

Chapter 1 Prelude All you need to know about chaos is contained in the introduction of ChaosBook. However, in order to understand the introduction you will first have to read the rest of the book.

---Gary Morriss

WHAT IS CHAOS?

Newtonian straightjacket

infinitesimal time: $\frac{d}{dt} X_i = v_i(x)$

long time outcome: x.(t) = noclue

Z = - + Far Far

Fins = 2 A3 - dy A2 + & Cabe A A5

Yang - Mills

Chaos is everywhere

Chaos = stretch

(vepeat)"

"homoclinic

EXAMPLES OF CHAOS pinball

What is chaos?

if deterministic system is

locally unstable + globally mixing

 $\lambda > 0$ and h > 0

[unmeasurable] [unmeasurable]

definition "chaos = Lyapunov + entropy" useless in practice

Sensitivity to initial conditions

2 trajectories start close, separate exponentially with time

quantified by Lyapunov exponent λ

$$|\delta \mathbf{x}(t)| \approx e^{\lambda t} |\delta \mathbf{x}(0)|$$

Global mixing

* topologically distinct $N(t) \approx e^{ht} \rightarrow topological entropy h$

measurement of λ , has asymptotic t $\rightarrow \infty$

beyond reach

for systems observed in nature.

CLASSICAL CHAOS

Poincavé (1890) +

1. sensitivity to initial conditions

Lyapunov + en stretching > 0

2. bounded phase space

entropy In # pieces > 0

WHAT IS THE PROBLEM ?

→ DETAILED PREDICTION
IMPOSSIBLE

BUT!:

"DETERMINISTIC" =

⇒ ASYMPTOTIC GEOMETRY
RIGID, ORDERED

HENCE THE GOALS OF DETERMINISTIC CHAOS ARE

- 1. DESCRIBE GEOMETRY
- 2. EVALUATE MEASURABLE AVERAGES

```
2 how quickly we lose
              control ?
5 how many degrees of freedom
       are out of control ?
```

Lyapunov time

initial data accuracy $\delta x = |\delta x(0)|$

system size L

predictable to a finite Lyapunov time

$$T_{Lyap} \approx -\frac{1}{\lambda} \ln |\delta x/L|$$

if Lyapunov time \ll the observational time,

chaos matters

successes::

statistical mechanics, quantum mechanics, and questions of long term stability in celestial mechanics.

There are applications -- plumber's turbulent pipes, ... -- where the few important degrees of freedom can be isolated

when TLyapunov < Tobservation Chaos Rules

what to do ?

Lyapunov time for chaotic systems $\mathbb{J}(r) \Rightarrow \mathbb{A}(r)$ most unstable eigenvalue $=10^{\lambda T}$ Lyapunov time = $\frac{1}{3}$ = # seconds to lose a digit of accuracy examples: 1015 sec Pluto 1019 sec Obliquity of Mars Chemical chaotic oscillator 103 Sec

Hydrodynamic chaotic flow 10 sec

cm3 Argon at room temperature 10 sec cm3 Argon at triple point 10-15 sec

1

Chaos rules

beyond the Lyapunov time

Chaos: what is it good for?

measurable prediction: escape rate γ

each bounce a fraction lost

fraction of survivors $\sim e^{-\gamma}$.

$$\gamma = ?$$

TRANSPORT!

ChaosBook: who needs it?

periodic orbit theory:

Take 3-disk radius 1, center-center separation 6, velocity 1

If you know that $\gamma = 0.41033\$4077693464\$933\$461307\$192...$

you do not need ChaosBook. If clueless, hang on.

What is chaos?

if deterministic system

no structural stability

 \rightarrow

"fractal" transport coeeficients

$$\lambda - h = \gamma$$

[unmeasurable]

[measurable]

"escape rate = Lyapunov - entropy" measurable

.

tabletop experiment: measure macroscpic transport

diffusion, conductance, drag

observe thus determinism on nanoscales

Chaos: what is it good for?

TRANSPORT!

measurable prediction: washboard mean velocity

.

Cold atom lattice

•

AFM tip drag force

artwork: Y. Lan

H. Poincaré, describing in "Les méthodes nouvelles de la méchanique méleste" his discovery of homoclinic tangles:

The complexity of this figure will be striking, and I shall not even try to draw it.

METEOROLOG Raynolds WEATHER: UNPREDICTABLE

LORENZ 1963

3 degrees of freedom suffice for (weak) turbulence

(do not need zillions of parts to make world complicated)

cat aerobics...

5. Bend.

6. And Relax

DISSIPATION

-> LOW DIMENSIONAL

DYNAMICAL SYSTEM

PHASE SPACE

DISSIPATION

ATTRACTOR

POINCARÉ SECTION

I-DIMENSIONAL ITERATIVE

MODE LOCKINGS, PERIOD DOUBLINGS,

Shmurblence

Shear Boundary Moderate Reynolds Turbulence

"turbulence:":

refers to complex motions of fluids (∞ -dimensional dynamical systems) which we understand poorly.

As soon as a phenomenon is understood better, it is renamed: "a route to chaos", "spatio-temporal chaos", ...

Is this a cloud?

Flame front flutter

Bunsen burner

Q: 1-d turbulence - flutter of a flame front?

Plumbing: Unstable Coherent Structures

Stereoscopic Particle Image Velocimetry \rightarrow 3-d velocity field over the entire pipe²

Observed structures resemble numerically computed traveling waves

What lies beyond?

² Casimir W.H. van Doorne (PhD thesis, Delft 2004); Hof et al., Science (Sep 10, 2004)

Turbulence: A walk through a repertoire of unstable recurrent patterns?

As a turbulent flow evolves, every so often we catch a glimpse of a familiar pattern:

For any finite spatial resolution, the system follows approximately for a finite time a pattern belonging to a finite alphabet of admissible patterns. The long term dynamics = a walk through the space of such unstable patterns.

Résumé

deterministic chaos --

-- is defined by

long time dynamics are the notions of local instability (positive Lyapunov) and of recurrence (positive entropy)

WHY IS THIS
DIFFERENT FROM THE
TRADITIONAL PHYSICS?
GIVE UP ON:

INITIAL CONDITIONS+禁事(x-)

DESCRIPTION OF

THE SYSTEM

Future looks bright