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The big picture

We will apply cycle expansions to the analysis of transport properties of chaotic systems

Derive formulas for diffusion coefficients in 2-dimensional Lorentz gas

Then apply the theory to diffusion induced by 1-dimensional maps
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Diffusion in periodic arrays



Lorentz gas

Lorentz gas: diffusion of a light molecule in a gas of heavy scatterers

Modeled by point particle in a plane bouncing of an array of reflecting disks

One of simplest dynamical systems that exhibits deterministic diffusion
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Periodic Lorentz gas

Quantities characterizing global dynamics can be computed from dynamics restricted to

elementary cell

Applies to any hyperbolic dynamical system that is a periodic tiling

M̂ =
⋃
n̂∈T

Mn̂ (1)

T is abelian group of lattice translations, M̂ refers to the full state space; spatial coordinates

and momenta

If scattering array has further discrete rotational and reflection symmetries, each cell can be

built from a fundamental domain M̃
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Sinai billiard Lorentz gas

Exercise: What are the fundamental domain, elementary cell, and full state space?
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Three kinds of state spaces

� fundamental domain, triangle (denoted˜)

� elementary cell, hexagon (denoted by nothing)

� full state space, lattice (denotedˆ)
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Types of diffusive behavior

Finite horizon: any free particle trajectory must hit a disk in finite time

Infinite horizon

Parameterized by
w

r
<

4√
3
− 2 = 0.3094... (2)

where r is the radius of the disk and w is the distance between

Exercise: Is the horizon finite or infinite when equation (2) is satisfied?
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Exercise

Finite

We will restrict our consideration in this chapter to finite horizon case

In this case diffusion is normal: x̂(t)2 grows like t

Pop quiz: What does the ˆ signify?

8



Evolution operator for each state space

x̂(t) = f̂ t(x̂) denotes point in the global space M̂ reached by the flow in time t

x(t) = f t(x0) denotes corresponding flow in the elementary cell

n̂t(x0) = f̂ t(x0)− f t(x0) ∈ T (3)

x̃(t) = f̃ t(x̃) denotes the flow in the fundamental domain M̃.

f̃ t(x̃) is related to f t(x̃) by a discrete symmetry which maps x̃(t) ∈ M̃ to x(t) ∈ M
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Discrete symmetry mapping
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Calculating diffusion coefficient

s(β) = lim
t→∞

1

t
log
〈
eβ·(x̂(t)−x)

〉
M

(4)

If all odd derivatives vanish by symmetry, there is no drift and the second derivatives yield a

diffusion matrix

2dDij =
∂

∂βi

∂

∂βj
s(β)

∣∣∣∣
β=0

= lim
t→∞

1

t
⟨(x̂(t)− x)i (x̂(t)− x)j⟩M (5)

Spatial diffusion constant:

D =
1

2d

∑
i

∂2

∂β2
i

s(β)

∣∣∣∣∣
β=0

= lim
t→∞

1

2dt

〈
(q̂(t)− q)2

〉
M (6)
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Reduction from M̂ to M

〈
eβ·(x̂(t)−x)

〉
M

=
1

|M|

∫
x∈M,ŷ∈M̂

dx dŷ eβ·(ŷ−x)δ(ŷ − f̂ t(x)) (7)

Translation invariance can be used to reduce this average to the elementary cell:

〈
eβ·(x̂(t)−x)

〉
M

=
1

|M|

∫
x,y∈M

dx dy eβ·(f̂
t(x)−x)δ(y − f t(x)) (8)

ŷ = y − n̂ so Jacobian equals unity

Question: Does this make sense?
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Local v.s. global
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Evolution operator

Lt(y , x) = eβ·(x̂(t)−x)δ(y − f t(x)) (9)

This operator satisfies the semigroup property:

Lt1+t2(y , x) =

∫
M

dz Lt2(y , z)Lt1(z , x) (10)

For β = 0, Perron-Frobenius operator, es0 = 1 because there is no escape from this system

The spectrum of L is evaluated by taking the trace

TrLt =

∫
M

dx eβ·n̂t(x)δ(x − x(t)) (11)
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Types of orbits

Two kinds of orbits periodic in M contribute:

Standing periodic orbit: also a periodic orbit of the infinite state space dynamics f̂ Tp (x) = x

Running periodic orbit: corresponds to a lattice translation in dynamics on infinite state space

f̂ Tp (x) = x + n̂p

Shortest repeating segment of a running orbit is ‘relative periodic orbit’

These orbits called accelerator modes: diffusion takes place along the momentum rather than

position coordinate

Distance travelled n̂p = n̂Tp (x0) independent of x0
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Types of orbits
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Spectral determinant and zeta function

Spectral determinant:

det(s(β)−A) =
∏
p

exp

(
−

∞∑
r=1

1

r

e(β·n̂p−sTp)r∣∣det(1−M r
p

)∣∣
)

(12)

Question: What is M?

Corresponding dynamical zeta function:

1/ζ(β, s) =
∏
p

(
1− e(β·n̂p−sTp)

|Λp|

)
(13)
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Diffusion constant

The dynamical zeta function cycle averaging formula for the diffusion constant, zero mean drift

is given by

D =
1

2d

〈
x̂2
〉
ζ

⟨T ⟩ζ
=

1

2d

1

⟨T ⟩ζ

∑′ (−1)k+1(n̂p1 + ...+ n̂pk )
2

|Λp1 ...Λpk |
(14)

Sum over all distinct non-repeating combination of prime cycles

Globally periodic orbits have x̂2p = 0 and contribute only to time normalization, Mean square

displacement gets contributions only from runaway trajectories x̂(t)2 = (n̂p/Tp)
2t2

So orbits that contribute exhibit either ballistic or no transport at all: diffusion arises as a

balance between the two kinds of motion, weighted by 1/|Λp|
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Diffusion induced by chains of

1-dimensional maps



Diffusion constant

Refer to n̂p ∈ Z as the jumping number.

The cycle weight is

tp = znpeβn̂p/|Λp| (15)

Diffusion constant for 1-dimensional maps is

D =
1

2

〈
n̂2
〉
ζ

⟨n⟩ζ
(16)
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Calculating diffusion constant

The “mean cycle time” is given by

⟨n⟩ζ = z
∂

∂z

1

ζ(0, z)

∣∣∣∣
z=1

= −
∑′

(−1)k
np1 + ...+ npk
|Λp1 ...Λpk |

(17)

and the “mean cycle displacement squared” is given by

〈
n̂2
〉
ζ
=

∂n

∂βn

1

ζ(β, 1)

∣∣∣∣
β=0

= −
∑′

(−1)k
(n̂p1 + ...+ n̂pk )

2

|Λp1 ...Λpk |
(18)
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Calculating Diffusion Constant
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Higher order transport coefficients

Same approach

Bk =
1

k!

dk

dβk
s(β)

∣∣∣∣
β=0

, B2 = D (19)

for k > 2 known as the Burnett coefficients

Non-vanishing higher order coefficients signal deviations of deterministic diffusion from a

Gaussian stochastic process

Exercise: Do we think deterministic diffusion is a Gaussian stochastic process?
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Deterministic diffusion
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Finite Markov partitions

Markov partition with intervals mapped onto unions of intervals

Map the critical value f (1/2) into the fixed point at the origin f n(1/2) = 0 in finite n. Taking

higher and higher values of n - constructs a dense set of Markov parameters
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Dependence of D on Λ
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Marginal stability and anomalous

diffusion



Marginal stability

Marginal fixed point affects the balance between running and standing orbits, thus generating a

mechanism that may result in anomalous diffusion

When α = 1/s ≤ 1, z ′′(β)|β=1 = 0, so D vanishes by the implicit function theorem

Typical orbit will stick for long times near the 0̄ marginal fixed point

For 1-dimensional diffusion, where ′ is a derivative with respect to s, inverse Laplace transform:

D = lim
t→∞

d2

dβ2

1

2πi

∫ a+i∞

a−i∞
ds est

ζ ′(β, s)

ζ(β, s)

∣∣∣∣
β=0

(20)

Exercise: Is the above equation for a flow or for a map?
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(Hardy–Littlewood) tauberian theorem

Take

ω(λ) =

∫ ∞

0

dx e−λxu(x) (21)

with u(x) monotone as x → ∞; then as λ → 0 and x → ∞ respectively (and ρ ∈ (0,∞))

ω(λ) ∼ 1

λρ
L

(
1

λ

)
(22)

if and only if

u(x) ∼ 1

Γ(ρ)
xρ−1L(x) (23)

where L denotes any slowly varying function with limt→∞ L(ty)/L(t) = 1
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Anomalous diffusion

We now have

1/ζ ′0(e
−s , β)

1/ζ0(e−s , β)
=

(
4
Λ + Λ−4

Λζ(1+α) (J(e
−s , α+ 1) + J(e−s , α))

)
coshβ

1− 4
Λe

−s coshβ − Λ−4
Λζ(1+α)e

−sJ(e−s , α+ 1) coshβJ
(24)

Questions: What is J?

Taking the second derivative with respect to β

d2

dβ2

(
1/ζ ′0(e

−s , β)/ζ−1(e−s , β)
)
β=0

=

4
Λ + Λ−4

Λζ(1+α) (J(e
−s , α+ 1) + J(e−s , α))(

1− 4
Λe

−s − Λ−4
Λζ(1+α)e

−sJ(e−s , α+ 1)
)2 = gα(s) (25)
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Anomalous diffusion exponents

After some math...

gα(s) ∼


s−2 for α > 1

s−(α+1) for α ∈ (0, 1)

1/(s2 ln s) for α = 1

(26)

The anomalous diffusion exponents follow:

〈
(x − x0)

2
〉
t
∼


tα for α ∈ (0, 1)

t/ ln t for α = 1

t for α > 1

(27)
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Summary
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Questions?
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