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Abstract. The dynamics of an extended, spatiotemporally chaotic system might

appear extremely complex. Nevertheless, the local dynamics, observed through a finite

spatiotemporal window, can often be thought of as a visitation sequence of a finite

repertoire of finite patterns. To make statistical predictions about the system, one

needs to know how often a given pattern occurs. Here we address this fundamental

question within a spatiotemporal cat, a 1-dimensional spatial lattice of coupled cat

maps evolving in time. In spatiotemporal cat, any spatiotemporal state is labeled by a

unique 2-dimensional lattice of symbols from a finite alphabet, with the lattice states

and their symbolic representation related linearly (hence “linear encoding”). We show

that the state of the system over a finite spatiotemporal domain can be described with

exponentially increasing precision by a finite pattern of symbols, and we provide a

systematic, lattice Green’s function methodology to calculate the frequency (i.e., the

measure) of such states.
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1. Introduction

While the technical novelty of this paper is in working out details of the spatiotemporal

cat, an elegant, but very special model of many-particle dynamics (or discretization of

a classical d-dimensional field theory), the vision that motivates it is much broader.

We address here the long standing problem of how to describe, by means of discrete

symbolic dynamics, the spatiotemporal chaos (or turbulence) in spatially extended,

strongly nonlinear field theories.
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One way to capture the essential features of turbulent motions of a physical

flow is offered by coupled map lattice models, in which the spacetime is coarsely

discretized, with the dynamics of domains that capture important small-scale spatial

structures modeled by discrete time maps (Poincaré sections of a single “particle”

dynamics) attached to lattice sites, and the coupling to neighboring sites consistent

with the translational and reflection symmetries of the problem. Here we shall

follow this path by investigating the Gutkin and Osipov [29] coupled cat maps lattice

(“spatiotemporal cat” for short, in what follows), built from the Thom-Anosov-Arnol’d-

Sinai cat maps (modeling the Hamiltonian dynamics of individual “particles”) at sites

of a 1-dimensional spatial lattice, linearly coupled to their nearest neighbors.

The key insight (which applies to coupled-map lattices in general, and PDEs

modeled by them, not only the system considered here) is that a 2-dimensional

spatiotemporal pattern is best described by the corresponding 2-dimensional

spatiotemporal symbol lattice rather than by a one-dimensional temporal symbol

sequence, as one usually does when describing a finite coupled “N -particle” system.

The remarkable feature of the spatiotemporal cat is that its every solution is uniquely

encoded by a linear transformation to the corresponding finite alphabet 2-dimensional

symbol lattice, a spatiotemporal generalization of the linear code for temporal evolution

of a cat map, introduced in the beautiful 1987 paper by Percival and Vivaldi [40].

Within the spatiotemporal cat, a window into system dynamics is provided by a

finite block of symbols, and the central question is to understand which symbol blocks

are admissible, and what is the likelihood of a given block’s occurrence. It was already

noted in [29] that two spatiotemporal orbits that share the same sub-block shadow each

other exponentially well within the corresponding spatiotemporal window. This is the

key property of hyperbolic spatiotemporal dynamics that we explore in detail in this

paper. The linearity of the spatiotemporal cat enables us to go far analytically; lattice

Green’s function methods enable us to compute explicitly the measures of a large set of

spatiotemporally finite blocks, and give an algorithm for exact computation of the rest

(which is computationally feasible for small blocks).

We start by formulating our “spatiotemporal cat” and stating the main results of

the paper.

2. Model and overview of the main results

Spatiotemporal cat

Consider a linear, phase space (area) preserving map of a 2-torus T2 = R2/Z2 onto itself(
xt+1

pt+1

)
= A

(
xt
pt

)
mod 1 , A =

(
s− 1 1

s− 2 1

)
, (1)

where both xt and pt belong to the unit interval. For integer s = trA > 2 the map

is referred to as a cat map [5]. It is a fully chaotic Hamiltonian dynamical system,
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which, rewritten as a 2-step difference equation in (xt−1, xt) takes a particularly simple

form [40]

xt+1 − s xt + xt−1 = −mt , (2)

with the unique integer “winding number” mt at every time step t ensuring that xt+1

lands in the given covering partition of the unit torus. While the dynamics is linear,

the nonlinearity comes through the (mod 1) operation, encoded in mt ∈ A, where A is

finite alphabet of possible values for mt.

The cat map is generalized to the spatiotemporal cat map by considering a 1-

dimensional spatial lattice, with field xn,t at site n. If each site couples only to its

nearest neighbors xn±1,t, and if we require (1) invariance under spatial translations, (2)

invariance under spatial reflections, and (3) invariance under the space-time exchange,

we arrive at the 2-dimensional Euclidean coupled cat map lattice:

xn,t+1 + xn,t−1 − 2s xn,t + xn+1,t + xn−1,t = −mn,t . (3)

The temporal cat map (2), and the spatiotemporal cat (3) can be brought into uniform

notation by converting the spatiotemporal differences to discrete derivatives. This yields

the discrete screened Poisson equation [21, 31] for the 2-dimensional spatiotemporal cat

(−� + 2(s− 2))xz = mz , xz ∈ T1 , mz ∈ A , z ∈ Z2 ,

A = {−3,−2, · · · , 2s− 2, 2s− 1} , (4)

where the Euclidean spacetime Laplacian is given by

�xt ≡ xt+1 − 2xt + xt−1 (5)

�xn,t ≡ xn,t+1 + xn+1,t − 4xn,t + xn,t−1 + xn−1,t (6)

in d = 1 and 2 dimensions, respectively, As in the d = 1 case (2), the alphabet A
ranges over all “winding number” mn,t values needed to ensure that the field xn,t on

every lattice site is confined to the mod 1 interval [0, 1). The spatiotemporal cat is

smooth and fully hyperbolic for integer s > 2.

The key insight is that 2-dimensional spatiotemporal lattice of integers {mz} =

{mz, z ∈ Z2} is the natural encoding of a 2-dimensional spatiotemporal state. As the

relation (4) between the lattice state {xz} = {xz, z ∈ Z2} and its encoding {mz} is

linear, we refer to mz as the “linear code” following [40], both for the cat map (2) in

one dimension, and for the spatiotemporal cat (4) in two dimensions. Given a set of

{mz}, the linearity of (4) enables us to determine the corresponding lattice state {xz}
by Green’s function methods.

This paper builds explicit 2-dimensional spatiotemporal cat symbolic dynamics

using winding numbers mz and Green’s functions with Dirichlet boundary conditions.

The companion paper [18] formulates the periodic orbit theory for d-dimensional

spatiotemporal cat using Green’s functions with periodic boundary conditions.
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Statement of the problem

As spatiotemporal cat (4) is a Hamiltonian system, it possesses the natural measure µ

(see Appendix B) invariant under space and time translations. Let X = {xz ∈ T1, z ∈
Z2} be a spatiotemporally infinite solution of d = 2 spatiotemporal cat, generated by

initial conditions generic with respect to µ in the fully hyperbolic regime s > 2. By

the linear relation between X and M, symbolic representation of X is given by a unique

block M = {mz ∈ A , z ∈ Z2} . Assuming now that only partial information is available,

over a finite lattice domain R ⊂ Z2, we would like to know the probability that M has

prescribed set of symbols MR over R. Slightly rephrased, the central question studied

in this paper are the relative frequencies f(MR) of symbol blocks within the symbolic

representation of a generic spatiotemporal pattern:

Q1. How often does a prescribed finite symbol block MR occur in the symbolic

representation M of a generic state X?

Our second question is about information stored in a finite symbol block MR. For

the standard cat map symbolic dynamics based on a finite Markov partition of the cat

map phase space, a 1-dimensional block of symbols defines the corresponding trajectory

up to an error which decreases exponentially with the length of the symbol block [10,

12, 44]. We would like to know whether the corresponding result holds for 2-dimensional

linear encoding:

Q2. To what precision does the symbol block MR define the local spatiotemporal

pattern XR = {xz ∈ T1, z ∈ R} ?

Main results

Let R = {(n, t) |n = 1, . . . , `1, t = 1, . . . `2} be a rectangular domain of the lattice

(an [`1×`2] spatiotemporal window), and let MR be a [`1×`2] block of symbols from

the alphabet A. Given a generic solution X of the equation (3) and its symbolic

representation M = {mnt | (n, t) ∈ Z2} the space (resp. time) shift action on it is

given by

S ·M = {mn+1,t | (n, t) ∈ Z2} , T ·M = {mn,t+1 | (n, t) ∈ Z2} . (7)

How often MR occurs within M is then defined by the double limit

f(MR) = lim
T,L→∞

1

LT

T∑
t=1

L∑
n=1

χ(Sn T t ·M |MR), (8)

where χ(Sn T t · M |MR) is the characteristic function that equals to 1 if symbols of

Sn T t ·M coincide with MR over R, and equals to 0 otherwise.

The d = 2 spatiotemporal cat is fully hyperbolic for s > 2, see (B.3). On the basis

of our numerical simulations, we conjecture that the natural measure µ, invariant under
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spatial and temporal shifts S, T , is uniquely ergodic, with the initial conditions for X

chosen to be generic with respect to µ. In this case the limiting frequencies f(MR) for

generic solutions X of (3) are equal to the measures µ(MR) of the cylinder sets MR,

defined as sets of spatiotemporal states X with the same MR block over the domain R.

For this reason, we shall refer to the frequencies estimated by (8) as measures of MR,

and denote them by µ(MR) in what follows.

Answer to Q1. The spatiotemporal cat admits a natural 2-dimensional linear encoding

with a finite alphabet. We find it helpful to split the alphabet into two parts,

A = A0 ∪ A1 ,

where the number of symbols in the exterior alphabet A1 is fixed, and the interior

alphabet A0 is a full shift, with the number of symbols in A0 growing linearly with s.

The following holds:

• Any block of symbols from A0 is admissible.

For any general spatiotemporal ergodic system, relative frequencies f(MR) defined

by (8) provide a numerical way to estimate measures µ(MR), by generating solutions on

finite [L×T] domains, compatible everywhere locally with the defining equation (4), and

counting the number of times MR occurs within each such solution. However, due to the

linear relation between a spatiotemporal state X and its symbolic encoding M, for the

spatiotemporal cat one can do much better, and compute measures µ(MR) analytically

and explicitly:

• Measures of blocks MR are given by rational numbers and factorize into products

of constant and geometrical parts:

µ(MR) = dR|P(MR)| .
The constant dR depends only on domain R, independent of the symbolic content

MR. The factor |P(MR)| admits geometrical interpretation as the volume of

polytope P(MR) in the |∂R|-dimensional Euclidean space, where |∂R| is the number

of boundary points of the domain R. The polytope P(MR) is determined by the

content of MR. For small |R|, µ(MR) can be evaluated analytically, see sections 3.5

and 4.3.

• If MR is composed only of symbols from A0, then |P(MR)| = 1 and µ(MR) = dR.

Answer to Q2. The block of symbols MR defines the spatiotemporal state X over R
up to an error which decreases exponentially with the size of the domain R:

• The difference between any solution xz0 of (4) for z0 ∈ R and the “average

coordinate” x̄(MR), determined solely by MR, is bounded by

|xz0 − x̄(MR)| ≤ Ce−ν`(z0,∂R) , ν > 0, (9)

where `(z0, ∂R) is the minimal Euclidean distance between z0 and the boundary

∂R. For explicit formulas for x̄(MR) in terms of the block of symbols MR see (24)

and (40).
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Two remarks are in order. First, all of the above results hold also for the d = 1 temporal

cat map if s > 2, see section 3. In this case, the domain R is just an interval in Z with

two endpoints, |∂R| = 2. Second, it is plausible that our results hold for spatiotemporal

cat (4) on a lattice of dimension d, provided that s > 2, i.e., the system is in the

chaotic regime, but, in order to streamline the exposition, we discuss here only the 1-

and 2-dimensional cases.

In principle, having answers to Q1 and Q2 allows for a calculation of the expectation

values of observables by means of symbolic dynamics. As MR defines positions of points

in the center z0 of domain R with exponential precision, any observable A(z) can be

viewed as a function of MR, A(z0) ≈ A (MR), where the quality of the approximation

increases exponentially with the size of R. In the limit of large domain size |R|, one

approximates the sum over states of the lattice with exponentially increasing accuracy,

and has for the average of A

〈A〉 = lim
|R|→∞

∑
MR

µ(MR)A (MR) , (10)

where the sum is over all admissible blocks of symbols within R. In particular, for

A = − 1
|R| log µ(MR) the above expression defines the spatiotemporal metric entropy of

the system.

The paper is organized as follows: Section 3 is devoted to the cat map linear

encoding, introduced in section 3.1. Its basic properties and the properties of the

corresponding phase space partitions are established in section 3.2 and section 3.3. In

section 3.4 we investigate the measures of admissible finite symbol blocks, and show their

factorization into a geometric part, and a constant part which depends only on the length

of the block. We evaluate explicitly the geometrical part of measures for short blocks of

symbols in section 3.5. The key conceptual ingredient that underpins this calculation,

hidden in much algebra in what follows, are the transformations (31) and (42) from the

Hamiltonian initial state formulation to the Lagrangian end points formulation. This

replaces the exponentially unstable Hamiltonian time evolution problem by a robustly

convergent Lagrangian boundary value problem.

In section 4, we extend these results to the spatiotemporal cat. We show in

section 4.1 that the system admits a natural 2-dimensional linear encoding with a

finite alphabet, and then compute the measures of finite spatiotemporal symbol blocks

in section 4.2. In section 5, we use these results to construct sets of spatiotemporal

invariant 2-tori that fully shadow each other. Implementing this program requires

extensive use of lattice Green’s functions, whose properties are derived in Appendix

A. The Hamiltonian formulation of the spatiotemporal cat map and the metric entropy

estimation are provided in Appendix B and Appendix C, respectively. The results are

summarized and some open questions discussed in the section 6.
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3. Cat map

Before turning to the “many-particle” case, it is instructive to motivate our formulation

of the spatiotemporal cat by investigating the cat map (i.e., a “spatial lattice” with only

one site). We start by a brief review of the physical origin of cat maps.

Phase space area-preserving maps that describe kicked rotors subject to a discrete

time sequence of angle-dependent impulses F (xt), t ∈ Z,

xt+1 = xt + pt+1 mod 1, (11)

pt+1 = pt + F (xt) , (12)

play important role in the theory of chaos in Hamiltonian systems, from the Taylor,

Chirikov and Greene standard map [14, 36], to the cat maps that we study here.

Here 2πx is the angle of the rotor, p is the momentum conjugate to the configuration

coordinate x, F (x) = F (x + 1) is periodic with period 1, and the time step has been

set to ∆t = 1. Eq. (11) says that in one time step ∆t the configuration trajectory

starting at xt reaches xt+1 = xt + pt+1∆t, and (12) says that at each kick the angular

momentum pt is accelerated to pt+1 by the force pulse F (xt)∆t. As the values of x

differing by integers are identified, and the momentum p is unbounded, the phase space

is a cylinder. However, to analyse the dynamics, one can just as well compactify the

phase space by folding the momentum dynamics onto a circle, by adding “mod 1” to

(12). This reduces the dynamics to a toral automorphism acting on a [0, 1) × [0, 1)

square of unit area, with the opposite sides identified.

The simplest example of (11,12) is a rotor subject to a force F (x) = Kx linear in

the displacement x. The mod 1 added to (12) makes this a discontinuous “sawtooth,”

unless K is an integer. In that case the map (11,12) is a continuous automorphism of

the torus, or a “cat map” [5], a linear symplectic map on the unit 2-torus phase space,

(x 7→ Ax |x ∈ T2 = R2/Z2 ; A ∈ SL(2,Z)) , with coordinates x = (xt, pt) interpreted as

the angular position variable and its conjugate momentum at time instant t. Explicitly:(
xt+1

pt+1

)
= A

(
xt
pt

)
mod 1 , A =

(
a c

d b

)
, (13)

where a, b, c, d are any integers that satisfy detA = 1, so that the map is symplectic

(area preserving).

A cat map is a fully chaotic Hamiltonian dynamical system if its stability multipliers

(Λ , Λ−1), where

Λ = (s+
√

(s− 2)(s+ 2))/2 , Λ = eλ , (14)

are real, with a positive Lyapunov exponent λ > 0. The eigenvalues are functions of a

single parameter s = trA = Λ + Λ−1, and the map is chaotic if and only if |s| > 2. We

shall refer here to the least unstable of the cat maps (13), with s = 3, as the “Arnol’d”,

or “Arnol’d-Sinai cat map” [5, 20], and to general maps with integer s ≥ 3 as “cat

maps”. Cat maps have been extensively analyzed as particularly simple examples of

chaotic Hamiltonian dynamics. They exhibit ergodicity, mixing, exponential sensitivity
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to variation of the initial conditions (the positivity of the Lyapunov exponent), and the

positivity of the Kolmogorov-Sinai entropy [48]. Detailed understanding of dynamics

of cat maps is important also for the much richer world of nonlinear hyperbolic toral

automorphisms, see [16, 24, 47] for examples.

3.1. Linear encoding

Eqs. (11,12) are the discrete-time Hamilton’s equations, which induce temporal evolution

on the 2-torus (xt, pt) phase space. For the problem at hand, it pays to go from the

Hamiltonian (xt, pt) phase space formulation to the Newtonian (xt−1, xt) state space

formulation [40], with pt replaced by pt = (xt − xt−1)/∆t . Eq. (12) then takes the 2-

step difference form (the discrete time Laplacian � formula for the second order time

derivative d2/dt2, with the time step set to ∆t = 1),

�xt ≡ xt+1 − 2xt + xt−1 = F (xt) mod 1 , (15)

i.e., Newton’s Second Law: “acceleration equals force.” For a cat map, with force F (x)

linear in the displacement x, the Newton’s equation of motion (15) takes the form

(� + 2− s)xt = −mt , (16)

with mod 1 enforced by mt’s, integers from the alphabet

A = {1, 0, . . . s−1} , (17)

necessary to keep xt for all times t within the unit interval [0, 1). For the sake of

notational convenience, we have introduced here the symbol mt to denote mt with the

negative sign, i.e., ‘1’ stands for the symbol ‘−1’.

3.2. Percival-Vivaldi linear encoding partition of the state space

To interpret mt’s, consider the action of the Newtonian cat map (16) on a 2-dimensional

state space point (xt−1, xt),(
xt
xt+1

)
= A′

(
xt−1

xt

)
−

(
0

mt

)
, A′ =

(
0 1

−1 s

)
. (18)

In Percival and Vivaldi [40], this representation of cat map is referred to as “the two-

configuration representation”. As illustrated in figure 1, in one time step the area

preserving map A′ stretches the unit square into a parallelogram, and a point (x0, x1)

within the initial unit square in general lands outside it, in another unit square mt steps

away. As they shepherd such stray points back into the unit torus, the integers mt

can be interpreted as “winding numbers” [34], or “stabilising impulses” [40]. The mt

translations reshuffle the state space, thus partitioning it into |A| regionsMm , m ∈ A.

As illustrated by figure 1, there are the two kinds of pieces within the state space

partition: the parallelograms M0, . . . ,Ms−2, and the two exterior half sized triangles
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Figure 1. (Color online) The Newtonian s = 3 Arnol’d cat map matrix A′ (18) keeps

the origin (0, 0) fixed, but otherwise stretches the unit square into a parallelogram.

Translations by m0 from alphabet A = {1, 0, 1, 2} = {red, green, blue, yellow} bring

stray regions back onto the torus.

M1,Ms−1, labeled by the (s−1)-letter interior alphabet A0, and the two-letter exterior

alphabet A1, respectively. For integer s ≥ 2 these alphabets are

A = A0 ∪ A1 , A0 = {0, · · · , s−2} , A1 = {1, s−1} . (19)

Refinements of these partitions work very much like they do for the baker’s map and

the Smale horseshoe, by peering further into the future and the past, and constructing

the intersections of the future and past partitions [17]. The “`-th level” of partition

M = ∪Mb is labeled by the set of all admissible blocks b of length `, composed of the

past `− t− 1 steps, and future t steps, with ‘decimal point’ denoting the present,

b = mt−`+1 · · ·m−1m0.m1m2 · · ·mt .

For the cat map symbol blocks MR is 1-dimensional, and a domain R consists of `

consecutive temporal lattice sites, so in this section we shall denote MR by a block b of

length `, and refer to the infinite length symbol block as ‘itinerary’.

While an admissible infinite itinerary defines a unique point in the state space, a

finite block b determines a cylinder set Mb, the set of all points in (x0, x1) plane having

itineraries of the form

· · · at−`−1at−`mt−`+1 · · ·m−1m0.m1m2 · · ·mtat+1at+2 · · · ,

with fixed mi’s, and arbitrary ai ∈ A. How these blocks partition the state space is best

understood by inspecting figure 2.
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Figure 2. (Color online) Arnol’d cat map (x0, x1) state space partition into (a) 4

regions labeled by m0. , obtained from (x−1, x0) state space by one iteration (the same

as figure 1). (b) 14 regions labeled by past block m−1m0., obtained from (x−2, x−1)

state space by two iterations. (c) 44 regions, past block m−2m−1m0. (d) 4 regions

labeled by .m1 , obtained from (x2, x1) state space by one backward iteration. (e)

14 regions labeled by future block .m1m2 , obtained from (x3, x2) state space by two

backward iterations. (f) 44 regions, future block m3m2m1. Each color has the same

total area (1/6 for mt = 1, 2, and 1/3 for mt = 0, 1). State space partition into (g) 14

regions labeled by block b = m0.m1, the intersection of one past (a) and one future

iteration (d). (h) block b = m−1m0.m1, the intersection of two past (b) and one future

iteration (d). (i) block b = m−1m0.m1m2, the intersection of two past (b) and two

future iterations (e). Note that while some regions involving external alphabet (such

as 22 in (g)) are pruned, the interior alphabet labels a horseshoe, indicated by the

shaded regions. The first three covers of the horseshoe have areas (g) 4 × 1/8, (h)

8× 1/21, and (i) 16× 1/55. All boundaries are straight lines with rational slopes.
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1 0 1 2

1 0 0.0208 0.0625 0.0833

0 0.0208 0.1250 0.1250 0.0625

1 0.0625 0.1250 0.1250 0.0208

2 0.0833 0.0625 0.0208 0

1 0 1 2

1 0 1/48 1/16 1/12

0 1/48 1/8 1/8 1/16

1 1/16 1/8 1/8 1/48

2 1 /12 1/16 1/48 0

Table 1. The measures µ(mimi+1) of the 16 distinct 2-symbol blocks mimi+1 for the

s = 3 Arnol’d cat map, (left) obtained from a long-time (∼ 109 iterations) numerical

simulation rounded off to four significant digits; (right) the exact values given by (34),

or read off as sub-partition areas in figure 2 (g). Column: mi. Row: mi+1. See

figure 2 for a geometric picture of why blocks 11 and 22 are pruned.

3.3. From itineraries to orbits and back

The power of the linear encoding for a cat map [40] is that one can use integers mt

to encode its state space trajectories. Since the connection (16) between sequences of

mt and xt is linear, it is straightforward to go back and forth between state space and

symbolic representation of an orbit. In particular, if {mt} is an admissible itinerary, the

corresponding state space point at the t time instant is given by the inverse of (16),

xt =
∞∑

t′=−∞

gtt′mt′ , gtt′ =

(
1

−�− 2 + s

)
tt′
. (20)

The matrix gtt′ is the Green’s function for 1-dimensional discretized heat equation [38,

40] given explicitly by gtt′ = Λ−|t−t
′|/(Λ−Λ−1), s = Λ + Λ−1, see (14) and Appendix A.

Although the recovery of state space periodic orbits from finite symbol blocks is

straightforward for the linear encoding, it is not easy to describe the grammar rules for

which symbol blocks are admissible [41]. For the linear encoding presented here, there

is no finite set of short pruned block grammar rules, in contrast to linear encoding for

the Adler–Weiss Markov generating partition of the cat map state space given in [17].

An itinerary . . .m−1m0m1 . . . is admissible if and only if each of the corresponding state

space orbit points xt in (20) is in the unit interval [0, 1). Therefore, there is an infinite

number of conditions to satisfy. All these conditions, however, are automatically satisfied

if the symbols mt belong to the interior alphabet A0 (19). Indeed, if 0 ≤ mt ≤ s−2 for

all t, then

0 ≤
∞∑

t=−∞

mtΛ
−|t|

Λ− Λ−1
≤

∞∑
t=−∞

(Λ−1 + Λ− 2)Λ−|t|

Λ− Λ−1
= 1 , (21)

and all xt generated by (20) fall into [0, 1). As a result, the interior part of the lattice

states, AZ
0 is a full shift, with any infinite sequence of mt ∈ A0 being admissible. All

grammar rules (“pruning” of admissible blocks) necessarily involve symbols from the

exterior alphabet A1.
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3.4. Measures of cylinder sets

3.4.1. Numerics. The state space coordinates (x0, x1) are, up to the linear shift

pt = xt−xt−1 → xt, equivalent to the Hamiltonian (x0, p0) phase space coordinates, and

as the cat map is invertible, ergodic, and area preserving, with the invariant measure

dµ = dxtdpt = dxt dxt−1 and uniform invariant density ρ(x0, x1) = 1, the measure µ(b)

corresponding to a block b equals to the area |Mb| of a state space region Mb. The

(x0, x1) state space is composed of a disjoint union of regionsM = ∪Mb labelled by all

admissible blocks of a fixed length |b| = `, so the sum of all measures µ(b) equals the

total area of the state space |M| = 1,∑
|b|=`

µ(b) = 1 . (22)

Area sums over subpartitions, such as∑
m1

µ(m1m2 · · ·m`) = µ(m2 · · ·m`)∑
m`

µ(m1m2 · · ·m`) = µ(m1 · · ·m`−1) , (23)

provide consistency checks for computations.

By the ergodic theorem, the relative frequency of appearances of a block b in a

generic ergodic trajectory equals µ(b). This allows for numerical estimates of µ(b) by

long ergodic trajectories, as illustrated in table 1. For the problem at hand, there is, in

principle, no need for such simulations, as the areas |Mb| of partitions for short blocks

b can be evaluated exactly using, for example, Mathematica geometric computation

tools [50]. We have computed such tables for partitions up to block length |b| = 12, but

the results are quickly too unwieldy and unilluminating to tabulate here. We visualize

instead the measures by their areas in the (x0, x1) plane, as illustrated in figure 2.

3.4.2. Analytics. The number of Mb grows exponentially with |b|, while their areas

|Mb| shrink exponentially. Furthermore, for larger |b|, the domains Mb split into

disjoint sets, making it hard to determine their areas and the pruning rules for longer

blocks. Because of this, for the analytical calculation of measures µ(b), the Lagrangian

reformulation of the problem, with fixed boundary points x0, x`+1, turns out to be more

powerful. Moreover, as we show in section 4.2, the Lagrangian formulation generalizes

in a natural way to the spatiotemporal cat in any spatial dimension.

Let {xt} be a trajectory generated by the cat map and let {mt} be its symbolic

representation. As we show in Appendix A, the state xt at time t ∈ {1, . . . `} can be

expressed through the block b = m1m2 . . .m` at the times 1, . . . `, and the boundary

coordinates (x0, x`+1):

xt =
∑̀
t′=1

gtt′mt′ + gt1x0 + gt`x`+1 , t = 1, . . . `, (24)
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where g is the discrete Green’s function with the Dirichlet boundary conditions at t = 0

and t = `+ 1.

Explicitly, gtt′ can be expressed in terms of Chebyshev polynomials of the second

kind Un(s/2) = sinh[(n+ 1)λ]/sinhλ:

gij =

{
Ui−1(s/2)U`−j(s/2)

U`(s/2)
, for i ≤ j

Uj−1(s/2)U`−i(s/2)

U`(s/2)
, for i > j.

The first term on the right hand side of (24),

x̄i(b) =
∑̀
j=1

gijmj , (25)

can be thought of as the “approximate state” at time i. Indeed, by (24) we have

|xi − x̄i(b)| =
∣∣∣∣U`−i(s/2)

U`(s/2)
x0 +

Ui−1(s/2)

U`(s/2)
x`+1

∣∣∣∣ ≤ cosh(1
2
(`+ 1)− i)λ

cosh 1
2
(`+ 1)λ

. (26)

Hence the block b determines the lattice state at the center i = b`/2c of the block up

to an exponentially small error in `, of the order e−`λ/2.

The following theorem allows for evaluation of symbol blocks measures.

Theorem 3.1. Let b be a finite block of ` symbols. The corresponding measure is given

by the product

µ(b) = d`|Pb|, d` = 1/U`(s/2), (27)

where |Pb| is the area of the polygon Pb defined by the inequalities

0 ≤ x̄i(b) +
U`−i(s/2)

U`(s/2)
x0 +

Ui−1(s/2)

U`(s/2)
x`+1 < 1 , i = 1, . . . , `, (28)

0 ≤ x0 < 1, 0 ≤ x`+1 < 1 (29)

in the plane (x0, x`+1).

Proof. From (24) the elementMb of the partitionM is defined by the inequalities (28)

and (29). In general, the inequalities (28) ”cut out” a polygon Pb of the unit square

(29) in the (x0, x`+1) plane. As a result, the measure of b is given by the product

µ(b) = |Mb| = d`|Pb| (30)

of the area |Pb| of the polygon Pb and the Jacobian d` of the transformation of the

invariant phase space measure dµ = dx0dp0 to the Lagrangian end points measure

dx0dx`+1. Since the Jacobian of the transformation from (x0, p0) to (x0, x1) equals 1,

the value of d` can be evaluated as the Jacobian of the transformation from dx0dx1 to

dx0dx`+1. By (24), we therefore get

d` = |∂(x0, x1)/∂(x0, x`+1)| = g1` = 1/U`(s/2) . (31)

For blocks composed of interior symbols only the theorem yields a simple corollary:
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Figure 3. (a) Polygons Pm (shaded areas) for a single symbol, Lagrangian (x0, x2)

plane, exterior letters m ∈ A1: (left) m = 1, (right) m = s− 1. (b) Polygons

Pm1m2
(shaded areas) in Lagrangian (x0, x3) plane for blocks m1m2 of length 2,

m1 = 1,m2 = m ∈ A0 (left); m1 = 1,m2 = s− 1 (middle); m1 = s− 1,m2 = m ∈ A0

(right). Repeated exterior alphabet symbols are pruned, Pmm = ∅ if m ∈ A1. For

blocks composed of only interior symbols m1,m2 ∈ A0, Pm1m2
is the entire unit square

(full shift, no pruning). Note that µ(b) = µ(b̄) by the symmetry (32). Compare also

with the state space representation figure 2.

Corollary 3.1.1. If mi ∈ A0 , i = 1, . . . |b|. The corresponding measure is given by

µ(b) = 1/U|b|(s/2), mi ∈ A0 , i = 1, . . . |b|

and depends only on the length of the block b.

Proof. If all mi belong to A0, the inequalities (28) are always satisfied, and Pb are unit

squares of area 1. The proof then follows immediately by eq. (27).

In general, the area |Pb| in (27) depends on the particular block b; the Jacobian d`
is the same for all b’s of length `. The view from (x0, x`+1) state space has a natural

interpretation of area as the relative measure to block of all interior symbols, i.e., the

geometrical factor |Pb|. In other words, as illustrated by comparing figure 2 with figure 3,

the Hamiltonian and the Lagrangian partition areas are the same up to the overall

Jacobian factor d`. The power of the Lagrangian reformulation is now evident: in

contrast to the exponentially shrinking and disjoint (for sufficiently large |b|) Mb of

figure 2, Pb are always simply connected convex polygons cut out of the unit square, see

figure 3.
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3.5. Evaluation of measures

Since all coefficients in (28) are given by rational numbers, the polygon areas |Pb| are

rational too. The same holds for the d` factor. As a result, measures µ(b) are always

rational (see, for example, table 1). This allows for their exact evaluation by integer

arithmetic. As the factor d` in (27) is known explicitly, the evaluation of µ(b) relies on

the knowledge of the areas |Pb| which can be easily found analytically for small `. Before

working out specific examples, we list symmetry properties of measures µ(b) valid for

any block length `.

Symmetries. Symmetries of the cat map induce invariance with respect to

corresponding symbol exchanges. Define m̄ = s−2−m to be the conjugate of symbol

m ∈ A. For example, the two exterior alphabet A1 symbols are conjugate to each

other, as illustrated by figure 1. If b = m1m2 . . .m` is a block, and b̄ = m̄1m̄2 . . . m̄` its

conjugate, then by reflection symmetry of the cat map we have |Pb| = |Pb̄|. Similarly,

if b∗ = mlml−1 . . .m1, the time reversal invariance implies |Pb| = |Pb∗|. Accordingly,

blocks b, b∗, and b̄ have the same measure,

µ(b) = µ(b̄) = µ(b∗) . (32)

3.5.1. Example: Measure of blocks of length ` = 1. The defining, single symbol block

Lagrangian equation (2) is the simplest example of the Lagrangian, two-point boundary

values formulation,

x1 = g11m1 + g11x0 + g11x2 ,

with ` = 1, g11 = 1/s verifying the general Green’s function formula (24). For single

symbol m1 ≡ m the set of inequalities (28) thus reduces to

−m ≤ x0 + x2 < s−m.

This constraint is always fulfilled for interior symbols m ∈ A0. For m ∈ A1, polygon

Pm is the upper and lower triangle, respectively, shown in figure 3 (a). As a result, we

have |Pm| = 1 if m ∈ A0 and |Pm| = 1/2 if m ∈ A1, giving measures

µ(m) =

{
1/s, for m ∈ A0

1/2s, for m ∈ A1 ,

which indeed add up to one after summation over all letters of the alphabet A.

3.5.2. Example: Measure of blocks of length ` = 2: For blocks m1m2, bounds (28) give

four inequalities

−sm1 −m2 ≤ sx0 + x3 < s2 − 1− sm1 −m2 (33)

−sm2 −m1 ≤ sx3 + x0 < s2 − 1− sm2 −m1 ,

where we have used U2(s/2) = s2 − 1. A constraint arises whenever at least one of the

symbols belongs to the exterior alphabet A1. By the symmetry (32), it is sufficient to
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analyze the case when m1 = 1. If m2 ∈ A0, the polygon P1m2 is determined by (see

figure 3 (b)):

s−m2 ≤ sx0 + x3, 0 ≤ x0, x3 < 1.

The area of the resulting polygon is equal to |P1m2 | = (1 + 2m2)/2s, where m2 ∈ A0. If

both m1 6= m2 belong to A1, i.e., m1 = 1, m2 = s−1, then the corresponding polygon

is determined by the conditions:

1 ≤ sx0 + x3, sx3 + x0 ≤ s, 0 ≤ x0, x3 < 1.

with the corresponding area |Pm1m2| = 1− 1/s. Finally, if both m1 = m2 belong to A1

and they are equal, then block is pruned, Pm1m2 = ∅; there are two pruned blocks of

length 2. In summary,

µ(m1m2) =


1/s2 − 1 for m1,m2 ∈ A0

(1 + 2m2)/2s(s2 − 1) for m1 = 1,m2 ∈ A0

1/s(s+ 1) for m1 = 1,m2 = s−1

0 for m1 = 1,m2 = 1.

(34)

The measures for the remaining symbol combinations can be obtained by the

symmetries, see (32) and table 1 for the s = 3 case.

3.5.3. Pruning. As shown in (21), any block of A0 symbols is admissible. If, on the

other hand, one or more symbols from m belong to A1, such a block might be forbidden,

with the polygon Pm defined by (28,29) empty, and thus µ(m) = 0. An example is the

pruned blocks 11 and 22 , missing from figure 2 (g). While here we do not attempt

to solve the number-theoretic problem of determining the number of pruned blocks for

arbitrary `, the count of pruning rules given in table 2 indicates that for the linear

encoding the number of pruned blocks grows exponentially with their length. Thus the

linear encoding is not a subshift of finite type, as its grammar consists of an infinity of

arbitrarily long pruned (i.e., inadmissible) blocks. While the shaded areas of figure 2 (g-

h) are accounted for by the complete Smale-horseshoe grammar of the interior alphabet,

the admissibility rules for blocks involving letters from A1 = {1, 2} are not known. In

[18], an Adler–Weiss Markov generating partition symbolic dynamics for the Percival-

Vivaldi cat map (18) is constructed, with complete, finite subshift grammar. That,

however, has no bearing on the main thrust of this paper.

4. Spatiotemporal cat

We now turn to the study of the spatiotemporal cat (4), with cat maps on sites

(“particles”) coupled isotropically to their nearest neighbors on a 2-dimensional

spatiotemporally infinite Z2 lattice. The coupled map lattices (CML) were introduced in

the mid 1980’s as models [32, 33] for studies of spatio-temporal chaos in discretizations

of dissipative PDEs. Later on, chains of coupled Anosov maps were investigated

in mathematically rigorous settings [13, 43]. The conventional CML models start
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Table 2. Nn is the total number of pruned blocks of length n = |b| for the s = 3

Arnol’d cat map. Ñn is the number of new pruned blocks of length |b|, with all length

|b| blocks that contain shorter pruned blocks already eliminated. Empirically there is

a single new pruning rule for each prime-number block length (it is listed as two rules,

but by the reflection symmetry there is only one).

n Nn Ñn−1
2 2 0

3 22 2

4 132 8

5 684 2

6 3164 30

7 13894 2

8 58912 70

9 244678 16

10 1002558 198

11 4073528 2

12 16460290 528

13 2

out with chaotic on-site dynamics weakly coupled to neighboring sites, with strong

spacetime asymmetry. In order to establish the desired statistical properties of CML,

such as the continuity of their SRB measures, [13, 43] and most of the subsequent

mathematical literature rely on the structural stability of Anosov automorphisms under

small perturbations. Contrast this with the non-perturbative 2-dimensional Gutkin-

Osipov [29] spatiotemporal cat (4). While this model has a Hamiltonian formulation

(see Appendix B), as in the cat map case of section 3.1, it is instructive to write down

its equations of motion in the Lagrangian form:

(−� + 2(s− 2))xz = mz , z = (n, t) ∈ Z2 ,

xz ∈ [0, 1), mz ∈ A = {−3,−2, · · · , 2s− 2, 2s− 1} , (35)

with � being the discrete spacetime Laplacian (6) on Z2. The map is space ↔ time

symmetric and has the temporal and spatial dynamics strongly coupled. Furthermore,

it is smooth and fully hyperbolic for any integer |s| > 2. In what follows we will assume

positive s > 2.

In this paper, we focus on learning how to enumerate admissible spatiotemporal

cat spatiotemporal patterns, compute their measures, and identify their recurrences

(shadowing of a large invariant 2-torus by smaller invariant 2-tori).

4.1. Linear encoding

The symbols mz from the set A = {3, 2, · · · , 2s−2, 2s−1} on the right hand side of (35)

are necessary to keep xz within the interval [0, 1), with mz standing here for mz with the

negative sign, i.e., ‘3’ stands for symbol ‘−3’. As we now show, M = {mz ∈ A , z ∈ Z2}
can be used as a 2-dimensional symbolic representation (code) of the lattice system
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states.

Since (35) is a linear equation, any of its solutions X = {xz ∈ [0, 1) , z ∈ Z2} can

be uniquely recovered from the corresponding code M. By inverting (35) we obtain

xz =
∑
z′∈Z2

gzz′mz′ , gzz′ =

(
1

−� + 2(s− 2)

)
zz′

, (36)

where gzz′ is the Green’s function for the 2-dimensional discretized heat equation, see

Appendix A. A symbol block M is admissible if and only if all xz given by (36) fall into

the interval [0, 1).

As for the cat map, we split the 2s+3 letter alphabet A = A0∪A1 into the interior

A0 and exterior A1 alphabets

A0 = {0, . . . , 2(s− 2)}, A1 = {3, 2, 1} ∪ {2s−3, 2s−2, 2s−1} . (37)

For example, for s = 5/2 the interior, respectively exterior alphabets are

A0 = {0, 1}, A1 = {3, 2, 1} ∪ {2, 3, 4} . (38)

If all mz ∈ M belong to A0, M is admissible, i.e., AZ2

0 is a full shift. Indeed, by the

positivity of Green’s function (see Appendix A) it follows immediately that 0 ≤ xz,

while the condition
∑

z′∈Z2 gzz′ = 1/2(s − 2) implies that xz ≤ 1, with the equality

saturated only if mz = 2(s− 2), for all z ∈ Z2.

The key advantage of linear encoding is illustrated already by the d = 2 case. While

the size of the alphabet Ā based on a Markov partition grows exponentially with the

“particle number” L, the number of letters (4) of the linear encoding A is finite and

the same for any L, including the L → ∞ spatiotemporal cat. For the linear encoding

an invariant 2-torus is encoded by a doubly periodic d = 2 block M of symbols from

a small alphabet, rather then by a 1-dimensional temporal string of symbols from the

exponentially large (in L) alphabet Ā.

4.2. Finite symbol blocks

Let R ⊂ Z2 be a rectangle on Z2 and let MR = {mz|z ∈ R} be a symbol block defined

on R. We now show that MR determines approximate positions of the points xz, z ∈ R,

within the domain R. To start with we define the (exterior) boundary ∂R of R as a

set of points adjacent to R. More precisely, z = (n, t) belongs to ∂R if and only if

z /∈ R but one of the four neighboring points (n ± 1, t), (n, t ± 1) belongs to R, see

figure 4(a). Let then gzz′ be the corresponding Dirichlet Green’s function which vanishes

at the boundary ∂R. By the lattice Green’s identity (see Appendix A.3) any solution

of the equation (35) satisfies

xz =
∑
z′∈R

gzz′mz′ +
∑
z′′∈∂R

gzz̄′′xz′′ , z ∈ R , (39)

with z̄′′ being the unique adjacent point of z′′ ∈ ∂R within the domain R. Here, the

first term

x̄z :=
∑
z′∈R

gzz′mz′ (40)



Spatiotemporal cat 19

can be viewed as the “approximate spatiotemporal state” x̄(MR) at the point z.

Importantly, it is determined solely by MR. From (39) it follows that the difference

|xz − x̄z| is bounded by

|xz − x̄z| =
∑
z′′∈∂R

gzz̄′′xz′′ ≤ |∂R| gzz̄′′0 ,

with z̄′′0 being the boundary point of R (i.e., adjacent to ∂R), where the function gzz̄′′

attains its maximum value along ∂R (for a fixed z). For an illustration, consider a

[`1×`2] rectangular domain

R[`1×`2] = {(i, j)| i = 0, · · · , `1−1, j = 0, · · · , `2−1} , (41)

with `1, `2 even (see figure 4 (a)), and take the point z at the rectangular center. As

the Green’s function gzz̄′′ decays exponentially with |z − z̄′′| (see Appendix A.2), the

distance |xz − x̄z| is of the order e−ν`min for a large `min = min {`1/2, `2/2}, where the

exponent ν is defined by cosh ν = s/2.

We determine next the measure µ(MR) of the cylinder set corresponding to MR.

Take R = R[`1×`2] to be a rectangular domain (41). In what follows it is convenient to

distinguish points in the interior ofR from the points which belong to the boundary ∂R.

While in principle the boundary state space points xz′′ ∈ ∂R are labelled by the symbol

pair z′′ = (n, t), we find it more convenient to label them by a single index that indicates

their position along the border, xi = xz′′ , where i runs from 1 to |∂R| = 2(`1 + `2).

For examples, see figure 4 and sections 4.3.1 and 4.3.2. Both the boundary state space

points xi, i = 1, . . . |∂R| and the internal points xz, z ∈ R must lie within the unit

interval.

Theorem 4.1. Given a block of symbols MR on rectangle R, the measure µ(MR) can

be factorized into product

µ(MR) = d(R) |P(MR)| , (42)

where |P(MR)| is the volume of the |∂R|-dimensional polytope P(MR), defined by the

following inequalities

0 ≤ xi < 1, i = 1, . . . , |∂R| , (43)

0 ≤ x̄z +

|∂R|∑
i=1

gzz̄ixi < 1, z ∈ R (44)

and the factor d(R) depends only on the sizes `1, `2 of R, but not on the symbolic content

of MR.

Proof. Since for all interior points z ∈ R one has 0 ≤ xz < 1, (39) implies that the

admissible set of boundary points xi, i = 1, . . . , |∂R| satisfy inequalities (43) and (44).

Essentially, the inequalities (44) cut out the polytope P(MR) out of the |∂R|-dimensional

unit hypercube defined by (43). As a result, the measure µ(MR) is given by the product

of the P(MR) volume and the Jacobian d(R) of the linear transformation between

boundary coordinates (43) and the set of 2(`1 + `2) coordinates

{(xnt0 , xnt1) |n = −b`2/2c, . . . ,−b`2/2c+ `1 + `2 − 2}
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at the two consecutive times t0 = b`1/2c, t1 = t0 + 1. Since the Jacobian of this

transformation is independent of any particular block MR, the factor d(R) depends

only on R, but not on its symbolic content.

As was the case for the single cat map theorem 3.1, the theorem yields a simple

result for symbol blocks composed only of the interior alphabet symbols:

Corollary 4.1.1. If all symbols in MR belong to the interior alphabet A0 (37), then

µ(MR) = d(R) (45)

is independent of the symbolic content of MR.

Proof. Note that the inequalities (44) are satisfied if all symbols from MR belong to the

interior alphabet A0 (37). This follows from the positivity of the Green’s function gzz′ ,

and the identity

1 = 2(s− 2)
∑
z′∈R

gzz′ +
∑
z′′∈∂R

gzz̄′′ , z ∈ R ,

obtained by substituting the spatiotemporal cat (35) constant field solution xz = 1,

mz = 2(s− 2) into the Green’s function (39) - see discussion following (38). As a result,

for any block MR of interior symbols P(MR) is just a hypercube with |P(MR)| = 1, and

(45) follows immediately.

4.3. Evaluation of measures

The evaluation of measures µ(MR) for the spatiotemporal cat boils down to the

evaluation of the polytope volumes |P(MR)|, determined by the inequalities (43) and

(44). By the rationality of every element gzz′ , |P(MR)| is given by a rational number

for any MR. This allows for exact evaluation of |P(MR)| by integer arithmetic. Once

the volumes are found for all admissible blocks MR, the constant factor d(R) can be

extracted from the normalization condition, by summing up all volumes:

1/d(R) =
∑
|P(MR)| . (46)

We were unable to derive any explicit formulas for d(R). However, its asymptotic form

in the limit of large domains can be related to the spatiotemporal metric entropy, as

discussed in Appendix C.2.

Before looking at specific examples of measure calculation we list the symmetry

properties of the spatiotemporal cat measures µ(MR).

Symmetries. Besides the invariance under shifts in time and space directions,

spatiotemporal cat (35) is separately invariant under the space and time reflections

n→ −n, t→ −t, as well as under exchange n←→ t of space and time. Spatiotemporal

cat thus has all the symmetries of the square lattice:

• 2 discrete translation symmetries
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• the group D4 composed of rotations by kπ/2, k = 1, 2, 3 and reflection across x-axis,

y-axis, diagonal a, diagonal b:

C4v = D4 = {E,C+
4z, C

−
4z, C2z, σy, σx, σda, σdb, } . (47)

In the international crystallographic notation [22], this point group is referred to as

p4mm. In addition, the transformation

xnt → 1− xnt, M = {mnt} → M̄ = {m̄nt}, m̄nt = 2(s− 2)−mnt ,

leaves eq. (35) invariant. All together, the measure is invariant under

µ(MR) = µ(σ ◦MR), µ(MR) = µ(M̄R),

where σ is an element of space group p4mm. As an example, consider s = 7/2

spatiotemporal cat, with alphabets (37)

A0 = {0, 1, 2, 3}, A1 = {3, 2, 1} ∪ {4, 5, 6} . (48)

By the D4 symmetries µ(MR) = µ(σ ◦MR) the measures of the following eight blocks

are equal:  1 2

3 4

5 6

 , [
2 4 6

1 3 5

]
,

 6 5

4 3

2 1

 , [
5 3 1

6 4 2

]
 2 1

4 3

6 5

 , [
6 4 2

5 3 1

]
,

 5 6

3 4

1 2

 , [
1 3 5

2 4 6

]
.

In addition, the measures of blocks such as 2 1

4 3

6 5

 ⇔

 1 2

1 0

3 2


(eight additional blocks in all) are equal by µ(MR) = µ(M̄R) symmetry.

While for a cat map |∂R| is always 2, i.e., the boundary of interval R consists of the

two end points, for the spatiotemporal cat the number |∂R| of boundary points grows

with the domain size. The complexity of |P(MR)| calculation for a spatiotemporal cat

thus grows with |R|, as well. We illustrate this with calculations for R = [1×1] and

[2×2] symbol blocks.

4.3.1. Example: R = [1×1] measure. Consider a R = [1×1] spatiotemporal domain,

with a single symbol block M, together with the four state space points xi = xz ∈ ∂R
comprising its boundary, figure 4 (b). We need to evaluate the volume of the 4-

dimensional polytope P(m) for each m ∈ A. P(m) is contained with the hypercube

0 ≤ xi < 1, i = 1, 2, 3, 4,
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Figure 4. (Color online) (a) A [5×3] domain R on the 2-dimensional lattice. The red

(open) circles indicate the boundary ∂R. For each point xi ∈ ∂R, there exists a unique

adjacent point within the domain R. Blocks MR for (b) R = [1×1], and (c) R = [2×2]

domains, together with the corresponding boundary points ∂R = {x1, x2, x3, x4} and

∂R = {x1, x2, · · · , x8}, respectively.

bounded by the inequalities

−m ≤ x1 + x2 + x3 + x4 < 2s−m. (49)

The polytope volume |P(m)| depends on m. For the interior letters m ∈ A0 the

hyperplane (49) does not intersect the hypercube and the volume |P(m)| = 1. For

m ∈ {3, 2, 1} in the exterior A1 alphabet (37), the corresponding volumes |P(m)|
are 1/4!, 1/2, and 23/4!, respectively. The normalization condition (46) then yields

d = 1/(2s). Thus the measures for the symbols from the exterior alphabet A1 are

µ(3) = µ(2s−1) = 1/(2 · 4! s)

µ(2) = µ(2s−2) = 1/(4s)

µ(1) = µ(2s−3) = 1/(2s)− 1/(2 · 4! s)

µ(m) = 1/2s for the 2s− 3 interior letters m ∈ A0 , (50)

with the total measure satisfying
∑

m µ(m) = 1 . The numerical estimates of figure 5

confirm these analytic results.

4.3.2. Example: R = [2×2] measure. For the block

M =

[
m12m22

m11m21

]
(51)

the 8-dimensional polytope PM is parametrized by the boundary ∂R points, figure 4 (c).

They satisfy 0 ≤ xi < 1, i = 1, . . . 8, supplemented by the four inequalities:

0 < Pk(x1, . . . , x8) ≤ 8 s(s2 − 1), k = 1, 2, 3, 4, (52)

where

P1 = 2(2s2 − 1)(x1 + x8 +m11) + 2s(x3 + x2 + x6 + x7 +m12 +m21) + 2(x4 + x5 +m22)

P2 = 2(2s2 − 1)(x2 + x3 +m12) + 2s(x1 + x8 + x4 + x5 +m11 +m22) + 2(x7 + x6 +m21)

P3 = 2(2s2 − 1)(x7 + x6 +m21) + 2s(x1 + x8 + x4 + x5 +m22 +m11) + 2(x2 + x3 +m12)

P4 = 2(2s2 − 1)(x4 + x5 +m22) + 2s(x3 + x2 + x6 + x7 +m12 +m21) + 2(x1 + x8 +m11) .



Spatiotemporal cat 23

These inequalities lead to analytical expressions for PM volumes. A general PM

volume is a four-dimensional integral, whose calculation is lengthy and unilluminating,

so we skip it here. Instead, we evaluate |PM| for cases where some of the inequalities

(52) are satisfied for all points of the hypercube P0 = {x1, . . . , x8 ∈ [0, 1)}. If all letters

of M belong to the interior alphabet, then all inequalities hold, and |PM| = 1. Another

easy case is the one where three out of four inequalities hold for all points in P0. For

example, consider

M =

[
s− 2 s− 2

2 s− 1

]
for an even s > 2. Then only the first inequality, 0 < P1(x1, . . . , x8), is a non-trivial

one, while the rest are satisfied for all points in P0. Since the center of the hypercube

{xi = 1/2, i = 1, . . . , 8} belongs to the hyperplane P1(x1, . . . , x8) = 0, the polytope PM

has the same volume as half of the hypercube P0, i.e., |PM| = 1/2.

It is also possible to find all inadmissible symbol blocks, with |PM| = 0. For

inadmissible symbol blocks, one of the inequalities (52) must be violated for all points

of the hypercube P0. In particular, any combination of symbols for [2×2] block that

satisfies condition

(2 +m11)(2s2 − 1) + (4 +m12 +m21)s+ (2 +m22) ≤ 0

is forbidden, i.e., |PM| = 0. This implies that symbol blocks[
2 2

2 2

]
,

[
m12 m22

3 m21

]
are inadmissible if either m12 + m21 ≤ 2s − 6 and arbitrary m22, or m12 + m21 =

2s − 5,m22 ≤ s − 3. Other forbidden [2 × 2] blocks are obtained by application of the

symmetry operations.

4.3.3. Numerics. The volumes of PM evaluated analytically are found to be consistent

with the measure of a given block M obtained by numerical simulations of trajectories

with random initial conditions.

While in the R = [1×1] case it was possible to plot the single symbol block M

measures µ(mj) along a single, integer j labelled axis, as in figure 5 (a) and (b), the

R = [2×2] has four sites z ∈ {11, 12, 21, 22} . A way to map the array (51) onto a line

is to write it as

γ(MR) = γ1.γ2γ3γ4 (53)

in base 2s+3, where γk ∈ {0, 1, · · · , 2s+2} are the symbols mij shifted into nonnegative

integers,

(γ1, γ2, γ3, γ4) = (m11 + 3,m12 + 3,m21 + 3,m22 + 3) .

Estimates of the corresponding measures µ(MR) from long-time numerical Hamiltonian

simulations, on a spatially periodic domain of extent L = 20, are displayed in this way
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Figure 5. Relative frequencies |PMR | = f(MR)/dR of blocks MR obtained from long-

time numerical simulations (∼ 107 iterations, rounded off to two significant digits) are

in agreement with the exact formulas of (50). (a) R = [1×1] domain, figure 4 (b),

s = 2. The interior alphabet (37) consists of only one letter A0 = {0}, with the

corresponding polytope of maximal volume, |P(0)| = 1. (b) R = [1×1], s = 7/2.

The maximum frequencies are attained for the four letters (48) from the interior

alphabet A0 = {0, 1, 2, 3}. The blocks MR over the R = [2×2] spatiotemporal domain,

figure 4 (c), can be represented as numbers (53) in base 2s + 3. (c) For R = [2×2],

s = 2, the only combination of interior symbols that attains the maximum measure is

m11 = m12 = m21 = m22 = 0. (d) For R = [2×2], s = 7/2, the interior alphabet A0

(48) has 4 letters, so there are 44 blocks that attain the maximum measure.

in figure 5 (c) and (d), and are in full agreement with the available analytical data. In

particular, whenever all symbols mij belong to the interior alphabet, the numerics is

consistent with relative frequency |PMR| = 1.

5. Families of invariant 2-tori

Linear encoding makes it an easy task to obtain spatiotemporal cat (35) solutions. Of

particular interest are the doubly periodic solutions (the spatiotemporal analogs of d=1

cat map periodic orbits), the invariant 2-tori with periods L and T ,

xnt = xn+L,t+T , n = 1, · · · , L, t = 1, · · · , T ,

invariant under spatial SL and temporal T T shifts.

Since the interior alphabet A0 corresponds to a full shift dynamical system, any

[L× T ] block of interior symbols M = {mz ∈ A0|z ∈ RLT} over the rectangular

spatiotemporal domain

RLT = {z = (n, t)|n = 1, · · · , L, t = 1, · · · , T} ,



Spatiotemporal cat 25

(a)

2 1 3 2 2 0 3 0 1 1 1 1 1 3 3 0 1 0 3 3 3 0 3 3 0 1 1 2
0 0 1 2 2 3 3 2 3 3 0 0 1 1 3 0 3 2 3 0 2 2 3 3 2 2 1 1
0 1 1 3 2 3 0 3 2 0 3 1 1 2 3 2 2 3 3 1 2 1 3 2 2 2 1 2
2 0 2 0 3 2 0 3 0 1 2 2 2 3 2 3 2 0 3 3 3 3 3 1 3 3 0 0
2 3 2 1 3 1 0 2 2 0 0 0 3 1 0 1 0 0 1 3 3 3 3 3 3 2 0 0
0 3 1 0 3 2 3 3 1 0 0 0 2 3 1 3 1 0 1 0 2 0 0 1 0 2 2 1
2 3 3 3 2 3 0 0 1 0 3 0 1 2 1 1 3 2 3 0 2 3 3 2 3 1 0 0
3 3 1 2 1 2 0 2 0 3 0 0 2 2 2 2 2 1 2 0 3 0 0 3 1 3 2 3
2 0 1 3 1 2 1 3 2 1 3 0 1 3 2 3 0 1 0 0 3 0 3 1 3 3 0 3
1 2 0 3 2 2 0 3 3 0 2 1 3 3 0 3 2 2 1 1 2 0 0 0 2 1 3 0
1 1 3 1 2 1 3 2 2 3 1 1 3 2 3 2 3 2 2 2 2 0 3 1 0 1 2 2
2 1 0 1 3 1 3 0 3 0 1 3 2 3 3 0 0 2 1 1 3 1 0 0 3 0 3 2
3 0 2 1 1 1 2 0 3 0 0 1 0 0 3 0 3 1 1 1 2 1 0 1 3 0 2 0
1 0 1 2 1 2 1 2 3 2 1 3 0 2 1 1 1 1 1 0 0 2 0 1 0 1 1 0
0 2 3 3 3 3 3 0 1 3 2 2 2 0 3 2 1 0 1 3 3 2 0 3 2 3 2 3
1 0 3 1 1 1 2 2 0 0 2 1 0 2 2 2 1 2 2 0 1 3 2 2 1 3 0 3
3 1 2 1 1 2 2 0 3 1 3 2 0 1 2 2 3 0 2 2 3 2 3 2 0 0 1 3
2 2 1 2 0 1 3 0 0 2 2 0 1 3 3 1 2 3 2 3 0 0 2 2 0 2 2 1
1 3 2 0 2 0 2 0 3 1 1 3 0 1 3 2 0 2 2 1 0 0 1 1 0 0 0 1
2 1 3 3 0 3 2 1 0 2 1 2 2 1 1 2 1 1 1 1 0 0 0 2 3 1 3 2
0 0 1 0 3 1 0 0 0 1 2 0 2 3 3 0 0 0 2 2 2 1 2 2 0 3 2 1
1 3 1 3 3 3 2 0 1 1 0 1 3 0 1 2 1 2 0 2 0 1 1 3 3 1 0 1
1 0 3 3 1 0 0 2 3 1 1 0 2 1 0 2 2 3 1 0 2 0 0 2 1 0 2 1
1 0 1 0 1 1 1 1 0 0 0 0 1 2 0 2 2 3 2 2 2 2 1 2 2 2 3 0
2 3 2 0 2 0 0 3 0 2 2 3 0 2 3 1 2 2 3 0 2 2 3 1 2 2 0 0
3 1 1 1 1 2 1 0 3 3 3 0 3 2 0 3 3 1 0 0 1 0 2 3 2 2 2 1
3 2 0 1 3 2 1 2 2 3 1 3 2 3 3 3 2 3 1 3 1 2 2 3 0 3 0 0 (b)

2 1 2 1 1 1 1 2 2 3 2 3 3 2 1 0 0 0 1 0 0 2 3 1 1 3 0 0
3 2 3 2 2 3 2 2 1 0 3 3 0 3 0 3 1 0 2 2 2 1 0 2 1 2 3 3
3 2 2 3 3 3 3 3 1 2 3 0 0 3 1 3 1 1 0 3 0 2 1 2 0 0 2 3
3 1 1 0 3 2 0 3 0 1 2 2 2 3 2 3 2 0 3 3 3 3 3 2 0 1 0 3
0 0 0 1 3 1 0 2 2 0 0 0 3 1 0 1 0 0 1 3 3 3 3 1 2 1 2 2
0 3 2 0 3 2 3 3 1 0 0 0 2 3 1 3 1 0 1 0 2 0 0 2 3 1 0 0
0 3 3 0 2 3 0 0 1 0 3 0 1 2 1 1 3 2 3 0 2 3 3 2 3 1 1 0
3 0 1 3 1 2 0 2 0 3 0 0 2 2 2 2 2 1 2 0 3 0 0 3 1 0 1 0
1 3 1 2 1 2 1 3 2 1 3 0 1 3 2 3 0 1 0 0 3 0 3 0 0 1 3 2
1 0 3 2 2 2 0 3 3 0 2 1 3 3 0 3 2 2 1 1 2 0 0 2 0 1 0 3
0 3 2 2 2 1 3 2 2 3 1 1 3 2 3 2 3 2 2 2 2 0 3 1 2 2 1 2
1 0 0 3 3 1 3 0 3 0 1 3 2 3 3 0 0 2 1 1 3 1 0 2 1 3 3 2
1 0 3 3 1 1 2 0 3 0 0 1 0 0 3 0 3 1 1 1 2 1 0 3 0 0 1 0
3 3 1 0 1 2 1 2 3 2 1 3 0 2 1 1 1 1 1 0 0 2 0 0 2 2 0 1
2 2 1 2 3 3 3 0 1 3 2 2 2 0 3 2 1 0 1 3 3 2 0 2 2 2 2 2
3 0 0 1 1 1 2 2 0 0 2 1 0 2 2 2 1 2 2 0 1 3 2 2 1 2 3 2
0 3 0 0 1 2 2 0 3 1 3 2 0 1 2 2 3 0 2 2 3 2 3 0 2 1 0 3
0 3 1 1 0 1 3 0 0 2 2 0 1 3 3 1 2 3 2 3 0 0 2 2 2 3 0 2
1 2 2 0 2 0 2 0 3 1 1 3 0 1 3 2 0 2 2 1 0 0 1 0 1 2 0 1
3 0 2 2 0 3 2 1 0 2 1 2 2 1 1 2 1 1 1 1 0 0 0 3 1 0 1 2
1 3 0 1 3 1 0 0 0 1 2 0 2 3 3 0 0 0 2 2 2 1 2 0 3 1 0 1
3 2 3 3 3 3 2 0 1 1 0 1 3 0 1 2 1 2 0 2 0 1 1 1 2 0 0 3
2 2 0 3 1 0 0 2 3 1 1 0 2 1 0 2 2 3 1 0 2 0 0 3 2 3 1 0
2 2 2 0 1 1 1 2 2 1 2 1 2 3 0 2 0 2 1 2 1 0 0 2 0 1 1 1
0 1 2 1 0 1 0 3 2 2 2 1 3 2 0 3 3 3 3 1 2 0 2 3 2 0 0 2
3 1 3 1 0 0 0 0 0 3 2 3 2 2 2 3 0 0 1 3 3 3 3 3 0 0 1 2
1 2 3 2 2 0 1 3 0 3 0 1 0 2 0 1 3 0 0 0 0 2 2 0 1 3 0 2

Figure 6. (Color online) Blocks M, M′ encoding two [L×T ] = [28 × 27] invariant

2-tori X, X′ that shadow each other within the [19× 20] domain R ⊂ RLT (bold/blue).

The symbols over the R are drawn randomly from the s = 7/2 interior alphabet

A0 = {0, 1, 2, 3} and are the same for both symbolic blocks M, M′. The symbols

outside R, also drawn randomly from A0, differ for M, M′.

(a)
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Figure 7. (Color online) The plots of the logarithm of the site-wise distance |xz−x′z|
of the states X, X′ of figure 6 for (a) s = 7/2 and (b) s = 13/2 illustrate the exponential

fall-off of the site-wise distances as one approaches the center of the shared symbol

domain R. The exponential fall-off towards the center of R is faster for s = 13.

Outside of the shared domain R the distances are of the order 1.

is admissible and generates an invariant 2-torus solution of (35). The corresponding

spatiotemporal state X = {xz, z ∈ RLT} (restricted to the domain RLT) is obtained by

taking the inverse of (35):

xz =
∑

z′∈RLT

g0
zz′mz′ , mz′ ∈ A0 , (54)

where g0
zz′ is the Green’s function with periodic boundary conditions, see [18]. We next

use the obtained solutions to test shadowing properties of invariant 2-tori.
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9 1 1 8 4 7 7 0 5 8 1 7 1 0 6 2 1 2 9 6 7
4 7 1 0 2 4 4 1 6 5 4 1 3 2 3 3 9 6 9 0 7
4 8 3 8 8 6 9 7 1 5 6 6 6 3 3 6 4 6 9 4 0
9 0 4 9 5 0 1 9 3 0 8 1 8 0 1 4 7 3 6 3 4
2 9 4 9 9 4 1 9 0 1 1 7 4 7 6 3 4 6 8 2 2
4 6 3 7 3 5 6 5 1 5 2 6 3 3 0 7 2 2 4 5 6
8 1 2 6 6 4 6 2 7 8 3 3 0 0 1 4 3 4 4 1 8
2 6 3 1 1 1 0 3 1 7 3 3 6 7 6 6 5 3 2 4 1
4 5 6 6 9 5 3 2 5 0 8 4 3 6 1 2 7 9 0 2 9
5 7 3 6 1 1 1 0 2 3 9 5 3 7 5 0 5 9 0 8 7
5 7 6 3 9 5 5 3 3 4 8 1 6 5 3 9 6 5 4 1 3
1 6 3 7 6 5 9 3 2 3 1 2 9 0 3 8 7 3 3 0 6
1 3 4 3 0 2 8 0 6 2 1 7 9 1 5 7 5 1 2 2 0
0 6 3 7 8 2 1 1 1 0 8 3 8 8 6 9 7 1 4 0 4
0 5 3 4 9 7 4 7 7 9 0 4 9 5 0 1 9 3 2 3 6
3 5 2 9 8 3 9 0 7 9 9 4 9 9 4 1 9 0 0 6 8
1 5 2 7 4 1 6 8 5 4 6 3 7 2 7 6 5 1 8 8 7
9 4 1 6 6 7 1 1 8 9 1 2 6 1 7 6 2 7 2 2 5
5 7 1 0 3 3 3 0 6 9 6 3 1 9 2 0 3 1 9 3 2
6 1 2 1 1 0 5 0 6 6 5 6 6 9 5 3 2 5 6 4 4
1 9 9 2 0 8 6 7 5 9 7 3 6 1 1 1 0 2 8 2 1
3 1 8 3 4 3 6 1 9 8 7 6 3 9 5 5 3 3 6 2 3
6 2 1 7 6 7 7 3 5 9 4 7 5 5 1 2 9 0 8 6 9
7 8 8 9 6 1 1 4 9 3 8 5 4 8 4 2 1 6 3 7 9
5 8 7 5 3 8 7 1 8 0 8 5 4 3 0 4 0 3 4 1 7

������� �� ������� ����������� ������� �������

9 1 1 8 4 7 7 0 5 8 1 7 1 0 6 2 1 2 9 6 7
4 7 1 0 2 4 4 1 6 5 4 1 3 2 3 3 9 6 9 0 7
4 8 3 8 8 6 9 7 1 5 6 6 6 3 3 6 4 6 9 4 0
9 0 4 9 5 0 1 9 3 0 8 1 8 0 1 4 7 3 6 3 4
2 9 4 9 9 4 1 9 0 1 1 7 4 7 6 3 4 6 8 2 2
4 6 3 7 2 7 6 5 1 5 2 6 3 3 0 7 2 2 4 5 6
8 1 2 6 1 7 6 2 7 8 3 3 0 0 1 4 3 4 4 1 8
2 6 3 1 9 2 0 3 1 7 3 3 6 7 6 6 5 3 2 4 1
4 5 6 6 9 5 3 2 5 0 8 4 3 6 1 2 7 9 0 2 9
5 7 3 6 1 1 1 0 2 3 9 5 3 7 5 0 5 9 0 8 7
5 7 6 3 9 5 5 3 3 4 8 1 6 5 3 9 6 5 4 1 3
1 6 3 7 6 5 9 3 2 3 1 2 9 0 3 8 7 3 3 0 6
1 3 4 3 0 2 8 0 6 2 1 7 9 1 5 7 5 1 2 2 0
0 6 3 7 8 2 1 1 1 0 8 3 8 8 6 9 7 1 4 0 4
0 5 3 4 9 7 4 7 7 9 0 4 9 5 0 1 9 3 2 3 6
3 5 2 9 8 3 9 0 7 9 9 4 9 9 4 1 9 0 0 6 8
1 5 2 7 4 1 6 8 5 4 6 3 7 3 5 6 5 1 8 8 7
9 4 1 6 6 7 1 1 8 9 1 2 6 6 4 6 2 7 2 2 5
5 7 1 0 3 3 3 0 6 9 6 3 1 1 1 0 3 1 9 3 2
6 1 2 1 1 0 5 0 6 6 5 6 6 9 5 3 2 5 6 4 4
1 9 9 2 0 8 6 7 5 9 7 3 6 1 1 1 0 2 8 2 1
3 1 8 3 4 3 6 1 9 8 7 6 3 9 5 5 3 3 6 2 3
6 2 1 7 6 7 7 3 5 9 4 7 5 5 1 2 9 0 8 6 9
7 8 8 9 6 1 1 4 9 3 8 5 4 8 4 2 1 6 3 7 9
5 8 7 5 3 8 7 1 8 0 8 5 4 3 0 4 0 3 4 1 7

������� �� ������� ����������� ������� �������

Figure 8. (Color online) Symbol blocks M1, M2 of two [25×25] invariant 2-tori X1, X2,

with annular (encounter) domains R1 and R2 indicated in blue (bold). The symbols

are drawn randomly from the interior alphabet A0 for s = 13/2. The two blocks M1,

M2 are related by the permutation of symbol blocks over the interior domains A1,

A2 (red and green, respectively). Any [3 × 3] symbol block M[3×3] appears the same

number of times in both M1 and M2, and the two invariant 2-tori X1 and X2 shadow

each other at every point.

5.1. Partial shadowing

As the first application, we show in figure 6 two [L×T ] blocks M, M′ composed of

interior symbols mz ∈ A0, which coincide within a rectangular domain R ⊂ RLT. In

figure 7, we show the distances between the corresponding spatiotemporal states X, X′.

In agreement with the results of section 4.2, the distances between xz ∈ X and x′z ∈ X′

shrink exponentially as z approaches the center of the domain R. In other words, X

and X′ shadow each other within the domain R.

5.2. Full shadowing

The invariant 2-tori X and X′ of the above example shadow each other only partially -

outside of the subdomain R their points are not paired. On the other hand, it turns

out to be possible to find different invariant 2-tori solutions of (35) which shadow each

other at every point of RLT. Such solutions, referred as partners, play an important

role in the semiclassical treatment of the corresponding quantum problem, since their

action differences are small, see [27–29, 39, 45]. We briefly recall here the construction

of partner solutions in d = 2 setting, following [29].

Let {R1, . . . ,Rm}, Rj ⊂ R, be m non-overlapping domains obtained by spacetime

shifts (n, t)→ (n+ ni, t+ ti, ), i = 2, . . .m of a given domain R1,

Ri = SniT tiR1 , Ri ∩Rj = ∅ for i 6= j .
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Figure 9. (Color online) (left) Hamiltonian coordinate-momentum representation of

the two invariant 2-tori X1,X2 of figure 8. This Hamiltonian representation is explained

in Appendix B. (right) An enlargement of the square in (left). The small (red) circles

indicate points (q
(1)
z , p

(1)
z ) of X1. The large (green) circles correspond to the points

(q
(2)
z , p

(2)
z ) of X2. The solutions pair nearly perfectly, except for the points from the

encounter domains z ∈ R1 ∪R2, where some small deviations can be observed.

Examples of such domains (referred to as “m-encounters”) are given in figures 8 and 10.

Assume that the domain R1 has an annular shape with a non-empty interior A1, and

an exterior C1 = RLT \A1 ∪R1. We define the width ` of “annulus” R1 by determining

the largest [`× `] square domain R[`×`] that can fit into R1 i.e., R[`×`] that has no

simultaneous intersections with both the hole and the exterior. In other words, ` is the

maximum integer such that either A1∩R[`×`] = ∅, or C1∩R[`×`] = ∅, for any translation

of R[`×`]. All encounter domains Ri have the same width `, as they are translations of

each other.

Now, let block M ≡ M1 = {mz ∈ A0|z ∈ R} be a [L×T ] symbolic representation

of a spatiotemporal cat (35) invariant 2-torus state X ≡ X1, such that it contains the

same block of symbols over each of the subdomains R1, . . . ,Rm,

MR1 = MR2 = . . . = MRm ,

where MRi stands for the restriction of M to the domain Ri. Provided that the m

interior domains A1, . . . Am have different symbolic content, MAi 6= MAj for i 6= j,

we can generate m! distinct blocks Ma, a = 1, . . .m! by permuting symbol blocks MAi

over the domains A1, . . . Am. This leads to m! distinct invariant 2-tori X1, . . .Xm! whose

symbol blocks M1, . . .Mm! share the following property: each distinct [ ×̀̀ ] square symbol

block appears one and the same number of times in all Ma, a = 1, . . . ,m!, with ` being

the width of the encounter domains Ri. In other words, if a [`×`] symbol block M[`×`]

appears in M1 a number of times (or zero times), it must appear the same number of
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2 0 0 2 2 1 3 2 3 1 0 3 1 3 0 2 0 3 0 2 2 1 0 1 3 0 1 2 2 1 1 2 1
3 3 3 3 2 0 3 1 0 3 1 0 2 2 2 1 1 2 1 2 2 2 0 0 1 1 0 3 3 2 1 0 2
2 2 1 1 1 3 2 1 0 3 0 1 1 0 3 1 1 2 2 1 3 1 1 1 0 0 0 1 0 1 2 3 2
0 3 3 1 2 1 1 0 3 3 1 0 1 0 1 0 3 1 3 0 3 3 1 3 1 2 0 2 3 3 1 0 2
2 0 3 0 0 3 2 0 2 0 0 1 3 1 1 2 0 0 2 0 2 2 0 2 2 3 1 1 3 1 0 0 2
2 1 2 2 2 0 0 3 0 2 0 0 0 1 0 3 2 2 1 2 3 0 3 1 3 0 3 0 0 2 1 2 1
1 2 1 0 2 0 0 2 2 1 1 3 3 2 2 0 0 2 3 3 2 2 1 1 0 0 3 3 3 1 2 2 3
0 2 3 0 3 3 0 1 2 2 1 3 2 0 2 1 1 2 2 2 1 3 2 3 1 2 1 3 1 0 2 3 0
0 1 1 1 1 1 3 2 0 3 0 1 2 3 0 3 3 1 1 1 0 2 0 3 0 3 2 0 1 1 2 1 3
2 1 2 0 1 1 0 2 2 2 2 2 1 2 1 1 2 0 1 2 3 0 3 3 1 0 2 0 0 1 1 3 0
3 0 2 0 1 0 0 0 3 2 1 2 3 2 2 0 3 0 2 1 2 0 2 0 0 1 3 1 0 1 1 3 2
0 2 2 2 2 2 1 0 2 3 0 2 3 3 3 2 1 3 3 0 0 3 0 2 0 0 0 1 0 3 1 1 1
2 2 2 2 0 0 2 3 2 1 2 1 1 3 0 2 3 1 2 0 0 2 2 1 1 3 3 2 2 2 0 2 1
2 0 2 0 2 2 0 1 1 2 0 0 2 3 1 0 3 0 3 3 0 1 2 3 1 3 2 0 2 1 1 1 0
2 0 1 0 3 0 2 2 0 1 0 3 3 3 3 2 1 1 1 1 3 2 0 1 1 1 2 3 0 3 3 0 3
0 3 3 3 2 2 2 1 3 2 0 3 3 2 2 0 2 0 1 1 0 2 2 0 2 2 1 2 1 1 0 0 1
2 0 1 0 3 1 2 3 0 3 1 2 2 3 2 1 1 3 1 0 0 0 3 2 1 2 3 2 2 1 3 1 2
1 2 3 3 0 3 0 3 0 3 0 3 0 3 0 1 1 2 2 2 1 0 2 3 0 2 3 3 3 2 1 3 2
3 1 1 1 0 0 0 1 1 2 1 0 3 3 1 0 3 0 1 1 2 3 2 1 2 1 1 0 1 3 1 3 2
2 3 2 0 3 1 1 1 1 3 2 0 2 0 0 1 3 1 3 3 1 1 1 2 0 0 1 2 1 1 2 3 2
3 0 0 1 2 0 3 2 3 0 0 3 0 2 0 0 0 1 3 0 0 3 0 1 0 2 2 2 3 2 0 2 3
1 1 0 2 0 2 2 3 2 0 0 2 2 1 1 3 3 2 2 3 3 2 1 2 2 0 2 3 1 2 3 0 3
2 0 3 0 1 0 2 0 3 3 0 1 2 3 1 3 2 0 2 1 3 1 3 2 1 2 0 3 1 1 1 1 0
2 1 3 1 2 1 1 1 1 1 3 2 1 3 0 1 2 3 0 3 3 0 3 3 0 1 2 0 0 2 3 3 2
0 3 2 3 3 2 0 0 1 1 0 2 2 3 2 2 1 2 1 1 2 2 2 1 3 0 1 1 1 1 3 0 2
0 0 2 2 1 1 3 1 1 0 0 0 3 2 1 2 3 2 2 0 0 3 0 0 3 3 2 2 2 1 0 3 0
0 2 2 1 2 1 3 2 0 2 1 0 2 3 0 2 3 3 0 0 1 1 3 3 0 1 2 0 3 3 2 1 2
0 2 2 3 3 2 3 2 1 0 2 3 2 1 2 1 1 0 0 3 0 2 1 3 0 1 0 2 2 0 1 3 2
3 2 2 3 0 2 2 2 1 2 3 1 1 2 0 0 0 1 0 1 0 1 2 2 3 2 0 3 1 2 3 1 3
2 1 1 3 3 1 0 0 0 1 2 2 0 1 0 2 2 3 1 3 3 0 3 0 0 3 0 2 2 2 1 3 3
1 1 2 2 0 2 2 1 1 0 0 2 0 2 1 3 1 2 0 3 1 3 2 1 3 3 3 2 2 2 2 1 1
1 3 2 2 1 1 1 1 2 3 2 0 3 0 3 3 0 0 3 3 1 0 0 1 1 1 3 0 3 2 3 2 1
1 2 3 2 1 2 2 0 2 1 1 3 1 0 3 2 0 3 0 1 0 0 3 2 0 0 2 2 3 2 2 1 0
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2 0 0 2 2 1 3 2 3 1 0 3 1 3 0 2 0 3 0 2 2 1 0 1 3 0 1 2 2 1 1 2 1
3 3 3 3 2 0 3 1 0 3 1 0 2 2 2 1 1 2 1 2 2 2 0 0 1 1 0 3 3 2 1 0 2
2 2 1 1 1 3 2 1 0 3 0 1 1 0 3 1 1 2 2 1 3 1 1 1 0 0 0 1 0 1 2 3 2
0 3 3 1 2 1 1 0 3 3 1 0 1 0 1 0 3 1 3 0 3 3 1 3 1 2 0 2 3 3 1 0 2
2 0 3 0 0 3 2 0 2 0 0 1 3 1 1 2 0 0 2 0 2 2 0 2 2 3 1 1 3 1 0 0 2
2 1 2 2 2 0 0 3 0 2 0 0 0 1 0 3 2 2 1 2 3 0 3 1 3 0 3 0 0 2 1 2 1
1 2 1 0 2 0 0 2 2 1 1 3 3 2 2 0 0 2 3 3 2 2 1 1 0 0 3 3 3 1 2 2 3
0 2 3 0 3 3 0 1 2 3 1 3 2 0 2 1 1 2 2 2 1 3 2 3 1 2 1 3 1 0 2 3 0
0 1 1 1 1 1 3 2 0 1 1 1 2 3 0 3 3 1 1 1 0 2 0 3 0 3 2 0 1 1 2 1 3
2 1 2 0 1 1 0 2 2 0 2 2 1 2 1 1 2 0 1 2 3 0 3 3 1 0 2 0 0 1 1 3 0
3 0 2 0 1 0 0 0 3 2 1 2 3 2 2 0 3 0 2 1 2 0 2 0 0 1 3 1 0 1 1 3 2
0 2 2 2 2 2 1 0 2 3 0 2 3 3 3 2 1 3 3 0 0 3 0 2 0 0 0 1 0 3 1 1 1
2 2 2 2 0 0 2 3 2 1 2 1 1 3 0 2 3 1 2 0 0 2 2 1 1 3 3 2 2 2 0 2 1
2 0 2 0 2 2 0 1 1 2 0 0 2 3 1 0 3 0 3 3 0 1 2 3 1 3 2 0 2 1 1 1 0
2 0 1 0 3 0 2 2 0 1 0 3 3 3 3 2 1 1 1 1 3 2 1 3 0 1 2 3 0 3 3 0 3
0 3 3 3 2 2 2 1 3 2 0 3 3 2 2 0 2 0 1 1 0 2 2 3 2 2 1 2 1 1 0 0 1
2 0 1 0 3 1 2 3 0 3 1 2 2 3 2 1 1 3 1 0 0 0 3 2 1 2 3 2 2 1 3 1 2
1 2 3 3 0 3 0 3 0 3 0 3 0 3 0 1 1 2 2 2 1 0 2 3 0 2 3 3 3 2 1 3 2
3 1 1 1 0 0 0 1 1 2 1 0 3 3 1 0 3 0 1 1 2 3 2 1 2 1 1 0 1 3 1 3 2
2 3 2 0 3 1 1 1 1 3 2 0 2 0 0 1 3 1 3 3 1 1 1 2 0 0 1 2 1 1 2 3 2
3 0 0 1 2 0 3 2 3 0 0 3 0 2 0 0 0 1 3 0 0 3 0 1 0 2 2 2 3 2 0 2 3
1 1 0 2 0 2 2 3 2 0 0 2 2 1 1 3 3 2 2 3 3 2 1 2 2 0 2 3 1 2 3 0 3
2 0 3 0 1 0 2 0 3 3 0 1 2 2 1 3 2 0 2 1 3 1 3 2 1 2 0 3 1 1 1 1 0
2 1 3 1 2 1 1 1 1 1 3 2 0 3 0 1 2 3 0 3 3 0 3 3 0 1 2 0 0 2 3 3 2
0 3 2 3 3 2 0 0 1 1 0 2 2 2 2 2 1 2 1 1 2 2 2 1 3 0 1 1 1 1 3 0 2
0 0 2 2 1 1 3 1 1 0 0 0 3 2 1 2 3 2 2 0 0 3 0 0 3 3 2 2 2 1 0 3 0
0 2 2 1 2 1 3 2 0 2 1 0 2 3 0 2 3 3 0 0 1 1 3 3 0 1 2 0 3 3 2 1 2
0 2 2 3 3 2 3 2 1 0 2 3 2 1 2 1 1 0 0 3 0 2 1 3 0 1 0 2 2 0 1 3 2
3 2 2 3 0 2 2 2 1 2 3 1 1 2 0 0 0 1 0 1 0 1 2 2 3 2 0 3 1 2 3 1 3
2 1 1 3 3 1 0 0 0 1 2 2 0 1 0 2 2 3 1 3 3 0 3 0 0 3 0 2 2 2 1 3 3
1 1 2 2 0 2 2 1 1 0 0 2 0 2 1 3 1 2 0 3 1 3 2 1 3 3 3 2 2 2 2 1 1
1 3 2 2 1 1 1 1 2 3 2 0 3 0 3 3 0 0 3 3 1 0 0 1 1 1 3 0 3 2 3 2 1
1 2 3 2 1 2 2 0 2 1 1 3 1 0 3 2 0 3 0 1 0 0 3 2 0 0 2 2 3 2 2 1 0
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2 0 0 2 2 1 3 2 3 1 0 3 1 3 0 2 0 3 0 2 2 1 0 1 3 0 1 2 2 1 1 2 1
3 3 3 3 2 0 3 1 0 3 1 0 2 2 2 1 1 2 1 2 2 2 0 0 1 1 0 3 3 2 1 0 2
2 2 1 1 1 3 2 1 0 3 0 1 1 0 3 1 1 2 2 1 3 1 1 1 0 0 0 1 0 1 2 3 2
0 3 3 1 2 1 1 0 3 3 1 0 1 0 1 0 3 1 3 0 3 3 1 3 1 2 0 2 3 3 1 0 2
2 0 3 0 0 3 2 0 2 0 0 1 3 1 1 2 0 0 2 0 2 2 0 2 2 3 1 1 3 1 0 0 2
2 1 2 2 2 0 0 3 0 2 0 0 0 1 0 3 2 2 1 2 3 0 3 1 3 0 3 0 0 2 1 2 1
1 2 1 0 2 0 0 2 2 1 1 3 3 2 2 0 0 2 3 3 2 2 1 1 0 0 3 3 3 1 2 2 3
0 2 3 0 3 3 0 1 2 3 1 3 2 0 2 1 1 2 2 2 1 3 2 3 1 2 1 3 1 0 2 3 0
0 1 1 1 1 1 3 2 1 3 0 1 2 3 0 3 3 1 1 1 0 2 0 3 0 3 2 0 1 1 2 1 3
2 1 2 0 1 1 0 2 2 3 2 2 1 2 1 1 2 0 1 2 3 0 3 3 1 0 2 0 0 1 1 3 0
3 0 2 0 1 0 0 0 3 2 1 2 3 2 2 0 3 0 2 1 2 0 2 0 0 1 3 1 0 1 1 3 2
0 2 2 2 2 2 1 0 2 3 0 2 3 3 3 2 1 3 3 0 0 3 0 2 0 0 0 1 0 3 1 1 1
2 2 2 2 0 0 2 3 2 1 2 1 1 3 0 2 3 1 2 0 0 2 2 1 1 3 3 2 2 2 0 2 1
2 0 2 0 2 2 0 1 1 2 0 0 2 3 1 0 3 0 3 3 0 1 2 2 1 3 2 0 2 1 1 1 0
2 0 1 0 3 0 2 2 0 1 0 3 3 3 3 2 1 1 1 1 3 2 0 3 0 1 2 3 0 3 3 0 3
0 3 3 3 2 2 2 1 3 2 0 3 3 2 2 0 2 0 1 1 0 2 2 2 2 2 1 2 1 1 0 0 1
2 0 1 0 3 1 2 3 0 3 1 2 2 3 2 1 1 3 1 0 0 0 3 2 1 2 3 2 2 1 3 1 2
1 2 3 3 0 3 0 3 0 3 0 3 0 3 0 1 1 2 2 2 1 0 2 3 0 2 3 3 3 2 1 3 2
3 1 1 1 0 0 0 1 1 2 1 0 3 3 1 0 3 0 1 1 2 3 2 1 2 1 1 0 1 3 1 3 2
2 3 2 0 3 1 1 1 1 3 2 0 2 0 0 1 3 1 3 3 1 1 1 2 0 0 1 2 1 1 2 3 2
3 0 0 1 2 0 3 2 3 0 0 3 0 2 0 0 0 1 3 0 0 3 0 1 0 2 2 2 3 2 0 2 3
1 1 0 2 0 2 2 3 2 0 0 2 2 1 1 3 3 2 2 3 3 2 1 2 2 0 2 3 1 2 3 0 3
2 0 3 0 1 0 2 0 3 3 0 1 2 3 1 3 2 0 2 1 3 1 3 2 1 2 0 3 1 1 1 1 0
2 1 3 1 2 1 1 1 1 1 3 2 0 1 1 1 2 3 0 3 3 0 3 3 0 1 2 0 0 2 3 3 2
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1 2 3 2 1 2 2 0 2 1 1 3 1 0 3 2 0 3 0 1 0 0 3 2 0 0 2 2 3 2 2 1 0
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Figure 10. (Color online) Symbol blocks M1,M2,M3 of three [33 × 33] invariant

2-tori X1,X2,X3, with the 3-encounter diamond-shaped domains R1,R2,R3 indicated

in blue (bold). The symbols are drawn randomly from the interior alphabet A0 for

s = 7/2. M1 → M2 → M3 are related by the cyclic permutation of the symbol blocks

within the interior domains (red, green, light blue). Any distinct [4×4] symbol block

M[4×4] appears the same number of times in each invariant 2-torus (or not at all).

times in the encoding Ma of any other invariant 2-torus Xa, a 6= 1.

By the shadowing property, this in turn implies that all X1, . . .Xm! pass through

approximately the same points of the state space but in a different spatiotemporal

‘order’. The degree of their closeness is controlled by the parameter `. The larger ` is,

the closer two different Xa, Xb come to each other in the state space. In figures 9 and 11

we illustrate these pairings for families of invariant 2-torus solutions which symbolic

representations are shown in figures 8 and 10, respectively.

6. Summary and discussion

In this paper, we have analyzed the spatiotemporal cat (4) linear encoding. We now

summarize our main findings.
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Figure 11. (Color online) (left) Hamiltonian coordinate-momentum representation

(q
(i)
z , p

(i)
z ), i = 1, 2, 3 of the three invariant 2-tori Xi, i = 1, 2, 3 of figure 10, shown as

centers of the green, red and blue circles. (right) An enlargement of the (left) state

space. Note that the three invariant 2-tori Xi form almost perfect triplets except for

the points from the encounter domains, z ∈ R1 ∪R2 ∪R3 where some deviations can

be observed.

The finite alphabet of symbols A encoding system’s dynamics has been shown to

split into interior A0 and exterior A1 parts, where only symbolic blocks containing

external symbols require non-trivial grammar rules. Blocks composed of only interior

symbols are admissible and attain one and the same measure for a given domain R.

Furthermore, the measure of a general block factorizes into product of a constant factor

dR and the geometric one |PR| which can be interpreted as a volume of certain type

of polytope in the Euclidean space whose dimension is determined by the length of the

boundary of R. While dR is fixed by R, |PR| depends on the symbolic content and

attains maximum value 1 for blocks of interior symbols. In addition, it has been shown

that a local block of symbols determines approximate positions of the corresponding

state space points within an error decreasing exponentially with the size of the block.

The number of letters, 2s − 3, of the interior alphabet A0 grows linearly with the

increasing stretching parameter s, while the exterior alphabet A1 always consists of the

6 letters. In the limit of large s, the blocks of a finite size affected by the exterior letter

pruning rules can be neglected, as their total measure tends to zero. This implies that

as s grows, the dynamics of the spatiotemporal cat map approaches a Bernoulli process.

In particular, by (C.3) the ratio between the metric entropy hµ of the spatiotemporal

cat and the topological entropy log(2s − 3) of the full (2s−3)-shift converges to 1, as

s→∞.

As an application of these results we have constructed several examples of partner

invariant 2-tori composed of interior symbols which visit the same regions in the state
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space, but in different spatiotemporal “orders”. Such invariant 2-tori shadowing each

other are expected to play an important role in the semiclassical treatment of the

corresponding quantum models.

6.1. Discussion and future directions

Remarkably, as far as the linear encoding is concerned, the above results hold both for

the cat map and its coupled lattice generalization. In both cases, the proofs rely only

upon ellipticity of the operator � and the linearity of the equations. It is very plausible

that the same results hold for the lattices Zd of an arbitrary dimension d. Indeed, the

companion paper [18] makes claim that its periodic orbit theory formulation applies to

spatiotemporal cat in any dimension. Furthermore, the restriction to the integer valued

matrices in the definitions of maps appears unnecessary. Cat map is a smooth version

of the sawtooth map, defined by the same equation (16), but for a real (not necessarily

integer) value of s. The linear encoding for the saw map has been analyzed in [40] and

its extension to a coupled Zd model along the lines of the present paper seems to be

straightforward. Also, in the current paper we stuck to the Laplacian form of �. Again

this seems to be too restrictive and extension to other elliptic operators of higher order

should be possible. Such operators necessarily appear within the models with higher

range of interactions.

A physically necessary extension of current setting would be addition of an external

periodic potential V to (4), rendering this a nonlinear problem,

(�− d(s− 2) + V ′(xz))xz = mz, z ∈ Zd . (55)

As long as the perturbation V is sufficiently weak, this lattice map can be conjugated

to the linear spatiotemporal cat, with V = 0. This approach has been used in [29] to

construct partner invariant 2-tori for perturbed cat map lattices. On the other hand,

for a sufficiently strong perturbation, such a conjugation to linear system is no longer

possible. Also, let us note that the lattice models like (55) can be seen as discretized

versions of PDEs arising from the Hamiltonian field theories. In this respect, it would

be of interest to study whether our results can be extended to the continuous, PDE

setting.

Finally, there are many intriguing open questions about the quantum properties

of spatiotemporal cats. Starting with the work of Hannay and Berry [30], quantum

cat maps have provided deep insights into “single particle” quantum chaos, see e.g.

[16, 19, 34, 35, 49]. In the same spirit, quantization of the spatiotemporal cat could

serve as an inspiring model for “many-body” quantum chaos [1–3, 29]. One of its most

striking features is the dynamical self-duality, with spatial and temporal evolutions

being completely equivalent. Due to their remarkable features, quantum lattice models

with such properties are currently attracting much interest. Such self-dual models

exhibit properties of “maximally-chaotic” quantum systems [4, 6, 11], and yet turn out

to be exactly solvable at the thermodynamical limit, with correlations between local

operators [8], the local-operator entanglement [9, 15, 26], and the time evolution of the
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entanglement entropies [7, 25] exactly calculable. It would be interesting to investigate

whether similar results can be established for the spatiotemporal cat map.
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Appendix A. Lattice Green’s functions

Appendix A.1. Green’s function for 1-dimensional lattice

Consider the cat map equation (16) with a delta function source term

(−� + s− 2)gij = δij, i, j ∈ Z1 . (A.1)

The corresponding free, infinite lattice Green’s function gij = gi−j,0 is given by [38, 40]

gt0 =
1

π

∫ π

0

cos(tx)

s− 2 cosx
dx = Λ−|t|/(Λ− Λ−1) , (A.2)

with s = Λ + Λ−1, Λ > 1, as may be verified by substitution.

Dirichlet boundary conditions: In this case the Green’s function g satisfies (A.1), but,

in addition, is subject to the Dirichlet boundary conditions:

g0j = gi0 = g`+1,j = gi,`+1 = 0 .

It is possible to determine g in two different ways. The first one is to use the fact

that gij = (D−1)ij, where D is tridiagonal [`×`] matrix

D =


s −1 0 0 . . . 0 0

−1 s −1 0 . . . 0 0

0 −1 s −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . −1 s

 .

Since D is of a tridiagonal form, its inverse can be found explicitly.

An alternative way to evaluate gij is to use the free Green’s function (A.2) and take

anti-periodic sum (similar method can be used for periodic and Neumann boundary

conditions)

gij =
∞∑

n=−∞

gi,j+2n(`+1) − gi,−j+2n(`+1).

This approach has an advantage of being easily extendable to Z2 case. After substituting

g and taking the sum one obtains

gij =

Ui−1(s/2)U`−j(s/2)

U`(s/2)
for i ≤ j

Uj−1(s/2)U`−i(s/2)

U`(s/2)
for i > j.

, (A.3)
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where Un(s/2) = sinh(n+1)λ
sinhλ

are Chebyshev polynomials of the second kind, and eλ = Λ.

Note that the Green’s function is strictly positive for both boundary conditions.

Appendix A.2. Green’s function for 2-dimensional square lattice

The free Green’s function g(z, z′) ≡ g(z − z′, 0) ≡ gzz′ solves the equation

(−� + 2s− 4)gzz′ = δzz′ , z = (n, t) ∈ Z2 . (A.4)

The solution is given by the double integral [37]

gz0 =
1

2π2

∫ π

0

∫ π

0

cos(nx) cos(ty)

s− cosx− cos y
dxdy , (A.5)

which, in turn, can be recast into single integral form,

gz0 =
1

2π3

∫ +∞

−∞
dη

∫ π

0

∫ π

0

cos(nx) cos(ty)

(s− 2 cosx− iη)(s− 2 cos y + iη)
dxdy

=
1

2π

∫ +∞

−∞
dη
L(η)−nL∗(η)−t

|L(η)− L(η)−1|2
, (A.6)

where

L(η) + L(η)−1 = s+ iη, |L(η)| > 1 . (A.7)

The above equation can be thought as the integral over a product of two Z1

functions:

gz0 =
1

2π

∫ +∞

−∞
dη gn0(s+ iη)gt0(s− iη) . (A.8)

An alternative representation is given by modified Bessel functions In(x) of the first

kind [37]:

gz0 =

∫ +∞

0

dη e−sη/2In(η)It(η) , (A.9)

which demonstrates that gzz′ is positive for all z = (n, t). The representation (A.9)

enables explicit evaluation of the n = t diagonal elements in terms of a Legendre

function,

gz0 =
1

2πi
Qn−1/2(s2/2− 1), s2/2− 1 > 1, z = (n, n) .

Dirichlet boundary conditions. Consider next the Green’s function gzz′ which satisfies

(A.4) within the rectangular domain R = {(n, t) ∈ Z2|1 ≤ n ≤ `1, 1 ≤ t ≤ `2} and

vanishes at its boundary ∂R, see figure 4(a). By applying the same method as in the

case of 1-dimensional lattices we get

gzz′ =
+∞∑

j1,j2=−∞

gn−n′+2j1(`1+1),t−t′+2j2(`2+1) + gn+n′+2j1(`1+1),t+t′+2j2(`2+1)

− gn−n′+2j1(`1+1),t+t′+2j2(`2+1) − gn+n′+2j1(`1+1),t−t′+2j2(`2+1) ,
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where gzz′ is the free Green’s function (A.5). Substituting (A.8) yields the

spatiotemporal Green’s function as a convolution of the two 1-dimensional Green’s

functions (A.3)

gzz′ =
1

2π

∫ +∞

−∞
dη gnn′(s+ iη)gtt′(s− iη) . (A.10)

Exponential decay of Green’s function. From (A.10) we have a bound on the magnitude

of the Green’s function,

|gzz′| ≤
1

2π

∫ +∞

−∞
dη |gnn′(s+ iη)| |gtt′(s− iη)| =

=

∫ +∞

−∞

dη

2π

(
|L|−|n−n′+1||L|−|t−t′+1|

|L − L−1|2

)(
KnK`1−n′+1KtK`2−t′+1

K`1K`2

)
, (A.11)

where L(η) is the root of the equation (A.7) with the largest absolute value, and

Kj(η) = |1− L(η)−2j|, j = 1, 2, . . . .

We now show that the first factor in the integrand of (A.11) decays exponentially with

increasing n−n′, t−t′, while the second one is bounded by a constant, and consequently

the Green’s function gzz′ decays exponentially with increasing spatiotemporal distance

between lattice points z and z′.

By (A.7) we have

|L(η)− L(η)−1|2 = |(s+ iη)2 − 4| .

A lower bound on |L(η)| follows from the observation that for s > 2 the minimum of

|L(η)| is achieved at η = 0. Indeed, from the identity(
s

|L(η)|+ |L(η)|−1

)2

+

(
η

|L(η)| − |L(η)|−1

)2

= 1

we obtain

s/2

|L(η)|+ |L(η)|−1
≤ 1,

which, in turn, implies

|L(η)| ≥ L(0) = eν > 1, cosh ν = s/2 . (A.12)

The lower and upper bounds on functions Kj(η) follow,

2 > 1 + |L(η)−2j| ≥ Kj(η) ≥ 1− |L(η)−2j| > 1− e−2ν . (A.13)

Inserting (A.13), (A.12) into (A.11) yields

|gzz′ | < C exp(ν|n− n′|+ ν|t− t′|) , (A.14)

where

C =

(
2

sinh ν

)2 ∫ +∞

−∞

dη

2π
|(s+ iη)2 − 4| . (A.15)
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Appendix A.3. Lattice Green’s identity

Consider

(−� + (s− 2)d)x(z) = m(z) , (A.16)

where x(z), m(z) are C2 functions of continuous coordinates z ∈ Rd. For s < 2

this is the inhomogeneous Helmholtz equation, whose general solution is a sum of

complex exponentials. For s > 2, the case studied here, the equation is known as

the screened Poisson equation [23], or Yukawa equation, whose general solution is a sum

of exponentials.

Let g(z, z′), z, z′ ∈ R be the corresponding Green’s function on a bounded, simply

connected domain R ⊂ Rd,

(−� + (s− 2)d) g(z, z′) = δ(d)(z − z′), (A.17)

satisfying some boundary condition (e.g., periodic, Dirichlet or Neumann) at ∂R. The

Green’s function identity allows us to connect the values of xz inside of R with the ones

attained at the boundary:

x(z) =

∫
R
g(z, z′)m(z′)dz′

−
∫
∂R
∇n g(z, z′′)x(z′′) dz′′ +

∫
∂R
∇n x(z′′)g(z, z′′) dz′′ . (A.18)

The analogous theorem holds in the discrete setting as well. For the sake of simplicity,

we will restrict our considerations to d = 1, 2.

1-dimensional lattice. Let gtt′ be a Green’s function on Z1 satisfying (A.1) and some

boundary condition at the end points 0, `+ 1. To prove Green’s theorem for a solution

xt of (16) we multiply each side of this equation by gtt′ and sum up over the index t

running from 1 to `. In a similar way, the two sides of (A.1) can be multiplied with xt
and summed up over the same interval. After subtraction of two equations, we obtain

xt =
∑̀
t′=1

mt′gt′t − x`g`+1,t + x0g1t − x1g0t + x`+1g`t,

=
∑̀
t′=1

mt′gt′t − x`∂ng`t − x1∂ng1t + ∂x1g1t + ∂x`g`t,

with ∂nφ` := φ`+1−φ`, ∂nφ1 := φ0−φ1 being the normal derivatives at the two boundary

points. This equation is of the exactly same form as (A.18). For the Green’s function g

with the Dirichlet boundary condition it simplifies further to:

xt =
∑̀
t′=1

mt′gt′t + x0g1t + x`+1g`t . (A.19)

2-dimensional lattice. Let xz be a solution of (35) within a domain R. After

multiplication of two sides of (35) with the Green’s function satisfying (A.4) and

summing up over the domain R we get∑
z′∈R

gzz′

(
4∑
i=1

xz′+ei − 2sxz′

)
=
∑
z′∈R

gzz′mz′ ,
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with e1,2 = (0,±1), e3,4 = (±1, 0) being the four vectors connecting the neighboring sites

of the lattice. In the same way, we obtain from (A.4)∑
z′∈R

xz′

(
4∑
i=1

gz+ei,z′ − 2sgzz′

)
=
∑
z′∈R

δzz′xz′ = −xz .

The subtraction of two equations yields

xz =
∑
z′∈R

gzz′mz′ −
∑
z′′∈∂R

∇ngzz′′xz′′ +
∑
z′′∈∂R

∇nxz′′gzz′′ , (A.20)

with ∇nφz :=
∑

ei /∈R φz+ei − φz. For a Green’s function satisfying Dirichlet boundary

conditions, (A.20) can be simplified further, as illustrated by:

Example: Rectangular domain. Given a rectangular domain R = R[`1×`2], let gzz′′

be the corresponding Dirichlet Green’s function vanishing at the boundary ∂R. Since

gzz′′ = 0 for all z′′ ∈ ∂R, equation (A.20) can be written down in the following form

xz =
∑
z′∈R

gzz′mz′ +
∑
z′′∈∂R

gzz̄′′xz′′ , (A.21)

where z̄′′ ∈ R is a point of R, adjacent to z′′ ∈ ∂R, see figure 4(a). Note that the

rectangular corners are associated with two points of the boundary ∂R. Otherwise, the

relationship between z̄′′ and z′′ is one-to-one.

Appendix B. Spatiotemporal cat, Hamiltonian formulation

The Hamiltonian setup of the spatiotemporal cat (35) is discussed in detail in [29]. In

this paper, we use it to generate spatiotemporally chaotic patterns by time evolution of

random initial conditions on a cylinder infinite in time direction, but L-periodic in the

space direction.

In one spatial dimension the momentum field at the lattice site (n’th “particle”) qn
is given by pnt = xnt − xn,t−1 , and the Hamiltonian cat map (13) at each lattice site is

coupled to its nearest neighbors by

xn,t+1 = pnt − xn+1,t + a xnt − xn−1,t −mx
n,t+1

pn,t+1 = bpnt + (ab− 1)xnt − b (xn+1,t + xn−1,t)−mp
n,t+1 , (B.1)

where (xnt, pnt) are the coordinate and momentum of the n’th “particle” at the

discrete time t, and mx
nt,m

p
nt are the corresponding winding numbers necessary to

bring (xn,t+1, pn,t+1) to the unit interval. As for the cat map, integers a and b are

arbitrary; the Lagrangian form (3) of the map only depends on their sum 2s = a + b.

Hamiltonian winding numbers [29] are connected to the Lagrangian ones by mnt =

−bmx
nt +mx

n,t+1 −m
p
nt.

In the Hamiltonian setup, the d = 2 spatiotemporal cat is thus viewed as a Z1

chain of linearly coupled cat maps acting on the state space V , a direct product of the

2-dimensional tori V = ⊗nT2
n, n ∈ Z1. Each torus T2

n is equipped with the state space

coordinate pair (xn, pn) ∈ (0, 1]× (0, 1] corresponding to the position and momentum of
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the n’th “particle”. The law of time evolution (B.1) is time as well as space translation

invariant under shifts T and S, respectively. Along with the infinite chain, in figures 9

and 11 we use the spatial finite setup, with L Hamiltonian cat maps coupled cyclically,

and (B.1) subject to the periodic boundary conditions (xn, pn) = (xn+L, pn+L). This

defines a linear map VL → VL on the 2L-dimensional state space VL = ⊗Ln=1T2
n:

Zt+1 = BLZt mod 1 , Zt = (x1,t, p1,t, . . . xL,t, pL,t)
T , (B.2)

where Zt ∈ VL, and BL is the [2L×2L] matrix

BL =



A B 0 . . . 0 B

B A B . . . 0 0

0 B A . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . A B

B 0 0 . . . B A


,

A =

(
a 1

ab− 1 b

)

B = −

(
1 0

b 0

) .

The spectrum of the Lyapunov exponents (linear stability of the Hamiltonian

spatiotemporal cat (B.1), posed as t = 0 initial problem, evolving in time) is given

by the BL eigenvalues (see eq. (3.6) of [29]):

Λk + Λ−1
k = 2s− 2 cos(2πk/L), k = 1, . . . L , (B.3)

2s = a + b ∈ Z. Accordingly, the map is fully hyperbolic iff |s| > 2, with all Lyapunov

exponents λ±k = ± log |Λk| paired as λ+
k = −λ−k , λ+

k > 0, for all k. Since the matrix BL is

symplectic, the map (B.2) preserves the measure dµL =
∏L

i=1 dxidpi on VL. In the limit

L → ∞, µL induces the corresponding measure µ on V , invariant under both discrete

time evolution and discrete spatial lattice translations.

Appendix C. Metric entropy

Since the Lyapunov exponents of spatiotemporal cat are known explicitly for any finite

lattice, its metric entropy is known exactly, through the Pesin entropy formula [42]. On

the other hand, the metric entropy can be represented through sums of symbol blocks

MR measures in the limit of growing domain size |R|. As we show below, this connection

can be used to extract the asymptotics of the Jacobian d(R) which, in turn, provides

the maximum of measures for symbol blocks in a given domain R.

Appendix C.1. Cat map entropy

Given measures µ(b) of blocks b of an arbitrary finite length |b| = ` one can estimate

observables of the dynamical system with increasing precision as ` grows. In the

following we apply this to estimation of the metric entropy of the cat map.

The metric entropy of the cat map with respect to measure µ can be represented

as the limit

hµ = lim
`→∞

h`, (C.1)
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Figure C1. Geometric, h1` , and interior, h0` , parts of entropy vs. the length ` of a cat

map symbol block for (a), (c) s = 3, and (b), (d) s = 4. The interior part of entropy

h0` converges to the exact value of the metric entropy, which is ln(3 +
√

5)/2 for s = 3

and ln(2 +
√

3) for s = 4, respectively. The geometric part h1` converges to 0.

where

h` = −1

`

∑
|b|=`

µ(b) log µ(b) .

By using the decomposition (27), h` can be split as h` = h1
` + h0

` into “geometric” and

“internal” parts:

h1
` = −

∑
|b|=` |Pb| log |Pb|
`
∑
|b|=` |Pb|

, h0
` = −1

`
log d` =

1

`
logU`(s/2) .

The “interior” part h0
` converges to log Λ with the rate O(1/`). Since hµ = log Λ, the

cat map metric entropy [46], the geometrical part must vanish, lim`→∞ h
1
` = 0. We

illustrate this numerically for several values of s in figure C1. In other words, metric

entropy is determined solely by the asymptotics of the Jacobian d`.

Appendix C.2. Spatiotemporal cat entropy

By the linearity of the spatiotemporal cat automorphism, every spatiotemporal cat [L×T]

invariant 2-torus has the same spectrum of the Lyapunov exponents λk, k = 1, . . . , 2L,

given by the eigenvalues (B.3) Λk = eλk of the matrix BL.

Accordingly, the map is fully hyperbolic iff 2s = a+ b > 4. In this case all solutions

of (B.3) are paired such that λ+
k = −λ−k and λ+

k > 0 for all k. The metric entropy of ΦL
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for a finite L is given by the sum of all positive exponents:

h(ΦL) =
L∑
k=1

λ+
k .

For the infinite lattice the corresponding spatiotemporal entropy of Φ with respect to

µ is given by the limit hµ(Φ) = limL→∞
1
L
h(ΦL). Alternative, more convenient way to

evaluate hµ(Φ) is to use numbers NLT of periodic tori with spatial-temporal periods

L, T, see [18, 29]. For the linear hyperbolic automorphisms the topological and metric

entropies coincide, leading to

hµ(Φ) = lim
L,T→∞

1

LT
logNLT

= lim
L,T→∞

1

LT
log det(I − BTL) = lim

L,T→∞

1

LT
log det(I − BLT ) . (C.2)

This yields a closed formula:

hµ(Φ) =
1

π2

∫ π

0

∫ π

0

dx dy log(2s− 4 + 4 sin2 x+ 4 sin2 y) . (C.3)

Recall that for the (temporal) cat map the constant d(R) was given explicitly by

(31). In the case of spatiotemporal cat we were unable to derive any explicit formula

for d(R). On the other hand, by the same argument as in the cat map case, in the large

domain R limit the asymptotics of d(R) is determined by the metric entropy,

− lim
|R|→∞

1

|R|
log d(R) = hµ ,

where hµ is the spatiotemporal metric entropy (C.3) of the spatiotemporal cat.

Therefore, asymptotically we expect

d(R) ∼ e−|R|hµ . (C.4)
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