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The big picture

We will apply cycle expansions to the analysis of transport properties of chaotic systems
Derive formulas for diffusion coefficients in 2-dimensional Lorentz gas
Then apply the theory to diffusion induced by 1-dimensional maps
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Diffusion in periodic arrays



Lorentz gas: diffusion of a light molecule in a gas of heavy scatterers
Modeled by point particle in a plane bouncing of an array of reflecting disks

One of simplest dynamical systems that exhibits deterministic diffusion



Periodic Lorentz gas

Quantities characterizing global dynamics can be computed from dynamics restricted to
elementary cell

Applies to any hyperbolic dynamical system that is a periodic tiling

M= Ms (1)

AeT

T is abelian group of lattice translations, M refers to the full state space; spatial coordinates
and momenta

If scattering array has further discrete rotational and reflection symmetries, each cell can be
built from a fundamental domain M



Exercise: What are the fundamental domain, elementary cell, and full state space?



Three kinds of state spaces

e fundamental domain, triangle (denoted ™)
e elementary cell, hexagon (denoted by nothing)
e full state space, lattice (denoted ")



Types of diffusive behavior

Finite horizon: any free particle trajectory must hit a disk in finite time
Infinite horizon

Parameterized by
w

4
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where r is the radius of the disk and w is the distance between

Exercise: Is the horizon finite or infinite when equation (2) is satisfied?



Exercise

Finite
We will restrict our consideration in this chapter to finite horizon case
In this case diffusion is normal: %(t)? grows like t

Pop quiz: What does the "~ signify?



Evolution operator for each state space

X(t) = f*(%) denotes point in the global space M reached by the flow in time t
x(t) = f*(xp) denotes corresponding flow in the elementary cell
Ae(x0) = F1(x0) — fi(x0) € T (3)

%(t) = ft(X) denotes the flow in the fundamental domain M.

ft(%) is related to f(X) by a discrete symmetry which maps %(t) € M to x(t) € M



Discrete symmetry mapping
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Calculating diffusion coefficient

(8) = im + log (GO (@)

t—oo t

If all odd derivatives vanish by symmetry, there is no drift and the second derivatives yield a
diffusion matrix

g 0 .1 -
2dD; = %aﬁjs(ﬂ)\ﬂ_o = tim L (#() (300 ) ©)
Spatial diffusion constant:
1 0? 1l 2
22 557 w)L_O Jim 5 ((@(0) = aP) .4 (6
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Reduction from M to M

) 1 ; ;
A\ 1 dxdy e? T=x)5(y — F¥(x)) (7)
< >M ‘Ml xEM,yEM

Translation invariance can be used to reduce this average to the elementary cell:

s 1 £t
B-(%(t)—x) - B-(£(x)—x) t
e = dxdye oy — fH(x 8
< >M IM| Jxyem ( (x)) (8)

y =y — A so Jacobian equals unity

Question: Does this make sense?
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Local v.s. global
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Evolution operator

£4(y,x) = e FOg(y — 4(x)) (9)

This operator satisfies the semigroup property:
vty ) = [ dzeo(,2)00 %) (10)
M

For 5 = 0, Perron-Frobenius operator, e® = 1 because there is no escape from this system

The spectrum of L is evaluated by taking the trace
Tr Lt = / dx P (5(x — x(1)) (11)
M
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Types of orbits

Two kinds of orbits periodic in M contribute:
Standing periodic orbit: also a periodic orbit of the infinite state space dynamics FTP(X) = 5%

Running periodic orbit: corresponds to a lattice translation in dynamics on infinite state space
FTo(x) = x + fip

Shortest repeating segment of a running orbit is ‘relative periodic orbit’

These orbits called accelerator modes: diffusion takes place along the momentum rather than
position coordinate

Distance travelled /i, = fi,(x) independent of xo
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Types of orbits
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Spectral determinant and zeta function

Spectral determinant:
1 e(ﬁ'ﬁD_STp)r
det(s ex —_—— 12
H p( er|det(l—Mlg)| (12)
Question: What is M?

Corresponding dynamical zeta function:

1/¢6,5)=T] (1- 5A)) (13)

p
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Diffusion constant

The dynamical zeta function cycle averaging formula for the diffusion constant, zero mean drift
is given by

L) 1 1 G (U et A 14)

~2d (T),  2d(T), Aoy

Sum over all distinct non-repeating combination of prime cycles

Globally periodic orbits have 23 = 0 and contribute only to time normalization, Mean square
displacement gets contributions only from runaway trajectories X(t)? = (f,/ T,)?t>

So orbits that contribute exhibit either ballistic or no transport at all: diffusion arises as a
balance between the two kinds of motion, weighted by 1/|A,|
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Diffusion induced by chains of
1-dimensional maps



Diffusion constant

Refer to A, € Z as the jumping number.

The cycle weight is
t, = 27 e’ /|, | (15)

Diffusion constant for 1-dimensional maps is
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Calculating diffusion constant

The “mean cycle time” is given by

0 1
e =29z G0.2)

b Ny, +...+n
— (_1)k p1 Pk (17)
z=1 Z |/\P1"'/\Pk|

and the “mean cycle displacement squared” is given by

a" 1

o\ 0" N i (Ao, + oo+ fip,)?
() = 3 4(6,1)‘ﬂ_o_ 21 (18)

|AP1"'APk‘
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Calculating Diffusion Constant
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Higher order transport coefficients

Same approach

By = 1 df B, =D 19
k*ﬂdiﬁks(ﬁ)ﬂzo, RS ( )

for k > 2 known as the Burnett coefficients

Non-vanishing higher order coefficients signal deviations of deterministic diffusion from a
Gaussian stochastic process

Exercise: Do we think deterministic diffusion is a Gaussian stochastic process?
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Deterministic diffusion
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Finite Markov partitions

Markov partition with intervals mapped onto unions of intervals

Map the critical value f(1/2) into the fixed point at the origin f"(1/2) = 0 in finite n. Taking
higher and higher values of n - constructs a dense set of Markov parameters
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Dependence of D on A
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Marginal stability and anomalous
diffusion



Marginal stability

Marginal fixed point affects the balance between running and standing orbits, thus generating a
mechanism that may result in anomalous diffusion

When oo =1/s <1, z"(5)|s=1 = 0, so D vanishes by the implicit function theorem
Typical orbit will stick for long times near the 0 marginal fixed point

For 1-dimensional diffusion, where ’ is a derivative with respect to s, inverse Laplace transform:

@1 (Bs)
D= 250 o " G5 s -

Exercise: Is the above equation for a flow or for a map?
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(Hardy-Littlewood) tauberian theorem

Take -
w(A) :/ dx e u(x) (21)
0
with u(x) monotone as x — oo; then as A — 0 and x — oo respectively (and p € (0, x0))
1 1
w(d) ~ L <A> (22)
if and only if
1
u(x) ~ ——x""1L(x 23
() ~ 5" L) (23)

where L denotes any slowly varying function with lim; ., L(ty)/L(t) =1
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Anomalous diffusion

We now have

1/¢h(e=5,8) (% + %(J(e_S a+1)+J(e s, a))) cosh 3

= (24)
1/Go(e7=,8) 1 - pe~*cosh B — hriye>J(e~s, a +1)cosh BJ
Questions: What is J?
Taking the second derivative with respect to 3
dﬁz( /CO( _Saﬁ)/c ( ))5 0
4 4 At _(Jle=S,a+1)+ J(e 5, a
_ A S ) Ae) 0s)

2
(1 —4es — /\C/(\lJfa e~sJ(e~s a—i—l))
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Anomalous diffusion exponents

After some math...

g2 fora>1

ga(s) ~ ¢ s—(atl) for a € (0,1) (26)
1/(s®*Ins) fora=1

The anomalous diffusion exponents follow:

te for a € (0,1)
<(xfx0)2>t~ t/Int fora=1 (27)
t fora>1
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Questions?
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