expanding the potential close to the turning point

V(q) = V(q0) + (q− q0)V′(q0) + · · · ,

solving the Airy equation

ψ′′ = qψ , (31.27)

and matching the oscillatory and the exponentially decaying “forbidden” region
wave function pieces by means of theWKB connection formulas. That requires
staring at Airy functions and learning about their asymptotics - a challenge that we
will have to eventually overcome, in order to incorporate diffraction phenomena
into semiclassical quantization.

2) what does the wave function look like?

3) generically useful when Gaussian approximations fail

The physical origin of the topological phase is illustratedby the shape of the
Airy function, figure 31.4. For a potential with a finite slopeV′(q) the wave
function pentrates into the forbidden region, and accomodates a bit more of a
stationary wavelength then what one would expect from the classical trajectory
alone. For infinite walls (i.e., billiards) a different argument applies: the wave
function must vanish at the wall, and the phase slip due to a specular reflection is
−π, rather than−π/2.

Résum é

The WKB ansatz wave function for 1-degree of freedom problems fails at the
turning points of the classical trajectory. While in theq-representation the WKB
ansatz a turning point is singular, along thep direction the classical trajectory in
the same neighborhood is smooth, as for any smooth bound potential the classical
motion is topologically a circle around the origin in the (q, p) space. The simplest
way to deal with such singularities is as follows; follow theclassical trajectory in
q-space until the WKB approximation fails close to the turning point; then insert∫

dp|p〉〈p| and follow the classical trajectory in thep-space until you encounter
the nextp-space turning point; go back to theq-space representation, an so on.
Each matching involves a Fresnel integral, yielding an extrae−iπ/4 phase shift, for
a total ofe−iπ phase shift for a full period of a semiclassical particle moving in a
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soft potential. The condition that the wave-function be single-valued then leads to
the 1-dimensional WKB quantization, and its lucky cousin, the Bohr-Sommerfeld
quantization.

Alternatively, one can linearize the potential around the turning pointa, V(q) =
V(a)+(q−a)V′(a)+· · ·, and solve the quantum mechanical constant linear potential
V(q) = qF problem exactly, in terms of an Airy function. An approximate wave
function is then patched together from an Airy function at each turning point,
and the WKB ansatz wave-function segments inbetween via theWKB connection
formulas. The single-valuedness condition again yields the 1-dimensional WKB
quantization. This a bit more work than tracking the classical trajectory in the full
phase space, but it gives us a better feeling for shapes of quantum eigenfunctions,
and exemplifies the general strategy for dealing with other singularities, such
as wedges, bifurcation points, creeping and tunneling: patch together the WKB
segments by means of exact QM solutions to local approximations to singular
points.

Commentary

Remark 31.1 Airy function. The stationary phase approximation is all that is needed
for the semiclassical approximation, with the proviso thatD in (32.36) has no zero eigenvalues.
The zero eigenvalue case would require going beyond the Gaussian saddle-point approximation,
which typically leads to approximations of the integrals interms of Airy functions [10].

[exercise 31.4]

Remark 31.2 Bohr-Sommerfeld quantization. Bohr-Sommerfeld quantization condition
was the key result of the old quantum theory, in which the electron trajectories were
purely classical. They were lucky - the symmetries of the Kepler problem work out in
such a way that the total topological indexm = 4 amount effectively to numbering the
energy levels starting withn = 1. They were unlucky - because the hydrogenm =
4 masked the topological index, they could never get the helium spectrum right - the
semiclassical calculation had to wait for until 1980, when Leopold and Percival [5] added
the topological indices.

Exercises

31.1. WKB ansatz. Try to show that no other
ansatz other than (32.1) gives a meaningful definition of
the momentum in the~→ 0 limit.

31.2. Fresnel integral. Derive the Fresnel integral

1
√

2π

∫ ∞

−∞
dx e−

x2

2ia =
√

ia = |a|1/2ei π4
a
|a| .

31.3. Sterling formula for n!. Compute an approximate
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value of n! for large n using the stationary phase
approximation. Hint:n! =

∫ ∞
0

dt tne−t.

31.4. Airy function for large arguments.

Important contributions as stationary phase
points may arise from extremal points where the first
non-zero term in a Taylor expansion of the phase is of
third or higher order. Such situations occur, for example,
at bifurcation points or in diffraction effects, (such
as waves near sharp corners, waves creeping around

obstacles, etc.). In such calculations, one meets Airy
functions integrals of the form

Ai(x) =
1
2π

∫ +∞

−∞
dy ei(xy− y3

3 ) . (31.28)

Calculate the Airy functionAi(x) using the stationary
phase approximation. What happens when considering
the limit x → 0. Estimate for which value ofx the
stationary phase approximation breaks down.
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Chapter 32

Semiclassical evolution

William Rowan Hamilton was born in 1805. At three
he could read English; by four he began to read Latin,
Greek and Hebrew, by ten he read Sanskrit, Persian,
Arabic, Chaldee, Syrian and sundry Indian dialects. At
age seventeen he began to think about optics, and worked
out his great principle of “Characteristic Function.”

— Turnbull,Lives of Mathematicians

(G. Vattay, G. Tanner and P. Cvitanović)

S  to quantum mechanics are valid in the regime
where the de Broglie wavelengthλ ∼ ~/p of a particle with momentum
p is much shorter than the length scales across which the potential of the

system changes significantly. In the short wavelength approximation the particle
is a point-like object bouncing off potential walls, the same way it does in the
classical mechanics. The novelty of quantum mechanics is the interference of the
point-like particle with other versions of itself traveling along different classical
trajectories, a feat impossible in classical mechanics. The short wavelength –

[remark 32.1]
or semiclassical – formalism is developed by formally taking the limit ~ → 0 in
quantum mechanics in such a way that quantum quantities go totheir classical
counterparts.

32.1 Hamilton-Jacobi theory

We saw in chapter31that for a 1-dof particle moving in a slowly varying potential,
it makes sense to generalize the free particle wave function(31.1) to a wave
function

ψ(q, t) = A(q, t)eiR(q,t)/~ , (32.1)

with slowly varying (real) amplitudeA(q, t) and rapidly varying (real) phaseR(q, t).
its phase and magnitude. The time evolution of the phase and the magnitude of

[exercise 31.1]
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ψ follows from the Schrödinger equation (30.1)

(
i~
∂

∂t
+
~

2

2m
∂2

∂q2
− V(q)

)
ψ(q, t) = 0 . (32.2)

AssumeA , 0, and separate out the real and the imaginary parts. We get two
equations: The real part governs the time evolution of the phase

∂R
∂t
+

1
2m

(
∂R
∂q

)2

+ V(q) − ~
2

2m
1
A
∂2

∂q2
A = 0 , (32.3)

and the imaginary part the time evolution of the amplitude
[exercise 32.6]

[exercise 32.7]

∂A
∂t
+

1
m

D∑

i=1

∂A
∂qi

∂R
∂qi
+

1
2m

A
∂2R

∂q2
= 0 . (32.4)

[exercise 32.8]

In this way a linear PDE for a complex wave function is converted into a set of
coupled non-linear PDE’s for real-valued functionsR andA. The coupling term
in (32.3) is, however, of order~2 and thus small in the semiclassical limit~→ 0.

Now we generalize theWentzel-Kramers-Brillouin(WKB) ansatzfor 1-dof
dynamics to the Van Vleckansatzin arbitrary dimension: we assume the magnitude
A(q, t) varies slowly compared to the phaseR(q, t)/~, so we drop the~-dependent
term. In this approximation the phaseR(q, t) and the corresponding “momentum
field” ∂R

∂q (q, t) can be determined from the amplitude independent equation

∂R
∂t
+ H

(
q,
∂R
∂q

)
= 0 . (32.5)

In classical mechanics this equation is known as theHamilton-Jacobi equation.
We will refer to this step (as well as all leading order in~ approximations to
follow) as thesemiclassical approximationto wave mechanics, and from now on
work only within this approximation.

32.1.1 Hamilton’s equations

We now solve the nonlinear partial differential equation (32.5) in a way the 17
year old Hamilton might have solved it. The main step is the step leading from
the nonlinear PDE (32.9) to Hamilton’s ODEs (32.10). If you already understand
the Hamilton-Jacobi theory, you can safely skip this section.

fast track:

sect. 32.1.3, p. 526
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Figure 32.1: (a) A phaseR(q, t) plotted as a
function of the positionq for two infinitesimally
close times. (b) The phaseR(q, t) transported by
a swarm of “particles”; The Hamilton’s equations
(32.10) constructR(q, t) by transportingq0 → q(t)
and the slope ofR(q0, t0), that isp0 → p(t).

f t
0
),p(q

0

R(q,t)

+ dt0t

t0t0

q
0

R(q ,t )
0 0

R(q,t)

qt
0
),p(q

0
t

0
),p(q

0

p

q
p

0

q

dR

0q
0

q + dq

slope 

(a) (b)

The wave equation (30.1) describes how the wave functionψ evolves with
time, and if you think ofψ as an (infinite dimensional) vector, positionq plays a
role of an index. In one spatial dimension the phaseRplotted as a function of the
positionq for two different times looks something like figure32.1(a): The phase
R(q, t0) deforms smoothly with time into the phaseR(q, t) at time t. Hamilton’s
idea was to let a swarm of particles transportR and its slope∂R/∂q at q at initial
time t = t0 to a correspondingR(q, t) and its slope at timet, figure32.1(b). For
notational convenience, define

pi = pi(q, t) :=
∂R
∂qi

, i = 1, 2, . . . ,D . (32.6)

We saw earlier that (32.3) reduces in the semiclassical approximation to the Hamilton-
Jacobi equation (32.5). To make life simple, we shall assume throughout this
chapter that the Hamilton’s functionH(q, p) does not depend explicitly on timet,
i.e., the energy is conserved.

To start with, we also assume that the functionR(q, t) is smooth and well
defined for everyq at the initial timet. This is true for sufficiently short times;
as we will see later,R develops folds and becomes multi-valued ast progresses.
Consider now the variation of the functionR(q, t) with respect to independent
infinitesimal variations of the time and space coordinatesdt anddq, figure32.1(a)

dR=
∂R
∂t

dt +
∂R
∂q

dq. (32.7)

Dividing through bydt and substituting (32.5) we obtain the total derivative of
R(q, t) with respect to timealong the as yet arbitrary directioṅq, that is,

dR
dt

(q, q̇, t) = −H(q, p) + q̇ · p . (32.8)

Note that the “momentum”p = ∂R/∂q is a well defined function ofq and t.
In order to integrateR(q, t) with the help of (32.8) we also need to know how
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p = ∂R/∂q changes along ˙q. Varying p with respect to independent infinitesimal
variationsdt anddq and substituting the Hamilton-Jacobi equation (32.5) yields

d
∂R
∂q
=
∂2R
∂q∂t

dt +
∂2R

∂q2
dq= −

(
∂H
∂q
+
∂H
∂p

∂p
∂q

)
dt +

∂p
∂q

dq.

Note thatH(q, p) depends onq also throughp(q, t) = ∂R/∂q, hence the∂H
∂p term

in the above equation. Dividing again through bydt we get the time derivative of
∂R/∂q, that is,

ṗ(q, q̇, t) +
∂H
∂q
=

(
q̇− ∂H

∂p

)
∂p
∂q

. (32.9)

Time variation ofp depends not only on the yet unknown ˙q, but also on the second
derivatives ofRwith respect toq with yet unknown time dependence. However, if
wechoosėq (which was arbitrary, so far) such that the right hand side ofthe above
equation vanishes, we can calculate the functionR(q, t) along a specific trajectory
(q(t), p(t)) given by integrating the ordinary differential equations

q̇ =
∂H(q, p)
∂p

, ṗ = −∂H(q, p)
∂q

(32.10)

with initial conditions

q(t0) = q′, p(t0) = p′ =
∂R
∂q

(q′, t0). (32.11)

[section 7.1]

We recognize (32.10) as Hamilton’s equations of motion of classical mechanics.
The miracle happens in the step leading from (32.5) to (32.9) – if you missed it,
you have missed the point. Hamilton derived his equations contemplating optics
- it took him three more years to realize that all of Newtoniandynamics can be
profitably recast in this form.

q̇ is no longer an independent function, and the phaseR(q, t) can now be
computed by integrating equation (32.8) along the trajectory (q(t), p(t))

R(q, t) = R(q′, t0) + R(q, t; q′, t0)

R(q, t; q′, t0) =
∫ t

t0
dτ

[
q̇(τ) · p(τ) − H(q(τ), p(τ))

]
, (32.12)

with the initial conditions (32.11). In this way the Hamilton-Jacobipartial differential
equation (32.3) is solved by integrating a set ofordinary differential equations,
Hamilton’s equations. In order to determineR(q, t) for arbitraryq andt we have
to find aq′ such that the trajectory starting in (q′, p′ = ∂qR(q′, t0)) reachesq in

VanVleck - 28dec2004.tex



CHAPTER 32. SEMICLASSICAL EVOLUTION 526

time t and then computeRalong this trajectory, see figure32.1(b). The integrand
of (32.12) is known as theLagrangian,

L(q, q̇, t) = q̇ · p− H(q, p, t) . (32.13)

A variational principle lurks here, but we shall not make much fuss about it as yet.

Throughout this chapter we assume that the energy is conserved, and that the
only time dependence ofH(q, p) is through (q(τ), p(τ)), so the value ofR(q, t; q′, t0)
does not depend ont0, but only on the elapsed timet− t0. To simplify notation we
will set t0 = 0 and write

R(q, q′, t) = R(q, t; q′, 0) .

The initial momentum of the particle must coincide with the initial momentum of
the trajectory connectingq′ andq:

p′ =
∂

∂q′
R(q′, 0) = − ∂

∂q′
R(q, q′, t). (32.14)

[exercise 32.5]

The functionR(q, q′, t) is known asHamilton’s principal function.
[exercise 32.9]

To summarize: Hamilton’s achievement was to trade in the Hamilton-Jacobi
partial differential equation (32.5) describing the evolution of a wave front for a
finite number ofordinary differential equations of motion, with the initial phase
R(q, 0) incremented by the integral (32.12) evaluated along the phase space trajectory
(q(τ), p(τ)).

32.1.2 Action

Before proceeding, we note in passing a few facts about Hamiltonian dynamics
that will be needed for the construction of semiclassical Green’s functions. If the
energy is conserved, the

∫
H(q, p)dτ integral in (32.12) is simply Et. The first

term, or theaction

S(q, q′,E) =
∫ t

0
dτ q̇(τ) · p(τ) =

∫ q

q′
dq · p (32.15)

is integrated along a trajectory fromq′ to q with a fixed energyE. By (32.12) the
action is a Legendre transform of Hamilton’s principal function

S(q, q′,E) = R(q, q′, t) + Et . (32.16)
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The time of flightt along the trajectory connectingq′ → q with fixed energyE is
given by

∂

∂E
S(q, q′,E) = t . (32.17)

The way to think about the formula (32.16) for action is that the time of flight is a
function of the energy,t = t(q, q′,E). The left hand side is explicitly a function of
E; the right hand side is an implicit function ofE through energy dependence of
the flight timet.

Going in the opposite direction, the energy of a trajectoryE = E(q, q′, t)
connectingq′ → q with a given time of flightt is given by the derivative of
Hamilton’s principal function

∂

∂t
R(q, q′, t) = −E , (32.18)

and the second variations ofR andS are related in the standard way of Legendre
transforms:

∂2

∂t2
R(q, q′, t)

∂2

∂E2
S(q, q′,E) = −1 . (32.19)

A geometric visualization of what the phase evolution lookslike is very helpful
in understanding the origin of topological indices to be introduced in what follows.
Given an initial phaseR(q, t0), the gradient∂qRdefines aD-dimensionalLagrangian

[section 32.1.4]
manifold (q, p = ∂qR(q)) in the full 2d dimensional phase space (q, p). The
defining property of this manifold is that any contractible loop γ in it has zero
action,

0 =
∮

γ

dq · p,

a fact that follows from the definition ofp as a gradient, and the Stokes theorem.
Hamilton’s equations of motion preserve this property and map a Lagrangian
manifold into a Lagrangian manifold at a later time.t

Returning back to the main line of our argument: so far we havedetermined
the wave function phaseR(q, t). Next we show that the velocity field given by
the Hamilton’s equations together with the continuity equation determines the
amplitude of the wave function.

32.1.3 Density evolution

To obtain the full solution of the Schrödinger equation (30.1), we also have to
integrate (32.4).

ρ(q, t) := A2 = ψ∗ψ
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plays the role of a density. To the leding order in~, the gradient ofR may be
interpreted as the semiclassical momentum density

ψ(q, t)∗(−i~
∂

∂q
)ψ(q, t) = −i~A

∂A
∂q
+ ρ

∂R
∂q

.

Evaluated along the trajectory (q(t), p(t)), the amplitude equation (32.4) is equivalent
to the continuity equation (14.36) after multiplying (32.4) by 2A, that is

∂ρ

∂t
+

∂

∂qi
(ρvi ) = 0 . (32.20)

Here,vi = q̇i = pi/m denotes a velocity field, which is in turn determined by the
gradient ofR(q, t), or theLagrangian manifold(q(t), p(t) = ∂qR(q, t)),

v =
1
m
∂

∂q
R(q, t).

As we already know how to solve the Hamilton-Jacobi equation(32.5), we can
also solve for the density evolution as follows:

The densityρ(q) can be visualized as the density of a configuration space
flow q(t) of a swarm of hypothetical particles; the trajectoriesq(t) are solutions
of Hamilton’s equations with initial conditions given by (q(0) = q′, p(0) = p′ =
∂qR(q′, 0)).

If we take a small configuration space volumedDqaround some pointqat time
t, then the number of particles in it isρ(q, t)dDdq. They started initially in a small
volumedDq′ around the pointq′ of the configuration space. For the moment, we
assume that there is only one solution, the case of several paths will be considered
below. The number of particles at timet in the volume is the same as the number
of particles in the initial volume att = 0,

ρ(q(t), t)dDq = ρ(q′, 0)dDq′ ,

see figure32.2. The ratio of the initial and the final volumes can be expressed as

ρ(q(t), t) =
∣∣∣∣∣det

∂q′

∂q

∣∣∣∣∣ ρ(q′, 0) . (32.21)

[section 14.2]

As we know how to compute trajectories (q(t), p(t)), we know how to compute
this Jacobian and, by (32.21), the densityρ(q(t), t) at timet.
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Figure 32.2: Density evolution of an initial surface
(q′, p′ = ∂qR(q′,0) into (q(t), p(t)) surface timet
later, sketched in 1 dimension. While the number of
trajectories and the phase space Liouville volume are
conserved, the density of trajectories projected on the
q coordinate varies; trajectories which started indq′ at
time zero end up in the intervaldq.

32.1.4 Semiclassical wave function

Now we have all ingredients to write down the semiclassical wave function at
time t. Consider first the case when our initial wave function can bewritten in
terms of single-valued functionsA(q′, 0) andR(q′, 0). For sufficiently short times,
R(q, t) will remain a single-valued function ofq, and everydDq configuration
space volume element keeps its orientation. The evolved wave function is in the
semiclassical approximation then given by

ψsc(q, t) = A(q, t)eiR(q,t)/~ =

√
det

∂q′

∂q
A(q′, 0)ei(R(q′ ,0)+R(q,q′,t))/~

=

√
det

∂q′

∂q
eiR(q,q′,t)/~ ψ(q′, 0) .

As the time progresses the Lagrangian manifold∂qR(q, t) can develop folds, so
for longer times the value of the phaseR(q, t) is not necessarily unique; in general
more than one trajectory will connect pointsqandq′ with different phasesR(q, q′, t)
accumulated along these paths, see figure32.3.

We thus expect in general a collection of different trajectories fromq′ to
q which we will index by j, with different phase incrementsRj(q, q′, t). The
hypothetical particles of the density flow at a given configuration space point can
move with different momentap = ∂qRj(q, t). This is not an ambiguity, since in
the full (q, p) phase space each particle follows its own trajectory with aunique
momentum.

Whenever the Lagrangian manifold develops a fold, the density of the phase
space trajectories in the fold projected on the configuration coordinates diverges.
As illustrated in figure32.3, when the Lagrangian manifold develops a fold at
q = q1; the volume elementdq1 in the neighborhood of the folding point is
proportional to

√
dq′ instead ofdq′. The Jacobian∂q′/∂qdiverges like 1/

√
q1 − q(t)

when computed along the trajectory going trough the foldingpoint atq1. After
the folding the orientation of the intervaldq′ has changed when being mapped
into dq2; in addition the functionR, as well as its derivative which defines the
Lagrangian manifold, becomes multi-valued. Distinct trajectories starting from
different initial pointsq′ can now reach the same final pointq2. (That is, the
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Figure 32.3: Folding of the Lagrangian surface
(q, ∂qR(q, t)).

point q′ may have more than one pre-image.) The projection of a simplefold,
or of an envelope of a family of phase space trajectories, is called acaustic; this
expression comes from the Greek word for “capable of burning,” evoking the
luminous patterns that one observes swirling across the bottom of a swimming
pool.

The folding also changes the orientation of the pieces of theLagrangian manifold
(q, ∂qR(q, t)) with respect to the initial manifold, so the eigenvalues of the Jacobian
determinant change sign at each fold crossing. We can keep track of the signs by
writing the Jacobian determinant as

det
∂q′

∂q

∣∣∣∣∣
j
= e−iπmj (q,q′,t)

∣∣∣∣∣det
∂q′

∂q

∣∣∣∣∣
j
,

wheremj(q, q′, t) counts the number of sign changes of the Jacobian determinant
on the way fromq′ to q along the trajectory indexed withj, see figure32.3. We
shall refer to the integermj(q, q′, t) as thetopological of the trajectory. So in
general the semiclassical approximation to the wave function is thus a sum over
possible trajectories that start at any initalq′ and end inq in time t

ψsc(q, t) =
∫

dq′
∑

j

∣∣∣∣∣det
∂q′

∂q

∣∣∣∣∣
1/2

j
eiR j (q,q′,t)/~−iπmj (q,q′,t)/2ψ(q′j , 0) , (32.22)

each contribution weighted by corresponding density, phase increment and the
topological index.

That the correct topological index is obtained by simply counting the number
of eigenvalue sign changes and taking the square root is not obvious - the careful
argument requires that quantum wave functions evaluated across the folds remain
single valued.

32.2 Semiclassical propagator

We saw in chapter30 that the evolution of an initial wave functionψ(q, 0) is
completely determined by the propagator (30.12). As K(q, q′, t) itself satisfies the
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Schrödinger equation (30.14), we can treat it as a wave function parameterized
by the configuration pointq′. In order to obtain a semiclassical approximation
to the propagator we follow now the ideas developed in the last section. There
is, however, one small complication: the initial condition(30.15) demands that
the propagator att = 0 is aδ-function atq = q′, that is, the amplitude is infinite
at q′ and the phase is not well defined. Our hypothetical cloud of particles is
thus initially localized atq = q′ with any initial velocity. This is in contrast
to the situation in the previous section where we assumed that the particles at a
given pointq have well defined velocity (or a discrete set of velocities) given by
q̇ = ∂pH(q, p). We will now derive at a semiclassical expression forK(q, q′, t) by
considering the propagator for short times first, and extrapolating from there to
arbitrary timest.

32.2.1 Short time propagator

For infinitesimally short timesδt away from the singular pointt = 0 we assume
that it is again possible to write the propagator in terms of awell defined phase
and amplitude, that is

K(q, q′, δt) = A(q, q′, δt)e
i
~
R(q,q′,δt) .

As all particles start atq = q′, R(q, q′, δt) will be of the form (32.12), that is

R(q, q′, δt) = pq̇δt − H(q, p)δt , (32.23)

with q̇ ≈ (q−q′)/δt. For Hamiltonians of the form (30.2) we have ˙q = p/m, which
leads to

R(q, q′, δt) =
m(q− q′)2

2δt
− V(q)δt .

HereV can be evaluated any place along the trajectory fromq to q′, for example
at the midway pointV((q+q′)/2). Inserting this into our ansatz for the propagator
we obtain

Ksc(q, q
′, δt) ≈ A(q, q′, δt)e

i
~ ( m

2δt (q−q′)2−V(q)δt) . (32.24)

For infinitesimal times we can neglect the termV(q)δt, so Ksc(q, q′, δt) is a d-
dimensional Gaussian with widthσ2 = i~δt/m. This Gaussian is a finite width
approximation to the Dirac delta function

δ(z) = lim
σ→0

1
√

2πσ2
e−z2/2σ2

(32.25)
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if A = (m/2πi~δt)D/2, with A(q, q′, δt) fixed by the Dirac delta function normalization
condition. The correctly normalized propagator for infinitesimal timesδt is

[exercise 32.1]
therefore

Ksc(q, q
′, δt) ≈

( m
2πi~δt

)D/2
e

i
~
( m(q−q′)2

2δt −V(q)δt) . (32.26)

The short time dynamics of the Lagrangian manifold (q, ∂qR) which corresponds
to the quantum propagator can now be deduced from (32.23); one obtains

∂R
∂q
= p ≈ m

δt
(q− q′) ,

i.e., is the particles start for short times on a Lagrangian manifold which is a plane
in phase space, see figure32.4. Note, that forδt → 0, this plane is given by
the conditionq = q′, that is, particles start on a plane parallel to the momentum
axis. As we have already noted, all particles start atq = q′ but with different
velocities fort = 0. The initial surface (q′, p′ = ∂qR(q′, 0)) is mapped into the
surface (q(t), p(t)) some timet later. The slope of the Lagrangian plane for a short
finite time is given as

∂pi

∂q j
= − ∂2R

∂q j∂q′i
= −

∂p′i
∂q j
=

m
δt
δi j .

The prefactor (m/δt)D/2 in (32.26) can therefore be interpreted as the determinant
of the Jacobian of the transformation from final position coordinatesq to initial
momentum coordinatesp′, that is

Ksc(q, q
′, δt) =

1

(2πi~)D/2

(
det

∂p′

∂q

)1/2

eiR(q,q′,δt)/~, (32.27)

where

∂p′i
∂q j

∣∣∣∣∣∣
t,q′
=
∂2R(q, q′, δt)
∂q j∂q′i

(32.28)

The subscript· · ·|t,q′ indicates that the partial derivatives are to be evaluated with
t, q′ fixed.

The propagator in (32.27) has been obtained for short times. It is, however,
already more or less in its final form. We only have to evolve our short time
approximation of the propagator according to (32.22)

Ksc(q
′′, q′, t′ + δt) =

∑

j

∣∣∣∣∣det
∂q
∂q′′

∣∣∣∣∣
1/2

j
eiR j (q′′,q,t′)/~−iπmj (q′′,q,t′)/2K(q, q′j , δt) ,
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Figure 32.4: Evolution of the semiclassical
propagator. The configuration which corresponds to
the initial conditions of the propagator is a Lagrangian
manifoldq = q′, that is, a plane parallel to thep axis.
The hypothetical particles are thus initially all placed at
q′ but take on all possible momentap′. The Jacobian
matrix C (32.29) relates an initial volume element in
momentum spacedp′ to a final configuration space
volumedq.

and we included here already the possibility that the phase becomes multi-valued,
that is, that there is more than one path fromq′ to q′′. The topological indexmj =

mj(q′′, q′, t) is the number of singularities in the Jacobian along the trajectory j
from q′ to q′′. We can writeKsc(q′′, q′, t′ + δt) in closed form using the fact that
R(q′′, q, t′) + R(q, q′, δt) = R(q′′, q′, t′ + δt) and the multiplicativity of Jacobian
determinants, that is

det
∂q
∂q′′

∣∣∣∣∣
t
det

∂p′

∂q

∣∣∣∣∣
q′,δt
= det

∂p′

∂q′′

∣∣∣∣∣
q′,t′+δt

. (32.29)

The final form of the semiclassical orVan Vleck propagator, is thus

Ksc(q, q
′, t) =

∑

j

1

(2πi~)D/2

∣∣∣∣∣det
∂p′

∂q

∣∣∣∣∣
1/2

eiR j (q,q′,t)/~−im jπ/2 . (32.30)

This Van Vleck propagator is the essential ingredient of thesemiclassical quantization
to follow.

The apparent simplicity of the semiclassical propagator isdeceptive. The
wave function is not evolved simply by multiplying by a complex number of
magnitude

√
det ∂p′/∂q and phaseR(q, q′, t); the more difficult task in general

is to find the trajectories connectingq′ andq in a given timet.

In addition, we have to treat the approximate propagator (32.30) with some
care. Unlike the full quantum propagator, which satisfies the group property
(30.13) exactly, the semiclassical propagator performs this onlyapproximately,
that is

Ksc(q, q
′, t1 + t2) ≈

∫
dq′′ Ksc(q, q

′′, t2)Ksc(q
′′, q′, t1) . (32.31)

The connection can be made explicit by the stationary phase approximation, sect.31.2.
Approximating the integral in (32.31) by integrating only over regions near points
q′′ at which the phase is stationary, leads to the stationary phase condition

∂R(q, q′′, t2)
∂q′′i

+
∂R(q′′, q′, t1)

∂q′′i
= 0. (32.32)
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Classical trajectories contribute whenever the final momentum for a path fromq′

to q′′ and the initial momentum for a path fromq′′ to q coincide. Unlike the
classical evolution of sect.15.2, the semiclassical evolution is not an evolution by
linear operator multiplication, but evolution supplemented by a stationary phase
condition pout = pin that matches up the classical momenta at each evolution
step.

32.2.2 Free particle propagator

To develop some intuition about the above formalism, consider the case of a free
particle. For a free particle the potential energy vanishes, the kinetic energy is
m
2 q̇2, and the Hamilton’s principal function (32.12) is

R(q, q′, t) =
m(q− q′)2

2t
. (32.33)

The weight det∂p′

∂q from (32.28) can be evaluated explicitly, and the Van Vleck
propagator is

Ksc(q, q
′, t) =

( m
2πi~t

)D/2
eim(q−q′)2/2~t , (32.34)

identical to the short time propagator (32.26), with V(q) = 0. This case is rather
exceptional: for a free particle the semiclassical propagator turns out to be the
exact quantum propagatorK(q, q′, t), as can be checked by substitution in the
Schrödinger equation (32.2). The Feynman path integral formalism uses this

[remark 32.3]
fact to construct an exact quantum propagator by integrating the free particle
propagator (withV(q) treated as constant for short times) along all possible (not
necessarily classical) paths fromq′ to q.

[exercise 32.10]

[exercise 32.11]

[exercise 32.12]

32.3 Semiclassical Green’s function

So far we have derived semiclassical formulas for the time evolution of wave
functions, that is, we obtained approximate solutions to the time dependent Schrödinger
equation (30.1). Even though we assumed in the calculation a time independent
Hamiltonian of the special form (30.2), the derivation would lead to the same final
result (32.30) were one to consider more complicated or explicitly time dependent
Hamiltonians. The propagator is thus important when we are interested in finite
time quantum mechanical effects. For time independent Hamiltonians, the time
dependence of the propagator as well as of wave functions is,however, essentially
given in terms of the energy eigen-spectrum of the system, asin (30.10). It is
therefore advantageous to switch from a time representation to an energy representation,
that is from the propagator (30.12) to the energy dependent Green’s function
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(30.16). A semiclassical approximation of the Green’s functionGsc(q, q′,E) is
given by the Laplace transform (30.16) of the Van Vleck propagatorKsc(q, q′, t):

Gsc(q, q
′,E) =

1
i~

∫ ∞

0
dt eiEt/~Ksc(q, q

′, t) . (32.35)

The expression as it stands is not very useful; in order to evaluate the integral, at
least to the leading order in~, we need to turn to the method of stationary phase
again.

32.3.1 Stationary phase in higher dimensions
[exercise 31.1]

Generalizing the method of sect.31.2to d dimensions, consider stationary phase
points fulfilling

d
dxi
Φ(x)

∣∣∣∣∣
x=x0

= 0 ∀i = 1, . . . d .

An expansion of the phase up to second order involves now the symmetric matrix
of second derivatives ofΦ(x), that is

Di j (x0) =
∂2

∂xi∂x j
Φ(x)

∣∣∣∣∣∣
x=x0

.

After choosing a suitable coordinate system which diagonalizesD, we can approximate
the d-dimensional integral byd 1-dimensional Fresnel integrals; the stationary
phase estimate of (31.13) is then

I ≈
∑

x0

(2πi/s)d/2 |detD(x0)|−1/2A(x0) eisΦ(x0)− iπ
2 m(x0) , (32.36)

where the sum runs over all stationary phase pointsx0 of Φ(x) andm(x0) counts
the number of negative eigenvalues ofD(x0).

[exercise 26.2]

[exercise 32.2]

[exercise 31.3]
The stationary phase approximation is all that is needed forthe semiclassical

approximation, with the proviso thatD in (32.36) has no zero eigenvalues.

32.3.2 Long trajectories

When evaluating the integral (32.35) approximately we have to distinguish between
two types of contributions: those coming from stationary points of the phase and
those coming from infinitesimally short times. The first typeof contributions
can be obtained by the stationary phase approximation and will be treated in this
section. The latter originate from the singular behavior ofthe propagator fort → 0
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where the assumption that the amplitude changes slowly compared to the phase
is not valid. The short time contributions therefore have tobe treated separately,
which we will do in sect.32.3.3.

The stationary phase pointst∗ of the integrand in (32.35) are given by the
condition

∂

∂t
R(q, q′, t∗) + E = 0 . (32.37)

We recognize this condition as the solution of (32.18), the timet∗ = t∗(q, q′,E) in
which a particle of energyE starting out inq′ reachesq. Taking into account the
second derivative of the phase evaluated at the stationary phase point,

R(q, q′, t) + Et = R(q, q′, t∗) + Et∗ +
1
2

(t − t∗)2∂
2

∂t2
R(q, q′, t∗) + · · ·

the stationary phase approximation of the integral corresponding to a classical
trajectory j in the Van Vleck propagator sum (32.30) yields

G j(q, q
′,E) =

1

i~(2iπ~)(D−1)/2

∣∣∣∣∣∣∣
detC j


∂2Rj

∂t2


−1

∣∣∣∣∣∣∣

1/2

e
i
~
S j− iπ

2 mj , (32.38)

wheremj = mj(q, q′,E) now includes a possible additional phase arising from the
time stationary phase integration (31.16), andC j = C j(q, q′, t∗), Rj = Rj(q, q′, t∗)
are evaluated at the transit timet∗. We re-express the phase in terms of the energy
dependent action (32.16)

S(q, q′,E) = R(q, q′, t∗) + Et∗ , with t∗ = t∗(q, q′,E) , (32.39)

the Legendre transform of Hamilton’s principal function. Note that the partial
derivative of the action (32.39) with respect toqi

∂S(q, q′,E)
∂qi

=
∂R(q, q′, t∗)

∂qi
+

(
∂R(q, q′, t)

∂t∗
+ E

)
∂t
∂qi

.

is equal to

∂S(q, q′,E)
∂qi

=
∂R(q, q′, t∗)

∂qi
, (32.40)

due to the stationary phase condition (32.37), so the definition of momentum as a
partial derivative with respect toq remains unaltered by the Legendre transform
from time to energy domain.

[exercise 32.13]
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Next we will simplify the amplitude term in (32.38) and rewrite it as an
explicit function of the energy. Consider the [(D + 1)×(D + 1)] matrix

D(q, q′,E) =

( ∂2S
∂q′∂q

∂2S
∂q′∂E

∂2S
∂q∂E

∂2S
∂E2

)
=


−∂p′

∂q −∂p′

∂E
∂t
∂q

∂t
∂E

 , (32.41)

whereS = S(q, q′,E) and we used (32.14–32.17) here to obtain the left hand side
of (32.41). The minus signs follow from observing from the definition of (32.15)
that S(q, q′,E) = −S(q′, q,E). Note thatD is nothing but the Jacobian matrix
of the coordinate transformation (q,E) → (p′, t) for fixed q′. We can therefore
use the multiplication rules of determinants of Jacobians,which are just ratios of
volume elements, to obtain

detD = (−1)D+1
(
det

∂(p′, t)
∂(q,E)

)

q′
= (−1)D+1

(
det

∂(p′, t)
∂(q, t)

∂(q, t)
∂(q,E)

)

q′

= (−1)D+1
(
det

∂p′

∂q

)

t,q′

(
det

∂t
∂E

)

q′,q
= detC

(
∂2R

∂t2

)−1

.

We use here the notation(det.)q′,t for a Jacobian determinant with partial derivatives
evaluated att, q′ fixed, and likewise for other subscripts. Using the relation(32.19)
which relates the term∂t

∂E to ∂2
t R we can write the determinant ofD as a product

of the Van Vleck determinant (32.28) and the amplitude factor arising from the
stationary phase approximation. The amplitude in (32.38) can thus be interpreted
as the determinant of a Jacobian of a coordinate transformation which includes
time and energy as independent coordinates. This causes theincrease in the
dimensionality of the matrixD relative to the Van Vleck determinant (32.28).

We can now write down the semiclassical approximation of thecontribution
of the jth trajectory to the Green’s function (32.38) in explicitly energy dependent
form:

G j(q, q
′,E) =

1

i~(2iπ~)(D−1)/2

∣∣∣detD j

∣∣∣1/2 e
i
~
S j− iπ

2 mj . (32.42)

However, this is still not the most convenient form of the Green’s function.

The trajectory contributing toG j(q, q′,E) is constrained to a given energy
E, and will therefore be on a phase space manifold of constant energy, that is
H(q, p) = E. Writing this condition as a partial differential equation forS(q, q′,E),
that is

H(q,
∂S
∂q

) = E ,

one obtains

∂

∂q′i
H(q, p) = 0 =

∂H
∂p j

∂p j

∂q′i
= q̇ j

∂2S
∂q j∂q′i

∂

∂qi
H(q′, p′) = 0 =

∂2S
∂qi∂q′j

q̇′j , (32.43)
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that is the sub-matrix∂2S/∂qi∂q′j has (left- and right-) eigenvectors corresponding
to an eigenvalue 0. Rotate the local coordinate system at theeither end of the
trajectory

(q1, q2, q3, · · · , qd)→ (q‖, q⊥1, q⊥2, · · · , q⊥(D−1))

so that one axis points along the trajectory and all others are perpendicular to it

(q̇1, q̇2, q̇3, · · · , q̇d)→ (q̇, 0, 0, · · · , 0) .

With such local coordinate systems at both ends, with the longitudinal coordinate
axis q‖ pointing along the velocity vector of magnitude ˙q, the stability matrix of
S(q, q′,E) has a column and a row of zeros as (32.43) takes form

q̇
∂2S
∂q‖∂q′i

=
∂2S
∂qi∂q′‖

q̇′ = 0 .

The initial and final velocities are non-vanishing except for points |q̇| = 0. These
are the turning points (where all energy is potential), and we assume that neitherq
norq′ is a turning point (in our application - periodic orbits - we can always chose
q = q′ not a turning point). In the local coordinate system with oneaxis along
the trajectory and all other perpendicular to it the determinant of (32.41) is of the
form

detD(q, q′,E) = (−1)D+1


det

0 0 ∂2S
∂E∂q′‖

0 ∂2 S
∂q⊥∂q′⊥

∗
∂2S
∂q‖∂E ∗ ∗


. (32.44)

The corner entries can be evaluated using (32.17)

∂2S
∂q‖∂E

=
∂

∂q‖
t =

1
q̇
,

∂2S
∂E∂q′‖

=
1
q̇′
.

As theq‖ axis points along the velocity direction, velocities ˙q, q̇′ are by construction
almost always positive non-vanishing numbers. In this way the determinant of the
[(D+1)×(D+1)] dimensional matrixD(q, q′,E) can be reduced to the determinant
of a [(D − 1)×(D − 1)] dimensionaltransversematrix D⊥(q, q′,E)

detD(q, q′,E) =
1

q̇q̇′
detD⊥(q, q′,E)

D⊥(q, q′,E)ik = −∂
2S(q, q′,E)
∂q⊥i∂q′⊥k

. (32.45)
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Putting everything together we obtain thejth trajectory contribution to the semiclassical
Green’s function

[exercise 32.15]

G j(q, q
′,E) =

1

i~(2πi~)(D−1)/2

1

|q̇q̇′|1/2
∣∣∣∣detD j

⊥

∣∣∣∣
1/2

e
i
~
S j− iπ

2 mj , (32.46)

where the topological indexmj = mj(q, q′,E) now counts the number of changes
of sign of detD j

⊥ along the trajectoryj which connectsq′ to q at energyE.

The endpoint velocities ˙q, q̇′ also depend on (q, q′,E) and the trajectoryj.

32.3.3 Short trajectories

The stationary phase method cannot be used whent∗ is small, both because we
cannot extend the integration in (31.16) to −∞, and because the amplitude of
K(q, q′, t) is divergent. In this case we have to evaluate the integral involving the
short time form of the exact quantum mechanical propagator (32.26)

G0(q, q′,E) =
1
i~

∫ ∞

0
dt

( m
2πi~t

)D/2
e

i
~
( m(q−q′)2

2t −V(q)t+Et) . (32.47)

By introducing a dimensionless variableτ = t
√

2m(E − V(q))/m|q− q′|, the
integral can be rewritten as

G0(q, q′,E) =
m

i~2(2πi)D/2

( √
2m(E − V)
~|q− q′|

) D
2 −1 ∫ ∞

0

dτ

τD/2
e

i
2~S0(q,q′,E)(τ+1/τ),

whereS0(q, q′,E) =
√

2m(E − V)|q− q′| is the short distance form of the action.
Using the integral representation of the Hankel function offirst kind

H+ν (z) = − i
π

e−iνπ/2
∫ ∞

0
e

1
2 iz(τ+1/τ)τ−ν−1dτ

we can write the short distance form of the Green’s function as

G0(q, q′,E) ≈ − im

2~2

( √
2m(E − V)

2π~|q− q′|

) D−2
2

H+D−2
2

(S0(q, q′,E)/~) . (32.48)

Hankel functions are stabdard, and their the short wavelength asymptotics is described
in standard reference books. The short distance Green’s function approximation
is valid whenS0(q, q′,E) ≤ ~.
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Résum é

The aim of the semiclassical or short-wavelength methods isto approximate a
solution of the Schrödinger equation with a semiclassicalwave function

ψsc(q, t) =
∑

j

A j(q, t)e
iR j (q,t)/~ ,

accurate to the leading order in~. Here the sum is over all classical trajectories
that connect the initial pointq′ to the final pointq in time t. “Semi–” refers to~,
the quantum unit of phase in the exponent. The quantum mechanics enters only
through this atomic scale, in units of which the variation ofthe phase across the
classical potential is assumed to be large. “–classical” refers to the rest - both the
amplitudesA j(q, t) and the phasesRj(q, t) - which are determined by the classical
Hamilton-Jacobi equations.

In the semiclassical approximation the quantum time evolution operator is
given by thesemiclassical propagator

Ksc(q, q
′, t) =

1

(2πi~)D/2

∑

j

∣∣∣∣∣det
∂p′

∂q

∣∣∣∣∣
1/2

j
e

i
~
Rj− iπ

2 mj ,

where the topological indexmj(q, q′, t) counts the number of the direction reversal
along thejth classical trajectory that connectsq′ → q in timet. Until very recently
it was not possible to resolve quantum evolution on quantum time scales (such as
one revolution of electron around a nucleus) - physical measurements are almost
always done at time scales asymptotically large compared tothe intrinsic quantum
time scale. Formally this information is extracted by meansof a Laplace transform
of the propagator which yields the energy dependentsemiclassical Green’s function

Gsc(q, q
′,E) = G0(q, q′,E) +

∑

j

G j(q, q
′,E)

G j(q, q
′,E) =

1

i~(2πi~)
(D−1)

2

∣∣∣∣∣∣
1

q̇q̇′
det

∂p′⊥
∂q⊥

∣∣∣∣∣∣
1/2

j

e
i
~
S j− iπ

2 mj (32.49)

whereG0(q, q′,E) is the contribution of short trajectories withS0(q, q′,E) ≤ ~,
while the sum is over the contributions of long trajectories(32.46) going fromq′

to q with fixed energyE, with S j(q, q′,E) ≫ ~.

Commentary

Remark 32.1 Limit ~→ 0. The semiclassical limit “~ → 0” discussed in sect.32.1
is a shorthand notation for the limit in which typical quantities like the actionsR or
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S in semiclassical expressions for the propagator or the Green’s function become large
compared to~. In the world that we live in the quantity~ is a fixed physical constant
whose value [8] is 1.054571596(82) 10−34 Js.

Remark 32.2 Madelung’s fluid dynamics. Already Schrödinger [3] noted that

ρ = ρ(q, t) := A2 = ψ∗ψ

plays the role of a density, and that the gradient ofR may be interpreted as a local
semiclassical momentum, as the momentum density is

ψ(q, t)∗(−i~
∂

∂q
)ψ(q, t) = −i~A

∂A
∂q
+ ρ

∂R
∂q

.

A very different interpretation of (32.3–32.4) has been given by Madelung [2], and then
built upon by Bohm [6] and others [3, 7]. Keeping the~ dependent term in (32.3),
the ordinary differential equations driving the flow (32.10) have to be altered; if the
Hamiltonian can be written as kinetic plus potential termV(q) as in (30.2), the~2 term
modifies thep equation of motion as

ṗi = −
∂

∂qi
(V(q) + Q(q, t)) , (32.50)

where, for the example at hand,

Q(q, t) = − ~
2

2m
1
√
ρ

∂2

∂q2

√
ρ (32.51)

interpreted by Bohm [6] as the “quantum potential.” Madelung observed that Hamilton’s
equation for the momentum (32.50) can be rewritten as

∂vi

∂t
+

(
v · ∂

∂q

)
vi = −

1
m
∂V
∂qi
− 1

mρ
∂

∂q j
σi j , (32.52)

whereσi j =
~

2ρ
4m

∂2 ln ρ
∂qi∂qj

is the “pressure” stress tensor,vi = pi/m, andρ = A2 as defined [3]

in sect.32.1.3. We recall that the Eulerian∂
∂t+

∂qi

∂t
∂
∂qi

is the ordinary derivative of Lagrangian

mechanics, that isddt . For comparison, the Euler equation for classical hydrodynamics is

∂vi

∂t
+

(
v · ∂

∂q

)
vi = −

1
m
∂V
∂qi
− 1

mρ
∂

∂q j
(pδi j ) ,

wherepδi j is the pressure tensor.

The classical dynamics corresponding to quantum evolutionis thus that of an “hypothetical
fluid” experiencing~ andρ dependent stresses. The “hydrodynamic” interpretation of
quantum mechanics has, however, not been very fruitful in practice.
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Remark 32.3 Path integrals. The semiclassical propagator (32.30) can also be derived
from Feynman’s path integral formalism. Dirac was the first to discover that in the short-
time limit the quantum propagator (32.34) is exact. Feynman noted in 1946 that one can
construct the exact propagator of the quantum Schrödingerequation by formally summing
over all possible (and emphatically not classical) paths fromq′ to q .

Gutzwiller started from the path integral to rederive Van Vleck’s semiclassical expression
for the propagator; Van Vleck’s original derivation is verymuch in the spirit of what has
presented in this chapter. He did, however, not consider thepossibility of the formation of
caustics or folds of Lagrangian manifolds and thus did not include the topological phases
in his semiclassical expression for the propagator. Some 40years later Gutzwiller [4]
added the topological indices when deriving the semiclassical propagator from Feynman’s
path integral by stationary phase conditions.

Remark 32.4 Applications of the semiclassical Green’s function. The semiclassical
Green’s function is the starting point of the semiclassicalapproximation in many applications.
The generic semiclassical strategy is to express physical quantities (for example scattering
amplitudes and cross section in scattering theory, oscillator strength in spectroscopy, and
conductance in mesoscopic physics) in terms of the exact Green’s function and then
replace it with the semiclassical formula.

Remark 32.5 The quasiclassical approximation The quasiclassicalapproximation
was introduced by Maslov[?]. The term ‘quasiclassical’ is more appropriate than semiclassical
since the Maslov type description leads to a pure classical evolution operator in a natural
way. Following mostly ref. [?], we give a summary of the quasiclassical approximation,
which was worked out by Maslov[?] in this form. One additional advantage of this
description is that the wave function evolves along one single classical trajectory and
we do not have to compute sums over increasing numbers of classical trajectories as in
computations involving Van Vleck formula[27].
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Exercises

32.1. Dirac delta function, Gaussian representation.
Consider the Gaussian distribution function

δσ(z) =
1

√
2πσ2

e−z2/2σ2
.

Show that inσ→ 0 limit this is the Dirac delta function
∫

M
dxδ(x) = 1 if 0 ∈ M , zero otherwise.

32.2. Stationary phase approximation in higher dimensions.
All semiclassical approximations are based on saddle
point evaluations of integrals of type

I =
∫

dDxA(x)eiΦ(x)/~ (32.53)

for small values of~. Obtain the stationary phase
estimate

I ≈
∑

n

A(xn)e
iΦ(xn)/~ (2πi~)D/2

√
detD2Φ(xn)

,

whereD2Φ(xn) denotes the second derivative matrix.

32.3. Schrödinger equation in the Madelung form.
Verify the decomposition of Schrödinger equation into
real and imaginary parts, eqs. (32.3) and (32.4).

32.4. Transport equations. Write the wave-
function in the asymptotic form

ψ(q, t) = e
i
~
R(x,t)+ i

~
εt
∑

n≥0

(i~)nAn(x, t) .

Derive the transport equations for theAn by substituting
this into the Schrödinger equation and then collecting
terms by orders of~. Notice that equation foṙAn only
requires knowledge ofAn−1 andR.

32.5. Easy examples of the Hamilton’s principal function.
CalculateR(q, q′, t) for

a) aD-dimensional free particle

b) a 3-dimensional particle in constant magnetic field

c) a 1-dimensional harmonic oscillator.

(Continuation: exercise32.13.)

32.6. 1-dimensional harmonic oscillator. Take a 1-
dimensional harmonic oscillatorU(q) = 1

2kq2. Take a
WKB wave function of formA(q, t) = a(t) andR(q, t) =
r(t) + b(t)q + c(t)q2, where r(t), a(t), b(t) and c(t) are
time dependent coefficients. Derive ordinary differential
equations by using (32.3) and (32.4) and solve them.
(Continuation: exercise32.9.)

32.7. 1-dimensional linear potential. Take a 1-dimensional
linear potentialU(q) = −Fq. Take a WKB wave
function of formA(q, t) = a(t) andR(q, t) = r(t)+b(t)q+
c(t)q2, wherer(t), a(t), b(t) andc(t) are time dependent
coefficients. Derive and solve the ordinary differential
equations from (32.3) and (32.4).

32.8. D-dimensional quadratic potentials. Generalize
the above method to generalD-dimensional quadratic
potentials.

32.9. Time evolution of R. (Continuation of exercise32.6).
Calculate the time evolution ofR(q, 0) = a+bq+cq2 for
a 1-dimensional harmonic oscillator using (32.12) and
(32.14).

32.10. D-dimensional free particle propagator. Verify the
results in sect.32.2.2; show explicitly that (32.34), the
semiclassical Van Vleck propagator inD dimensions,
solves the Schrödinger’s equation.

32.11. Propagator, charged particle in constant magnetic
field. Calculate the semiclassical propagator for
a charged particle in constant magnetic field in 3
dimensions. Verify that the semiclassical expression
coincides with the exact solution.

32.12. 1-dimensional harmonic oscillator propagator.
Calculate the semiclassical propagator for a 1-
dimensional harmonic oscillator and verify that it is
identical to the exact quantum propagator.

32.13. Free particle action. Calculate the energy dependent
action for a free particle, a charged particle in a constant
magnetic field and for the harmonic oscillator.

32.14. Zero length orbits. Derive the classical
trace (16.1) rigorously and either add thet → 0+ zero
length contribution to the trace formula, or show that it
vanishes. Send us a reprint ofPhys. Rev. Lett.with the
correct derivation.

32.15. Free particle semiclassical Green’s functions.
Calculate the semiclassical Green’s functions for the
systems of exercise32.13.
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Chapter 33

Semiclassical quantization

(G. Vattay, G. Tanner and P. Cvitanović)

W   the Gutzwiller trace formula and the semiclassical zeta func-
tion, the central results of the semiclassical quantization of classically
chaotic systems. In chapter34 we will rederive these formulas for the

case of scattering in open systems. Quintessential wave mechanics effects such as
creeping, diffraction and tunneling will be taken up in chapter37.

33.1 Trace formula

Our next task is to evaluate the Green’s function trace (30.17) in the semiclassical
approximation. The trace

tr Gsc(E) =
∫

dDqGsc(q, q,E) = tr G0(E) +
∑

j

∫
dDqGj(q, q,E)

receives contributions from “long” classical trajectories labeled byj which start
and end inq after finite time, and the “zero length” trajectories whose lengths
approach zero asq′ → q.

First, we work out the contributions coming from the finite time returning
classical orbits, i.e., trajectories that originate and end at a given configuration
pointq. As we are identifyingq with q′, taking of a trace involves (still another!)
stationary phase condition in theq′ → q limit,

∂S j(q, q′,E)

∂qi

∣∣∣∣∣∣
q′=q

+
∂S j(q, q′,E)

∂q′i

∣∣∣∣∣∣
q′=q

= 0 ,

545
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Figure 33.1: A returning trajectory in the
configuration space. The orbit is periodic in the full
phase space only if the initial and the final momenta of
a returning trajectory coincide as well.

Figure 33.2: A romanticized sketch ofSp(E) =
S(q,q,E) =

∮
p(q, E)dq landscape orbit. Unstable

periodic orbits traverse isolated ridges and saddles of
the mountainous landscape of the actionS(q‖,q⊥,E).
Along a periodic orbit Sp(E) is constant; in
the transverse directions it generically changes
quadratically.

meaning that the initial and final momenta (32.40) of contributing trajectories
should coincide

pi(q, q,E) − p′i (q, q,E) = 0 , q ∈ jth periodic orbit, (33.1)

so the trace receives contributions only from those long classical trajectories which
areperiodic in the full phase space.

For a periodic orbit the natural coordinate system is the intrinsic one, withq‖
axis pointing in the ˙q direction along the orbit, andq⊥, the rest of the coordinates
transverse to ˙q. The jth periodic orbit contribution to the trace of the semiclassical
Green’s function in the intrinsic coordinates is

tr G j(E) =
1

i~(2π~)(d−1)/2

∮

j

dq‖
q̇

∫

j
dd−1q⊥|detD j

⊥|1/2e
i
~
S j− iπ

2 mj ,

where the integration inq‖ goes from 0 toL j , the geometric length of small tube
around the orbit in the configuration space. As always, in thestationary phase
approximation we worry only about the fast variations in thephaseS j(q‖, q⊥,E),
and assume that the density varies smoothly and is well approximated by its
value D j

⊥(q‖, 0,E) on the classical trajectory,q⊥ = 0 . The topological index
mj(q‖, q⊥,E) is an integer which does not depend on the initial pointq‖ and not
change in the infinitesimal neighborhood of an isolated periodic orbit, so we set
mj(E) = mj(q‖, q⊥,E).

The transverse integration is again carried out by the stationary phase method,
with the phase stationary on the periodic orbit,q⊥ = 0. The result of the transverse
integration can depend only on the parallel coordinate

tr G j(E) =
1
i~

∮
dq‖
q̇

∣∣∣∣∣∣∣
detD⊥ j(q‖, 0,E)

detD′⊥ j(q‖, 0,E)

∣∣∣∣∣∣∣

1/2

e
i
~
S j− iπ

2 mj ,
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where the new determinant in the denominator, detD′⊥ j =

det


∂2S(q, q′,E)
∂q⊥i∂q⊥ j

+
∂2S(q, q′,E)
∂q′⊥i∂q⊥ j

+
∂2S(q, q′,E)
∂q⊥i∂q′⊥ j

+
∂2S(q, q′,E)
∂q′⊥i∂q′⊥ j

 ,

is the determinant of the second derivative matrix coming from the stationary
phase integral in transverse directions. Mercifully, thisintegral also removes most
of the 2π~ prefactors in (??).

The ratio detD⊥ j/detD′⊥ j is here to enforce the periodic boundary condition
for the semiclassical Green’s function evaluated on a periodic orbit. It can be given
a meaning in terms of the monodromy matrix of the periodic orbit by following
observations

detD⊥ =

∥∥∥∥∥∥
∂p′⊥
∂q⊥

∥∥∥∥∥∥ =
∥∥∥∥∥∥
∂(q′⊥, p

′
⊥)

∂(q⊥, q′⊥)

∥∥∥∥∥∥

detD′⊥ =

∥∥∥∥∥∥
∂p⊥
∂q⊥
− ∂p′⊥
∂q⊥
+
∂p⊥
∂q′⊥
− ∂p′⊥
∂q′⊥

∥∥∥∥∥∥ =
∥∥∥∥∥∥
∂(p⊥ − p′⊥, q⊥ − q′⊥),

∂(q⊥, q′⊥)

∥∥∥∥∥∥ .

Defining the 2(D − 1)-dimensional transverse vectorx⊥ = (q⊥, p⊥) in the full
phase space we can express the ratio

detD′⊥
detD⊥

=

∥∥∥∥∥∥
∂(p⊥ − p′⊥, q⊥ − q′⊥)

∂(q′⊥, p
′
⊥)

∥∥∥∥∥∥ =
∥∥∥∥∥∥
∂(x⊥ − x′⊥)

∂x′⊥

∥∥∥∥∥∥
= det (M − 1) , (33.2)

in terms of the monodromy matrixM for a surface of section transverse to the
orbit within the constant energyE = H(q, p) shell.

The classical periodic orbit actionS j(E) =
∮

p(q‖,E)dq‖ is an integral around
a loop defined by the periodic orbit, and does not depend on thestarting pointq‖
along the orbit, see figure33.2. The eigenvalues of the monodromy matrix are
also independent of whereM j is evaluated along the orbit, so det (1−M j) can also
be taken out of the theq‖ integral

tr G j(E) =
1
i~

∑

j

1

|det (1− M j)|1/2
er( i

~
S j− iπ

2 mj )
∮

dq‖
q̇‖

.

Here we have assumed thatM j has no marginal eigenvalues. The determinant
of the monodromy matrix, the actionSp(E) =

∮
p(q‖,E)dq‖ and the topological

index are all classical invariants of the periodic orbit. The integral in the parallel
direction we now do exactly.

First, we take into account the fact that any repeat of a periodic orbit is also
a periodic orbit. The action and the topological index are additive along the
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trajectory, so forrth repeat they simply get multiplied byr. The monodromy
matrix of therth repeat of a prime cyclep is (by the chain rule for derivatives)
Mr

p, whereMp is the prime cycle monodromy matrix. Let us denote the time
period of the prime cyclep, the single, shortest traversal of a periodic orbit byTp.
The remaining integral can be carried out by change of variablesdt = dq‖/q̇(t)

∫ Lp

0

dq‖
q̇(t)
=

∫ Tp

0
dt = Tp .

Note that the spatial integral corresponds to asingle traversal. If you do not see
why this is so, rethink the derivation of the classical traceformula (16.23) - that
derivation takes only three pages of text. Regrettably, in the quantum case we do
not know of an honest derivation that takes less than 30 pages. The final result,
theGutzwiller trace formula

tr Gsc(E) = tr G0(E) +
1
i~

∑

p

Tp

∞∑

r=1

1

|det (1− Mr
p)|1/2

er( i
~
Sp− iπ

2 mp) , (33.3)

an expression for the trace of the semiclassical Green’s function in terms of periodic
orbits, is beautiful in its simplicity and elegance.

The topological indexmp(E) counts the number of changes of sign of the
matrix of second derivatives evaluated along the prime periodic orbit p. By
now we have gone through so many stationary phase approximations that you
have surely lost track of what the totalmp(E) actually is. The rule is this: The
topological index of a closed curve in a 2D phase space is the sum of the number
of times the partial derivatives∂pi

∂qi
for each dual pair (qi , pi), i = 1, 2, . . . ,D (no

sum oni) change their signs as one goes once around the curve.

33.1.1 Average density of states

We still have to evaluate trG0(E), the contribution coming from the infinitesimal
trajectories. The real part of trG0(E) is infinite in theq′ → q limit, so it makes
no sense to write it down explicitly here. However, the imaginary part is finite,
and plays an important role in the density of states formula,which we derive next.

The semiclassical contribution to the density of states (30.17) is given by
the imaginary part of the Gutzwiller trace formula (33.3) multiplied with −1/π.
The contribution coming from the zero length trajectories is the imaginary part of
(32.48) for q′ → q integrated over the configuration space

d0(E) = −1
π

∫
dDq Im G0(q, q,E),

The resulting formula has a pretty interpretation; it estimates the number of
quantum states that can be accommodated up to the energyE by counting the
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available quantum cells in the phase space. This number is given by theWeyl rule
, as the ratio of the phase space volume bounded by energyE divided byhD, the
volume of a quantum cell,

Nsc(E) =
1

hD

∫
dD pdDqΘ(E − H(q, p)) . (33.4)

whereΘ(x) is the Heaviside function (30.22). Nsc(E) is an estimate of the spectral
staircase (30.21), so its derivative yields the average density of states

d0(E) =
d
dE

Nsc(E) =
1

hD

∫
dD pdDqδ(E − H(q, p)) , (33.5)

precisely the semiclassical result (33.6). For Hamiltonians of typep2/2m +
V(q), the energy shell volume in (33.5) is a sphere of radius

√
2m(E − V(q)). The

surface of ad-dimensional sphere of radiusr is πd/2rd−1/Γ(d/2), so the average
[exercise 33.3]

density of states is given by

d0(E) =
2m

~D2dπD2Γ(D/2)

∫

V(q)<E
dDq [2m(E − V(q))]D/2−1 , (33.6)

and

Nsc(E) =
1

hD

πD/2

Γ(1+ D/2)

∫

V(q)<E
dDq [2m(E − V(q))]D/2 . (33.7)

Physically this means that at a fixed energy the phase space can supportNsc(E)
distinct eigenfunctions; anything finer than the quantum cell hD cannot be resolved,
so the quantum phase space is effectively finite dimensional. The average density
of states is of a particularly simple form in one spatial dimension

[exercise 33.4]

d0(E) =
T(E)
2π~

, (33.8)

whereT(E) is the period of the periodic orbit of fixed energyE. In two spatial
dimensions the average density of states is

d0(E) =
mA(E)
2π~2

, (33.9)

whereA(E) is the classically allowed area of configuration space for whichV(q) <
E.

[exercise 33.5]

The semiclassical density of states is a sum of the average density of states and
the oscillation of the density of states around the average,dsc(E) = d0(E)+dosc(E),
where

dosc(E) =
1
π~

∑

p

Tp

∞∑

r=1

cos(rSp(E)/~ − rmpπ/2)

|det (1− Mr
p)|1/2

(33.10)

follows from the trace formula (33.3).

traceSemicl - 2mar2004.tex



CHAPTER 33. SEMICLASSICAL QUANTIZATION 550

33.1.2 Regularization of the trace

The real part of theq′ → q zero length Green’s function (32.48) is ultraviolet
divergent in dimensionsd > 1, and so is its formal trace (30.17). The short
distance behavior of the real part of the Green’s function can be extracted from
the real part of (32.48) by using the Bessel function expansion for smallz

Yν(z) ≈

− 1
π
Γ(ν)

(
z
2

)−ν
for ν , 0

2
π
(ln(z/2)+ γ) for ν = 0

,

whereγ = 0.577... is the Euler constant. The real part of the Green’s function for
short distance is dominated by the singular part

Gsing(|q− q′|,E) =



− m

2~2π
d
2
Γ((d − 2)/2) 1

|q−q′ |d−2 for d , 2

m
2π~2 (ln(2m(E − V)|q− q′|/2~) + γ) for d = 2

.

TheregularizedGreen’s function

Greg(q, q
′,E) = G(q, q′,E) −Gsing(|q− q′|,E)

is obtained by subtracting theq′ → q ultraviolet divergence. For the regularized
Green’s function the Gutzwiller trace formula is

tr Greg(E) = −iπd0(E) +
1
i~

∑

p

Tp

∞∑

r=1

er( i
~
Sp(E)− iπ

2 mp(E))

|det (1− Mr
p)|1/2

. (33.11)

Now you stand where Gutzwiller stood in 1990. You hold the trace formula in
your hands. You have no clue how good is the~ → 0 approximation, how to
take care of the sum over an infinity of periodic orbits, and whether the formula
converges at all.

33.2 Semiclassical spectral determinant

The problem with trace formulas is that they diverge where weneed them, at
the individual energy eigenvalues. What to do? Much of the quantum chaos
literature responds to the challenge of wrestling the traceformulas by replacing
the delta functions in the density of states (30.18) by Gaussians. But there is no
need to do this - we can compute the eigenenergies without anyfurther ado by
remembering that the smart way to determine the eigenvaluesof linear operators
is by determining zeros of their spectral determinants.
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Figure 33.3: A sketch of how spectral determinants
convert poles into zeros: The trace shows 1/(E − En)
type singularities at the eigenenergies while the spec-
tral determinant goes smoothly through zeroes.

A sensible way to compute energy levels is to construct the spectral determin-
ant whose zeroes yield the eigenenergies, det (Ĥ − E)sc = 0. A first guess might
be that the spectral determinant is the Hadamard product of form

det (Ĥ − E) =
∏

n

(E − En),

but this product is not well defined, since for fixedE we multiply larger and larger
numbers (E − En). This problem is dealt with byregularization, discussed below
in appendix33.1.2. Here we offer an impressionistic sketch of regularization.

The logarithmic derivative of det (̂H − E) is the (formal) trace of the Green’s
function

− d
dE

ln det (Ĥ − E) =
∑

n

1
E − En

= tr G(E).

This quantity, not surprisingly, is divergent again. The relation, however, opens a
way to derive a convergent version of det (Ĥ − E)sc, by replacing the trace with
the regularized trace

− d
dE

ln det (Ĥ − E)sc = tr Greg(E).

The regularized trace still has 1/(E−En) poles at the semiclassical eigenenergies,
poles which can be generated only if det (Ĥ − E)sc has a zero atE = En, see
figure33.3. By integrating and exponentiating we obtain

det (Ĥ − E)sc = exp

(
−

∫ E

dE′ tr Greg(E
′)

)

Now we can use (33.11) and integrate the terms coming from periodic orbits,
using the relation (32.17) between the action and the period of a periodic orbit,
dSp(E) = Tp(E)dE, and the relation (30.21) between the density of states and the
spectral staircase,dNsc(E) = d0(E)dE. We obtain thesemiclassical zeta function

det (Ĥ − E)sc = eiπNsc(E) exp

−
∑

p

∞∑

r=1

1
r

eir (Sp/~−mpπ/2)

|det (1− Mr
p)|1/2

 . (33.12)

[chapter 18]
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We already know from the study of classical evolution operator spectra of chapter17
that this can be evaluated by means of cycle expansions. The beauty of this
formula is that everything on the right side – the cycle action Sp, the topological
indexmp and monodromy matrixMp determinant – is intrinsic, coordinate-choice
independent property of the cyclep.

33.3 One-dof systems

It has been a long trek, a stationary phase upon stationary phase. Let us check
whether the result makes sense even in the simplest case, forquantum mechanics
in one spatial dimension.

In one dimension the average density of states follows from the 1-dof form of
the oscillating density (33.10) and of the average density (33.8)

d(E) =
Tp(E)

2π~
+

∑

r

Tp(E)

π~
cos(rSp(E)/~ − rmp(E)π/2). (33.13)

The classical particle oscillates in a single potential well with periodTp(E). There
is no monodromy matrix to evaluate, as in one dimension thereis only the parallel
coordinate, and no transverse directions. Ther repetition sum in (33.13) can be
rewritten by using the Fourier series expansion of a delta spike train

∞∑

n=−∞
δ(x− n) =

∞∑

k=−∞
ei2πkx = 1+

∞∑

k=1

2 cos(2πkx).

We obtain

d(E) =
Tp(E)

2π~

∑

n

δ(Sp(E)/2π~ −mp(E)/4− n). (33.14)

This expression can be simplified by using the relation (32.17) betweenTp and
Sp, and the identity (14.7) δ(x− x∗) = | f ′(x)|δ( f (x)), wherex∗ is the only zero of
the function f (x∗) = 0 in the interval under consideration. We obtain

d(E) =
∑

n

δ(E − En),

where the energiesEn are the zeroes of the arguments of delta functions in (33.14)

Sp(En)/2π~ = n−mp(E)/4 ,
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wheremp(E) = mp = 2 for smooth potential at both turning points, andmp(E) =
mp = 4 for two billiard (infinite potential) walls. These are precisely theBohr-
Sommerfeld quantized energies En, defined by the condition

∮
p(q,En)dq= h

(
n−

mp

4

)
. (33.15)

In this way the trace formula recovers the well known 1-dof quantization rule.
In one dimension, the average of states can be expressed fromthe quantization
condition. AtE = En the exact number of states isn, while the average number
of states isn− 1/2 since the staircase functionN(E) has a unit jump in this point

Nsc(E) = n− 1/2 = Sp(E)/2π~ −mp(E)/4− 1/2. (33.16)

The 1-dof spectral determinant follows from (33.12) by dropping the monodromy
matrix part and using (33.16)

det (Ĥ − E)sc = exp
(
− i

2~
Sp +

iπ
2

mp

)
exp

−
∑

r

1
r

e
i
~
rSp− iπ

2 rmp

 . (33.17)

Summation yields a logarithm by
∑

r tr/r = − ln(1− t) and we get

det (Ĥ − E)sc = e−
i

2~Sp+
imp

4 +
iπ
2 (1− e

i
~
Sp−i

mp
2 )

= 2 sin
(
Sp(E)/~ −mp(E)/4

)
.

So in one dimension, where there is only one periodic orbit for a given energy E,
nothing is gained by going from the trace formula to the spectral determinant. The
spectral determinant is a real function for real energies, and its zeros are again the
Bohr-Sommerfeld quantized eigenenergies (33.15).

33.4 Two-dof systems

For flows in two configuration dimensions the monodromy matrix Mp has two
eigenvaluesΛp and 1/Λp, as explained in sect.7.2. Isolated periodic orbits can
be elliptic or hyperbolic. Here we discuss only the hyperbolic case, when the
eigenvalues are real and their absolute value is not equal toone. The determinant
appearing in the trace formulas can be written in terms of theexpanding eigenvalue
as

|det (1− Mr
p)|1/2 = |Λr

p|1/2
(
1− 1/Λr

p

)
,

and its inverse can be expanded as a geometric series

1

|det (1− Mr
p)|1/2

=

∞∑

k=0

1

|Λr
p|1/2Λkr

p
.
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With the 2-dof expression for the average density of states (33.9) the spectral
determinant becomes

det (Ĥ − E)sc = ei mAE
2~2 exp

−
∑

p

∞∑

r=1

∞∑

k=0

eir (Sp/~−mpπ/2)

r |Λr
p|1/2Λkr

p



= ei mAE
2~2

∏

p

∞∏

k=0

1−
e

i
~
Sp− iπ

2 mp

|Λp|1/2Λk
p

 . (33.18)

Résum é

Spectral determinants and dynamical zeta functions arise both in classical and
quantum mechanics because in both the dynamical evolution can be described by
the action of linear evolution operators on infinite-dimensional vector spaces. In
quantum mechanics the periodic orbit theory arose from studies of semi-conductors,
and the unstable periodic orbits have been measured in experiments on the very
paradigm of Bohr’s atom, the hydrogen atom, this time in strong external fields.

In practice, most “quantum chaos” calculations take the stationary phase approximation
to quantum mechanics (the Gutzwiller trace formula, possibly improved by including
tunneling periodic trajectories, diffraction corrections, etc.) as the point of departure.
Once the stationary phase approximation is made, what follows isclassicalin the
sense that all quantities used in periodic orbit calculations - actions, stabilities,
geometrical phases - are classical quantities. The problemis then to understand
and control the convergence of classical periodic orbit formulas.

While various periodic orbit formulas are formally equivalent, practice shows
that some are preferable to others. Three classes of periodic orbit formulas are
frequently used:

Trace formulas.The trace of the semiclassical Green’s function

tr Gsc(E) =
∫

dqGsc(q, q,E)

is given by a sum over the periodic orbits (33.11). While easiest to derive, in
calculations the trace formulas are inconvenient for anything other than the leading
eigenvalue estimates, as they tend to be divergent in the region of physical interest.
In classical dynamics trace formulas hide under a variety ofappellations such as
the f −α or multifractal formalism; in quantum mechanics they are known as the
Gutzwiller trace formulas.

Zeros ofRuelle or dynamical zeta functions

1/ζ(s) =
∏

p

(1− tp), tp =
1

|Λp|1/2
e

i
~
Sp−iπmp/2
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yield, in combination with cycle expansions, the semiclassical estimates ofquantum
resonances. For hyperbolic systems the dynamical zeta functions have good convergence
and are a useful tool for determination of classical and quantum mechanical averages.

Spectral determinants, Selberg-type zeta functions, Fredholm determinants,
functional determinantsare the natural objects for spectral calculations, with convergence
better than for dynamical zeta functions, but with less transparent cycle expansions.
The 2-dof semiclassical spectral determinant (33.18)

det (Ĥ − E)sc = eiπNsc(E)
∏

p

∞∏

k=0

1−
eiSp/~−iπmp/2

|Λp|1/2Λk
p



is a typical example. Most periodic orbit calculations are based on cycle expansions
of such determinants.

As we have assumed repeatedly during the derivation of the trace formula
that the periodic orbits are isolated, and do not form families (as is the case
for integrable systems or in KAM tori of systems with mixed phase space), the
formulas discussed so far are valid only for hyperbolic and elliptic periodic orbits.

For deterministic dynamical flows and number theory, spectral determinants
and zeta functions are exact. The quantum-mechanical ones,derived by the Gutzwiller
approach, are at best only the stationary phase approximations to the exact quantum
spectral determinants, and for quantum mechanics an important conceptual problem
arises already at the level of derivation of the semiclassical formulas; how accurate
are they, and can the periodic orbit theory be systematically improved?

Commentary

Remark 33.1 Gutzwiller quantization of classically chaotic systems. The derivation
given here and in sects.32.3 and 33.1 follows closely the excellent exposition [2] by
Martin Gutzwiller, the inventor of the trace formula. The derivation presented here is self
contained, but refs. [3, 1] might also be of help to the student.

Remark 33.2 Zeta functions. For “zeta function” nomenclature, see remark17.4on
page296.
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Exercises

33.1. Monodromy matrix from second variations of the
action. Show that

D⊥ j/D
′
⊥ j = (1− M) (33.19)

33.2. Jacobi gymnastics. Prove that the ratio of
determinants in (S.48) can be expressed as

detD′⊥ j(q‖, 0,E)

detD⊥ j(q‖, 0,E)
= det

(
I − Mqq −Mqp
−Mpq I − Mpp

)
= det (1−M j) , (33.20)

whereM j is the monodromy matrix of the periodic orbit.

33.3. Volume of d-dimensional sphere. Show that the
volume of ad-dimensional sphere of radiusr equals
πd/2rd/Γ(1+ d/2). Show thatΓ(1+ d/2) = Γ(d/2)d/2.

33.4. Average density of states in 1 dimension. Show that
in one dimension the average density of states is given

by (33.8)

d̄(E) =
T(E)
2π~

,

where T(E) is the time period of the 1-dimensional
motion and show that

N̄(E) =
S(E)
2π~

, (33.21)

whereS(E) =
∮

p(q,E) dq is the action of the orbit.

33.5. Average density of states in 2 dimensions. Show that
in 2 dimensions the average density of states is given by
(33.9)

d̄(E) =
mA(E)
2π~2

,

where A(E) is the classically allowed area of
configuration space for whichU(q) < E.

References

[33.1] R.G. Littlejohn,J. Stat. Phys.68, 7 (1992).

[33.2] L.D. Landau and E.M. Lifshitz,Mechanics(Pergamon, London, 1959).

[33.3] R.G. Littlejohn, “Semiclassical structure of traceformulas,” in G. Casati
and B. Chirikov, eds.,Quantum Chaos, (Cambridge University Press,
Cambridge 1994).

[33.4] M.C. Gutzwiller,J. Math. Phys.8, 1979 (1967);10, 1004 (1969);11, 1791
(1970);12, 343 (1971).

[33.5] M.C. Gutzwiller,J. Math. Phys.12, 343 (1971)

[33.6] M.C. Gutzwiller,J. Phys. Chem.92, 3154 (1984).

[33.7] A. Voros,J. Phys.A 21, 685 (1988).

[33.8] A. Voros, Aspects of semiclassical theory in the presence of classical
chaos, Prog. Theor. Phys. Suppl.116, 17 (1994).
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Theory - special issue, 105, (1992).

[33.28] V.I. Arnold,Geometrical Methods in the Theory of Ordinary Differential
Equations, (Springer, New York 1983).

[33.29] R. Dashen, B. Hasslacher and A. Neveu , “Nonperturbative methods
and extended hadron models in field theory. 1. Semiclassicalfunctional
methods,”Phys. Rev.D10, 4114 (1974).

[33.30] V.I. Arnold,Geometrical Methods in the Theory of Ordinary Differential
Equations(Springer, New York 1983).

refsTraceScl - 27dec2004.tex



Chapter 34

Quantum scattering

Scattering is easier than gathering.
—Irish proverb

(A. Wirzba, P. Cvitanović and N. Whelan)

S  the trace formulas have been derived assuming that the system under
consideration is bound. As we shall now see, we are in luck - the semiclassics
of bound systems is all we need to understand the semiclassics for open,

scattering systems as well. We start by a brief review of the quantum theory of
elastic scattering of a point particle from a (repulsive) potential, and then develop
the connection to the standard Gutzwiller theory for bound systems. We do this in
two steps - first, a heuristic derivation which helps us understand in what sense
density of states is “density,” and then we sketch a general derivation of the
central result of the spectral theory of quantum scattering, the Krein-Friedel-Lloyd
formula. The end result is that we establish a connection between the scattering
resonances (both positions and widths) of an open quantum system and the poles
of the trace of the Green function, which we learned to analyze in earlier chapters.

34.1 Density of states

For a scattering problem the density of states (30.18) appear ill defined since
formulas such as (33.6) involve integration over infinite spatial extent. What we
will now show is that a quantity that makes sense physically is the difference of
two densities - the first with the scatterer present and the second with the scatterer
absent.

In non-relativistic dynamics the relative motion can be separated from the
center-of-mass motion. Therefore the elastic scattering of two particles can be
treated as the scattering of one particle from a static potential V(q). We will study
the scattering of a point-particle of (reduced) massm by a short-range potential
V(q), excludinginter alia the Coulomb potential. (The Coulomb potential decays
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slowly as a function ofq so that various asymptotic approximations which apply
to general potentials fail for it.) Although we can choose the spatial coordinate
frame freely, it is advisable to place its origin somewhere near the geometrical
center of the potential. The scattering problem is solved, if a scattering solution
to the time-independent Schrödinger equation (30.5)

(
− ~

2

2m
∂2

∂q2
+ V(q)

)
φ~k(q) = Eφ~k(q) (34.1)

can be constructed. HereE is the energy,~p = ~~k the initial momentum of the
particle, and~k the corresponding wave vector.

When the argumentr = |q| of the wave function is large compared to the
typical sizeaof the scattering region, the Schrödinger equation effectively becomes
a free particle equation because of the short-range nature of the potential. In
the asymptotic domainr ≫ a, the solutionφ~k(q) of (34.1) can be written as
superposition of ingoing and outgoing solutions of the freeparticle Schrödinger
equation for fixed angular momentum:

φ(q) = Aφ(−)(q) + Bφ(+)(q) , (+ boundary conditions),

where in 1-dimensional problemsφ(−)(q), φ(+)(q) are the “left,” “right” moving
plane waves, and in higher-dimensional scattering problems the “incoming,” “outgoing”
radial waves, with the constant matricesA, B fixed by the boundary conditions.
What are the boundary conditions? The scatterer can modify only the outgoing
waves (see figure34.1), since the incoming ones, by definition, have yet to encounter
the scattering region. This defines the quantum mechanical scattering matrix, or
theS matrix

φm(r) = φ(−)
m (r) + Smm′φ

(+)
m′ (r) . (34.2)

All scattering effects are incorporated in the deviation ofS from the unit matrix,
the transition matrixT

S= 1− iT . (34.3)

For concreteness, we have specialized to two dimensions, although the final formula
is true for arbitrary dimensions. The indicesm andm′ are the angular momenta
quantum numbers for the incoming and outgoing state of the scattering wave
function, labeling theS-matrix elementsSmm′ . More generally, given a set of
quantum numbersβ, γ, theS matrix is a collectionSβγ of transition amplitudes
β → γ normalized such that|Sβγ |2 is the probability of theβ → γ transition. The
total probability that the ingoing stateβ ends up in some outgoing state must add
up to unity

∑

γ

|Sβγ |2 = 1 , (34.4)
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Figure 34.1: (a) Incoming spherical waves
running into an obstacle. (b) Superposition
of outgoing spherical waves scattered from an
obstacle. (a) (b)

so theS matrix is unitary:S†S= SS† = 1.

We have already encountered a solution to the 2-dimensionalproblem; free
particle propagation Green’s function (32.48) is a radial solution, given in terms
of the Hankel function

G0(r, 0,E) = − im

2~2
H(+)

0 (kr) ,

where we have usedS0(r, 0,E)/~ = kr for the action. Themth angular momentum
eigenfunction is proportional toφ(±)

m (q) ∝ H(±)
m (kr), and given a potentialV(q) we

can in principle compute the infinity of matrix elementsSmm′ . We will not need
much information aboutH(t)

m (kr), other than that for larger its asymptotic form is

H± ∝ e±ikr

In general, the potentialV(q) is not radially symmetric and (34.1) has to be
solved numerically, by explicit integration, or by diagonalizing a large matrix in
a specific basis. To simplify things a bit, we assume for the time being that a
radially symmetric scatterer is centered at the origin; thefinal formula will be
true for arbitrary asymmetric potentials. Then the solutions of the Schrödinger
equation (30.5) are separable,φm(q) = φ(r)eimθ, r = |q|, the scattering matrix
cannot mix different angular momentum eigenstates, andS is diagonal in the
radial basis (34.2) with matrix elements given by

Sm(k) = e2iδm(k). (34.5)

The matrix is unitary so in a diagonal basis all entries are pure phases. This means
that an incoming state of the formH(−)

m (kr)eimθ gets scattered into an outgoing state
of the formSm(k)H(+)

m (kr)eimθ, whereH(∓)
m (z) are incoming and outgoing Hankel

functions respectively. We now embed the scatterer in a infinite cylindrical well
of radiusR, and will later takeR→ ∞. Angular momentum is still conserved so
that each eigenstate of this (now bound) problem corresponds to some value ofm.
For larger ≫ a each eigenstate is of the asymptotically free form

φm(r) ≈ eimθ
(
Sm(k)H(+)

m (kr) + H(−)
m (kr)

)

≈ · · · cos(kr + δm(k) − χm) , (34.6)
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Figure 34.2: The “difference” of two bounded
reference systems, one with and one without the
scattering system.

b b

-

where· · · is a common prefactor, andχm = mπ/2+π/4 is an annoying phase factor
from the asymptotic expansion of the Hankel functions that will play no role in
what follows.

The state (34.6) must satisfy the external boundary condition that it vanish at
r = R. This implies the quantization condition

knR+ δm(kn) − χm = π (n+ 12) .

We now ask for the difference in the eigenvalues of two consecutive states of
fixed m. SinceR is large, the density of states is high, and the phaseδm(k) does
not change much over such a small interval. Therefore, to leading order we can
include the effect of the change of the phase on staten+1 by Taylor expanding. is

kn+1R+ δm(kn) + (kn+1 − kn)δ′m(kn) − χm ≈ π + π(n+ 12).

Taking the difference of the two equations we obtain∆k ≈ π(R+ δ′m(k))−1. This
is the eigenvalue spacing which we now interpret as the inverse of the density of
states withinm angular momentum sbuspace

dm(k) ≈ 1
π

(
R+ δ′m(k)

)
.

TheR term is essentially the 1− d Weyl term (33.8), appropriate to 1− d radial
quantization. For largeR, the dominant behavior is given by the size of the circular
enclosure with a correction in terms of the derivative of thescattering phase shift,
approximation accurate to order 1/R. However, not all is well: the area under
consideration tends to infinity. We regularize this by subtracting from the result
from the free particle density of statesd0(k), for the same size container, but this
time without any scatterer, figure34.2. We also sum over allmvalues so that

d(k) − d0(k) =
1
π

∑

m

δ′m(k) =
1

2πi

∑

m

d
dk

logSm

=
1

2πi
Tr

(
S†

dS
dk

)
. (34.7)

The first line follows from the definition of the phase shifts (34.5) while the second
line follows from the unitarity ofS so thatS−1 = S†. We can now take the limit
R→ ∞ since theRdependence has been cancelled away.
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This is essentially what we want to prove since for the left hand side we
already have the semiclassical theory for the trace of the difference of Green’s
functions,

d(k) − d0(k) = − 1
2πk

Im (tr (G(k) −G0(k)) . (34.8)

There are a number of generalizations. This can be done in anynumber of
dimensions. It is also more common to do this as a function of energy and not
wave numberk. However, as the asymptotic dynamics is free wave dynamics
labeled by the wavenumberk, we have adaptedk as the natural variable in the
above discussion.

Finally, we state without proof that the relation (34.7) applies even when there
is no circular symmetry. The proof is more difficult since one cannot appeal to the
phase shiftsδm but must work directly with a non-diagonalS matrix.

34.2 Quantum mechanical scattering matrix

The results of the previous section indicate that there is a connection between the
scattering matrix and the trace of the quantum Green’s function (more formally
between the difference of the Green’s function with and without the scattering
center.) We now show how this connection can be derived in a more rigorous
manner. We will also work in terms of the energyE rather than the wavenumber
k, since this is the more usual exposition. Suppose particlesinteract via forces of
sufficiently short range, so that in the remote past they were in a free particle state
labeledβ, and in the distant future they will likewise be free, in a state labeledγ.
In the Heisenberg picture theS-matrix is defined asS = Ω−Ω

†
+ in terms of the

Møller operators

Ω± = lim
t→±∞

eiHt/~e−iH0t/~ , (34.9)

where H is the full Hamiltonian, whereasH0 is the free Hamiltonian. In the
interaction picture theS-matrix is given by

S = Ω
†
+Ω− = lim

t→∞
eiH0t/~e−2iHt/~eiH0t/~

= T exp

(
−i

∫ +∞

−∞
dtH′(t)

)
, (34.10)

whereH′ = V = H −H0 is the interaction Hamiltonian andT is the time-ordering
operator. In stationary scattering theory theS matrix has the following spectral
representation

S =

∫ ∞

0
dE S(E)δ(H0 − E)

S(E) = Q+(E)Q−1
− (E), Q±(E) = 1+ (H0 − E ± iǫ)−1V , (34.11)
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such that

Tr

[
S†(E)

d
dE

S(E)

]
= Tr

[
1

H0 − E − iǫ
− 1

H − E − iǫ
− (ǫ ↔ −ǫ)

]
. (34.12)

The manipulations leading to (34.12) are justified if the operatorsQ±(E) can be
[appendix J]

linked to trace-class operators.

We can now use this result to derive the Krein-Lloyd formula which is the
central result of this chapter. The Krein-Lloyd formula provides the connection
between the trace of the Green’s function and the poles of thescattering matrix,
implicit in all of the trace formulas for open quantum systems which will be
presented in the subsequent chapters.

34.3 Krein-Friedel-Lloyd formula

The link between quantum mechanics and semiclassics for scattering problems is
provided by the semiclassical limit of the Krein-Friedel-Lloyd sum for the spectral
density which we now derive. This derivation builds on the results of the last
section and extends the discussion of the opening section.

In chapter32we linked the spectral density (see (30.18)) of a bounded system

d(E) ≡
∑

n

δ(En − E) (34.13)

via the identity

δ(En − E) = − lim
ǫ→0

1
π

Im
1

E − En + iǫ

= − lim
ǫ→0

1
π

Im〈En|
1

E − H + iǫ
|En〉

=
1

2π i
lim
ǫ→0

〈
En

∣∣∣∣∣
1

E − H − iǫ
− 1

E − H + iǫ

∣∣∣∣∣ En

〉
(34.14)

to the trace of the Green’s function (33.1.1). Furthermore, in the semiclassical
approximation, the trace of the Green’s function is given bythe Gutzwiller trace
formula (33.11) in terms of a smooth Weyl term and an oscillating contribution of
periodic orbits.

Therefore, the task of constructing the semiclassics of a scattering system is
completed, if we can find a connection between the spectral density d(E) and
the scattering matrixS. We will see that (34.12) provides the clue. Note that
the right hand side of (34.12) has nearly the structure of (34.14) when the latter
is inserted into (34.13). The principal difference between these two types of
equations is that theS matrix refers tooutgoingscattering wave functions which
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are not normalizable and which have acontinuousspectrum, whereas the spectral
densityd(E) refers to a bound system with normalizable wave functions with a
discrete spectrum. Furthermore, the bound system is characterized by ahermitian
operator, the HamiltonianH, whereas the scattering system is characterized by a
unitary operator, theS-matrix. How can we reconcile these completely different
classes of wave functions, operators and spectra? The trickis to put our scattering
system into a finite box as in the opening section. We choose a spherical conatiner
with radiusR and with its center at the center of our finite scattering system. Our
scattering potentialV(~r) will be unaltered within the box, whereas at the box walls
we will choose an infinitely high potential, with the Dirichlet boundary conditions
at the outside of the box:

φ(~r)|r=R = 0 . (34.15)

In this way, for any finite value of the radiusR of the box, we have mapped
our scattering system into a bound system with a spectral density d(E; R) over
discrete eigenenergiesEn(R). It is therefore important that our scattering potential
was chosen to be short-ranged to start with. (Which explainswhy the Coulomb
potential requires special care.) The hope is that in the limit R → ∞ we will
recover the scattering system. But some care is required in implementing this.
The smooth Weyl term̄d(E; R) belonging to our box with the enclosed potentialV
diverges for a spherical 2-dimensional box of radiusR quadratically, asπR2/(4π)
or asR3 in the 3-dimensional case. This problem can easily be cured if the spectral
density of an empty reference box of thesamesize (radiusR) is subtracted (see
figure 34.2). Then all the divergences linked to the increasing radiusR in the
limit R → ∞ drop out of the difference. Furthermore, in the limitR → ∞ the
energy-eigenfunctions of the box are only normalizable as adelta distribution,
similarly to a plane wave. So we seem to recover a continous spectrum. Still the
problem remains that the wave functions do not discriminatebetween incoming
and outgoing waves, whereas this symmetry, namely the hermiticity, is broken in
the scattering problem. The last problem can be tackled if wereplace the spectral
density over discrete delta distributions by a smoothed spectral density with a
small finite imaginary partη in the energyE:

d(E + iη; R) ≡ 1
i 2π

∑

n

{
1

E − En(R) − iη
− 1

E − En(R) + iη

}
. (34.16)

Note thatd(E + iη; R) , d(E − iη; R) = −d(E + iη; R). By the introduction of the
positivefinite imaginary partη the time-dependent behavior of the wave function
has effectively been altered from an oscillating one to a decaying one and the
hermiticity of the Hamiltonian is removed. Finally the limit η→ 0 can be carried
out, respecting the order of the limiting procedures. First, the limit R→ ∞ has
to be performed for afinite value ofη, only then the limitη → 0 is allowed. In
practice, one can try to work with a finite value ofR, but then it will turn out (see
below) that the scattering system is only recovered ifR

√
η≫ 1.

Let us summarize the relation between the smoothed spectraldensitiesd(E +
iη; R) of the boxed potential andd(0)(E+ iη; R) of the empty reference system and
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theS matrix of the corresponding scattering system:

lim
η→+0

lim
R→∞

(
d(E+iη; R) − d(0)(E+iη; R)

)
=

1
2πi

Tr

[
S†(E)

d
dE

S(E)

]

=
1

2πi
Tr

d
dE

ln S(E) =
1

2πi
d

dE
ln detS(E) . (34.17)

This is theKrein-Friedel-Lloyd formula. It replaces the scattering problem by
the difference of two bounded reference billiards of the same radiusR which
finally will be taken to infinity. The first billiard contains the scattering region
or potentials, whereas the other does not (see figure34.2). Here d(E + iη; R)
andd(0)(E + iη; R) are thesmoothedspectral densities in the presence or in the
absence of the scatterers, respectively. In the semiclassical approximation, they
are replaced by a Weyl term (33.10) and an oscillating sum over periodic orbits.
As in (33.2), the trace formula (34.17) can be integrated to give a relation between
the smoothed staircase functions and the determinant of theS-matrix:

lim
η→+0

lim
R→∞

(
N(E+iη; R) − N(0)(E+iη; R)

)
=

1
2πi

ln detS(E) . (34.18)

Furthermore, in both versions of the Krein-Friedel-Lloyd formulas the energy
argumentE + iη can be replaced by the wavenumber argumentk + iη′. These
expressions only make sense for wavenumbers on or above the real k-axis. In
particular, ifk is chosen to be real,η′ must be greater than zero. Otherwise, the
exact left hand sides (34.18) and (34.17) would give discontinuous staircase or
even delta function sums, respectively, whereas the right hand sides are continuous
to start with, since they can be expressed by continuous phase shifts. Thus the
order of the two limits in (34.18) and (34.17) is essential.

The necessity of the+iη prescription can also be understood by purely phenomenological
considerations in the semiclassical approximation: Without theiη term there is no
reason why one should be able to neglect spurious periodic orbits which are there
solely because of the introduction of the confining boundary. The subtraction of
the second (empty) reference system removes those spuriousperiodic orbits which
never encounter the scattering region – in addition to the removal of the divergent
Weyl term contributions in the limitR→ ∞. The periodic orbits that encounter
both the scattering region and the external wall would stillsurvive the first limit
R → ∞, if they were not exponentially suppressed by the+iη term because of
their

eiL(R)
√

2m(E+iη) = eiL(R)k e−L(R)η′

behavior. As the lengthL(R) of a spurious periodic orbit grows linearly with the
radiusR. The boundRη′ ≫ 1 is an essential precondition on the suppression of
the unwanted spurious contributions of the container if theKrein-Friedel-Lloyd
formulas (34.17) and (34.18) are evaluated at a finite value ofR.

[exercise 34.1]

Finally, the semiclassical approximation can also help us in the interpretation
of the Weyl term contributions for scattering problems. In scattering problems
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the Weyl term appears with a negative sign. The reason is the subtraction of
the empty container from the container with the potential. If the potential is
a dispersing billiard system (or a finite collection of dispersing billiards), we
expect an excluded volume (or the sum of excluded volumes) relative to the empty
container. In other words, the Weyl term contribution of theempty container
is larger than of the filled one and therefore a negative net contribution is left
over. Second, if the scattering potential is a collection ofa finite number of non-
overlapping scattering regions, the Krein-Friedel-Lloydformulas show that the
corresponding Weyl contributions are completely independent of the position of
the single scatterers, as long as these do not overlap.

34.4 Wigner time delay

The term d
dE ln detS in the density formula (34.17) is dimensionally time. This

suggests another, physically important interpretation ofsuch formulas for scattering
systems, the Wigner delay, defined as

d(k) =
d
dk

Argdet (S(k))

= −i
d
dk

log det (S(k)

= −i tr

(
S†(k)

dS
dk

(k)

)
(34.19)

and can be shown to equal the total delay of a wave packet in a scattering system.
We now review this fact.

A related quantity is the total scatteringphase shiftΘ(k) defined as

detS(k) = e+i Θ(k) ,

so thatd(k) = d
dkΘ(k).

The time delay may be both positive and negative, reflecting attractive respectively
repulsive features of the scattering system. To elucidate the connection between
the scattering determinant and the time delay we study a plane wave:

The phase of a wave packet will have the form:

φ = ~k · ~x− ω t + Θ .

Here the term in the parenthesis refers to the phase shift that will occur if scattering
is present. The center of the wave packet will be determined by the principle of
stationary phase:

0 = dφ = d~k · ~x− dω t + dΘ .
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Hence the packet is located at

~x =
∂ω

∂~k
t − ∂Θ

∂~k
.

The first term is just the group velocity times the given timet. Thus the the packet
is retarded by a length given by the derivative of the phase shift with respect to the
wave vector~k. The arrival of the wave packet at the position~x will therefore be
delayed. Thistime delaycan similarly be found as

τ(ω) =
∂Θ(ω)
∂ω

.

To show this we introduce theslownessof the phase~s= ~k/ω for which~s ·~vg = 1,
where~vg is the group velocity to get

d~k · ~x = ~s · ~x dω =
x
vg

dω ,

since we may assume~x is parallel to the group velocity (consistent with the
above). Hence the arrival time becomes

t =
x
vg
+
∂Θ(ω)
∂ω

.

If the scattering matrix is not diagonal, one interprets

∆ti j = Re

(
−i S−1

ij

∂Sij

∂ω

)
= Re

(
∂Θij

∂ω

)

as the delay in thejth scattering channel after an injection in theith. The probability
for appearing in channelj goes as|Si j |2 and therefore the average delay for the
incoming states in channeli is

〈∆ti〉 =
∑

j

|Si j |2∆ti j = Re (−i
∑

j

S∗ij
∂Sij

∂ω
) = Re (−i S† · ∂S

∂ω
)ii

= −i

(
S† · ∂S

∂ω

)

ii
,

where we have used the derivative,∂/∂ω, of the unitarity relationS · S† = 1 valid
for real frequencies. This discussion can in particular be made for wave packets
related to partial waves and superpositions of these like anincoming plane wave
corresponding to free motion. The total Wigner delay therefore corresponds to the
sum over all channel delays (34.19).
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Commentary

Remark 34.1 Krein-Friedel-Lloyd formula. The third volume of Thirring [1], sections
3.6.14 (Levison Theorem) and 3.6.15 (the proof), or P. Scherer’s thesis [15] (appendix)
discusses the Levison Theorem.

It helps to start with a toy example or simplified example instead of the general
theorem, namely for the radially symmetric potential in a symmetric cavity. Have a look
at the book of K. Huang, chapter 10 (on the ”second virial coefficient”), or Beth and
Uhlenbeck [5], or Friedel [7]. These results for the correction to the density of states are
particular cases of the Krein formula [3]. The Krein-Friedel-Lloyd formula (34.17) was
derived in refs. [3, 7, 8, 9], see also refs. [11, 14, 15, 17, 18]. The original papers are by
Krein and Birman [3, 4] but beware, they are mathematicans.

Also, have a look at pages 15-18 of Wirzba’s talk on the Casimir effect [16]. Page
16 discusses the Beth-Uhlenbeck formula [5], the predecessor of the more general Krein
formula for spherical cases.

Remark 34.2 Weyl term for empty container. For a discussion of why the Weyl term
contribution of the empty container is larger than of the filled one and therefore a negative
net contribution is left over, see ref. [15].

Remark 34.3 Wigner time delay. Wigner time delay and the Wigner-Smith time delay
matrix, are powerful concepts for a statistical description of scattering. The diagonal
elementsQaa of the lifetime matrixQ = −iS−1∂S/∂ω, whereS is the [2N×2N] scattering
matrix, are interpreted in terms of the time spent in the scattering region by a wave packet
incident in one channel. As shown by Smith [26], they are the sum over all ouput
channels (both in reflection and transmission) of∆tab = Re [(−i/Sab)(∂Sab/∂ω)] weighted
by the probability of emerging from that channel. The sum of theQaa over all 2N channels
is the Wigner time delayτW =

∑
a Qaa, which is the trace of the lifetime matrix and is

proportional to the density of states.

Exercises

34.1. Spurious orbits under the Krein-Friedel-Lloyd
contruction. Draw examples for the three
types of period orbits under the Krein-Friedel-Lloyd
construction: (a) the genuine periodic orbits of the
scattering region, (b) spurious periodic orbits which can
be removed by the subtraction of the reference system,
(c) spurious periodic orbits which cannot be removed
by this subtraction. What is the role of the double limit
η→ 0, container sizeb→ ∞?

34.2. The one-disk scattering wave function. Derive the
one-disk scattering wave function.

(Andreas Wirzba)

34.3. Quantum two-disk scattering. Compute the
quasiclassical spectral determinant

Z(ε) =
∏

p, j,l

1−
tp

Λ
j+2l
p


j+1

for the two disk problem. Use the geometry
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a
a

R

The full quantum mechanical version of this problem
can be solved by finding the zeros ink for the

determinant of the matrix

Mm,n = δm,n +
(−1)n

2
Jm(ka)

H(1)
n (ka)

(
H(1)

m−n(kR) + (−1)nH

where Jn is the nth Bessel function andH(1)
n is the

Hankel function of the first kind. Find the zeros of the
determinant closest to the origin by solving detM(k) =
0. (Hints: notice the structureM = I +A to approximate
the determinant; or readChaos2, 79 (1992))

34.4. Pinball topological index. Upgrade your pinball
simulator so that it computes the topological index for
each orbit it finds.
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Chapter 35

Chaotic multiscattering

(A. Wirzba and P. Cvitanović)

W   the semiclassics of scattering in open systems with a finite
number of non-overlapping finite scattering regions. Why isthis interesting
at all? The semiclassics of scattering systems has five advantages compared

to the bound-state problems such as the helium quantizationdiscussed in chapter36.

• For bound-state problem the semiclassical approximation does not respect
quantum-mechanical unitarity, and the semi-classical eigenenergies are not
real. Here we constructa manifestly unitarysemiclassical scattering matrix.

• The Weyl-term contributions decouple from the multi-scattering system.

• The close relation to the classical escape processes discussed in chapter1.

• For scattering systems the derivation of cycle expansions is more direct and
controlled than in the bound-state case: the semiclassicalcycle expansion is
the saddle point approximation to the cumulant expansion ofthe determinant
of the exact quantum-mechanical multi-scattering matrix.

• The region of convergence of the semiclassical spectral function is larger
than is the case for the bound-state case.

We start by a brief review of the elastic scattering of a pointparticle from finite
collection of non-overlapping scattering regions in termsof the standard textbook
scattering theory, and then develop the semiclassical scattering trace formulas and
spectral determinants for scattering off N disks in a plane.

35.1 Quantum mechanical scattering matrix

We now specialize to the elastic scattering of a point particle from finite collection
of N non-overlapping reflecting disks in a 2-dimensional plane.As the point
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particle moves freely between the static scatterers, the time independent Schrödinger
equation outside the scattering regions is the Helmholtz equation:

(
~∇2

r +
~k2

)
ψ(~r ) = 0 , ~r outside the scattering regions. (35.1)

Hereψ(~r ) is the wave function of the point particle at spatial position~r andE =
~

2~k2/2m is its energy written in terms of its massm and the wave vector~k of the
incident wave. For reflecting wall billiards the scatteringproblem is a boundary
value problem with Dirichlet boundary conditions:

ψ(~r) = 0 , ~r on the billiard perimeter (35.2)

As usual for scattering problems, we expand the wave function ψ(~r ) in the
(2-dimensional) angular momentum eigenfunctions basis

ψ(~r ) =
∞∑

m=−∞
ψk

m(~r )e−imΦk , (35.3)

wherek andΦk are the length and angle of the wave vector, respectively. A plane
wave in two dimensions expaned in the angular momentum basisis

ei~k·~r = eikr cos(Φr−Φk) =

∞∑

m=−∞
Jm(kr)eim(Φr−Φk) , (35.4)

wherer andΦr denote the distance and angle of the spatial vector~r as measured
in the global 2-dimensional coordinate system.

Themth angular componentJm(kr)eimΦr of a plane wave is split into a superposition
of incoming and outgoing 2-dimensional spherical waves by decomposing the
ordinary Bessel functionJm(z) into the sum

Jm(z) =
1
2

(
H(1)

m (z) + H(2)
m (z)

)
(35.5)

of the Hankel functionsH(1)
m (z) andH(2)

m (z) of the first and second kind. For|z| ≫ 1
the Hankel functions behave asymptotically as:

H(2)
m (z) ∼

√
2
πz

e−i(z− π2m− π4 ) incoming,

H(1)
m (z) ∼

√
2
πz

e+i(z− π2m− π4 ) outgoing. (35.6)

Thus forr → ∞ andk fixed, themth angular componentJm(kr)eimΦr of the plane
wave can be written as superposition of incoming and outgoing 2-dimensional
spherical waves:

Jm(kr)eimΦr ∼ 1
√

2πkr

[
e−i(kr− π2m− π4 ) + ei(kr− π2m− π4 )

]
eimΦr . (35.7)
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In terms of the asymptotic (angular momentum) componentsψk
m of the wave

functionψ(~r ), the scattering matrix (34.3) is defined as

ψk
m ∼

1
√

2πkr

∞∑

m′=−∞

[
δmm′e

−i(kr− π2m′− π4 ) + Smm′e
i(kr− π2m′− π4 )

]
eim′Φr . (35.8)

The matrix elementSmm′ describes the scattering of an incoming wave with angular
momentumm into an outgoing wave with angular momentumm′. If there are no

scatterers, thenS= 1 and the asymptotic expression of the plane waveei~k·~r in two
dimensions is recovered fromψ(~r ).

35.1.1 1-disk scattering matrix

In general,S is nondiagonal and nonseparable. An exception is the 1-diskscatterer.
If the origin of the coordinate system is placed at the centerof the disk, by (35.5)
themth angular component of the time-independent scattering wave function is a
superposition of incoming and outgoing 2-dimensional spherical waves

[exercise 34.2]

ψk
m =

1
2

(
H(2)

m (kr) + SmmH(1)
m (kr)

)
eimΦr

=

(
Jm(kr) − i

2
TmmH(1)

m (kr)
)
eimΦr .

The vanishing (35.2) of the wave function on the disk perimeter

0 = Jm(ka) − i
2

TmmH(1)
m (ka)

yields the 1-disk scattering matrix in analytic form:

Ss
mm′(k) =

1−
2Jm(kas)

H(1)
m (kas)

 δmm′ = −
H(2)

m (kas)

H(1)
m (kas)

δmm′ , (35.9)

wherea = as is radius of the disk and the suffix s indicates that we are dealing
with a disk whose label iss. We shall derive a semiclassical approximation to this
1-diskS-matrix in sect.35.3.

35.1.2 Multi-scattering matrix

Consider next a scattering region consisting ofN non-overlapping disks labeled
s ∈ {1, 2, · · · ,N}, following the notational conventions of sect.10.5. The strategy
is to construct the fullT-matrix (34.3) from the exact 1-disk scattering matrix
(35.9) by a succession of coordinate rotations and translations such that at each
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step the coordinate system is centered at the origin of a disk. Then theT-matrix
in Smm′ = δmm′ − i Tmm′ can be split into a product over three kinds of matrices,

Tmm′(k) =
N∑

s,s′=1

∞∑

ls,ls′=−∞
C s

mls
(k)M−1(k)ss′

lsls′
Ds′

ls′m′
(k) .

The outgoing spherical wave scattered by the disks is obtained by shifting the
global coordinates origin distanceRs to the center of the disks, and measuring
the angleΦs with respect to directionk of the outgoing spherical wave. As in
(35.9), the matrixCs takes form

C s
mls
=

2i
πas

Jm−ls(kRs)

H(1)
ls

(kas)
eimΦs . (35.10)

If we now describe the ingoing spherical wave in the disks′ coordinate frame by
the matrixDs′

Ds′

ls′m′
= −πas′ Jm′−ls′ (kRs′)Jls′ (kas′ )e

−im′Φs′ , (35.11)

and apply the Bessel function addition theorem

Jm(y+ z) =
∞∑

ℓ=−∞
Jm−ℓ(y)Jℓ(z),

we recover theT-matrix (35.9) for the single disks = s′, M = 1 scattering. The
Bessel function sum is a statement of the completness of the spherical wave basis;
as we shift the origin from the disks to the disks′ by distanceRs′ , we have to
reexpand all basis functions in the new coordinate frame.

The labelsm andm′ refer to the angular momentum quantum numbers of the
ingoing and outgoing waves in the global coordinate system,andls, ls′ refer to the
(angular momentum) basis fixed at thesth ands′th scatterer, respectively. Thus,
Cs andDs′ depend on the origin and orientation of the global coordinate system
of the 2-dimensional plane as well as on the internal coordinates of the scatterers.
As they can be made separable in the scatterer labels, they describe the single
scatterer aspects of what, in general, is a multi-scattering problem.

The matrixM is called themulti-scattering matrix. If the scattering problem
consists only of one scatterer,M is simply the unit matrixMss′

lsls′
= δss′δlsls′ .

For scattering from more than one scatterer we separate out a“single traversal”
matrix A which transports the scattered wave from a scattering regionMs to the
scattering regionMs′ ,

Mss′

lsls′
= δss′δlsls′ − Ass′

lsls′
. (35.12)
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Figure 35.1: Global and local coordinates for a
general 3-disk problem.
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The matrixAss′ reads:

Ass′

lsls′
= −(1− δss′ )

as

as′

Jls(kas)

H(1)
ls′

(kas′)
H(1)

ls−ls′
(kRss′) ei(lsαs′ s−ls′ (αss′−π)) . (35.13)

Here,as is the radius of thesth disk. Rs andΦs are the distance and angle,
respectively, of the ray from the origin in the 2-dimensional plane to the center of
disk s as measured in the global coordinate system. Furthermore,Rss′ = Rs′s is
the separation between the centers of thesth ands′th disk andαs′s of the ray from
the center of disks to the center of disks′ as measured in the local (body-fixed)
coordinate system of disks (see figure35.1).

Expanded as a geometrical series about the unit matrix1, the inverse matrix
M−1 generates a multi-scattering series in powers of the single-traversal matrixA.
All genuine multi-scattering dynamics is contained in the matrixA; by construction
A vanishes for a single-scatterer system.

35.2 N-scatterer spectral determinant

In the following we limit ourselves to a study of the spectralproperties of theS-
matrix: resonances, time delays and phase shifts. The resonances are given by the
poles of theS-matrix in the lower complex wave number (k) plane; more precisely,
by the poles of theS on the second Riemann sheet of the complex energy plane.
As theS-matrix is unitary, it is also natural to focus on its total phase shiftη(k)
defined by detS = exp2iη(k). The time-delay is proportional to the derivative of
the phase shift with respect to the wave numberk.

As we are only interested in spectral properties of the scattering problem, it
suffices to study detS. This determinant is basis and coordinate-system independent,
whereas theS-matrix itself depends on the global coordinate system and on the
choice of basis for the point particle wave function.

As theS-matrix is, in general, an infinite dimensional matrix, it isnot clear
whether the corresponding determinant exists at all. IfT-matrix is trace-class, the
determinant does exist. What does this mean?
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35.2.1 Trace-class operators

An operator (an infinite-dimensional matrix) is calledtrace-classif and only if,
for any choice of orthonormal basis, the sum of the diagonal matrix elements
converges absolutely; it is called “Hilbert-Schmidt,” if the sum of the absolute
squared diagonal matrix elements converges. Once an operator is diagnosed as
trace-class, we are allowed to manipulate it as we manipulate finite-dimensional
matrices. We review the theory of trace-class operators in appendixJ; here we
will assume that theT-matrix (34.3) is trace-class, and draw the conlusions.

If A is trace-class, the determinant det (1 − zA), as defined by the cumulant
expansion, exists and is an entire function ofz. Furthermore, the determinant is
invariant under any unitary transformation.

The cumulant expansion is the analytical continuation (as Taylor expansion in
the book-keeping variablez) of the determinant

det (1− zA) = exp[tr ln(1− zA)] = exp

−
∞∑

n=1

zn

zn tr (An)

 .

That means

det (1− zA) :=
∞∑

m=0

zmQm(A) , (35.14)

where the cumulantsQm(A) satisfy the Plemelj-Smithies recursion formula (J.19),
a generalization of Newton’s formula to determinants of infinite-dimensional matrices,

Q0(A) = 1

Qm(A) = − 1
m

m∑

j=1

Qm− j(A) tr (A j) for m≥ 1 , (35.15)

in terms of cumulants of ordern < m and traces of ordern ≤ m. Because of the
trace-class property ofA, all cumulants and traces exist separately.

For the general case ofN < ∞ non-overlapping scatterers, theT-matrix can be
shown to be trace-class, so the determinant of theS-matrix is well defined. What
does trace-class property mean for the corresponding matricesCs, Ds andAss′?
Manipulating the operators as though they were finite matrices, we can perform
the following transformations:

detS = det
(
1− iCM−1D

)

= Det
(
1− iM−1DC

)
= Det

(
M−1(M − iDC)

)

=
Det (M − iDC)

Det (M )
. . (35.16)
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In the first line of (35.16) the determinant is taken over smallℓ (the angular
momentum with respect to the global system). In the remainder of (35.16) the
determinant is evaluated over the multiple indicesLs = (s, ls). In order to signal
this difference we use the following notation: det. . . and tr . . . refer to the|ℓ〉
space, Det. . . and Tr. . . refer to the multiple index space. The matrices in the
multiple index space are expanded in the complete basis{|Ls〉} = {|s, ℓs〉} which
refers for fixed indexs to the origin of thesth scatterer and not any longer to the
origin of the 2-dimensional plane.

Let us explicitly extract the product of the determinants ofthe subsystems
from the determinant of the total system (35.16):

detS =
Det (M − iDC)

Det (M )

=
Det (M − iDC)

DetM

∏N
s=1 detSs

∏N
s=1 detSs

=


N∏

s=1

detSs


Det (M − iDC)/

∏N
s=1 detSs

DetM
. (35.17)

The final step in the reformulation of the determinant of theS-matrix of theN-
scatterer problem follows from the unitarity of theS-matrix. The unitarity of
S†(k∗) implies for the determinant

det (S(k∗)†) = 1/detS(k) , (35.18)

where this manipulation is allowed because theT-matrix is trace-class. The unitarity
condition should apply for theS-matrix of the total system,S, as for the each of
the single subsystems,Ss, s = 1, · · · ,N. In terms of the result of (35.17), this
implies

Det (M (k) − iD(k)C(k))
∏N

s=1 detSs
= Det (M (k∗)†)

since all determinants in (35.17) exist separately and since the determinants detSs

respect unitarity by themselves. Thus, we finally have

detS(k) =



N∏

s=1

(
detSs(k)

)


DetM (k∗)†

DetM (k)
, (35.19)

where all determinants exist separately.

In summary: We assumed a scattering system of afinite number ofnon-
overlappingscatterers which can be of different shape and size, but are all of
finite extent. We assumed the trace-class character of theT-matrix belonging to
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the total system and of the single-traversal matrixA and finally unitarity of the
S-matrices of the complete and all subsystems.

What can one say about the point-particle scattering from a finite number of
scatterers of arbitrary shape and size? As long as each ofN < ∞ single scatterers
has a finite spatial extent, i.e., can be covered by a finite disk, the total system
has a finite spatial extent as well. Therefore, it too can be put insided a circular
domain of finite radiusb, e.g., inside a single disk. If the impact parameter of the
point particle measured with respect to the origin of this disk is larger than the disk
size (actually larger than (e/2)× b), then theT matrix elements of theN-scatterer
problem become very small. If the wave numberk is kept fixed, the modulus of
thediagonalmatrix elements,|Tmm| with the angular momentumm > (e/2)kb, is
bounded by the corresponding quantity of the covering disk.

35.2.2 Quantum cycle expansions

In formula (35.19) the genuine multi-scattering terms are separated from thesingle-
scattering ones. We focus on the multi-scattering terms, i.e., on the ratio of the
determinants of the multi-scattering matrixM = 1−A in (35.19), since they are the
origin of the periodic orbit sums in the semiclassical reduction. The resonances
of the multi-scattering system are given by the zeros of DetM (k) in the lower
complex wave number plane.

In order to set up the problem for the semiclassical reduction, we express the
determinant of the multi-scattering matrix in terms of the traces of the powers
of the matrixA, by means of the cumulant expansion (35.14). Because of the
finite numberN ≥ 2 of scatterers tr (An) receives contributions corresponding to
all periodic itinerariess1s2s3 · · · sn−1sn of total symbol lengthn with an alphabet
si ∈ {1, 2, . . . ,N}. of N symbols,

tr As1s2As2s3 · · ·Asn−1sn Asn sn (35.20)

=

+∞∑

ls1=−∞

+∞∑

ls2=−∞
· · ·

+∞∑

lsn=−∞
As1s2

ls1 ls2
As2s3

ls2 ls3
· · ·Asn−1sn

lsn−1 lsn
A

sn s1

lsn ls1
.

Remember our notation that the trace tr (· · ·) refers only to the|l〉 space. By
constructionA describes only scatterer-to-scatterer transitions, so the symbolic
dynamics has to respect the no-self-reflection pruning rule: for admissible itineraries
the successive symbols have to be different. This rule is implemented by the factor
1− δss′ in (35.13).

The trace trAn is the sum of all itineraries of lengthn,

tr An =
∑

{s1s2···sn}
tr As1s2As2s3 · · ·Asn−1snAsn s1 . (35.21)

We will show for theN-disk problem that these periodic itineraries correspond
in the semiclassical limit,kasi ≫ 1, to geometricalperiodic orbits with the same
symbolic dynamics.
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For periodic orbits with creeping sections the symbolic alphabet has to be
extended, see sect.35.3.1. Furthermore, depending on the geometry, there might
be nontrivial pruning rules based on the so called ghost orbits, see sect.35.4.1.

35.2.3 Symmetry reductions

The determinants over the multi-scattering matrices run over the multiple indexL
of the multiple index space. This is the proper form for the symmetry reduction
(in the multiple index space), e.g., if the scatterer configuration is characterized
by a discrete symmetry groupG, we have

DetM =
∏

α

(
detMDα

(k)
)dα ,

where the indexα runs over all conjugate classes of the symmetry groupG and
Dα is theαth representation of dimensiondα. The symmetry reduction on the
exact quantum mechanical level is the same as for the classical evolution oper-
ators spectral determinant factorization (19.17) of sect.19.4.2.

35.3 Semiclassical 1-disk scattering

We start by focusing on the single-scatterer problem. In order to be concrete, we
will consider the semiclassical reduction of the scattering of a single disk in plane.

Instead of calculating the semiclassical approximation tothe determinant of
the one-disk system scattering matrix (35.9), we do so for

d(k) ≡ 1
2πi

d
dk

ln detS1(ka) =
1

2πi
d
dk

tr
(
ln S1(ka)

)
(35.22)

the so calledtime delay.

d(k) =
1

2πi
d
dk

tr
(
ln detS1(ka)

)
=

1
2πi

∑

m


H(1)

m (ka)

H(2)
m (ka)

d
dk

H(2)
m (ka)

H(1)
m (ka)



=
a

2πi

∑

m


H(2)

m
′
(ka)

H(2)
m (ka)

− H(1)
m
′
(ka)

H(1)
m (ka)

 . (35.23)

Here the prime denotes the derivative with respect to the argument of the Hankel
functions. Let us introduce the abbreviation

χν =
H(2)
ν

′
(ka)

H(2)
ν (ka)

− H(1)
ν

′
(ka)

H(1)
ν (ka)

. (35.24)
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We apply the Watson contour method to (35.23)

d(k) =
a j

2πi

+∞∑

m=−∞
χm =

a j

2πi
1
2i

∮

C
dν

e−iνπ

sin(νπ)
χν . (35.25)

Here the contourC encircles in a counter-clockwise manner a small semiinfinite
strip D which completely covers the realν-axis but which only has a small finite
extent into the positive and negative imaginaryν direction. The contourC is then
split up in the path above and below the realν-axis such that

d(k) =
a

4πi

{∫ +∞+iǫ

−∞+iǫ
dν

e−iνπ

sin(νπ)
χν −

∫ +∞−iǫ

−∞−iǫ
dν

e−iνπ

sin(νπ)
χν

}
.

Then, we perform the substitutionν→ −ν in the second integral so as to get

d(k) =
a
4π

{∫ +∞+iǫ

−∞+iǫ
dν

e−iνπ

sin(νπ)
χν + dν

e+iνπ

sin(νπ)
χ−ν

}

=
a

2πi

{
2
∫ +∞+iǫ

−∞+iǫ
dν

e2iνπ

1− e2iνπ
χν +

∫ +∞

−∞
dν χν

}
, (35.26)

where we used the fact thatχ−ν = χν. The contour in the last integral can be
deformed to pass over the realν-axis since its integrand has no Watson denominator.

We will now approximate the last expression semiclassically, i.e., under the
assumptionka≫ 1. As the two contributions in the last line of (35.26) differ by
the presence or absence of the Watson denominator, they willhave to be handled
semiclassically in different ways: the first will be closed in the upper complex
plane and evaluated at the poles ofχν, the second integral will be evaluated on the
realν-axis under the Debye approximation for Hankel functions.

We will now work out the first term. The poles ofχν in the upper complex
plane are given by the zeros ofH(1)

ν (ka) which will be denoted byνℓ(ka) and by
the zeros ofH(2)

ν (ka) which we will denote by−ν̄ℓ(ka), ℓ = 1, 2, 3, · · ·. In the Airy
approximation to the Hankel functions they are given by

νℓ(ka) = ka+ iαℓ(ka) , (35.27)

−ν̄ℓ(ka) = −ka+ i(αℓ(k
∗a))∗ = − (

νℓ(k
∗a)

)∗ , (35.28)

with

iαℓ(ka) = ei π3

(
ka
6

)1/3

qℓ − e−i π3

(
6
ka

)1/3 q2
ℓ

180
− 1

70ka

1−
q3
ℓ

30



+ ei π3

(
6
ka

) 5
3 1

3150


29qℓ
62
−

281q4
ℓ

180· 63

 + · · · . (35.29)
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Hereqℓ labels the zeros of the Airy integral

A(q) ≡
∫ ∞

0
dτ cos(qτ − τ3) = 3−1/3πAi(−3−1/3q) ,

with Ai(z) being the standard Airy function; approximately,qℓ ≈ 61/3[3π(ℓ −
1/4)]2/3/2. In order to keep the notation simple, we will abbreviateνℓ ≡ νℓ(ka)
andν̄ℓ ≡ ν̄ℓ(ka). Thus the first term of (35.26) becomes finally

a
2πi

{
2
∫ +∞+iǫ

−∞+iǫ
dν

e2iνπ

1− e2iνπ
χν

}
= 2a

∞∑

ℓ=1

(
e2iνℓπ

1− e2iνℓπ
+

e−2iν̄ℓπ

1− e−2iν̄ℓπ

)
.

In the second term of (35.26) we will insert the Debye approximations for the
Hankel functions:

H(1/2)
ν (x) ∼

√
2

π
√

x2 − ν2
exp

(
±i

√
x2 − ν2 ∓ iν arccos

ν

x
∓ i

π

4

)
for |x| > ν

(35.30)

H(1/2)
ν (x) ∼ ∓i

√
2

π
√
ν2 − x2

exp
(
−

√
ν2 − x2 + νArcCosh

ν

x

)
for |x| < ν .

Note that forν > ka the contributions inχν cancel. Thus the second integral of
(35.26) becomes

a
2πi

∫ +∞

−∞
dν χν =

a
2πi

∫ +ka

−ka
dν

(−2i)
a

d
dk

( √
k2a2 − ν2 − ν arccos

ν

ka

)
+ · · ·

= − 1
kπ

∫ ka

−ka
dν

√
k2a2 − ν2 + · · · = −a2

2
k+ · · · , (35.31)

where · · · takes care of the polynomial corrections in the Debye approximation
and the boundary correction terms in theν integration.

In summary, the semiclassical approximation tod(k) reads

d(k) = 2a
∞∑

ℓ=1

(
e2iνℓπ

1− e2iνℓπ
+

e−2iν̄ℓπ

1− e−2iν̄ℓπ

)
− a2

2
k+ · · · .

Using the definition of the time delay (35.22), we get the following expression for
detS1(ka):

ln detS1(ka) − lim
k0→0

ln detS1(k0a) (35.32)

= 2πia
∫ k

0
dk̃

−
ak̃
2
+ 2

∞∑

ℓ=1


ei2πνℓ(k̃a)

1− ei2πνℓ(k̃a)
+

e−i2πν̄ℓ(k̃a)

1− e−i2πν̄ℓ(k̃a)



 + · · ·

∼ −2πiN(k)+2
∞∑

ℓ=1

∫ k

0
dk̃

d

dk̃

{
− ln

(
1−ei2πνℓ(k̃a)

)
+ ln

(
1−e−i2πν̄ℓ(k̃a)

)}
+ · · · ,
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where in the last expression it has been used that semiclassically d
dkνℓ(ka) ∼

d
dkν̄ℓ(ka) ∼ a and that the Weyl term for a single disk of radiusa goes like
N(k) = πa2k2/(4π) + · · · (the next terms come from the boundary terms in the
ν-integration in (35.31)). Note that for the lower limit,k0 → 0, we have two
simplifications: First,

lim
k0→0

S1
mm′(k0a) = lim

k0→0

−H(2)
m (k0a)

H(1)
m (k0a)

δmm′ = 1× δmm′ ∀m,m′

→ lim
k0→0

detS1(k0a) = 1 .

Secondly, fork0→ 0, the two terms in the curly bracket of (35.32) cancel.

35.3.1 1-disk spectrum interpreted; pure creeping

To summarize: the semiclassical approximation to the determinantS1(ka) is given
by

detS1(ka) ∼ e−i2πN(k)

∏∞
ℓ=1

(
1− e−2iπν̄ℓ(ka)

)2

∏∞
ℓ=1

(
1− e2iπνℓ(ka))2 , (35.33)

with

νℓ(ka) = ka+ iαℓ(ka) = ka+ e+iπ/3(ka/6)1/3qℓ + · · ·
ν̄ℓ(ka) = ka− i(αℓ(k∗a))∗ = ka+ e−iπ/3(ka/6)1/3qℓ + · · ·

= (νℓ(k∗a))∗

and N(ka) = (πa2k2)/4π + · · · the leading term in the Weyl approximation for
the staircase function of the wavenumber eigenvalues in thedisk interior. From
the point of view of the scattering particle, the interior domains of the disks are
excluded relatively to the free evolution without scattering obstacles. Therefore
the negative sign in front of the Weyl term. For the same reason, the subleading
boundary term has here a Neumann structure, although the disks have Dirichlet
boundary conditions.

Let us abbreviate the r.h.s. of (35.33) for a disks as

detSs(kas) ∼
(
e−iπN(kas)

)2 Z̃s
ℓ
(k∗as)

∗

Z̃s
ℓ
(kas)

Z̃s
r (k∗as)

∗

Z̃s
r (kas)

, (35.34)

whereZ̃s
ℓ
(kas) and Z̃s

r (kas) are thediffractional zeta functions (here and in the
following we will label semiclassical zeta functionswith diffractive corrections
by a tilde) for creeping orbits around thesth disk in the left-handed sense and
the right-handed sense, respectively (see figure35.2). The two orientations of
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Figure 35.2: Right- and left-handed diffractive
creeping paths of increasing mode numberℓ for
a single disk.

l

l

the creeping orbits are the reason for the exponents 2 in (35.33). Equation (35.33)
describes the semiclassical approximation to the incoherent part (= the curly bracket
on the r.h.s.) of the exact expression (35.19) for the case that the scatterers are
disks.

In the following we will discuss the semiclassical resonances in the 1-disk
scattering problem with Dirichlet boundary conditions, i.e. the so-called shape
resonances. The quantum mechanical resonances are the poles of theS-matrix in
the complexk-plane. As the 1-disk scattering problem is separable, theS-matrix
is already diagonalized in the angular momentum eigenbasisand takes the simple
form (35.9). The exact quantummechanical poles of the scattering matrix are
therefore given by the the zeros,kres

n m, of the Hankel functionsH(1)
m (ka) in the lower

complexk plane which can be labeled by two indices,m andn, wherem denotes
the angular quantum number of the Hankel function andn is a radial quantum
number. As the Hankel functions have to vanish at specifick values, one cannot
use the usual Debye approximation as semiclassical approximation for the Hankel
function, since this approximation only works in case the Hankel function is
dominated by only one saddle. However, for the vanishing of the Hankel function,
one has to have the interplay of two saddles, thus an Airy approximation is needed
as in the case of the creeping poles discussed above. The Airyapproximation of
the Hankel functionH(1)

ν (ka) of complex-valued indexν reads

H(1)
ν (ka) ∼ 2

π
e−i π3

(
6
ka

)1/3

A(q(1)) ,

with

q(1) = e−i π3

(
6
ka

)1/3

(ν − ka) + O
(
(ka)−1

)
.

Hence the zerosνℓ of the Hankel function in the complexν plane follow from
the zerosqℓ of the Airy integralA(q) (see (35.3). Thus if we setνℓ = m (with m
integer), we have the following semiclassical condition onkres

m ∼ kresa+ iαℓ(k
resa)

= ei π3

(
kresa

6

)1/3

qℓ − e−i π3

(
6

kresa

)1/3 q2
ℓ

180
− 1

70kresa

1−
q3
ℓ

30
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Figure 35.3: The shape resonances of the 1-disk
system in the complexk plane in units of the
disk radiusa. The boxes label the exact quantum
mechanical resonances (given by the zeros of
H(1)

m (ka) for m = 0, 1,2), the crosses label the
diffractional semiclassical resonances (given by
the zeros of the creeping formula in the Airy
approximation (35.35) up to the orderO([ka]1/3)).

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6 7 8

Im
 k

 [1
/a

]

Re k [1/a]

QM (exact):
Semiclass.(creeping):

+ ei π3

(
6

kresa

) 5
3 1

3150


29qℓ
62
−

281q4
ℓ

180· 63

 + · · · ,

with l = 1, 2, 3, · · · . (35.35)

For a given indexl this is equivalent to

0 ∼ 1− e(ikres−αℓ)2πa ,

the de-Broglie condition on the wave function that encircles the disk. Thus the
semiclassical resonances of the 1-disk problem are given bythe zeros of the
following product

∞∏

l=1

(
1− e(ik−αℓ )2πa

)
,

which is of course nothing else thañZ1-disk(k), the semiclassical diffraction zeta
function of the 1-disk scattering problem, see (35.34). Note that this expression
includes just the pure creeping contribution and no genuinegeometrical parts.
Because of

H(1)
−m(ka) = (−1)mH(1)

m (ka) ,

the zeros are doubly degenerate ifm, 0, corresponding to right- and left handed
creeping turns. The casem = 0 is unphysical, since all zeros of the Hankel
functionH(1)

0 (ka) have negative real value.

From figure35.3one notes that the creeping terms in the Airy orderO([ka]1/3),
which are used in the Keller construction, systematically underestimate the magnitude
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Figure 35.4: Same as in figure35.3. However,
the subleading terms in the Airy approximation
(35.35) are taken into account up to the order
O([ka]−1/3) (upper panel) and up to orderO([ka]−1)
(lower panel).
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of the imaginary parts of the exact data. However, the creeping data become
better for increasing Rek and decreasing|Im k|, as they should as semiclassical
approximations.

In the upper panel of figure35.4 one sees the change, when the next order
in the Airy approximation (35.35) is taken into account. The approximation is
nearly perfect, especially for the leading row of resonances. The second Airy
approximation using (35.35) up to orderO([ka]−1) is perfect up to the drawing
scale of figure35.4(lower panel).

35.4 From quantum cycle to semiclassical cycle

The procedure for the semiclassical approximation of a general periodic itinerary
(35.20) of lengthn is somewhat laborious, and we will only sketch the procedure
here. It follows, in fact, rather closely the methods developed for the semiclassical
reduction of the determinant of the 1-disk system.

The quantum cycle

tr As1s2 · · ·Asms1 =

∞∑

ls1=−∞
· · ·

∞∑

lsm=−∞
As1s2

ls1 ls2
· · ·Asms1

lsm ls1

still has the structure of a “multi-trace” with respect to angular momentum.

Each of the sums
∑∞

lsi=−∞
– as in the 1-disk case – is replaced by aWatson

contourresummation in terms of complex angular momentumνsi . Then the paths
below the realνsi -axes are transformed to paths above these axes, and the integrals
split into expressionswith andwithoutan explicit Watson sin(νsiπ) denominator.

1. In the sin(νsiπ) -independent integrals we replace all Hankel and Bessel
functions by Debye approximations. Then we evaluate the expression in
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Figure 35.5: A 4-disk problem with three specular
reflections, one ghost tunneling, and distinct creeping
segments from which all associated creeping paths can
be constructed. ����
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Itinerary:
j

1j j4

j
2 3

the saddle point approximation: either left or rightspecular reflectionat
disksi or ghost tunnelingthrough disksi result.

2. For the sin(νsiπ) -dependent integrals, we close the contour in the upperνsi

plane and evaluate the integral at the residuaH(1)
νsi

(kasi )=0. Then we use

the Airy approximation forJνsi
(kasi ) andH(1)

νsi
(kasi ): left and rightcreeping

pathsaround disksi result.

In the above we have assumed that no grazing geometrical paths appear. If
they do show up, the analysis has to be extended to the case of coninciding saddles
between the geometrical paths withπ/2 angle reflection from the disk surface and
paths with direct ghost tunneling through the disk.

There are three possibilities of “semiclassical” contact of the point particle
with the disksi:

1. either geometrical which in turn splits into three alternatives

(a) specular reflectionto the right,

(b) specular reflectionto the left,

(c) or ‘ghost tunneling’where the latter induce the nontrivial pruning
rules (as discussed above)

2. or right-handed creeping turns

3. or left-handed creeping turns,

see figure35.5. The specular reflection to the right is linked to left-handed creeping
paths with at least one knot. The specular reflection to the left matches a right-
handed creeping paths with at least one knot, whereas the shortest left- and right-
handed creeping paths in the ghost tunneling case are topologically trivial. In
fact, the topology of the creeping paths encodes the choice between the three
alternatives for the geometrical contact with the disk. This is the case for the
simple reason that creeping sections have to be positive definite in length: the
creeping amplitude has to decrease during the creeping process, as tangential rays
are constantly emitted. In mathematical terms, it means that the creeping angle
has to be positive. Thus, the positivity of thetwo creeping angles for the shortest
left and right turn uniquely specifies the topology of the creeping sections which
in turn specifies which of the three alternatives, either specular reflection to the
right or to the left or straight “ghost” tunneling through disk j, is realized for the
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Figure 35.6: (a) The ghost itinerary (1, 2,3, 4). (b)
The parent itinerary (1,3,4).

4

31 2_

4

31

semiclassical geometrical path. Hence, the existence of a unique saddle point is
guaranteed.

In order to be concrete, we will restrict ourselves in the following to the
scattering fromN < ∞ non-overlappingdisksfixed in the 2-dimensional plane.
The semiclassical approximation of the periodic itinerary

tr As1s2As2s3 · · ·Asn−1sn Asn s1

becomes a standard periodic orbit labeled by the symbol sequence s1s2 · · · sn.
Depending on the geometry, the individual legssi−1 → si → si+1 result either
from a standard specular reflection at disksi or from a ghost path passing straight
through disksi . If furthermore creeping contributions are taken into account,
the symbolic dynamics has to be generalized from single-letter symbols{si} to
triple-letter symbols{si , σi × ℓi} with ℓi ≥ 1 integer valued andσi = 0,±1 1 By
definition, the valueσi = 0 represents the non-creeping case, such that{si , 0 ×
ℓi} = {si , 0} = {si} reduces to the old single-letter symbol. The magnitude of
a nonzeroℓi corresponds to creeping sections of mode number|ℓi |, whereas the
signσi = ±1 signals whether the creeping path turns around the disksi in the
positive or negative sense. Additional full creeping turnsaround a disksi can be
summed up as a geometrical series; therefore they do not leadto the introduction
of a further symbol.

35.4.1 Ghost contributions

An itinerary with a semiclassical ghost section at, say, disk si can be shown to
have the same weight as the corresponding itinerary withoutthe si th symbol.
Thus, semiclassically, they cancel each other in the tr ln(1− A) expansion, where
they are multiplied by the permutation factorn/r with the integerr counting the
repeats. For example, let (1, 2, 3, 4) be a non-repeated periodic itinerary with a
ghost section at disk 2 steming from the 4th-order trace trA4. By convention, an
underlined disk index signals a ghost passage (as in figure35.6a), with corresponding
semiclassical ghost traversal matrices also underlined,A i,i+1Ai+1,i+2. Then its
semiclassical, geometrical contribution to tr ln(1− A) cancels exactly against the
one of its “parent” itinerary (1, 3, 4) (see figure35.6b) resulting from the 3rd-order
trace:

−1
4

(
4A1,2A2,3A3,4A4,1

)
− 1

3

(
3A1,3A3,4A4,1

)

1Actually, these are double-letter symbols asσi andl i are only counted as a product.
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= (+1− 1)A1,3A3,4A4,1 = 0 .

The prefactors−1/3 and−1/4 are due to the expansion of the logarithm, the
factors 3 and 4 inside the brackets result from the cyclic permutation of the periodic
itineraries, and the cancellation stems from the rule

· · ·A i,i+1A i+1,i+2 · · · = · · ·
(
−A i,i+2

)
· · · . (35.36)

The reader might study more complicated examples and convince herself that the
rule (35.36).is sufficient to cancel any primary or repeated periodic orbit with
one or more ghost sections completely out of the expansion oftr ln(1 − A) and
therefore also out of the cumulant expansion in the semiclassical limit: Any
periodic orbit of lengthm with n(< m) ghost sections is cancelled by the sum
of all ‘parent’ periodic orbits of lengthm − i (with 1 ≤ i ≤ n and i ghost
sections removed) weighted by their cyclic permutation factor and by the prefactor
resulting from thetrace-log expansion. This is the way in which the nontrivial
pruning for theN-disk billiards can be derived from the exact quantum mechanical
expressions in the semiclassical limit. Note that there must exist at least one
index i in any givenperiodic itinerary which corresponds to a non-ghost section,
since otherwise the itinerary in the semiclassical limit could only be straight and
therefore nonperiodic. Furthermore, the series in the ghost cancelation has to stop
at the 2nd-order trace, trA2, as trA itself vanishes identically in the full domain
which is considered here.

35.5 Heisenberg uncertainty

Where is the boundaryka≈ 2m−1L̄/a coming from?

This boundary follows from a combination of the uncertaintyprinciple with
ray optics and the non-vanishing value for the topological entropy of the 3-disk
repeller. When the wave numberk is fixed, quantum mechanics can only resolve
the classical repelling set up to the critical topological ordern.The quantum wave
packet which explores the repelling set has to disentangle 2n different sections
of sized ∼ a/2n on the “visible” part of the disk surface (which is of ordera)
between any two successive disk collisions. Successive collisions are separated
spatially by the mean flight length̄L, and the flux spreads with a factor̄L/a. In
other words, the uncertainty principle bounds the maximal sensible truncation in
the cycle expansion order by the highest quantum resolutionattainable for a given
wavenumberk.

Commentary

Remark 35.1 Sources. This chapter is based in its entirety on ref. [1]; the reader
is referred to the full exposition for the proofs and discussion of details omitted here.
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sect.35.3is based on appendix E of ref. [1]. We follow Franz [19] in applying the Watson
contour method [20] to (35.23). The Airy and Debye approximations to the Hankel
functions are given in ref. [21], the Airy expansion of the 1-disk zeros can be found
in ref. [22].For details see refs. [19, 22, 23, 1]. That the interior domains of the disks
are excluded relatively to the free evolution without scattering obstacles was noted in
refs. [24, 15].

The procedure for the semiclassical approximation of a general periodic itinerary
(35.20) of lengthn can be found in ref. [1] for the case of theN-disk systems. The reader
interested in the details of the semiclassical reduction isadvised to consult this reference.

The ghost orbits were introduced in refs. [12, 24].

Remark 35.2 Krein-Friedel-Lloyd formula. In the literature (see, e.g., refs. [14, 15]
based on ref. [11] or ref. [1]) the transition from the quantum mechanics to the semiclassics
of scattering problems has been performed via the semiclassical limit of the left hand sides
of the Krein-Friedel-Lloyd sum for the (integrated) spectral density [5, 6, 8, 9]. See also
ref. [13] for a modern discussion of the Krein-Friedel-Lloyd formula and refs. [1, 17] for
the connection of (34.17) to the the Wigner time delay.

The order of the two limits in (34.18) and (34.17) is essential, see e.g. Balian and
Bloch [11] who stress that smoothed level densities should be inserted into the Friedel
sums.

The necessity of the+iǫ in the semiclassical calculation can be understood by purely
phenomenological considerations: Without theiǫ term there is no reason why one should
be able to neglect spurious periodic orbits which solely arethere because of the introduction
of the confining boundary. The subtraction of the second (empty) reference system helps
just in the removal of those spurious periodic orbits which never encounter the scattering
region. The ones that do would still survive the first limitb→ ∞, if they were not damped
out by the+iǫ term.

[exercise 34.1]

Remark 35.3 T, Cs, Ds and Ass′ matrices are trace-class In refs. [1] it has explicitly

been shown that theT-matrix as well as theCs, Ds andAss′-matrices of the scattering
problem fromN < ∞ non-overlapping finite disks are all trace-class. The corresponding
properties for the single-disk systems is particulary easyto prove.
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Chapter 36

Helium atom

“But,” Bohr protested, “nobody will believe me unless I
can explain every atom and every molecule.” Rutherford
was quick to reply, “Bohr, you explain hydrogen and you
explain helium and everybody will believe the rest.”

—John Archibald Wheeler (1986)

(G. Tanner)

S  much has been said about 1-dimensional maps, game of pinballand
other curious but rather idealized dynamical systems. If you have become
impatient and started wondering what good are the methods learned so far

in solving real physical problems, we have good news for you.We will show
in this chapter that the concepts of symbolic dynamics, unstable periodic orbits,
and cycle expansions are essential tools to understand and calculate classical and
quantum mechanical properties of nothing less than the helium, a dreaded three-
body Coulomb problem.

This sounds almost like one step too much at a time; we all knowhow rich and
complicated the dynamics of the three-body problem is – can we really jump from
three static disks directly to three charged particles moving under the influence of
their mutually attracting or repelling forces? It turns out, we can, but we have to
do it with care. The full problem is indeed not accessible in all its detail, but we
are able to analyze a somewhat simpler subsystem – collinearhelium. This system
plays an important role in the classical dynamics of the fullthree-body problem
and its quantum spectrum.

The main work in reducing the quantum mechanics of helium to asemiclassical
treatment of collinear helium lies in understanding why we are allowed to do so.
We will not worry about this too much in the beginning; after all, 80 years and
many failed attempts separate Heisenberg, Bohr and others in the 1920ties from
the insights we have today on the role chaos plays for helium and its quantum
spectrum. We have introduced collinear helium and learned how to integrate
its trajectories in sect.6.3. Here we will find periodic orbits and determine the
relevant eigenvalues of the fundamental matrix in sect.36.1. We will explain in
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Figure 36.1: Coordinates for the helium three body
problem in the plane.
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Figure 36.2: Collinear helium, with the two electrons
on opposite sides of the nucleus.
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sect.36.5why a quantization of the collinear dynamics in helium will enable us
to find parts of the full helium spectrum; we then set up the semiclassical spectral
determinant and evaluate its cycle expansion. A full quantum justification of this
treatment of helium is briefly discussed in sect.36.5.1.

36.1 Classical dynamics of collinear helium

Recapitulating briefly what we learned in sect.6.3: the collinear helium system
consists of two electrons of massme and charge−emoving on a line with respect
to a fixed positively charged nucleus of charge+2e, as in figure36.2.

The Hamiltonian can be brought to a non–dimensionalized form

H =
p2

1

2
+

p2
2

2
− 2

r1
− 2

r2
+

1
r1 + r2

= −1 . (36.1)

The case of negative energies chosen here is the most interesting one for us. It
exhibits chaos, unstable periodic orbits and is responsible for the bound states and
resonances of the quantum problem treated in sect.36.5.

There is another classical quantity important for a semiclassical treatment of
quantum mechanics, and which will also feature prominentlyin the discussion in
the next section; this is the classical action (32.15) which scales with energy as

S(E) =
∮

dq(E) · p(E) =
e2m1/2

e

(−E)1/2
S, (36.2)

with S being the action obtained from (36.1) for E = −1, and coordinatesq =
(r1, r2), p = (p1, p2). For the Hamiltonian (36.1), the period of a cycle and its
action are related by (32.17), Tp =

1
2Sp.

After a Kustaanheimo–Stiefel transformation

r1 = Q2
1 , r2 = Q2

2 , p1 =
P1

2Q1
, p2 =

P2

2Q2
, (36.3)
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Figure 36.3: (a) A typical trajectory in ther1 –
r2 plane; the trajectory enters here along ther1

axis and escapes to infinity along ther2 axis; (b)
Poincaré map (r2=0) for collinear helium. Strong
chaos prevails for smallr1 near the nucleus.
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and reparametrization of time bydτ = dt/r1r2, the equations of motion take form
(6.19)

[exercise 36.1]

Ṗ1 = 2Q1

2−
P2

2

8
− Q2

2

1+
Q2

2

R4
12


 ; Q̇1 =

1
4

P1Q2
2 (36.4)

Ṗ2 = 2Q2

2−
P2

1

8
− Q2

1

1+
Q2

1

R4
12


 ; Q̇2 =

1
4

P2Q2
1.

Individual electron–nucleus collisions atr1 = Q2
1 = 0 or r2 = Q2

2 = 0 no
longer pose a problem to a numerical integration routine. The equations (6.19)
are singular only at the triple collisionR12 = 0, i.e., when both electrons hit the
nucleus at the same time.

The new coordinates and the Hamiltonian (6.18) are very useful when calculating
trajectories for collinear helium; they are, however, lessintuitive as a visualization
of the three-body dynamics. We will therefore refer to the old coordinatesr1, r2

when discussing the dynamics and the periodic orbits.

36.2 Chaos, symbolic dynamics and periodic orbits

Let us have a closer look at the dynamics in collinear helium.The electrons
are attracted by the nucleus. During an electron–nucleus collision momentum is
transferred between the inner and outer electron. The innerelectron has a maximal
screening effect on the charge of the nucleus, diminishing the attractiveforce on
the outer electron. This electron – electron interaction isnegligible if the outer
electron is far from the nucleus at a collision and the overall dynamics is regular
like in the 1-dimensional Kepler problem.

Things change drastically if both electrons approach the nucleus nearly simultaneously.
The momentum transfer between the electrons depends now sensitively on how
the particles approach the origin. Intuitively, these nearly missed triple collisions
render the dynamics chaotic. A typical trajectory is plotted in figure 36.3 (a)
where we usedr1 andr2 as the relevant axis. The dynamics can also be visualized
in a Poincaré surface of section, see figure36.3(b). We plot here the coordinate
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Figure 36.4: The cycle 011 in the fundamental
domain r1 ≥ r2 (full line) and in the full domain
(dashed line).
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and momentum of the outer electron whenever the inner particle hits the nucleus,
i.e., r1 or r2 = 0. As the unstructured gray region of the Poincaré section for
smallr1 illustrates, the dynamics is chaotic whenever the outer electron is close to
the origin during a collision. Conversely, regular motionsdominate whenever the
outer electron is far from the nucleus. As one of the electrons escapes for almost
any starting condition, the system is unbounded: one electron (say electron 1)
can escape, with an arbitrary amount of kinetic energy takenby the fugative.
The remaining electron is trapped in a Kepler ellipse with total energy in the
range [−1,−∞]. There is no energy barrier which would separate the bound from
the unbound regions of the phase space. From general kinematic arguments one
deduces that the outer electron will not return whenp1 > 0, r2 ≤ 2 at p2 = 0, the
turning point of the inner electron. Only if the two electrons approach the nucleus
almost symmetrically along the liner1 = r2, and pass close to the triple collision
can the momentum transfer between the electrons be large enough to kick one of
the particles out completely. In other words, the electron escape originates from
the near triple collisions.

The collinear helium dynamics has some important properties which we now
list.

36.2.1 Reflection symmetry

The Hamiltonian (6.10) is invariant with respect to electron–electron exchange;
this symmetry corresponds to the mirror symmetry of the potential along the line
r1 = r2, figure36.4. As a consequence, we can restrict ourselves to the dynamics
in the fundamental domain r1 ≥ r2 and treat a crossing of the diagonalr1 = r2 as
a hard wall reflection. The dynamics in the full domain can then be reconstructed
by unfolding the trajectory through back-reflections. As explained in chapter19,
the dynamics in the fundamental domain is the key to the factorization of spectral
determinants, to be implemented here in (36.15). Note also the similarity between
the fundamental domain of the collinear potential figure36.4, and the fundamental
domain figure?? (b) in the 3–disk system, a simpler problem with the same binary
symbolic dynamics.

in depth:

sect. 19.6, p. 331
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36.2.2 Symbolic dynamics

We have already made the claim that the triple collisions render the collinear
helium fully chaotic. We have no proof of the assertion, but the analysis of the
symbolic dynamics lends further credence to the claim.

The potential in (36.1) forms a ridge along the liner1 = r2. One can show
that a trajectory passing the ridge must go through at least one two-body collision
r1 = 0 or r2 = 0 before coming back to the diagonalr1 = r2. This suggests
a binary symbolic dynamics corresponding to the dynamics in the fundamental
domainr1 ≥ r2; the symbolic dynamics is linked to the Poincaré mapr2 = 0 and
the symbols 0 and 1 are defined as

0: if the trajectory is not reflected from the liner1 = r2 between two collisions
with the nucleusr2 = 0;

1: if a trajectory is reflected from the liner1 = r2 between two collisions with
the nucleusr2 = 0.

Empirically, the symbolic dynamics is complete for a Poincaré map in the
fundamental domain, i.e., there exists a one-to-one correspondence between binary
symbol sequences and collinear trajectories in the fundamental domain, with exception
of the0 cycle.

36.2.3 Periodic orbits

The existence of a binary symbolic dynamics makes it easy to count the number
of periodic orbits in the fundamental domain, as in sect.13.5.2. However, mere
existence of these cycles does not suffice to calculate semiclassical spectral deter-
minants. We need to determine their phase space trajectories and calculate their
periods, topological indices and stabilities. A restriction of the periodic orbit
search to a suitable Poincaré surface of section, e.g.r2 = 0 or r1 = r2, leaves us
in general with a 2-dimensional search. Methods to find periodic orbits in multi-
dimensional spaces have been described in chapter12. They depend sensitively
on good starting guesses. A systematic search for all orbitscan be achieved only
after combining multi-dimensional Newton methods with interpolation algorithms
based on the binary symbolic dynamics phase space partitioning. All cycles up
to symbol length 16 (some 8000 primitive cycles) have been computed by such
methods, with some examples shown in figure36.5. All numerical evidence
indicates that the dynamics of collinear helium is hyperbolic, and that all periodic
orbits are unstable.

Note that the fixed point0 cycle is not in this list. The0 cycle would correspond
to the situation where the outer electron sits at rest infinitely far from the nucleus
while the inner electron bounces back and forth into the nucleus. The orbit is
the limiting case of an electron escaping to infinity with zero kinetic energy. The
orbit is in the regular (i.e., separable) limit of the dynamics and is thus marginally
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Figure 36.5: Some of the shortest cycles in
collinear helium. The classical collinear electron
motion is bounded by the potential barrier−1 =
−2/r1−2/r2+1/(r1 + r2) and the conditionr i ≥ 0.
The orbits are shown in the fullr1–r2 domain, the
itineraries refers to the dynamics in ther1 ≥ r2

fundamental domain. The last figure, the 14-cycle
00101100110111, is an example of a typical cycle
with no symmetry.
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stable. The existence of this orbit is also related to intermittent behavior generating
the quasi–regular dynamics for larger1 that we have already noted in figure36.3(b).

Search algorithm for an arbitrary periodic orbit is quite cumbersome to program.
There is, however, a class of periodic orbits, orbits with symmetries, which can be
easily found by a one-parameter search. The only symmetry left for the dynamics
in the fundamental domain is time reversal symmetry; a time reversal symmetric
periodic orbit is an orbit whose trajectory in phase space ismapped onto itself
when changing (p1, p2)→ (−p1,−p2), by reversing the direction of the momentum
of the orbit. Such an orbit must be a “libration” or self-retracing cycle, an orbit
that runs back and forth along the same path in the (r1, r2) plane. The cycles1, 01
and001 in figure36.5are examples of self-retracing cycles. Luckily, the shortest
cycles that we desire most ardently have this symmetry.

Why is this observation helpful? A self-retracing cycle must start perpendicular
to the boundary of the fundamental domain, that is, on eitherof the axisr2 = 0
or r1 = r2, or on the potential boundary− 2

r1
− 2

r2
+ 1′

r1+r2
= −1. By shooting off

trajectories perpendicular to the boundaries and monitoring the orbits returning to
the boundary with the right symbol length we will find time reversal symmetric
cycles by varying the starting point on the boundary as the only parameter. But
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how can we tell whether a given cycle is self-retracing or not? All the relevant
information is contained in the itineraries; a cycle is self-retracing if its itinerary
is invariant under time reversal symmetry (i.e., read backwards) and a suitable
number of cyclic permutations. All binary strings up to length 5 fulfill this condition.
The symbolic dynamics contains even more information; we can tell at which
boundary the total reflection occurs. One finds that an orbit starts out perpendicular

• to the diagonalr1 = r2 if the itinerary is time reversal invariant and has an
odd number of 1’s; an example is the cycle001 in figure36.5;

• to the axisr2 = 0 if the itinerary is time reversal invariant and has an even
number of symbols; an example is the cycle0011 in figure36.5;

• to the potential boundary if the itinerary is time reversal invariant and has
an odd number of symbols; an example is the cycle011 in figure36.5.

All cycles up to symbol length 5 are time reversal invariant,the first two non-time
reversal symmetric cycles are cycles001011 and001101 in figure36.5. Their
determination would require a two-parameter search. The two cycles are mapped
onto each other by time reversal symmetry, i.e., they have the same trace in the
r1–r2 plane, but they trace out distinct cycles in the full phase space.

We are ready to integrate trajectories for classical collinear helium with the
help of the equations of motions (6.19) and to find all cycles up to length 5. There

[exercise 36.5]
is only one thing not yet in place; we need the governing equations for the matrix
elements of the fundamental matrix along a trajectory in order to calculate stability
indices. We will provide the main equations in the next section, with the details
of the derivation relegated to the appendixB.4.

36.3 Local coordinates, fundamental matrix

In this section, we will derive the equations of motion for the fundamental matrix
along a collinear helium trajectory. The fundamental matrix is 4-dimensional; the
two trivial eigenvectors corresponding to the conservation of energy and displacements
along a trajectory can, however, be projected out by suitable orthogonal coordinates
transformations, see appendixB. We will give the transformation to local coordinates
explicitly, here for the regularized coordinates (6.17), and state the resulting equations
of motion for the reduced [2× 2] fundamental matrix.

The vector locally parallel to the trajectory is pointing inthe direction of the
phase space velocity (7.7)

vm = ẋm(t) = ωmn
∂H
∂xn
= (HP1,HP2,−HQ1,−HQ2)

T ,

with HQi =
∂H
∂Qi

, and HPi =
∂H
∂Pi

, i = 1,2. The vector perpendicular to a trajectory
x(t) = (Q1(t),Q2(t),P1(t),P2(t)) and to the energy manifold is given by the gradient
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of the Hamiltonian (6.18)

γ = ∇H = (HQ1,HQ2,HP1,HP2)
T .

By symmetryvmγm = ωmn
∂H
∂xn

∂H
∂xm
= 0, so the two vectors are orthogonal.

Next, we consider the orthogonal matrix

O = (γ1, γ2, γ/R, v) (36.5)

=



−HP2/R HQ2 HQ1/R HP1

HP1/R −HQ1 HQ2/R HP2

−HQ2/R −HP2 HP1/R −HQ1

HQ1/R HP1 HP2/R −HQ2



with R = |∇H|2 = (H2
Q1
+ H2

Q2
+ H2

P1
+ H2

P2
), which provides a transformation to

local phase space coordinates centered on the trajectoryx(t) along the two vectors
(γ, v). The vectorsγ1,2 are phase space vectors perpendicular to the trajectory

[exercise 36.6]
and to the energy manifold in the 4-dimensional phase space of collinear helium.
The fundamental matrix (4.6) rotated to the local coordinate system byO then has
the form

m =



m11 m12 ∗ 0
m21 m22 ∗ 0
0 0 1 0
∗ ∗ ∗ 1


, M = OTmO

The linearized motion perpendicular to the trajectory on the energy manifold is
described by the [2× 2] matrix m; the ‘trivial’ directions correspond to unit
eigenvalues on the diagonal in the 3rd and 4th column and row.

The equations of motion for the reduced fundamental matrixm are given by

ṁ = l(t)m(t), (36.6)

with m(0) = 1. The matrixl depends on the trajectory in phase space and has the
form

l =



l11 l12 ∗ 0
l21 l22 ∗ 0
0 0 0 0
∗ ∗ ∗ 0


,

where the relevant matrix elementsl i j are given by

l11 =
1
R

[2HQ1Q2(HQ2HP1 + HQ1HP2) (36.7)
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p Sp/2π ln |Λp| σp mp
1 1.82900 0.6012 0.5393 2

01 3.61825 1.8622 1.0918 4
001 5.32615 3.4287 1.6402 6
011 5.39451 1.8603 1.6117 6

0001 6.96677 4.4378 2.1710 8
0011 7.04134 2.3417 2.1327 8
0111 7.25849 3.1124 2.1705 8

00001 8.56618 5.1100 2.6919 10
00011 8.64306 2.7207 2.6478 10
00101 8.93700 5.1562 2.7291 10
00111 8.94619 4.5932 2.7173 10
01011 9.02689 4.1765 2.7140 10
01111 9.07179 3.3424 2.6989 10

000001 10.13872 5.6047 3.2073 12
000011 10.21673 3.0323 3.1594 12
000101 10.57067 6.1393 3.2591 12
000111 10.57628 5.6766 3.2495 12
001011 10.70698 5.3251 3.2519 12
001101 10.70698 5.3251 3.2519 12
001111 10.74303 4.3317 3.2332 12
010111 10.87855 5.0002 3.2626 12
011111 10.91015 4.2408 3.2467 12

Table 36.1: Action Sp (in units of 2π), Lyapunov exponent|Λp|/Tp for the motion in the collinear
plane, winding numberσp for the motion perpendicular to the collinear plane, and thetopological
indexmp for all fundamental domain cycles up to topological length 6.

+(HQ1HP1 − HQ2HP2)(HQ1Q1 − HQ2Q2 − HP1P1 + HP2P2)]

l12 = −2HQ1Q2(HQ1HQ2 − HP1HP2)

+(H2
Q1
+ H2

P2
)(HQ2Q2 + HP1P1) + (H2

Q2
+ H2

P1
)(HQ1Q1 + HP2P2)

l21 =
1

R2
[2(HQ1P2 + HQ2P1)(HQ2HP1 + HQ1HP8)

−(H2
P1
+ H2

P2
)(HQ1Q1 + HQ2Q2) − (H2

Q1
+ H2

Q2
)(HP1P1 + HP2P2)]

l22 = −l11 .

HereHQiQ j , HPiP j , i, j = 1, 2 are the second partial derivatives ofH with respect
to the coordinatesQi , Pi , evaluated at the phase space coordinate of the classical
trajectory.

36.4 Getting ready

Now everything is in place: the regularized equations of motion can be implemented
in a Runge–Kutta or any other integration scheme to calculate trajectories. We
have a symbolic dynamics and know how many cycles there are and how to find
them (at least up to symbol length 5). We know how to compute the fundamental
matrix whose eigenvalues enter the semiclassical spectraldeterminant (33.12). By
(32.17) the actionSp is proportional to the period of the orbit,Sp = 2Tp.
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There is, however, still a slight complication. Collinear helium is an invariant
4-dimensional subspace of the full helium phase space. If werestrict the dynamics
to angular momentum equal zero, we are left with 6 phase spacecoordinates. That
is not a problem when computing periodic orbits, they are oblivious to the other
dimensions. However, the fundamental matrix does pick up extra contributions.
When we calculate the fundamental matrix for the full problem, we must also
allow for displacements out of the collinear plane, so the full fundamental matrix
for dynamics forL = 0 angular momentum is 6 dimensional. Fortunately, the
linearized dynamics in and off the collinear helium subspace decouple, and the
fundamental matrix can be written in terms of two distinct [2× 2] matrices, with
trivial eigendirections providing the remaining two dimensions. The submatrix
related to displacements off the linear configuration characterizes the linearized
dynamics in the additional degree of freedom, theΘ-coordinate in figure36.1. It
turns out that the linearized dynamics in theΘ coordinate is stable, corresponding
to a bending type motion of the two electrons. We will need theFloquet exponents
for all degrees of freedom in evaluating the semiclassical spectral determinant in
sect.36.5.

The numerical values of the actions, Floquet exponents, stability angles, and
topological indices for the shortest cycles are listed in table 36.3. These numbers,
needed for the semiclassical quantization implemented in the next section, an also
be helpful in checking your own calculations.

36.5 Semiclassical quantization of collinear helium

Before we get down to a serious calculation of the helium quantum energy levels
let us have a brief look at the overall structure of the spectrum. This will give us
a preliminary feel for which parts of the helium spectrum areaccessible with the
help of our collinear model – and which are not. In order to keep the discussion as
simple as possible and to concentrate on the semiclassical aspects of our calculations
we offer here only a rough overview. For a guide to more detailed accounts see
remark36.4.

36.5.1 Structure of helium spectrum

We start by recalling Bohr’s formula for the spectrum of hydrogen like one-
electron atoms. The eigenenergies form a Rydberg series

EN = −
e4me

~2

Z2

2N2
, (36.8)

whereZeis the charge of the nucleus andme is the mass of the electron. Through
the rest of this chapter we adopt the atomic unitse= me = ~ = 1.

The simplest model for the helium spectrum is obtained by treating the two
electrons as independent particles moving in the potentialof the nucleus neglecting
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the electron–electron interaction. Both electrons are then bound in hydrogen like
states; the inner electron will see a chargeZ = 2, screening at the same time the
nucleus, the outer electron will move in a Coulomb potentialwith effective charge
Z − 1 = 1. In this way obtain a first estimate for the total energy

EN,n = −
2

N2
− 1

2n2
with n > N. (36.9)

This double Rydberg formula contains already most of the information we need to
understand the basic structure of the spectrum. The (correct) ionizations thresholds
EN = − 2

N2 are obtained in the limitn→∞, yielding the ground and excited states
of the helium ionHe+. We will therefore refer toN as the principal quantum
number. We also see that all statesEN,n with N ≥ 2 lie above the first ionization
threshold forN = 1. As soon as we switch on electron-electron interaction these
states are no longer bound states; they turn into resonant states which decay into
a bound state of the helium ion and a free outer electron. Thismight not come as
a big surprise if we have the classical analysis of the previous section in mind: we
already found that one of the classical electrons will almost always escape after
some finite time. More remarkable is the fact that the first,N = 1 series consists
of true bound states for alln, an effect which can only be understood by quantum
arguments.

The hydrogen-like quantum energies (36.8) are highly degenerate; states with
different angular momentum but the same principal quantum number N share the
same energy. We recall from basic quantum mechanics of hydrogen atom that
the possible angular momenta for a givenN spanl = 0, 1 . . .N − 1. How does
that affect the helium case? Total angular momentumL for the helium three-
body problem is conserved. The collinear helium is a subspace of the classical
phase space forL = 0; we thus expect that we can only quantize helium states
corresponding to the total angular momentum zero, a subspectrum of the full
helium spectrum. Going back to our crude estimate (36.9) we may now attribute
angular momenta to the two independent electrons,l1 andl2 say. In order to obtain
total angular momentumL = 0 we needl1 = l2 = l andlz1 = −lz2, that is, there are
N different states corresponding toL = 0 for fixed quantum numbersN, n. That
means that we expectN different Rydberg series converging to each ionization
thresholdEN = −2/N2. This is indeed the case and theN different series can
be identified also in the exact helium quantum spectrum, see figure 36.6. The
degeneracies between the differentN Rydberg series corresponding to the same
principal quantum numberN, are removed by the electron-electron interaction.
We thus already have a rather good idea of the coarse structure of the spectrum.

In the next step, we may even speculate which parts of theL = 0 spectrum
can be reproduced by the semiclassical quantization of collinear helium. In the
collinear helium, both classical electrons move back and forth along a common
axis through the nucleus, so each has zero angular momentum.We therefore
expect that collinear helium describes the Rydberg series with l = l1 = l2 = 0.
These series are the energetically lowest states for fixed (N, n), corresponding to
the Rydberg series on the outermost left side of the spectrumin figure36.6. We
will see in the next section that this is indeed the case and that the collinear model
holds down to theN = 1 bound state series, including even the ground state
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Figure 36.6: The exact quantum helium spectrum
for L = 0. The energy levels denoted by bars have
been obtained from full 3-dimensional quantum
calculations [3].
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of helium! We will also find a semiclassical quantum number corresponding to
the angular momentuml and show that the collinear model describes states for
moderate angular momentuml as long asl ≪ N. .

[remark 36.4]

36.5.2 Semiclassical spectral determinant for collinear helium

Nothing but lassitude can stop us now from calculating our first semiclassical
eigenvalues. The only thing left to do is to set up the spectral determinant in terms
of the periodic orbits of collinear helium and to write out the first few terms of its
cycle expansion with the help of the binary symbolic dynamics. The semiclassic-
al spectral determinant (33.12) has been written as product over all cycles of the
classical systems. The energy dependence in collinear helium enters the classical
dynamics only through simple scaling transformations described in sect.6.3.1
which makes it possible to write the semiclassical spectraldeterminant in the form

det (Ĥ−E)sc = exp

−
∑

p

∞∑

r=1

1
r

eir (sSp−mp
π
2 )

(−det (1− Mr
p⊥))1/2|det (1− Mr

p‖)|1/2

 , (36.10)
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with the energy dependence absorbed into the variable

s=
e2

~

√
me

−E
,

obtained by using the scaling relation (36.2) for the action. As explained in
sect.36.3, the fact that the [4× 4] fundamental matrix decouples into two [2× 2]
submatrices corresponding to the dynamicsin the collinear space andperpendicular
to it makes it possible to write the denominator in terms of a product of two
determinants. Stable and unstable degrees of freedom enterthe trace formula in
different ways, reflected by the absence of the modulus sign and the minus sign
in front of det (1− M⊥). The topological indexmp corresponds to the unstable
dynamics in the collinear plane. Note that the factoreiπN̄(E) present in (33.12)
is absent in (36.10). Collinear helium is an open system, i.e., the eigenenergies
are resonances corresponding to the complex zeros of the semiclassical spectral
determinant and the mean energy staircaseN̄(E) not defined. In order to obtain a
spectral determinant as an infinite product of the form (33.18) we may proceed as
in (17.9) by expanding the determinants in (36.10) in terms of the eigenvalues of
the corresponding fundamental matrices. The matrix representing displacements
perpendicular to the collinear space has eigenvalues of theform exp(±2πiσ),
reflecting stable linearized dynamics.σ is the full winding number along the orbit
in the stable degree of freedom, multiplicative under multiple repetitions of this
orbit .The eigenvalues corresponding to the unstable dynamics along the collinear
axis are paired as{Λ, 1/Λ} with |Λ| > 1 and real. As in (17.9) and (33.18) we may
thus write

[
−det (1− Mr

⊥)|det (1− Mr
‖)|

]−1/2
(36.11)

=
[
−(1− Λr)(1− Λ−r )|(1− e2πirσ)(1− e−2πirσ)

]−1/2

=

∞∑

k,ℓ=0

1

|Λr |1/2Λrk
e−ir (ℓ+1/2)σ .

The± sign corresponds to the hyperbolic/inverse hyperbolic periodic orbits with
positive/negative eigenvaluesΛ. Using the relation (36.12) we see that the sum
over r in (36.10) is the expansion of the logarithm, so the semiclassical spectral
determinant can be rewritten as a product over dynamical zeta functions, as in
(17.9):

det (Ĥ − E)sc =

∞∏

k=0

∞∏

m=0

ζ−1
k,m =

∞∏

k=0

∞∏

m=0

∏

p

(1− t(k,m)
p ) , (36.12)

where the cycle weights are given by

t(k,m)
p =

1

|Λ|1/2Λk
ei(sSp−mp

π
2−4π(ℓ+1/2)σp) , (36.13)
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andmp is the topological index for the motion in the collinear plane which equals
twice the topological length of the cycle. The two independent directions perpendicular
to the collinear axis lead to a twofold degeneracy in this degree of freedom which
accounts for an additional factor 2 in front of the winding numberσ. The values
for the actions, winding numbers and stability indices of the shortest cycles in
collinear helium are listed in table36.3.

The integer indicesℓ andk play very different roles in the semiclassical spec-
tral determinant (36.12). A linearized approximation of the flow along a cycle
corresponds to a harmonic approximation of the potential inthe vicinity of the
trajectory. Stable motion corresponds to a harmonic oscillator potential, unstable
motion to an inverted harmonic oscillator. The indexℓ which contributes as
a phase to the cycle weights in the dynamical zeta functions can therefore be
interpreted as a harmonic oscillator quantum number; it corresponds to vibrational
modes in theΘ coordinate and can in our simplified picture developed in sect. 36.5.1
be related to the quantum numberl = l1 = l2 representing the single particle
angular momenta. Every distinctℓ value corresponds to a full spectrum which
we obtain from the zeros of the semiclassical spectral determinant 1/ζℓ keeping
ℓ fixed. The harmonic oscillator approximation will eventually break down with
increasing off-line excitations and thus increasingℓ. The indexk corresponds to
‘excitations’ along the unstable direction and can be identified with local resonances
of the inverted harmonic oscillator centered on the given orbit. The cycle
contributionst(k,m)

p decrease exponentially with increasingk. Higherk terms in an
expansion of the determinant give corrections which becomeimportant only for
large negative imaginarys values. As we are interested only in the leading zeros
of (36.12), i.e., the zeros closest to the real energy axis, it is sufficient to take only
thek = 0 terms into account.

Next, let us have a look at the discrete symmetries discussedin sect.36.2.
Collinear helium has aC2 symmetry as it is invariant under reflection across
the r1 = r2 line corresponding to the electron-electron exchange symmetry. As
explained in sects.19.1.1and19.5, we may use this symmetry to factorize the
semiclassical spectral determinant. The spectrum corresponding to the states
symmetric or antisymmetric with respect to reflection can beobtained by writing
the dynamical zeta functions in the symmetry factorized form

1/ζ(ℓ) =
∏

a

(1− ta)2
∏

s̃

(1− t2s̃) . (36.14)

Here, the first product is taken over all asymmetric prime cycles, i.e., cycles that
are not self-dual under theC2 symmetry. Such cycles come in pairs, as two
equivalent orbits are mapped into each other by the symmetrytransformation.
The second product runs over all self-dual cycles; these orbits cross the axis
r1 = r2 twice at a right angle. The self-dual cycles close in the fundamental
domainr1 ≤ r2 already at half the period compared to the orbit in the full domain,
and the cycle weightsts̃ in (36.14) are the weights of fundamental domain cycles.
TheC2 symmetry now leads to the factorization of (36.14) 1/ζ = ζ−1

+ ζ
−1
− , with

1/ζ(ℓ)
+ =

∏

a

(1− ta)
∏

s̃

(1− ts̃) ,
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1/ζ(ℓ)
− =

∏

a

(1− ta)
∏

s̃

(1+ ts̃) , (36.15)

settingk = 0 in what follows. The symmetric subspace resonances are given
by the zeros of 1/ζ(ℓ)

+ , antisymmetric resonances by the zeros of 1/ζ(ℓ)
− , with the

two dynamical zeta functions defined as products over orbitsin the fundamental
domain. The symmetry properties of an orbit can be read off directly from its
symbol sequence, as explained in sect.36.2. An orbit with an odd number of 1’s
in the itinerary is self-dual under theC2 symmetry and enters the spectral deter-
minant in (36.15) with a negative or a positive sign, depending on the symmetry
subspace under consideration.

36.5.3 Cycle expansion results

So far we have established a factorized form of the semiclassical spectral det-
erminant and have thereby picked up twogood quantum numbers; the quantum
numberm has been identified with an excitation of the bending vibrations, the
exchange symmetry quantum number±1 corresponds to states being symmetric
or antisymmetric with respect to the electron-electron exchange. We may now
start writing down the binary cycle expansion (18.7) and determine the zeros of
spectral determinant. There is, however, still another problem: there is no cycle 0
in the collinear helium. The symbol sequence0 corresponds to the limit of an outer
electron fixed with zero kinetic energy atr1 = ∞, the inner electron bouncing back
and forth into the singularity at the origin. This introduces intermittency in our
system, a problem discussed in chapter23. We note that the behavior of cycles
going far out in the channelr1 or r2→ ∞ is very different from those staying in the
near core region. A cycle expansion using the binary alphabet reproduces states
where both electrons are localized in the near core regions:these are the lowest
states in each Rydberg series. The states converging to the various ionization
thresholdsEN = −2/N2 correspond to eigenfunctions where the wave function
of the outer electron is stretched far out into the ionization channelr1, r2 → ∞.
To include those states, we have to deal with the dynamics in the limit of large
r1, r2. This turns out to be equivalent to switching to a symbolic dynamics with
an infinite alphabet. With this observation in mind, we may write the cycle

[remark 36.5]
expansion (....) for a binary alphabet without the0 cycle as

1/ζℓ(s) = 1 − t(ℓ)1 − t(ℓ)01 − [t(ℓ)001+ t(ℓ)011− t(ℓ)01t(ℓ)1 ]

−[t(ℓ)0001+ t(ℓ)0011− t(ℓ)001t
(ℓ)
1 + t(ℓ)0111− t(ℓ)011t

(ℓ)
1 ] − . . . . (36.16)

The weightst(ℓ)p are given in (36.12), with contributions of orbits and composite
orbits of the same total symbol length collected within square brackets. The cycle
expansion depends only on the classical actions, stabilityindices and winding
numbers, given for orbits up to length 6 in table36.3. To get reacquainted with
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N n j = 1 j = 4 j = 8 j = 12 j = 16 −Eqm

1 1 3.0970 2.9692 2.9001 2.9390 2.9248 2.9037
2 2 0.8044 0.7714 0.7744 0.7730 0.7727 0.7779
2 3 — 0.5698 0.5906 0.5916 0.5902 0.5899
2 4 — — — 0.5383 0.5429 0.5449
3 3 0.3622 0.3472 0.3543 0.3535 0.3503 0.3535
3 4 — — 0.2812 0.2808 0.2808 0.2811
3 5 — — 0.2550 0.2561 0.2559 0.2560
3 6 — — — 0.2416 0.2433 0.2438
4 4 0.2050 0.1962 0.1980 0.2004 0.2012 0.2010
4 5 — 0.1655 0.1650 0.1654 0.1657 0.1657
4 6 — — 0.1508 0.1505 0.1507 0.1508
4 7 — — 0.1413 0.1426 0.1426 0.1426

Table 36.2: Collinear helium, real part of the symmetric subspace resonances obtained by a cycle
expansion (36.16) up to cycle lengthj. The exact quantum energies [3] are in the last column. The
states are labeled by their principal quantum numbers. A dash as an entry indicates a missing zero
at that level of approximation.

the cycle expansion formula (36.16), consider a truncation of the series after the
first term

1/ζ(ℓ)(s) ≈ 1− t1 .

The quantization condition 1/ζ(ℓ)(s) = 0 leads to

Em,N = −
(S1/2π)2

[m+ 1
2 + 2(N + 1

2)σ1]2
, m,N = 0, 1, 2, . . . , (36.17)

with S1/2π = 1.8290 for the action andσ1 = 0.5393 for the winding number, see
table36.3, the 1 cycle in the fundamental domain. This cycle can be described as
theasymmetric stretchorbit, see figure36.5. The additional quantum numberN in
(36.17) corresponds to the principal quantum number defined in sect. 36.5.1. The
states described by the quantization condition (36.17) are those centered closest to
the nucleus and correspond therefore to the lowest states ineach Rydberg series
(for a fixedm and N values), in figure36.6. The simple formula (36.17) gives
already a rather good estimate for the ground state of helium! Results obtained
from (36.17) are tabulated in table36.2, see the 3rd column underj = 1 and the
comparison with the full quantum calculations.

In order to obtain higher excited quantum states, we need to include more
orbits in the cycle expansion (36.16), covering more of the phase space dynamics
further away from the center. Taking longer and longer cycles into account, we
indeed reveal more and more states in eachN-series for fixedm. This is illustrated
by the data listed in table36.2for symmetric states obtained from truncations of
the cycle expansion of 1/ζ+. [exercise 36.7]

Results of the same quality are obtained for antisymmetric states by calculating
the zeros of 1/ζ(ℓ)

− . Repeating the calculation withℓ = 1 or higher in (36.15)
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reveals states in the Rydberg series which are to the right ofthe energetically
lowest series in figure36.6.

Résum é

We have covered a lot of ground starting with considerationsof the classical
properties of a three-body Coulomb problem, and ending withthe semiclassical
helium spectrum. We saw that the three-body problem restricted to the dynamics
on a collinear appears to be fully chaotic; this implies thattraditional semiclassical
methods such asWKBquantization will not work and that we needed the full
periodic orbit theory to obtain leads to the semiclassical spectrum of helium. As a
piece of unexpected luck the symbolic dynamics is simple, and the semiclassical
quantization of the collinear dynamics yields an importantpart of the helium
spectrum, including the ground state, to a reasonable accuracy. A sceptic might
say: “Why bother with all the semiclassical considerations? A straightforward
numerical quantum calculation achieves the same goal with better precision.”
While this is true, the semiclassical analysis offers new insights into thestructure
of the spectrum. We discovered that the dynamics perpendicular to the collinear
plane was stable, giving rise to an additional (approximate) quantum number
ℓ. We thus understood the origin of the different Rydberg series depicted in
figure 36.6, a fact which is not at all obvious from a numerical solution of the
quantum problem.

Having traversed the long road from the classical game of pinball all the way
to a credible helium spectrum computation, we could declarevictory and fold
down this enterprise. Nevertheless, there is still much to think about - what about
such quintessentially quantum effects as diffraction, tunnelling, ...? As we shall
now see, the periodic orbit theory has still much of interestto offer.

Commentary

Remark 36.1 Sources. The full 3-dimensional Hamiltonian after elimination of the
center of mass coordinates, and an account of the finite nucleus mass effects is given in
ref. [2]. The general two–body collision regularizing Kustaanheimo–Stiefel transformation [5],
a generalization of Levi-Civita’s [13] Pauli matrix two–body collision regularization for
motion in a plane, is due to Kustaanheimo [12] who realized that the correct higher-
dimensional generalization of the “square root removal” trick (6.15), by introducing a
vectorQ with propertyr = |Q|2 , is the same as Dirac’s trick of getting linear equation
for spin 1/2 fermions by means of spinors. Vector spaces equipped with aproduct and
a known satisfy|Q · Q| = |Q|2 definenormed algebras. They appear in various physical
applications - as quaternions, octonions, spinors. The technique was originally developed
in celestial mechanics [6] to obtain numerically stable solutions for planetary motions.
The basic idea was in place as early as 1931, when H. Hopf [14] used a KS transformation
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in order to illustrate a Hopf’s invariant. The KS transformation for the collinear helium
was introduced in ref. [2].

Remark 36.2 Complete binary symbolic dynamics. No stable periodic orbit and no
exception to the binary symbolic dynamics of the collinear helium cycles have been found
in numerical investigations. A proof that all cycles are unstable, that they are uniquely
labeled by the binary symbolic dynamcis, and that this dynamics is complete is, however,
still missing. The conjectured Markov partition of the phase space is given by the triple
collision manifold, i.e., by those trajectories which start in or end at the singular point
r1 = r2 = 0. See also ref. [2].

Remark 36.3 Spin and particle exchange symmetry. In our presentation of collinear
helium we have completely ignored all dynamical effects due to the spin of the particles
involved, such as the electronic spin-orbit coupling. Electrons are fermions and that
determines the symmetry properties of the quantum states. The total wave function,
including the spin degrees of freedom, must be antisymmetric under the electron-electron
exchange transformation. That means that a quantum state symmetric in the position
variables must have an antisymmetric spin wave function, i.e., the spins are antiparallel
and the total spin is zero (singletstate). Antisymmetric states have symmetric spin wave
function with total spin 1 (tripletstates). The threefold degeneracy of spin 1 states is lifted
by the spin-orbit coupling.

Remark 36.4 Helium quantum numbers. The classification of the helium states in
terms of single electron quantum numbers, sketched in sect.36.5.1, prevailed until the
1960’s; a growing discrepancy between experimental results and theoretical predictions
made it necessary to refine this picture. In particular, the different Rydberg series sharing
a givenN-quantum number correspond, roughly speaking, to a quantization of the inter
electronic angleΘ, see figure36.1, and can not be described in terms of single electron
quantum numbersl1, l2. The fact that something is slightly wrong with the single electron
picture laid out in sect.36.5.1is highlighted when considering the collinear configuration
where both electrons are on thesameside of the nucleus. As both electrons again have
angular momentum equal to zero, the corresponding quantum states should also belong
to single electron quantum numbers (l1, l2) = (0, 0). However, the single electron picture
breaks down completely in the limitΘ = 0 where electron-electron interaction becomes
the dominant effect. The quantum states corresponding to this classical configuration are
distinctively different from those obtained from the collinear dynamics with electrons on
different sides of the nucleus. The Rydberg series related to theclassicalΘ = 0 dynamics
are on the outermost rigth side in eachN subspectrum in figure36.6, and contain the
energetically highest states for givenN, n quantum numbers, see also remark36.5. A
detailed account of the historical development as well as a modern interpretation of the
spectrum can be found in ref. [1].

Remark 36.5 Beyond the unstable collinear helium subspace. The semiclassical
quantization of the chaotic collinear helium subspace is discussed in refs. [7, 8, 9]. Classical
and semiclassical considerations beyond what has been discussed in sect.36.5 follow
several other directions, all outside the main of this book.

A classical study of the dynamics of collinear helium where both electrons are on
the same side of the nucleus reveals that this configuration is fully stable both in the
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collinear plane and perpendicular to it. The correspondingquantum states can be obtained
with the help of an approximate EBK-quantization which reveals helium resonances with
extremely long lifetimes (quasi - bound states in the continuum). These states form
the energetically highest Rydberg series for a given principal quantum numberN, see
figure36.6. Details can be found in refs. [10, 11].

In order to obtain the Rydberg series structure of the spectrum, i.e., the succession
of states converging to various ionization thresholds, we need to take into account the
dynamics of orbits which make large excursions along ther1 or r2 axis. In the chaotic
collinear subspace these orbits are characterized by symbol sequences of form (a0n) where
a stands for an arbitrary binary symbol sequence and 0n is a succession ofn 0’s in a row.
A summation of the form

∑∞
n=0 ta0n, wheretp are the cycle weights in (36.12), and cycle

expansion of indeed yield all Rydberg states up the various ionization thresholds, see
ref. [4]. For a comprehensive overview on spectra of two-electron atoms and semiclassical
treatments ref. [1].

Exercises

36.1. Kustaanheimo–Stiefel transformation. Check
the Kustaanheimo–Stiefel regularization for collinear
helium; derive the Hamiltonian (6.18) and the collinear
helium equations of motion (6.19).

36.2. Helium in the plane. Starting with the helium
Hamiltonian in the infinite nucleus mass approximation
mhe = ∞, and angular momentumL = 0, show that
the three body problem can be written in terms of
three independent coordinates only, the electron-nucleus
distancesr1 and r2 and the inter-electron angleΘ, see
figure6.1.

36.3. Helium trajectories. Do some trial integrations of
the collinear helium equations of motion (6.19). Due
to the energy conservation, only three of the phase
space coordinates (Q1,Q2,P1,P2) are independent.
Alternatively, you can integrate in 4 dimensions and use
the energy conservation as a check on the quality of your
integrator.

The dynamics can be visualized as a motion in the
original configuration space (r1, r2), r i ≥ 0 quadrant,
or, better still, by an appropriately chosen 2-d Poincaré
section, exercise36.4. Most trajectories will run away,
do not be surprised - the classical collinear helium is
unbound. Try to guess approximately the shortest cycle
of figure36.4.

36.4. A Poincaré section for collinear Helium. Construct
a Poincaré section of figure36.3b that reduces the
helium flow to a map. Try to delineate regions which

correspond to finite symbol sequences, i.e. initial
conditions that follow the same topological itinerary
in the figure 36.3a space for a finite number of
bounces. Such rough partition can be used to initiate
2–dimensional Newton-Raphson method searches for
helium cycles, exercise36.5.

36.5. Collinear helium cycles. The motion in the (r1, r2)
plane is topologically similar to the pinball motion in a
3-disk system, except that the motion is in the Coulomb
potential.

Just as in the 3-disk system the dynamics is simplified
if viewed in the fundamental domain, in this case the
region betweenr1 axis and ther1 = r2 diagonal. Modify
your integration routine so the trajectory bounces off the
diagonal as off a mirror. Miraculously, the symbolic
dynamics for the survivors again turns out to be binary,
with 0 symbol signifying a bounce off the r1 axis, and
1 symbol for a bounce off the diagonal. Just as in the
3-disk game of pinball, we thus know what cycles need
to be computed for the cycle expansion (36.16).

Guess some short cycles by requiring that topologically
they correspond to sequences of bounces either
returning to the samer i axis or reflecting off the
diagonal. Now either Use special symmetries of orbits
such as self-retracing to find all orbits up to length 5 by
a 1-dimensional Newton search.

36.6. Collinear helium cycle stabilities. Compute the
eigenvalues for the cycles you found in exercise36.5,
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as described in sect.36.3. You may either integrate the
reduced 2× 2 matrix using equations (36.6) together
with the generating functionl given in local coordinates
by (36.7) or integrate the full 4× 4 Jacobian matrix,
see sect.22.1. Integration in 4 dimensions should
give eigenvalues of the form (1, 1,Λp, 1/Λp); The
unit eigenvalues are due to the usual periodic orbit
invariances; displacements along the orbit as well as
perpendicular to the energy manifold are conserved; the
latter one provides a check of the accuracy of your
computation. Compare with table36.3; you should
get the actions and Lyapunov exponents right, but
topological indices and stability angles we take on faith.

36.7. Helium eigenenergies. Compute the lowest
eigenenergies of singlet and triplet states of helium by
substituting cycle data into the cycle expansion (36.16)
for the symmetric and antisymmetric zeta functions
(36.15). Probably the quickest way is to plot the
magnitude of the zeta function as function of real
energy and look for the minima. As the eigenenergies
in general have a small imaginary part, a contour plot
such as figure18.1, can yield informed guesses. Better
way would be to find the zeros by Newton method,
sect.18.2.3. How close are you to the cycle expansion
and quantum results listed in table36.2? You can find
more quantum data in ref. [3].
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Chapter 37

Diffraction distraction

(N. Whelan)

D  characteristic to scattering off wedges are incorporated
into the periodic orbit theory.

37.1 Quantum eavesdropping

As noted in chapter36, the classical mechanics of the helium atom is undefined
at the instant of a triple collision. This is a common phenomenon - there is often
some singularity or discontinuity in the classical mechanics of physical systems.
This discontinuity can even be helpful in classifying the dynamics. The points in
phase space which have a past or future at the discontinuity form manifolds which
divide the phase space and provide the symbolic dynamics. The general rule is that
quantum mechanics smoothes over these discontinuities in aprocess we interpret
as diffraction. We solve the local diffraction problem quantum mechanically and
then incorporate this into our global solution. By doing so,we reconfirm the
central leitmotif of this treatise: think locally - act globally.

While being a well-motivated physical example, the helium atom is somewhat
involved. In fact, so involved that we do not have a clue how todo it. In its
place we illustrate the concept of diffractive effects with a pinball game. There
are various classes of discontinuities which a billiard canhave. There may be a
grazing condition such that some trajectories hit a smooth surface while others
are unaffected - this leads to the creeping described in chapter34. There may be a
vertex such that trajectories to one side bounce differently from those to the other
side. There may be a point scatterer or a magnetic flux line such that we do not
know how to continue classical mechanics through the discontinuities. In what
follows, we specialize the discussion to the second example- that of vertices or
wedges. To further simplify the discussion, we consider thespecial case of a half
line which can be thought of as a wedge of angle zero.
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Figure 37.1: Scattering of a plane wave off a half line.

III

α

I

II

We start by solving the problem of the scattering of a plane wave off a half
line (see figure37.1). This is the local problem whose solution we will use to
construct a global solution of more complicated geometries. We define the vertex
to be the origin and launch a plane wave at it from an angleα. What is the total
field? This is a problem solved by Sommerfeld in 1896 and our discussion closely
follows his.

The total field consists of three parts - the incident field, the reflected field
and the diffractive field. Ignoring the third of these for the moment, we see that
the space is divided into three regions. In region I there is both an incident and a
reflected wave. In region II there is only an incident field. Inregion III there is
nothing so we call this the shadowed region. However, because of diffraction the
field does enter this region. This accounts for why you can overhear a conversation
if you are on the opposite side of a thick wall but with a door a few meters away.
Traditionally such effects have been ignored in semiclassical calculations because
they are relatively weak. However, they can be significant.

To solve this problem Sommerfeld worked by analogy with the full line case,
so let us briefly consider that much simpler problem. There weknow that the
problem can be solved by images. An incident wave of amplitude A is of the form

v(r, ψ) = Ae−ikr cosψ (37.1)

whereψ = φ − α andφ is the angular coordinate. The total field is then given by
the method of images as

vtot = v(r, φ − α) − v(r, φ + α), (37.2)

where the negative sign ensures that the boundary conditionof zero field on the
line is satisfied.

Sommerfeld then argued thatv(r, ψ) can also be given a complex integral
representation

v(r, ψ) = A
∫

C
dβ f (β, ψ)e−ikr cosβ. (37.3)

This is certainly correct if the functionf (β, ψ) has a pole of residue 1/2πi at β =
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Figure 37.2: The contour in the complexβ plane.
The pole is atβ = −ψ (marked by× in the figure)
and the integrand approaches zero in the shaded
regions as the magnitude of the imaginary part of
β approaches infinity.
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−ψ and if the contourC encloses that pole. One choice is

f (β, ψ) =
1
2π

eiβ

eiβ − e−iψ
. (37.4)

(We choose the pole to be atβ = −ψ rather thanβ = ψ for reasons discussed later.)
One valid choice for the contour is shown in figure37.2. This encloses the pole
and vanishes as|Im β| → ∞ (as denoted by the shading). The sectionsD1 andD2

are congruent because they are displaced by 2π. However, they are traversed in
an opposite sense and cancel, so our contour consists of justthe sectionsC1 and
C2. The motivation for expressing the solution in this complicated manner should
become clear soon.

What have we done? We extended the space under considerationby a factor
of two and then constructed a solution by assuming that thereis also a source
in the unphysical space. We superimpose the solutions from the two sources
and at the end only consider the solution in the physical space to be meaningful.
Furthermore, we expressed the solution as a contour integral which reflects the 2π
periodicity of the problem. The half line scattering problem follows by analogy.

Whereas for the full line the field is periodic in 2π, for the half line it is
periodic in 4π. This can be seen by the fact that the field can be expanded in a
series of the form{sin(φ/2), sin(φ), sin(3φ/2), · · ·}. As above, we extend the space
by thinking of it as two sheeted. The physical sheet is as shown in figure37.1and
the unphysical sheet is congruent to it. The sheets are gluedtogether along the half
line so that a curve in the physical space which intersects the half line is continued
in the unphysical space and vice-versa. The boundary conditions are that the total
field is zero on both faces of the half line (which are physically distinct boundary
conditions) and that asr → ∞ the field is composed solely of plane waves and
outgoing circular waves of the formg(φ) exp(ikr)/

√
kr. This last condition is a

result of Huygens’ principle.

We assume that the complete solution is also given by the method of images
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Figure 37.3: The contour used to evaluate the
diffractive field after the contribution of possible
poles has been explicitly evaluated. The curveF
is traversed twice in opposite directions and has no
net contribution.
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as

vtot = u(r, φ − α) − u(r, φ + α). (37.5)

whereu(r, ψ) is a 4π-periodic function to be determined. The second term is
interpreted as an incident field from the unphysical space and the negative sign
guarantees that the solution vanishes on both faces of the half line. Sommerfeld
then made the ansatz thatu is as given in equation (37.3) with the same contour
C1 + C2 but with the 4π periodicity accounted for by replacing equation (37.4)
with

f (β, ψ) =
1
4π

eiβ/2

eiβ/2 − e−iψ/2
. (37.6)

(We divide by 4π rather than 2π so that the residue is properly normalized.) The
integral (37.3) can be thought of as a linear superposition of an infinity of plane
waves each of which satisfies the Helmholtz equation (∇2 + k2)v = 0, and so their
combination also satisfies the Helmholtz equation. We will see that the diffracted
field is an outgoing circular wave; this being a result of choosing the pole atβ =
−ψ rather thanβ = ψ in equation (37.4). Therefore, this ansatz is a solution of
the equation and satisfies all boundary conditions and therefore constitutes a valid
solution. By uniqueness this is the only solution.

In order to further understand this solution, it is useful tomassage the contour.
Depending onφ there may or may not be a pole betweenβ = −π andβ = π. In
region I, both functionsu(r, φ ± α) have poles which correspond to the incident
and reflected waves. In region II, onlyu(r, φ − α) has a pole corresponding to the
incident wave. In region III there are no poles because of theshadow. Once we
have accounted for the geometrical waves (i.e., the poles),we extract the diffracted
waves by saddle point analysis atβ = ±π. We do this by deforming the contours
C so that they go through the saddles as shown in figure37.2.
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ContourC1 becomesE2 + F while contourC2 becomesE1 − F where the
minus sign indicates that it is traversed in a negative sense. As a result,F has no
net contribution and the contour consists of justE1 andE2.

As a result of these machinations, the curvesE are simply the curvesD of
figure37.2but with a reversed sense. Since the integrand is no longer 2π periodic,
the contributions from these curves no longer cancel. We evaluate both stationary
phase integrals to obtain

u(r, ψ) ≈ −A
eiπ/4

√
8π

sec(ψ/2)
eikr

√
kr

(37.7)

so that the total diffracted field is

vdiff = −A
eiπ/4

√
8π

(
sec

(
φ − α

2

)
− sec

(
φ + α

2

)) eikr

√
kr
. (37.8)

Note that this expression breaks down whenφ ± α = π. These angles correspond
to the borders among the three regions of figure37.1and must be handled more
carefully - we can not do a stationary phase integral in the vicinity of a pole.
However, the integral representation (37.3) and (37.6) is uniformly valid.

[exercise 37.1]

We now turn to the simple task of translating this result intothe language of
semiclassical Green’s functions. Instead of an incident plane wave, we assume a
source at pointx′ and then compute the resulting field at the receiver positionx.
If x is in region I, there is both a direct term, and a reflected term, if x is in region
II there is only a direct term and ifx is in region III there is neither. In any event
these contributions to the semiclassical Green’s functionare known since the free
space Green’s function between two pointsx2 andx1 is

Gf (x2, x1, k) = − i
4

H(+)
0 (kd) ≈ − 1

√
8πkd

exp{i(kd+ π/4)}, (37.9)

whered is the distance between the points. For a reflection, we need to multiply
by −1 and the distance is the length of the path via the reflection point. Most
interesting for us, there is also a diffractive contribution to the Green’s function.
In equation (37.8), we recognize that the coefficientA is simply the intensity at the
origin if there were no scatterer. This is therefore replaced by the Green’s function
to go from the source to the vertex which we labelxV. Furthermore, we recognize
that exp(ikr)/

√
kr is, within a proportionality constant, the semiclassical Green’s

function to go from the vertex to the receiver.

Collecting these facts, we say

Gdiff(x, x′, k) = Gf (x, xV, k)d(θ, θ′)Gf (xV, x
′, k), (37.10)

where, by comparison with equations (37.8) and (37.9), we have

d(θ, θ′) = sec

(
θ − θ′

2

)
− sec

(
θ + θ′

2

)
. (37.11)
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Hereθ′ is the angle to the source as measured from the vertex andθ is the angle
to the receiver. They were denoted asα and φ previously. Note that there is
a symmetry between the source and receiver as we expect for a time-reversal
invariant process. Also the diffraction coefficient d does not depend on which
face of the half line we use to measure the angles. As we will see, a very important
property ofGdiff is that it is a simple multiplicative combination of other semiclassical
Green’s functions.

[exercise 37.2]

We now recover our classical perspective by realizing that we can still think of
classical trajectories. In calculating the quantum Green’s function, we sum over
the contributions of various paths. These include the classical trajectories which
connect the points and also paths which connect the points via the vertex. These
have different weights as given by equations (37.9) and (37.10) but the concept of
summing over classical paths is preserved.

For completeness, we remark that there is an exact integral representation for
the Green’s function in the presence of a wedge of arbitrary opening angle [15].
It can be written as

G(x, x′, k) = g(r, r′, k, θ′ − θ) − g(r, r′, k, θ′ + θ) (37.12)

where (r, θ) and (r′, θ′) are the polar coordinates of the pointsx andx′ as measured
from the vertex and the angles are measured from either face of the wedge. The
functiong is given by

g(r, r′, k, ψ) =
i

8πν

∫

C1+C2

dβ
H+0 (k

√
r2 + r′2 − 2rr ′ cosβ)

1− exp
(
i β+ψ
ν

) (37.13)

whereν = γ/π andγ is the opening angle of the wedge. (ieγ = 2π in the case of
the half plane). The contourC1 +C2 is the same as shown in figure37.2.

The poles of this integral give contributions which can be identified with
the geometric paths connectingx and x′. The saddle points atβ = ±π give
contributions which can be identified with the diffractive path connectingx and
x′. The saddle point analysis allows us to identify the diffraction constant as

d(θ, θ′) = −
4 sinπ

ν

ν

sin θ
ν sin θ′

ν(
cosπν − cosθ+θ

′
ν

) (
cosπν − cosθ−θ

′
ν

) , (37.14)

which reduces to (37.11) whenν = 2. Note that the diffraction coefficient vanishes
identically if ν = 1/n wheren is any integer. This corresponds to wedge angles
of γ = π/n (eg. n=1 corresponds to a full line and n=2 corresponds to a right
angle). This demonstration is limited by the fact that it came from a leading
order asymptotic expansion but the result is quite general.For such wedge angles,
we can use the method of images (we will require 2n − 1 images in addition to
the actual source point) to obtain the Green’s function and there is no diffractive
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Figure 37.4: The billiard considered here. The
dynamics consists of free motion followed by specular
reflections off the faces. The top vertex induces
diffraction while the bottom one is a right angle and
induces two specular geometric reflections.
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contribution to any order. Classically this corresponds tothe fact that for such
angles, there is no discontinuity in the dynamics. Trajectories going into the vertex
can be continued out of them unambiguously. This meshes withthe discussion in
the introduction where we argued that diffractive effects are intimately linked with
classical discontinuities.

The integral representation is also useful because it allows us to consider
geometries such that the angles are near the optical boundaries or the wedge angle
is close toπ/n. For these geometries the saddle point analysis leading to (37.14)
is invalid due to the existence of a nearby pole. In that event, we require a more
sophisticated asymptotic analysis of the full integral representation.

37.2 An application

Although we introduced diffraction as a correction to the purely classical effects;
it is instructive to consider a system which can be quantizedsolely in terms
of periodic diffractive orbits. Consider the geometry shown in figure37.4 The
classical mechanics consists of free motion followed by specular reflections off
faces. The upper vertex is a source of diffraction while the lower one is a right
angle and induces no diffraction. This is an open system, there are no bound
states - only scattering resonances. However, we can still test the effectiveness
of the theory in predicting them. Formally, scattering resonances are the poles
of the scatteringS matrix and by an identity of Balian and Bloch are also poles
of the quantum Green’s function. We demonstrate this fact inchapter34 for 2-
dimensional scatterers. The poles have complex wavenumberk, as for the 3-disk
problem.

Let us first consider how diffractive orbits arise in evaluating the trace of
G which we call g(k). Specifying the trace means that we must consider all
paths which close on themselves in the configuration space while stationary phase
arguments for large wavenumberk extract those which are periodic - just as for
classical trajectories. In general,g(k) is given by the sum over all diffractive and
geometric orbits. The contribution of the simple diffractive orbit labeledγ shown
in figure37.5to g(k) is determined as follows.

We consider a pointP just a little off the path and determine the semiclassical
Green’s function to return toP via the vertex using (37.9) and (37.10). To leading
order iny the lengths of the two geometric paths connectingP andV ared± =
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Figure 37.5: The dashed line shows a simple periodic
diffractive orbitγ. Between the vertexV and a pointP
close to the orbit there are two geometric legs labeled
±. The origin of the coordinate system is chosen to be
at R. �
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(L±x)+y2/(L±x)2/2 so that the phase factorik(d++d−) equals 2ikL+iky2/(L2−x2).
The trace integral involves integrating over all pointsP and is

gγ(k) ≈ −2dγ
ei(2kL+π/2)

8πk

∫ L

0

dx
√

L2 − x2

∫ ∞

−∞
dye

(
iky2 L

L2−x2

)

. (37.15)

We introduced an overall negative sign to account for the reflection at the hard wall
and multiplied by 2 to account for the two traversal senses,VRPVandVPRV.
In the spirit of stationary phase integrals, we have neglected they dependence
everywhere except in the exponential. The diffraction constantdγ is the one
corresponding to the diffractive periodic orbit. To evaluate they integral, we use
the identity

∫ ∞

−∞
dξeiaξ2

= eiπ/4

√
π

a
, (37.16)

and thus obtain a factor which precisely cancels thex dependence in thex integral.
This leads to the rather simple result

gγ ≈ −
ilγ
2k


dγ√
8πklγ

 ei(klγ+π/4) (37.17)

wherelγ = 2L is the length of the periodic diffractive orbit. A more sophisticated
analysis of the trace integral has been done [6] using the integral representation
(37.13). It is valid in the vicinity of an optical boundary and also for wedges with
opening angles close toπ/n.

Consider a periodic diffractive orbit withnγ reflections off straight hard walls
andµγ diffractions each with a diffraction constantdγ, j . The total length of the
orbit Lγ =

∑
lγ, j is the sum of the various diffractive legs andlγ is the length of

the corresponding prime orbit. For such an orbit, (37.17) generalizes to

gγ(k) = −
ilγ
2k



µγ∏

j=1

dγ, j√
8πklγ, j


exp{i(kLγ + nγπ − 3µγπ/4)}. (37.18)

[exercise 37.3]

Each diffraction introduces a factor of 1/
√

k and multi-diffractive orbits are thereby
suppressed.
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If the orbitγ is prime thenLγ = lγ. If γ is ther ’th repeat of a prime orbitβ we
haveLγ = rlβ, nγ = rpβ andµγ = rσβ, wherelβ, pβ andσβ all refer to the prime
orbit. We can then write

gγ = gβ,r = −
ilβ
2k

trβ (37.19)

where

tβ =



σβ∏

j=1

dβ, j√
8πklβ, j


exp{i(klβ + pβπ − 3σβπ/4)}. (37.20)

It then makes sense to organize the sum over diffractive orbits as a sum over the
prime diffractive orbits and a sum over the repetitions

gdiff(k) =
∑

β

∞∑

r=1

gβ,r = −
i

2k

∑

β

lβ
tβ

1− tβ
. (37.21)

We cast this as a logarithmic derivative (17.7) by noting that
dtβ
dk = ilβtβ −

σβtβ/2k and recognizing that the first term dominates in the semiclassical limit. It
follows that

gdiff(k) ≈ 1
2k

d
dk


ln

∏

β

(1− tβ)


. (37.22)

In the case that there are only diffractive periodic orbits - as in the geometry of
figure37.4- the poles ofg(k) are the zeros of a dynamical zeta function

1/ζ(k) =
∏

β

(1− tβ). (37.23)

For geometric orbits, this function would be evaluated witha cycle expansion as
discussed in chapter18. However, here we can use the multiplicative nature of
the weightstβ to find a closed form representation of the function using a Markov
graph, as in sect.10.4.1. This multiplicative property of the weights follows from
the fact that the diffractive Green’s function (37.10) is multiplicative in segment
semiclassical Green’s functions, unlike the geometric case.

There is a reflection symmetry in the problem which means thatall resonances
can be classified as even or odd. Because of this, the dynamical zeta function
factorizes as 1/ζ = 1/ζ+ζ− (as explained in sects.19.5and19.1.1) and we determine
1/ζ+ and 1/ζ− separately using the ideas of symmetry decomposition of chapter19.

In the Markov graph shown in figure37.6, we enumerate all processes. We
start by identifying the fundamental domain as just the right half of figure37.4.
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Figure 37.6: The two-node Markov graph with all the
diffractive processes connecting the nodes.
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There are two nodes which we callA andB. To get to another node fromB, we
can diffract (always via the vertex) in one of three directions. We can diffract back
to B which we denote as process 1. We can diffract toB’s image pointB′ and then
follow this by a reflection. This process we denote as2̄ where the bar indicates
that it involves a reflection. Third, we can diffract to nodeA. Starting atA we can
also diffract to a node in three ways. We can diffract toB which we denote as 4.
We can diffract toB′ followed by a reflection which we denote as4̄. Finally, we
can diffract back toA which we denote as process 5. Each of these processes has
its own weight which we can determine from the earlier discussion. First though,
we construct the dynamical zeta functions.

The dynamical zeta functions are determined by enumeratingall closed loops
which do not intersect themselves in figure37.6. We do it first for 1/ζ+ because
that is simpler. In that case, the processes with bars are treated on an equal footing
as the others. Appealing back to sect.19.5we find

1/ζ+ = 1− t1 − t2̄ − t5 − t3t4 − t3t4̄ + t5t1 + t5t2̄ ,

= 1− (t1 + t2̄ + t5) − 2t3t4 + t5(t1 + t2̄) (37.24)

where we have used the fact thatt4 = t4̄ by symmetry. The last term has a positive
sign because it involves the product of shorter closed loops. To calculate 1/ζ−,
we note that the processes with bars have a relative negativesign due to the group
theoretic weight. Furthermore, process 5 is a boundary orbit (see sect.19.3.1) and
only affects the even resonances - the terms involvingt5 are absent from 1/ζ−. The
result is

1/ζ− = 1− t1 + t2̄ − t3t4 + t3t4̄ ,

= 1− (t1 − t2̄). (37.25)

Note that these expressions have a finite number of terms and are not in the form
[exercise 37.4]

of a curvature expansion, as for the 3-disk problem.

It now just remains to fix the weights. We use equation (37.20) but note that
each weight involves just one diffraction constant. It is then convenient to define
the quantities

u2
A =

exp{i(2kL+ 2π)}
√

16πkL
u2

B =
exp{i(2kH + π)}
√

16πkH
. (37.26)

The lengthsL andH = L/
√

2 are defined in figure37.4; we setL = 1 throughout.
Bouncing inside the right angle atA corresponds to two specular reflections so that
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Figure 37.7: The even resonances of the wedge
scatterer of figure37.4plotted in the complexk−plane,
with L = 1. The exact resonances are represented
as circles and their semiclassical approximations as
crosses.
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p = 2. We therefore explicitly include the factor exp (i2π) in (37.26) although it is
trivially equal to one. Similarly, there is one specular reflection at pointB giving
p = 1 and therefore a factor of exp (iπ). We have defineduA and uB because,
together with some diffraction constants, they can be used to construct all of the
weights. Altogether we define four diffraction coefficients: dAB is the constant
corresponding to diffracting fromB to A and is found from (37.11) with θ′ = 3π/4
andθ = π and equals 2 sec (π/8) ≈ 2.165. With analogous notation, we havedAA

anddBB = dB′B which equal 2 and 1+
√

2 respectively.di j = d ji due to the Green’s
function symmetry between source and receiver referred to earlier. Finally, there
is the diffractive phase factors = exp (−i3π/4) each time there is a diffraction.
The weights are then as follows:

t1 = sdBBu2
B t2̄ = sdB′Bu2

B t3 = t4 = t4̄ = sdABuAuB

t5 = sdAAu2
A. (37.27)

Each weight involves twou’s and oned. The u’s represent the contribution to
the weight from the paths connecting the nodes to the vertex and thed gives the
diffraction constant connecting the two paths.

The equality ofdBB anddB′B implies thatt1 = t2̄. From (37.25) this means that
there are no odd resonances because 1 can never equal 0. For the even resonances
equation (37.24) is an implicit equation fork which has zeros shown in figure37.7.

For comparison we also show the result from an exact quantum calculation.
The agreement is very good right down to the ground state - as is so often the
case with semiclassical calculations. In addition we can use our dynamical zeta
function to find arbitrarily high resonances and the resultsactually improve in that
limit. In the same limit, the exact numerical solution becomes more difficult to
find so the dynamical zeta function approximation is particularly useful in that
case.

[exercise 37.5]

In general a system will consist of both geometric and diffractive orbits. In
that case, the full dynamical zeta function is the product ofthe geometric zeta
function and the diffractive one. The diffractive weights are typically smaller by
orderO(1/

√
k) but for smallk they can be numerically competitive so that there is

a significant diffractive effect on the low-lying spectrum. It might be expected that
higher in the spectrum, the effect of diffraction is weaker due to the decreasing
weights. However, it should be pointed out that an analysis of the situation for
creeping diffraction [7] concluded that the diffraction is actuallymore important
higher in the spectrum due to the fact that an ever greater fraction of the orbits
need to be corrected for diffractive effects. The equivalent analysis has not been
done for edge diffraction but a similar conclusion can probably be expected.
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To conclude this chapter, we return to the opening paragraphand discuss the
possibility of doing such an analysis for helium. The important point which
allowed us to successfully analyze the geometry of figure37.4 is that when a
trajectory is near the vertex, we can extract its diffraction constant without reference
to the other facets of the problem. We say, therefore, that this is a “local” analysis
for the purposes of which we have “turned off” the other aspects of the problem,
namely sidesAB and AB′. By analogy, for helium, we would look for some
simpler description of the problem which applies near the three body collision.
However, there is nothing to “turn off.” The local problem is just as difficult as
the global one since they are precisely the same problem, just related by scaling.
Therefore, it is not at all clear that such an analysis is possible for helium.

Résum é

In this chapter we have discovered new types of periodic orbits contributing to the
semiclassical traces and determinants. Unlike the periodic orbits we had seen so
far, these are not true classical orbits. They are generatedby singularities of the
scattering potential. In these singular points the classical dynamics has no unique
definition, and the classical orbits hitting the singularities can be continued in
many different directions. While the classical mechanics does not know which
way to go, quantum mechanics solves the dilemma by allowing us to continue
in all possible directions. The likelihoods of different paths are given by the
quantum mechanical weights called diffraction constants. The total contribution to
a trace from such orbit is given by the product of transmission amplitudes between
singularities and diffraction constants of singularities. The weights of diffractive
periodic orbits are at least of order 1/

√
k weaker than the weights associated with

classically realizable orbits, and their contribution at large energies is therefore
negligible. Nevertheless, they can strongly influence the low lying resonances
or energy levels. In some systems, such as theN disk scattering the diffraction
effects do not only perturb semiclassical resonances, but can also create new low
energy resonances. Therefore it is always important to include the contributions of
diffractive periodic orbits when semiclassical methods are applied at low energies.

Commentary

Remark 37.1 Classical discontinuities. Various classes of discontinuities for billiard
and potential problems discussed in the literature:

• a grazing condition such that some trajectories hit a smoothsurface while others
are unaffected, refs. [1, 2, 3, 7]

• a vertex such that trajectories to one side bounce differently from those to the other
side, refs. [2, 4, 5, 8, 9].

• a point scatterer [10, 11] or a magnetic flux line [12, 13] such that we do not know
how to continue classical mechanics through the discontinuities.
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Remark 37.2 Geometrical theory of diffraction. In the above discussion we borrowed
heavily from the ideas of Keller who was interested in extending the geometrical ray
picture of optics to cases where there is a discontinuity. Hemaintained that we could
hang onto that ray-tracing picture by allowing rays to strike the vertex and then leave at
any angle with amplitude (37.8). Both he and Sommerfeld were thinking of optics and not
quantum mechanics and they did not phrase the results in terms of semiclassical Green’s
functions but the essential idea is the same.

Remark 37.3 Generalizations Consider the effect of replacing our half line by a
wedge of angleγ1 and the right angle by an arbitrary angleγ2. If γ2 > γ1 andγ2 ≥ π/2 this
is an open problem whose solution is given by equations (37.24) and (37.25) (there will
then be odd resonances) but with modified weights reflecting the changed geometry [8].
(For γ2 < π/2, more diffractive periodic orbits appear and the dynamical zeta functions
are more complicated but can be calculated with the same machinery.) Whenγ2 = γ1, the
problem in fact has bound states [21, 22]. This last case has been of interest in studying
electron transport in mesoscopic devices and in microwave waveguides. However we can
not use our formalism as it stands because the diffractive periodic orbits for this geometry
lie right on the border between illuminated and shadowed regions so that equation (37.7)
is invalid. Even the more uniform derivation of [6] fails for that particular geometry, the
problem being that the diffractive orbit actually lives on the edge of a family of geometric
orbits and this makes the analysis still more difficult.

Remark 37.4 Diffractive Green’s functions. The result (37.17) is proportional to the
length of the orbit times the semiclassical Green’s function (37.9) to go from the vertex
back to itself along the classical path. The multi-diffractive formula (37.18) is proportional
to the total length of the orbit times the product of the semiclassical Green’s functions to
go from one vertex to the next along classical paths. This result generalizes to any system
— either a pinball or a potential — which contains point singularities such that we can
define a diffraction constant as above. The contribution to the trace of the semiclassical
Green’s function coming from a diffractive orbit which hits the singularities is proportional
to the total length (or period) of the orbit times the productof semiclassical Green’s
functions in going from one singularity to the next. This result first appeared in reference
[2] and a derivation can be found in reference [9]. A similar structure also exists for
creeping [2].

Remark 37.5 Diffractive orbits for hydrogenic atoms. An analysis in terms of diffractive
orbits has been made in a different atomic physics system, the response of hydrogenic
atoms to strong magnetic fields [23]. In these systems, a single electron is highly excited
and takes long traversals far from the nucleus. Upon returning to a hydrogen nucleus, it is
re-ejected with the reversed momentum as discussed in chapter36. However, if the atom
is not hydrogen but sodium or some other atom with one valenceelectron, the returning
electron feels the charge distribution of the core electrons and not just the charge of the
nucleus. This so-called quantum defect induces scatteringin addition to the classical
re-ejection present in the hydrogen atom. (In this case the local analysis consists of
neglecting the magnetic field when the trajectory is near thenucleus.) This is formally
similar to the vertex which causes both specular reflection and diffraction. There is then
additional structure in the Fourier transform of the quantum spectrum corresponding to
the induced diffractive orbits, and this has been observed experimentally [24].
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Exercises

37.1. Stationary phase integral. Evaluate the two
stationary phase integrals corresponding to contoursE1

andE2 of figure37.3and thereby verify (37.7).

(N. Whelan)

37.2. Scattering from a small disk Imagine that instead
of a wedge, we have a disk whose radiusa is much
smaller than the typical wavelengths we are considering.
In that limit, solve the quantum scattering problem - find
the scattered wave which result from an incident plane
wave. You can do this by the method of partial waves -
the analogous three dimensional problem is discussed in
most quantum textbooks. You should find that only the
m = 0 partial wave contributes for smalla. Following
the discussion above, show that the diffraction constant
is

d =
2π

log
(

2
ka

)
− γe + i π2

(37.28)

whereγe = 0.577· · · is Euler’s constant. Note that in
this limit d depends weakly onk but not on the scattering
angle.

(N. Whelan)

37.3. Several diffractive legs. Derive equation (37.18). The
calculation involves considering slight variations of the
diffractive orbit as in the simple case discussed above.
Here it is more complicated because there are more
diffractive arcs - however you should convince yourself

that a slight variation of the diffractive orbit only affects
one leg at a time.

(N. Whelan)

37.4. Unsymmetrized dynamical zeta function. Assume
you know nothing about symmetry decomposition.
Construct the three node Markov diagram for figure37.1
by consideringA, B and B′ to be physically distinct.
Write down the corresponding dynamical zeta function
and check explicitly that forB = B′ it factorizes into the
product of the the even and odd dynamical zeta func-
tions. Why is there no termt2̄ in the full dynamical zeta
function?

(N. Whelan)

37.5. Three point scatterers.

Consider the limiting case of the three disk game of
pinball of figure 1.1 where the disks are very much
smaller than their spacingR. Use the results of
exercise37.2 to construct the desymmetrized dynam-
ical zeta functions, as in sect.19.6. You should find
1/ζA1 = 1− 2t wheret = dei(kR−3π/4)/

√
8πkR. Compare

this formula with that from chapter10. By assuming
that the real part ofk is much greater than the imaginary
part show that the positions of the resonances areknR=
αn−iβn whereαn = 2πn+3π/4,βn = log

(√
2παn/d

)
and

n is a non-negative integer. (See also reference [11].)

(N. Whelan)
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Epilogue

Nowadays, whatever the truth of the matter may be (and
we will probably never know), the simplest solution is
no longer emotionally satisfying. Everything we know
about the world militates against it. The concepts of
indeterminacy and chaos have filtered down to us from the
higher sciences to confirm our nagging suspicions.

—L. Sante, “Review of ‘American Tabloid’ by James
Ellroy,” New York Review of Books(May 11, 1995)

A  on a strange attractor can be approximated by shadowing longorbits
by sequences of nearby shorter periodic orbits. This notionhas here been
made precise by approximating orbits by prime cycles, and evaluating

associated curvatures. A curvature measures the deviationof a long cycle from its
approximation by shorter cycles; the smoothness of the dynamical system implies
exponential fall-off for (almost) all curvatures. We propose that the theoretical and
experimental non–wandering sets be expressed in terms of the symbol sequences
of short cycles (a topological characterization of the spatial layout of the non–
wandering set) and their eigenvalues (metric structure)

Cycles as the skeleton of chaos

We wind down this all-too-long treatise by asking: why cycle?

We tend to think of a dynamical system as a smooth system whoseevolution
can be followed by integrating a set of differential equations. Traditionally one
used integrable motions as zeroth-order approximations tophysical systems, and
accounted for weak nonlinearities perturbatively. However, when the evolution
is actually followed through to asymptotic times, one discovers that the strongly
nonlinear systems show an amazingly rich structure which isnot at all apparent
in their formulation in terms of differential equations. In particular, the periodic
orbits are important because they form theskeletononto which all trajectories
trapped for long times cling. This was already appreciated century ago by H. Poincaré,
who, describing inLes méthodes nouvelles de la méchanique célestehis discovery
of homoclinic tangles, mused that “the complexity of this figure will be striking,
and I shall not even try to draw it.” Today such drawings are cheap and plentiful;
but Poincaré went a step further and, noting that hidden in this apparent chaos is
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a rigid skeleton, a tree ofcycles(periodic orbits) of increasing lengths and self-
similar structure, suggested that the cycles should be the key to chaotic dynamics.

The zeroth-order approximations to harshly chaotic dynamics are very different
from those for the nearly integrable systems: a good starting approximation here
is the stretching and kneading of a baker’s map, rather than the winding of a
harmonic oscillator.

For low dimensional deterministic dynamical systems description in terms of
cycles has many virtues:

1. cycle symbol sequences aretopological invariants: they give the spatial
layout of a non–wandering set

2. cycle eigenvalues aremetric invariants: they give the scale of each piece of
a non–wandering set

3. cycles aredenseon the asymptotic non–wandering set

4. cycles are orderedhierarchically: short cycles give good approximations
to a non–wandering set, longer cycles only refinements. Errors due to
neglecting long cycles can be bounded, and typically fall off exponentially
or super-exponentially with the cutoff cycle length

5. cycles arestructurally robust: for smooth flows eigenvalues of short cycles
vary slowly with smooth parameter changes

6. asymptotic averages (such as correlations, escape rates, quantum mechanical
eigenstates and other “thermodynamic” averages) can be efficiently computed
from short cycles by means ofcycle expansions

Points 1, 2: That the cycle topology and eigenvalues are invariant properties
of dynamical systems follows from elementary considerations. If the same dynamics
is given by a mapf in one set of coordinates, and a mapg in the next, thenf
andg (or any other good representation) are related by a reparametrization and
a coordinate transformationf = h−1 ◦ g ◦ h. As both f and g are arbitrary
representations of the dynamical system, the explicit formof the conjugacyh is of
no interest, only the properties invariant under any transformationh are of general
import. The most obvious invariant properties are topological; a fixed point must
be a fixed point in any representation, a trajectory which exactly returns to the
initial point (a cycle) must do so in any representation. Furthermore, a good
representation should not mutilate the data;h must be a smooth transformation
which maps nearby cycle points off into nearby cycle points ofg. This smoothness
guarantees that the cycles are not only topological invariants, but that their linearized
neighborhoods are also metrically invariant. In particular, the cycle eigenvalues
(eigenvalues of the fundamental matrixsd fn(x)/dx of periodic orbitsf n(x) = x)
are invariant.

Point 5: An important virtue of cycles is theirstructural robustness. Many
quantities customarily associated with dynamical systemsdepend on the notion
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of “structural stability,” i.e., robustness of non–wandering set to small parameter
variations.

Still, the sufficiently short unstable cycles are structurally robust in the sense
that they are only slightly distorted by such parameter changes, and averages
computed using them as a skeleton are insensitive to small deformations of the
non–wandering set. In contrast, lack of structural stability wreaks havoc with
long time averages such as Lyapunov exponents, for which there is no guarantee
that they converge to the correct asymptotic value in any finite time numerical
computation.

The main recent theoretical advance ispoint 4: we now know how to control
the errors due to neglecting longer cycles. As we seen above,even though the
number of invariants is infinite (unlike, for example, the number of Casimir invariants
for a compact Lie group) the dynamics can be well approximated to any finite
accuracy by a small finite set of invariants. The origin of this convergence is
geometrical, as we shall see in appendixI.1.2, and for smooth flows the convergence
of cycle expansions can even be super-exponential.

The cycle expansions such as (18.7) outperform the pedestrian methods such
as extrapolations from the finite cover sums (20.2) for a number of reasons. The
cycle expansion is a better averaging procedure than the naive box counting algorithms
because the strange attractor is here pieced together in a topologically invariant
way from neighborhoods (“space average”) rather than explored by a long ergodic
trajectory (“time average”). The cycle expansion is co-ordinate and reparametrization
invariant - a finitenth level sum (20.2) is not. Cycles are of finite period but infinite
duration, so the cycle eigenvalues are already evaluated inthe n → ∞ limit, but
for the sum (20.2) the limit has to be estimated by numerical extrapolations.And,
crucially, the higher terms in the cycle expansion (18.7) are deviations of longer
prime cycles from their approximations by shorter cycles. Such combinations
vanish exactly in piecewise linear approximations and falloff exponentially for
smooth dynamical flows.

In the above we have reviewed the general properties of the cycle expansions;
those have been applied to a series of examples of low-dimensional chaos: 1-
d strange attractors, the period-doubling repeller, the H´enon-type maps and the
mode locking intervals for circle maps. The cycle expansions have also been
applied to the irrational windings set of critical circle maps, to the Hamiltonian
period-doubling repeller, to a Hamiltonian three-disk game of pinball, to the three-
disk quantum scattering resonances and to the extraction ofcorrelation exponents,
Feasibility of analysis of experimental non–wandering setin terms of cycles is
discussed in ref. [1].

Homework assignment

“Lo! thy dread empire Chaos is restor’d, Light dies before
thy uncreating word; Thy hand, great Anarch, lets the
curtain fall, And universal darkness buries all.”

—Alexander Pope,The Dunciad
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We conclude cautiously with a homework assignment posed May22, 1990
(the original due date was May 22, 2000, but alas...):

1. Topology Develop optimal sequences (“continued fraction approximants”)
of finite subshift approximations to generic dynamical systems. Apply to
(a) the Hénon map, (b) the Lorenz flow and (c) the Hamiltonianstandard
map.

2. Non-hyperbolicity Incorporate power–law (marginal stability orbits,“intermittency”)
corrections into cycle expansions. Apply to long-time tails in the Hamiltonian
diffusion problem.

3. PhenomenologyCarry through a convincing analysis of a genuine experimentally
extracted data set in terms of periodic orbits.

4. Invariants Prove that the scaling functions, or the cycles, or the spectrum
of a transfer operator are the maximal set of invariants of an(physically
interesting) dynamically generated non–wandering set.

5. Field theory Develop a periodic orbit theory of systems with many unstable
degrees of freedom. Apply to (a) coupled lattices, (b) cellular automata, (c)
neural networks.

6. Tunneling Add complex time orbits to quantum mechanical cycle expansions
(WKB theory for chaotic systems).

7. Unitarity Evaluate corrections to the Gutzwiller semiclassical periodic orbit
sums. (a) Show that the zeros (energy eigenvalues) of the appropriate Selberg
products are real. (b) Find physically realistic systems for which the “semiclassical”
periodic orbit expansions yield the exact quantization.

8. Atomic spectraCompute the helium spectrum from periodic orbit expansions
(already accomplished by Wintgen and Tanner!).

9. SymmetriesInclude fermions, gauge fields into the periodic orbit theory.

10. Quantum field theory Develop quantum theory of systems with infinitely
many classically unstable degrees of freedom. Apply to (a) quark confinement
(b) early universe (c) the brain.

Conclusion

Good-bye. I am leaving because I am bored.
—George Saunders’ dying words

Nadie puede escribir un libro. Para Que un libro sea
verdaderamente, Se requieren la aurora y el poniente
Siglos, armas y el mar que une y separa.

—Jorge Luis Borges El Hacedor,Ariosto y los arabes

The buttler did it.
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Rössler

cycles,176
equilibria,56, 84
flow, 42, 45, 80, 84, 137, 233

Roux
Henri,57, 133

Ruelle, D.,144
Runge-Kutta integration,83

saddle-node bifurcation,43
sawtooth map,115
section

Poincaré,41, 107
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