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1 what this chapter is about
knowing when to stop

2 deterministic partitions
idea #1: partition by periodic points

3 dynamicist’s view of noise
idea #2: evolve densities, not noisy trajectories
idea #3: for unstable directions, look back

4 optimal partition hypothesis



dynamical theory of turbulence?

dynamics of high-dimensional flows - open questions
is the dynamics like what we know from low dimensional
systems?

describe the attracting ‘inertial manifold’ for Navier-Stokes?



knowing when to stop

computation of unstable periodic orbits in high-dimensional
state spaces, such as Navier-Stokes,

is at the border of what is feasible numerically, and criteria to
identify finite sets of the most important solutions are very
much needed.

when are we to stop calculating these solutions?



knowing when to stop

need the 3D velocity field at every (x , y , z)!

motions of fluids : require∞ bits?

numerical simulations track 102 - 106 of computational degrees
of freedom; terabytes of data, but how much information is
there in all of this?



knowing when to stop

motions of fluids : require∞ bits??

that cannot be right...



knowing when to stop

Science originates from curiosity and bad eyesight.
— Bernard de Fontenelle,

Entretiens sur la Pluralité des Mondes Habités

in practice
every physical problem is coarse partitioned and finite



noise rules the state space

any physical system experiences (some kind of) noise
any numerical computation is ‘noisy’
any prediction only needs a desired finite accuracy



deterministic partition

state space coarse partition

M =M0 ∪M1 ∪M2
ternary alphabet
A = {1,2,3}.

1-step memory refinement

01

12

22

02

00

20

21

11
10

Mi =Mi0 ∪Mi1 ∪Mi2
labeled by nine ‘words’
{00,01,02, · · · ,21,22}.



noise limited state space partitions

noise limited cell

a resolvable neighborhood is
no smaller than a ball whose
radius is the noise amplitude

noise limited partition grid

state space noise-partitioned
into neighborhoods indicated
by their centers



deterministic, idealized state space

a manifoldM∈ Rd : d real numbers determine the state of the
system x ∈M

noise-limited state space
a ‘grid’M′ : N discrete states of the system a ∈M′, one for
each noise covariance ellipsoid ∆a



dynamics + noise: unique coarse-grained partition

reasonable to assume that the noise
limits the resolution
that can be attained in partitioning the state space



dynamics + noise: unique coarse-grained partition

reasonable to assume that the noise
is uniform,
leading to a uniform grid partition of the state space



dynamics + noise: unique coarse-grained partition

reasonable to assume that the noise
is uniform,
leading to a uniform grid partition of the state space

in dynamics, this is wrong!
noise has memory



dynamics + noise: unique coarse-grained partition

noise memory
accumulated noise along dynamical trajectories
always coarsens the partition nonuniformly



dynamics + noise: unique coarse-grained partition

noise memory
accumulated noise along dynamical trajectories
always coarsens the partition nonuniformly

that is good, because

dynamics + noise determine

the finest attainable partition



the challenge

turbulence.zip

or ‘equation assisted’ data compression:
replace the∞ of turbulent videos by the best possible

small finite set

of videos encoding all physically distinct motions of the
turbulent fluid



dynamical system

state space

a manifoldM∈ Rd : d numbers determine the state of the
system

representative point
x(t) ∈M
a state of physical system at instant in time



dynamics

map f t (x0) = representative point time t later

evolution in time
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deterministic dynamics

dynamical system
the pair (M, f )

the problem
enumerate, classify all solutions of (M, f )



deterministic partition into regions of similar states

1-step memory partition

M =M0 ∪M1 ∪M2
ternary alphabet
A = {1,2,3}.

2-step memory refinement

01

12

22

02

00

20

21

11
10

Mi =Mi0 ∪Mi1 ∪Mi2
labeled by nine ‘words’
{00,01,02, · · · ,21,22}.



deterministic partitions are no good

deterministic dynamics: partitioning can be arbitrarily fine
requires exponential # of exponentially small regions

|

|
|



deterministic partitions are no good

deterministic dynamics: partitioning can be arbitrarily fine
requires exponential # of exponentially small regions

yet

in practice
every physical problem must be coarse partitioned



deterministic vs. noisy partitions

01

12

22

02

00

20

21

11
10

deterministic partition

can be refined
ad infinitum

01

12

21

22

20

02

00

10

11

noise blurs the boundaries

when overlapping, no further
refinement of partition



periodic points instead of boundaries

mhm, do not know how to compute boundaries...
however, each partition contains a short periodic point
smeared into a ‘cigar’ by noise



periodic points instead of boundaries

each partition contains a short periodic point smeared into
a ‘cigar’ by noise

compute the size of a noisy periodic point neighborhood!



periodic orbit partition

deterministic partition

01

12

21

22

20

02

00
10

11 1

some short periodic points:
fixed point 1 = {x1}
two-cycle 01 = {x01, x10}

noisy partition

10
101

periodic points blurred by the
noise into cigar-shaped
densities



successive refinements of a deterministic partition:
exponentially shrinking neighborhoods
as the periods of periodic orbits increase, the diffusion
always wins:

partition stops at the finest attainable partition, beyond which
the diffusive smearing exceeds the size of any deterministic
subpartition.



the local diffusion rate differs from a trajectory to a
trajectory, as different neighborhoods merge at different
times, so

there is no one single time beyond which noise takes over



noisy dynamics

stochastic dynamical system
the triple (M, f ,∆)

where ∆(x) is the noise covariance matrix

the problem
enumerate, classify all solutions of (M, f ,∆)

i.e., partitionM' ∪Qj

where Q(xj) is the density covariance matrix



strategy

use periodic orbits to partition state space
compute local eigenfunctions of the Fokker-Planck
operator to determine their neighborhoods
done once neighborhoods overlap



periodic orbit partition

deterministic partition

01

12

21

22

20

02

00
10

11 1

some short periodic points:
fixed point 1 = {x1}
two-cycle 01 = {x01, x10}

noisy partition

10
101

periodic points blurred by noise
into cigar-shaped densities



periodic points and their cigars

each partition contains a short periodic point smeared into
a ‘cigar’ by noise



periodic points and their cigars

each partition contains a short periodic point smeared into
a ‘cigar’ by noise
compute the size of a noisy periodic point neighborhood!



how big is the neighborhood blurred by the accumulated noise?

the (well known) key formula that we now derive:

Qn+1 = MnQnMT
n + ∆n

density covariance matrix at time n: Qn
noise covariance matrix: ∆n
Jacobian matrix of linearized flow: Mn

Lyapunov equation, doctoral dissertation 1892
Ornstein-Uhlenbeck 1930

Kalman filter ‘prediction’ 1960



derivation

keep things simple: illustrate by

d-dimensional discrete time stochastic flow

xa+1 = f (xa) + ξa

uncorrelated in time

〈ξa〉 = 0 , 〈ξa · ξb〉 = 2 d D δab

[all results apply both to the continuous and discrete time flows]



linearized deterministic flow

xn

xn+1

Mn vnvn+1

zn+1

zn

xn+1 + zn+1 = f (xn) + Mn zn , Mij = ∂fi/∂xj

in one time step a linearized neighborhood of xn is
(1) advected by the flow
(2) transported by the Jacobian matrix Mn into a neighborhood

given by the M eigenvalues and eigenvectors



covariance advection

let the initial density of deviations z from the deterministic
center be a Gaussian whose covariance matrix is

Qjk = 〈zjzT
k 〉

a step later the Gaussian is advected to

〈zjzT
k 〉 → 〈(M z)j (M z)T

k 〉

Q → M Q MT

next: add noise



roll your own cigar

in one time step

Qn

MnQnMT
n + ∆n

f (xn)

a Gaussian density distribution with covariance matrix Qn is
(1) advected by the flow
(2) smeared with additive noise

into a Gaussian ‘cigar’ whose widths and orientation are given
by the singular values and vectors of Qn+1



covariance evolution

Qn+1 = MnQnMT
n + ∆n

(1) advect deterministically
local density covariance matrix Q → MQMT

(2) add noise covariance matrix ∆

covariances add up as sums of squares



noisy periodic orbit partition

10
101

optimal partition hypothesis

optimal partition:
the maximal set of resolvable
periodic point neighborhoods

why care?
if the high-dimensional flow has only a few unstable directions,
the overlapping stochastic ‘cigars’ provide a compact cover of
the noisy chaotic attractor, embedded in a state space of
arbitrarily high dimension



standard normal (Gaussian) probability distribution

d-dimensional discrete time stochastic flow

x ′ = f (x) + ξa

1-time step evolution = probability of reaching x ′ given random
kick, Gaussian distributed ξa = x ′ − f (x)

1√
4πD

exp

(
− ξ2

a
4D

)
variance 2D, standard deviation

√
2D



local Fokker-Planck operator

let
{. . . , x−1, x0, x1, x2, . . .}

be a deterministic trajectory

xa+1 = f (xa)

noisy trajectory is centered on the deterministic trajectory

x = xa + za , fa(za) = f (xa + za)− xa+1

local Fokker-Planck operator

LFPa(za+1, za) =
1√
4πD

exp

[
−(za+1 − fa(za))2

4D

]



Fokker-Planck formulation replaces individual noisy trajectories
by evolution of their densities

Lk
FP(zk , z0) =

∫
[dz] e−

1
2
∑

a(za+1−fa(za))T 1
∆

(za+1−fa(za))



evolution to time k is given by the d-dimensional path integral
over the k−1 intermediate noisy trajectory points

Lk
FP(zk , z0) =

∫
[dz] e−

1
2
∑

a(za+1−fa(za))T 1
∆

(za+1−fa(za))

zero mean; covariance matrix / diffusion tensor ∆

〈ξj(ta)〉 = 0 , 〈ξa,i ξ
T
a,j〉 = ∆ij ,

where 〈· · ·〉 stands for ensemble average over many
realizations of the noise



map f (xa) is nonlinear. Taylor expand

fa(za) = Maza + · · ·

approximate the noisy map by its linearized action,

za+1 = Maza + ξa ,

where Ma is the Jacobian matrix, (Ma)ij = ∂f (xa)i/∂xj



Ma is the Jacobian matrix, (Ma)ij = ∂f (xa)i/∂xj

linearized Fokker-Planck operator

LFPa(za+1, za) =
1
N

e−
1
2 (za+1−Maza)T 1

∆
(za+1−Maza)

[Kalman filter ‘prediction’, WKB, semiclassical, saddlepoint, ...
approximation]



linearized evolution operator maps a cigar-shaped Gaussian
density distribution with covariance matrix Qa at time a

ρa(za) =
1

Ca
e−

1
2 zT

a
1

Qa
za

into cigar

ρa+1(za+1) =

∫
dza LFPa(za+1, za) ρa(za)

one time step later



rolled your own cigar

convolution of a Gaussian with a Gaussian is again a
Gaussian. Integrate, obtain that

the covariance of the transported packet is given by

evolution law for the covariance matrix Qa

Qa+1 = MaQaMT
a + ∆a



rolled your own cigar

evolution law for the covariance matrix Qa

Qa+1 = MaQaMT
a + ∆a

in one time step a Gaussian density distribution with covariance
matrix Qa is smeared into a Gaussian ‘cigar’ whose widths and
orientation are given by eigenvalues and eigenvectors of Qa+1

(1) deterministically transported and deformed
local density covariance matrix Q → MQMT , and

(2) and noise covariance matrix ∆

add up as sums of squares



noise along a trajectory

iterate Qa+1 = MaQaMT
a + ∆a along the trajectory

if M is contracting, over time the memory of the covariance
Qa−n of the starting density is lost, with iteration leading to the
limit distribution

Qa = ∆a + Ma−1∆a−1MT
a−1 + M2

a−2∆a−2(M2
a−2)T + · · · .

diffusive dynamics of a nonlinear system is fundamentally
different from Brownian motion, as the flow induces a history
dependent effective noise. Always



example : noise and a single attractive fixed point

if all eigenvalues of M are strictly contracting, all |Λj | < 1

any initial compact measure converges to the unique invariant
Gaussian measure ρ0(z) whose covariance matrix satisfies

Lyapunov equation: time-invariant measure condition

Q = MQMT + ∆

[A. M. Lyapunov doctoral dissertation 1892]



solving for stationary covariance Q

assume that [d×d ] matrix M has only nonzero eigenvalues
{Λj} and d linearly independent right and left eigenvectors (M
is not defective)

M e(j) = Λj e(j) , e(j) M = Λj e(j)

eigenvectors can always be rescaled so that they are mutually
orthogonal

e(j) · e(k) = δjk



form from the d column eigenvectors a [d×d ] matrix

S =
[
e(1),e(2), · · · ,e(d)

]
, MS = ΛS

by e(j) · e(k) = δjk , the matrix whose rows are left eigenvectors
is then the inverse

S−1 =
[
e(1),e(2), · · · ,e(d)

]T
S diagonalizes M and its transpose MT by

similarity transformation

S−1MS = Λ , ST MT (S−1)T = Λ



define Q̂ = S−1Q (S−1)T and ∆̂ = S−1∆ (S−1)T

time-invariant measure condition Q = MQMT + ∆ now takes
form

Q̂ − ΛQ̂Λ = ∆̂

matrix elements are Q̂ij(1− ΛiΛj) = ∆̂ij , so

Q̂ij =
∆̂ij

1− ΛiΛj

and the attracting fixed point covariance matrix is given by

Q = SQ̂ST



note!
covariance matrix

Q̂ij =
∆̂ij

1− ΛiΛj

elements must be strictly positive

true only if all Floquet multipliers (Jacobian matrix M
eigenvalues) are contracting, |Λj | < 1



summary: covariance matrix Q for an attractive fixed point

determine the Jacobian matrix M eigenvalues and
eigenvectors

M e(j) = Λj e(j)

go to coordinate frame where M is diagonal,

S−1MS = Λ , Q̂ = S−1Q (S−1)T , ∆̂ = S−1∆ (S−1)T

evaluate

Q̂ij =
∆̂ij

1− ΛiΛj

go back to the original coordinates

Q = SQ̂ST



a numerical diagonalization of the covariance matrix
Q = SQ̂ST yields the principal axis of the equilibrium Gaussian
‘cigar’

eigenvectors of Q (it is a symmetric matrix) are orthogonal and
have orientations distinct from the left/right eigenvectors of the
non-normal Jacobian matrix M



example : Ornstein-Uhlenbeck process

contracting noisy 1-dimensional map

zn+1 = Λzn + ξn , |Λ| < 1

width of the natural measure concentrated at the deterministic
fixed point z = 0

Q =
2D

1− |Λ|2
, ρ0(z) =

1√
2πQ

exp

(
− z2

2 Q

)
,



example : Ornstein-Uhlenbeck process

width of the natural measure concentrated at the deterministic
fixed point z = 0

Q =
2D

1− |Λ|2
, ρ0(z) =

1√
2πQ

exp

(
− z2

2 Q

)
,

is balance between contraction by Λ and diffusive
smearing by 2D at each time step
for strongly contracting Λ, the width is due to the noise only
As |Λ| → 1 the width diverges: the trajectories are no
longer confined, but diffuse by Brownian motion



example : 2D Brusselator limit cycle



remembrance of things past

noisy dynamics of a nonlinear system is fundamentally different
from Brownian motion, as the flow ALWAYS induces a local,
history dependent effective noise



things fall apart, centre cannot hold

but what if M has expanding Floquet multipliers?

both deterministic dynamics and noise tend to smear densities
away from the fixed point: no peaked Gaussian in your future



things fall apart, centre cannot hold

but what if M has expanding Floquet multipliers?

Fokker-Planck operator is non-selfadjoint

If right eigenvector is peaked (attracting fixed point)
the left eigenvector is flat (probability conservation)



adjoint Fokker-Planck operator

to estimate the size of a noisy neighborhood of a trajectory
point xa along its unstable directions, we need to determine the
effect of noise on the points preceding xa

this is described by the adjoint Fokker-Planck operator

ρ̃(y , k − 1) = L†FP ◦ ρ̃(y , k)

=

∫
[dy ] exp

{
−1

2
(y − f (x))T 1

∆
(y − f (x))

}
ρ̃(y , k) ,

carries a density concentrated around the previous point xn−1
to a density concentrated around xn



things fall apart, centre cannot hold

but what if M has expanding eigenvalues?

both deterministic dynamics and noise tend to smear densities
away from the fixed point: no peaked Gaussian in your future



things fall apart, centre cannot hold

but what if M has expanding eigenvalues?

look into the past, for initial peaked distribution that spreads to
the present state



for unstable directions, look back

if M has only expanding eigenvalues,

balance between the two is attained by iteration from the past,
and the evolution of the covariance matrix Q̃ is now given by

Q̃n+1 + ∆n = MnQ̃nMT
n ,

[aside to control theorists: reachability and observability Gramians]



solving the Lyapunov equation

iterate Qn+1 = MnQnMT
n + ∆n

attractive fixed point, Q = Q∞, M = Mn, Q = Qn:

Q = ∆ + M∆M> + M2∆(M>)2 + · · · =
∞∑

m,n=0

δmnMn∆(M>)m

bring to resolvent form, δmn =
∫ 2π

0
dθ
2πeiθ(m−n)

for M contracting, expanding, or hyperbolic (!)

Q =

∫ 2π

0

dθ
2π

1
1− e−iθM

∆
1

1− eiθM>



Cauchy magic

a similarity transformation S separates the expanding and
contracting subspaces

Λ ≡ S−1MS =

[
Λe 0
0 Λc

]
transformed noise covariance matrix

∆̂ ≡ S−1∆(S−1)> =

[
∆ee ∆ec
∆ce ∆cc

]



Cauchy magic

contour integral representation

Q =

∮
Γ

ds
2π

(1− s−1M)−1∆(1− sM)−1

separates Q into expanding and contracting covariances:

Q̃e ≡ S
[

Qe 0
0 0

]
S> , Qc ≡ S

[
0 0
0 Qc

]
S>

two stationary ‘cigars’, one in the expanding manifold and the
other in the contracting manifold (not orthogonal to each other!)



local problem solved: can compute every cigar
a periodic point of period n is a fixed point of nth iterate of
dynamics

global problem solved: can compute all cigars
more algebra: can compute the noisy neighborhoods of all
periodic points



optimal partition challenge

finally in position to address our challenge:

determine the finest possible partition for a given noise



does it work?

evaluation of these Gaussian densities requires no
Fokker-Planck PDE formalism

width of a Gaussian packet centered on a trajectory is fully
specified by a deterministic computation that is already a
pre-computed byproduct of the periodic orbit computations: the
deterministic orbit and its linear stability



resolution of a one-dimensional chaotic repeller

As an illustration of the method, consider the chaotic repeller on
the unit interval

xn+1 = Λ0 xn(1− xn)(1− bxn) + ξn , Λ0 = 8, b = 0.6 ,

with noise strength 2D = 0.002



optimal partition, 1 dimensional map

f0, f1: branches of deterministic map

a deterministic orbit itinerary is given
by the {f0, f1} branches visitation
sequence

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

00

010

011

110

111
101

100

f1
f0

[symbolic dynamics, however, is not a prerequisite for
implementing the method]



‘the best possible of all partitions’ hypothesis
formulated as an algorithm

calculate the local adjoint Fokker-Planck operator
eigenfunction width Qa for every unstable periodic point xa

assign one-standard deviation neighborhood
[xa −Qa, xa + Qa] to every unstable periodic point xa

cover the state space with neighborhoods of orbit points of
higher and higher period np

stop refining the local resolution whenever the adjacent
neighborhoods of xa and xb overlap:

|xa − xb| < Qa + Qb



optimal partition, 1 dimensional map

f0, f1: branches of deterministic map

local eigenfunctions ρ̃a partition state
space by neighborhoods of periodic
points of period 3

neighborhoodsM000 andM001
overlap, soM00 cannot be resolved
further 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

00

010

011

110

111
101

100

f1
f0



all neighborhoods {M0101,M0100, · · · } of period np = 4 cycle
points overlap, so

state space can be resolved into 7 neighborhoods

{M00,M011,M010,M110,M111,M101,M100}



Markov partition

evolution in time maps intervals
M011 → {M110,M111}
M00 → {M00,M011,M010}, etc..

summarized by the transition
graph (links correspond to
elements of transition matrix Tba):
the regions b that can be reached
from the region a in one time step
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transition graph

7 nodes = 7 regions of the optimal
partition

dotted links = symbol 0 (next
region reached by f0)

full links = symbol 1 (next region
reached by f1)

region labels in the nodes can be omitted, with links keeping
track of the symbolic dynamics

(1) deterministic dynamics is full binary shift, but
(2) noise dynamics nontrivial and finite



predictions

escape rate and the Lyapunov exponent of the repeller
are given by the leading eigenvalue of this [7×7] graph /
transition matrix

tests : numerical results are consistent with the full
Fokker-Planck PDE simulations



what is novel?

we have shown how to compute the locally optimal
partition, for a given dynamical system and given noise, in
terms of local eigenfunctions of the forward-backward
actions of the Fokker-Planck operator and its adjoint



what is novel?

A handsome reward: as the optimal partition is always
finite, the dynamics on this ‘best possible of all partitions’ is
encoded by a finite transition graph of finite memory, and
the Fokker-Planck operator can be represented by a finite
matrix



the payback

claim:

optimal partition hypothesis

the best of all possible state space partitions
optimal for the given noise



the payback

claim:

optimal partition hypothesis

optimal partition replaces stochastic PDEs by finite,
low-dimensional Fokker-Planck matrices



the payback

claim:

optimal partition hypothesis

optimal partition replaces stochastic PDEs by finite,
low-dimensional Fokker-Planck matrices
finite matrix calculations, finite cycle expansions⇒ optimal
estimates of long-time observables (escape rates,
Lyapunov exponents, etc.)



questions?

how to combine Fokker-Planck and adjoint Fokker-Planck
operators to describe hyperbolic periodic points (saddles)?



questions?

how to combine Fokker-Planck and adjoint Fokker-Planck
operators to describe hyperbolic periodic points (saddles)?
Hint: H. H. Rugh (1992)? combined deterministic evolution

operator and adjoint operators to describe hyperbolic
periodic points (saddles)



questions?

apply to Navier-Stokes turbulence?

computation of unstable periodic orbits in high-dimensional
state spaces, such as Navier-Stokes, is at the border of
what is feasible numerically, and criteria to identify finite
sets of the most important solutions are very much
needed. Where are we to stop calculating orbits of a given
hyperbolic flow?



the rest is noise



brief history of noise

literature on stochastic dynamical systems is vast, starts with
the Laplace 1810 memoir

all of this literature assumes uniform / bounded hyperbolicity
and seeks to define a single, globally averaged diffusion
induced average resolution (Heisenberg time, in the context of
semi-classical quantization).



brief history of noise
cost function

appears to have been first introduced by Wiener as the exact
solution for a purely diffusive Wiener-Lévy process in one
dimension.
Onsager and Machlup use it in their variational principle to
study thermodynamic fluctuations in a neighborhood of single,
linearly attractive equilibrium point (i.e., without any dynamics).



brief history of noise

dynamical ‘action’ Lagrangian, and symplectic noise
Hamiltonian were first written down by Freidlin and Wentzell
(1970’s), whose formulation of the ‘large deviation principle’
was inspired by the Feynman quantum path integral (1940’s).
Feynman, in turn, followed Dirac (1933’s) who was the first to
discover that in the short-time limit the quantum propagator
(imaginary time, quantum sibling of the Wiener stochastic
distribution) is exact. Gaspard: ‘pseudo-energy of the
Onsager-Machlup-Freidlin-Wentzell scheme.’ Roncadelli: the
‘Wiener-Onsager-Machlup Lagrangian.’



noisy flow

here we briefly repeat the derivation of local Fokker-Planck
operator for a continuous time flow

d-dimensional stochastic flow

dx
dt

= v(x) + ξ̂(t) ,

deterministic velocity field v(x), called ‘drift’ in the stochastic
literature



density evolution

in time δτ the deterministic trajectory advances by v(xn) δτ .

the probability that the trajectory reaches xn+1

LδτFP(xn+1, xn) =
1
N

exp

[
− 1

2 δτ
(ξT

n
1
∆
ξn)

]
.
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ξn is the deviation of the noisy trajectory from the deterministic
one,

ξn = δxn − v(xn) δτ ,



density evolution

the probability that the trajectory reaches xn+1

LδτFP(xn+1, xn) =
1
N

exp

[
− 1

2 δτ
(ξT

n
1
∆
ξn)

]
.

ξn is the deviation of the noisy trajectory from the deterministic
one,

ξn = δxn − v(xn) δτ ,

δxn = xn+1 − xn ' ẋn δτ , f δτ (xn)− xn ' v(xn) δτ ,



density evolution

the probability that the trajectory reaches xn+1

LδτFP(xn+1, xn) =
1
N

exp

[
− 1

2 δτ
(ξT

n
1
∆
ξn)

]
.

where

{x0, x1, · · · , xn, · · · , xk} = {x(0), x(δτ), · · · , x(nδτ), · · · , x(t)}

is a sequence of k + 1 points xn = x(tn) along the noisy
trajectory, separated by time increments δτ = t/k



density evolution

finite time Fokker-Planck evolution ρ(x , t) = Lt
FP ◦ ρ(x ,0) of an

initial density ρ(x0,0) is obtained by a sequence of consecutive
short-time steps

Lt
FP(xk , x0) =

∫
[dx ] exp

{
− 1

4Dδτ

k−1∑
n=1

[xn+1 − f δτ (xn)]2

}
,



probability distribution
standard normal

(Gaussian) probability distribution function,

Lt
FP(x , x0) =

1√
2πσ2t

exp

[
−(x − x0)2

2σ2t

]
variance σ2t = 2Dt , standard deviation

√
2Dt

uncorrelated in time

〈xn+1 − xn〉 = 0 , 〈(xm+1 − xm)(xn+1 − xn)〉 = 2 D δmn
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density evolution

the probability that the trajectory reaches xn+1

LδτFP(xn+1, xn) =
1
N

exp

[
− 1

2 δτ
(ξT

n
1
∆
ξn)

]
.

where

{x0, x1, · · · , xn, · · · , xk} = {x(0), x(δτ), · · · , x(nδτ), · · · , x(t)}

is a sequence of k + 1 points xn = x(tn) along the noisy
trajectory, separated by time increments δτ = t/k



zero mean and covariance matrix (diffusion tensor)

〈ξj(tn)〉 = 0 , 〈ξi(tm) ξT
j (tn)〉 = ∆ij δnm ,

where 〈· · ·〉 stands for ensemble average over many
realizations of the noise.



density evolution

Fokker-Planck formulation replaces individual noisy trajectories
by the evolution of their density
finite time Fokker-Planck evolution ρ(x , t) = Lt

FP ◦ ρ(x ,0) of an
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density evolution

Fokker-Planck formulation replaces individual noisy trajectories
by the evolution of their density
finite time Fokker-Planck evolution ρ(x , t) = Lt

FP ◦ ρ(x ,0) of an
initial density ρ(x0,0) is obtained by a sequence of consecutive
short-time steps
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FP(xk , x0) =

∫
[dx ] exp

{
− 1

4Dδτ

k−1∑
n=1

[xn+1 − f δτ (xn)]2

}
,



continuous time limit, δτ = t/k → 0, defines the Fokker-Planck
operator

Lt
FP(x , x0) =

∫
[dx ] exp

{
− 1

4D

∫ t

0
[ẋ(τ)− v(x(τ))]2dτ

}
as a stochastic path (Wiener) integral

associated continuous time Fokker-Planck equation for the time
evolution of a density of noisy trajectories is

∂tρ(x , t) +∇ · (v(x)ρ(x , t)) = D∇2ρ(x , t) .



continuous time limit, δτ = t/k → 0, defines the Fokker-Planck
operator

Lt
FP(x , x0) =

∫
[dx ] exp

{
− 1

4D

∫ t

0
[ẋ(τ)− v(x(τ))]2dτ

}
as a stochastic path (Wiener) integral. the associated
continuous time Fokker-Planck equation for the time evolution
of a density of noisy trajectories is

∂tρ(x , t) +∇ · (v(x)ρ(x , t)) = D∇2ρ(x , t) .



predictions

finite partition⇒ finite Fokker-Planck matrix
its determinant yields time averages of dynamical
observables



summary

Computation of unstable periodic orbits in
high-dimensional state spaces, such as Navier-Stokes, is
at the border of what is feasible numerically, and criteria to
identify finite sets of the most important solutions are very
much needed. Where are we to stop calculating orbits of a
given hyperbolic flow?



summary

Intuitively, as we look at longer and longer periodic orbits,
their neighborhoods shrink exponentially with time, while
the variance of the noise-induced orbit smearing remains
bounded; there has to be a turnover time, a time at which
the noise-induced width overwhelms the exponentially
shrinking deterministic dynamics, so that no better
resolution is possible. Given a specified (possibly state
space dependent) noise, we need to find, periodic orbit by
periodic orbit, whether a further sub-partitioning is
possible.



summary

We have described here the optimal partition hypothesis, a
new method for partitioning the state space of a chaotic
repeller in presence of weak Gaussian noise, and tested
the method in a 1-dimensional setting against direct
numerical Fokker-Planck operator calculation.
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