
s�wave Helium

A new approach

Abstract

The s�wave Helium model is used to examplify a cycle expansion of the Zeta function�

Cycles �up to code length �� are found using �two parameter search�� a method

described in 	
�� Zeros for the Zeta function are found using simple numerical

methods� The resulting energy spectrum is compared to a spectrum based on the

same cycle expansion� calculated by M� Draeger and collaborators 	��� and another

spectrum from the same paper based on quantum mechanical calculations� Finally� a

tempting problem that has not yet been solved is presented�
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� The s�wave model

The s	wave model was introduced by G
 Handke� M
 Draeger and H

Friedrich ��� as an approximation to the full Helium problem
 As will
appear in the following� the model represents a quite crude approxima	
tion� but the resulting energy spectrum comes surprisingly close to the
real spectrum
 We present here a new approach to the integration of the
equations of motion� applying a coordinate transformation originally used
by G
 Tanner and D
 Wintgen for the colinear Helium model
 We shall
return to this essential point in the discussion of the results obtained by
our method compared to the results in �
�


��� The Hamiltonian in usual coordinates

Classically� the Hamiltonian for a system consisting of three charged par	
ticles is given by
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Here� �rij �j �qi � �qj j� the �qi�s being the coordinates in three dimensions�
and the �pi�s the corresponding momenta
 The classical Helium atom cor	
responds to Z� � Z� � ��� Z� � �


It is possible ��� to scale the energy� i
e
 from solving the equations of
motion for the scaled Hamiltonian
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we get a solution of ��� for an energy E by the scaling transformation
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We now assume that the nucleus is immobile� i
e
 m� ��
 Furthermore�
we make at this point the assumption of the s	wave model� Both electrons
are restricted to spherical states with individual angular momentum zero

This corresponds to the classical assumption that the electrons are each
just a spherical shell of uniformly distributed charge 	e� with the nuclear
charge of ��e placed in the mutual center of the spheres
 The hamiltonian
��� now becomes

H �
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In this equation� Z is the nuclear charge� r� is the smaller of the to radii�
r� the greater
 The equation re�ects the fact that the inner electron feels
the whole nuclear charge Z� while the outer only feels a charge of Z � ��
since it is �screened� by the inner electron
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Due to the scaling transformation ��� we only have to consider H �
E � ��
 A periodic orbit is a bound state with negative energy for both
electrons and consequently negative total energy
 In the task of looking
for cycles we therefore consider H � E � ��


��� Transformation of coordinates

Looking for cycles� one way to go is to perform numerical integration of
the equations of motion
 However� H contains three singularities� r� � ��
r� � � and r� � r� � �� where r� and r� are the radii of the two electrons

The �rst two can be overcome by the Kustaanheimo	Stiefel transforma	
tion of coordinates� as presented below
 The third one is an essential
singularity of Hamiltons equations� i
e
 the equations of motion can not
be uniquely continued through this third singularity� and consequently� it
can not be overcome by any transformation of coordinates
 In order to
use the Kustaanheimo	Stiefel transformation we consider the two cases
r� � r� and r� � r� for the Hamiltonian ����
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We introduce now the coordinates Q�� Q�� P� and P� through
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along with a new time parametrization� introduced through

d� �
dt

r�r�
���

Using the following Hamiltonian with the new time � � the Hamiltonian
structure is conserved �we have not checked this� but a proof is given in
����
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Considering bound motion i
e
 H � �� now corresponds to considering
Hr � �
 The Hamiltonian equations of motion for Q�

� � Q�
� now reads�
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And for Q�
� � Q�
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This is not the form used in original articles� but our application of meth	
ods oused by Wintgen and Tanner ��� to the Hamiltonian ���
 Using these
equations and fourth order Runge	Kutta integration� we have computed
trajectories for the s	wave Helium system


� Looking for cycles

The periodic orbits of a system with well	ordered symbolic dynamics can
be found using �two parameter search�
 This method is described in ���

Before we can give a summery of its application to s	wave Helium� we must
introduce symbolic dynamics� by considering what happens to points in
the Poincar�e plane as the system evolves


��� Symbolic dynamics

The �ow takes place in �Q��Q��P��P��	space
 We choose a Poincar�e section
Q�

� � �
 From ���� and Hr � � one can �nd P�� given Q�
�� so the Poincar�e

plane is the �Q�
��P��	plane
 We can now start out at any point in this

plane� integrating the �ow as described above
 A good way to keep track
of the trajectories is to write down the string s�s�s���� of symbols de�ned
by saying that sn corresponds to the n�th collision between an electron
and the nucleus� and sn is given by

sn �

�
� if last collision was with same electron
� if last collision was with other electron

����

Let us consider now the iterative process of writing down this symbol
string
 Starting out at a point in the Poincar�e plane� we can tell the
computer to go just one iteration forward� assigning one color if the next
symbol is a ��� and a di�erent color if it is a ���
 Doing this for a large num	
ber of points the Poincar�e plane will produce two di�erent	colored areas

Going on in the same manner will produce �n areas after n iterations
 We
can think of the areas as labeled with symbol strings of length n
 After
in�nitely many iterations� all symbol sequences are represented� i
e we are
dealing with complete Smale Horseshoe dynamics� and some part of the
Poincar�e plane has been divided into in�nitely thin strips� ordered as a
binary Cantor set
 That we are dealing with a complete Smale Horseshoe
is not trivial and no proof exists� but it seems to be a fact that di�erent

�



-5

-4

-3

-2

-1

0

1

2

3

0 2 4 6 8 10

P1

sqr(Q1)

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

P1

sqr(Q1)

Figure �� Upper picture� The division of the Poincar�e plane into �n thin strips
after n iterations illustrated here for n � �� Lower picture� Same as upper
picture	 but for integration backwards in time� Integration backwards in time
is done by shifting the signs of the momenta� If we shift at the same time the
signs of Q� and P� 
it is obvious from the equations of motion that this does
not change the �ow�	 we have all in all only shifted the sign of P�� But for
the Poincar�e plane this is just a re�ection through the Q�

�
axis� Both pictures�
Intersection of the forward and backward partitioning of the Poincar�e plane
yields the Smale horseshoe�

authers agree about �����
 The best way to convince oneself about its va	
lidity is to look at iterations of the Poincar�e plane forward and backward
in time� and check that all of the forward strings intersect all of the back	
ward strings as illustrated in �gure �
 To illustrate that this is a special
case� we mention that at lower nuclear charge� one does no longer have a
complete Smale horseshoe and some symbol sequences will not be realised�
i
e
 they are �pruned� away ���


The very special sequences that are just repetitions of a �nite symbol
string represent s	wave Helium periodic orbits� and they appear in the
Poincar�e plane as isolated points
 As an example� consider the �nite
symbol string ��������
 This string represents a cycle
 The string ���������
of course� represents the same cycle� but it is not represented by the same
point in the Poincar�e space
 If a cycle is represented by a symbol string

�



of length m� it will therefore be represented by m di�erent points in the
Poincar�e plane� corresponding to the m di�erent ways to write down this
string


An illustration of the partition of the Poincar�e plane can be seen in �g	
ure �
 Here� however� another coding has been used� yielding well ordered

symbolic dynamics
 This will be explained in the following
 The coding
used to obtain �gure � is simply

wn �

�
� if the collision is with electron �
� if the collision is with electron �

����

The rightmost strip consists of the points in the Poincar�e plane that by
forward integration produce the symbol string ������ using the coding ex	
plained above
 Moving from right to left� this coding gives for the eight
strips������� ������ ������ ������ ������ ������ ������ �����
 As one can see�
this is an example of well ordered dynamics


The well ordered symbolic string wn can also be obtained from the
sn	string by setting w��s� and then

wn�� �

�
wn if sn�� � �
�� wn if sn�� � �

����

Let us start out from a point S in the Poincar�e plane
 We now de�ne the
symbolic future ��S� for this point to be

��S� � ��w�w�w���� �
�X
n��

wn

�n
����

where we have used the symbol string wn representing the future trajec	
tory� de�ned above
 Similarily� we can again start out at the point S�
but let the �ow go backwards in time� de�ning the symbolic past ��S� as
w� � s� and then

wn�� �

�
wn if sn�� � �
�� wn if sn�� � �

����

��S� � ��w�w��w����� �
�X
n��

w��n
�n

��
�

The actual computation of the symbolic past is done by simply reversing
the momentum for both electrons and then performing numerical inte	
gration as usual
 Let us return now to the subject of well ordered sym	
bolic dynamics� since this is essential for understanding the two parameter
search
 We consider still the Poincar�e plane
 Starting at the P�	axis and
moving in the direction of increasing Q�

�� parallel to the Q�
�	axis� one will

pass by the strips mentioned before in �natural� order� i
e
 ��S� will be
monotone
 It would have been nice if the same was true for ��S� when
moving parallel to the P�	axis� but as can be easily detected from �gure
�� this is not the case� and it is not even possible to �nd a cartesian co	
ordinate system where ��S� is monotone along one of the axes
 Some
elaboration on this issue can be found in the following section
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��� Two parameter search

It will be described �rst how this cycle	�nding method works and then
explained afterwards why it actually does �nd the cycles� using the facts
from the preceding section


Let us �rst of all clearify precisely what is the problem that two param	
eter search is meant to solve
 We want to �nd cycles for s	wave Helium

Knowing from the preceding section that a cycle is labeled by a �nite sym	
bol string� we set out to �nd the cycle with the particular symbol string
cn� the coding in this string being as in ����
 As explained in the previous
section� a cycle string is represented by only one point in the Poincar�e
plane
 One can sum up the two parameter search procedure by saying
that if we input a starting point in the Poincar�e plane� the procedure is
supposed to guide us from this point to the unique point representing the
cycle symbol string
 In more detail� the procedure is as follows�

We calculate the symbolic future �c and the symbolic past �c for the
cycle� converting �rst the cn	string to the wn	string by ���� and �����
and then using ���� and ��
�
 Then we give a starting guess� de�ning
a rectangle in the Poincar�e plane by its lower left corner �Q�

��min	 P��min�
and upper right corner �Q�

��max	 P��max�
 The center �Q�
��m	 P��m� of this

rectangle is given by

�Q�
��m	 P��m� � �

Q�
��min �Q�

��max

�
	
P��min � P��max

�
� ����

The rectangle in the Poincar�e plane corresponds to some strange �gure in
the ��	 ��	plane
 However� we shall pretend it is a parallelogram
 Let us
assume for a moment that this parallelogram contains the point ��c	 �c�

In that case� if we partition the rectangle into four equally sized rectan	
gles by cutting along the axis� through the center� then one of the four
corresponding parallelograms will �probably� contain the point ��c	 �c� in
the ��	 ��	plane
 By comparing ��	 �� for the center to ��c	 �c�� one can
determine which one it is
 Sometimes� however� the parallelogram chosen
does not contain ��c	 �c�� and it will be necessary to make small correc	
tions
 Also� if the point ��c	 �c� was not in the original rectangle in the
�rst place� corrections are necessary
 These corrections are introduced by
enlarging the rectangle by a �small� fraction of its present size� until its
corresponding parallelogram contains the point ��c	 �c�


In any case� corner points for a new rectangle are found and this rect	
angle is then partitioned just like the original one
 This iterative process
is continued until the rectangle in the Poincar�e plane has shrunk to the
desired size� i
e
 until the unique point in the Poincar�e plane representing
the cycle symbol string cn is determined to within some small error
 An
illustration of the convergence process is shown in �gure �


Let us now turn to the explanation of why this procedure leeds to the
correct results
 It is obvious that in the iterative process described above�
choosing at least sometimes the correct fourth of the rectangle� is crucial


�
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Figure �� This is an illustration of the partitioning of the rectangles in the
Poincar�e plane� Boxes de�ned by straight lines connecting the corner points
are used to visualize the unknown �gures in the 
�� ��
plane that correspond to
the rectangles� The convergence shown here is idealized for the sake of clear
demonstration� a normal detection of a cycle would include corrections in almost
every iteration step�
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This can only happen if there is a meaning to comparing ��	 �� for the
center to ��c	 �c�
 In other words� we need � and � to vary monotonically
along the Q�

�	axis and the P�	axis� correspondingly� but as we saw in the
preceding section� this is not the case
 We saw that � does not vary
monotonically along the P�	axis


Surprisingly� this problem seems to have very little e�ect on the con	
vergence� even for very bad starting guesses
 The explanation is probably
that � does vary monotonically with P� in large parts of the Poincar�e
plane� and certainly close to points representing cycles
 In this sense�
the two parameter search is an e�ective method for cycle determination

Other methods� such as Newton iteration of the Poincar�e map� are faster
but require very good starting guesses for cycles with long symbol strings

A combination of the two methods would be the best way to use them�
but we have not implemented this here


��� Cycle trajectories

Having described the method by which we have located the s	wave Helium
cycles up to code length 
� it is about time to see what they �look like�

A good way to get an idea of how the electrons move� is to look at the
projection of the trajectory in the full phase space onto the �Q�

�	 Q
�
��	plane


Such a projection can be seen for 
 cycles in �gure �


� Essential properties of the cycles

Having found the cycles we need� we determine some essential properties
of each cycle in order to apply the Gutzwiller Zeta function in the next
section
 We consider how to calculate the action and Luapunov exponent
for a cycle
 The Monodromy matrix is introduced


��� The action

Denoting the period for a cycle p by Tp and the action by Sp� we have ���
the relation Tp �

�
�
Sp
 From ���� we then get

Sp �
�

�
Tp �

�

�

I
dt �

�

�

I
Q�

�Q
�
�d�

where the integral is over the cycle
 From this equation we determine the
action for each cycle� using fourth order Runge	Kutta integration


��� Lyapunov exponent

It is well known that for a multi dimensional map� the Lyapunov exponents
for a �xpoint of the map are determined by the eigenvalues of the Jacobian

For a �ow� when a Poincar�e surface of section is de�ned� a periodic orbit

�
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Figure �� Projection of trajectories for � s
wave Helium cycles� We also show
the diagonal and the equipotential line� The 
����
coding used here and on the
front page is the not
well
ordered coding introduced earlier	 writing ��� instead
of ��� and ��� instead of ����

��



of the �ow corresponds to a �xpoint of some power of the Poincar�e map

In that situation one is interested in determining the �map	Jacobian� from
the ��ow	Jacobian�
 This is done by integrating the ��ow	Jacobian� along
the cycle
 This is what we shall do in the following
 The treatment will
stay close to ���

We write the Hamiltonian equations of motion as

�x � 

�H

�x
	 with 
 �

�
� I

�I �

�

where x denotes the phase space vector x � �Q�	 Q�	 P�	 P��
 and I is the
�� � unit matrix

Close to a phase space trajectory x�t� � �Q��t�	 Q��t�	 P��t�	 P��t��� the
linearized motion is controlled by the Jacobian and given by

�x�t� � J�t��x��� ����

The equations of motion of J are given by

�J�t� � L�t�J�t� with L�t�ij � 

��H

�xi�xj

�����
x�t	

����

It is not necessary to integrate the entire Jacobian
 We can reduce the
problem somewhat by choosing a suitable local coordinate system� such
that the Jacobian consists of an interesting part and a trivial part
 The
interesting part is called the Monodromy matrix
 To integrate this ma	
trix� we need an equation of motion
 The derivation of this is presented
the following
 First� let us explain why this is possible
 At any point in
phase space the �ow and the gradient of the energy are perpendicular

This must be true� since the energy is constant in the direction of the �ow
�we are dealing with a Hamiltonian that has no explicit time dependence�

An initial displacement in the direction of the �ow transfers according to
�x�t� � dx�t	

dt
�t with �t time independent
 The projection of any displace	

ment �x on rH�x� is constant� i
e
 rH�x�t���x�t� � �E
 One can say
that phase space is neither streched nor compressed in the direction along
the �ow and perpendicular to it
 We get the equation of motion for the
monodromy matrix directly� performing the following transformation that
gives us a local coordinate system on the orbit x�t��

�J�x�t�� � U���x�t��J�x�t��U�x���� ����

From this follows� using the de�nition of L�t� and the obvious fact that
�UU�� � U �U��

��J � �L�J with �L � U���LU� �U� ����

Choosing xE � rH�t�� jrH�t�j� and xt � dx
dt

as local coordinates will
give the two trivial eigenvalues � of the transformed matrix ���� at any
time t
 Setting

��



U � �xTt 	 x
T
� 	 x

T
E	 x

T
� � �

�
BBBB�

�Q� � �Q� � �P��q
� � �P��q

�

�Q�
�Q� � �P��q

� �P��q
�

�P�
�P�

�Q��q
� � �Q��q

�

�P� � �P�
�Q��q

� �Q��q
�

�
CCCCA

with x � �Q�	 Q�	 P�	 P��
T and q � jrHj� we get

�J �

�
BBB�

� � � �
� � � �
� � m� m�

� � m� m


�
CCCA �L �

�
BBB�

� � � �
� � � �
� � l� l�
� � l� l


�
CCCA

where

m �

�
m� m�

m� m


�
l �

�
l� l�
l� l


�

m is the Monodromy matrix and ��s denote unknown elements
 We now
have the desired equation of motion for the Monodromy matrix� �m � lm

The entries in l can be computed from ����
 Denoting partial di�erentia	
tion by a footnote and setting q � jrHj�� they are given by�

l� �
�

q
��h�Q�

� h�Q�
� h�P� � h�p���hQ�P� � hQ�P��

���hQ�
hQ�

� hP�hP���hQ�P� � hQ�P��

��hQ�
hP� � hQ�

hP���hQ�Q�
� hQ�Q�

� hP�P� � hP�P���

l� �
�

q�
��h�Q�

� h�P���hQ�Q�
� hP�P�� � �h�Q�

� h�P���hQ�Q�
� hP�P��

���hQ�
hP� � hQ�

hP���hQ�P� � hQ�P��

���hQ�
hQ�

� hP�hP���hQ�Q�
� hP�P���

l� � ��h�Q�
� h�Q�

��hP�P� � hP�P��� �h�P� � h�P���hQ�Q�
� hQ�Q�

�

���hQ�
hP� � hQ�

hP���hQ�P� � hQ�P��

���hQ�
hP� � hQ�

hP���hQ�P� � hQ�P��

l
 � �l�
Using the above equations we can integrate m along the cycle and then
calculate the eigenvalues by

� �
Tr�m��

q
Tr�m�� � �

�
����

It is of course essential� that the transformation ���� of coordinates has
the special form of change of basis� leaving the eigenvalues unchanged

Otherwise� the eigenvalues of J and m would not be the same and the
transformation would be of no value to us
 The following nomenclature is

��



commonly used
 A cycle is called hyperbolic if � � e��
 It is called inverse

hyperbolic if � � �e��
 ��Tp is called the Lyapunov exponent or stability

index of the cycle
 This de�nition covers only real eigenvalues
 For the s	
wave system� this will su�ce� since all eigenvalues are real
 The interesting
one of the two eigenvalues is the one with the largest absolute value�
since this is the one that will determine how fast some little pertubation
will grow
 In the following we shall refer to the ��Tp	value only for this
eigenvalue as the Lyapunov exponent


��� Table of cycle properties

Having explained how we determine the cycles and the properties that are
interesting to us� we present in �gure � a table containing these properties�
compared to values copied from �
�
 In the rest of this section� we shall
comment on this table


Regarding the action� we see that for the short cycles� the numbers
match on four or �ve decimals� while for some of the longer cycles� the
deviations appear already on the third or even second decimal
 The reason
for this is simply that we have not used su�ciently small timesteps in the
numerical integration of the �ow
 We are con�dent that this is the only
reason� since for a few cycles� e
g
 �������� and �������� when
decreasing the time step� the action converged towards the value given in
�
�
 Our excuse is that we have done all calculations on PC�s� giving vast
computation time for small time steps

Regarding the Lyapunov exponents� we see that rather large deviations are
present
 It is interesting that these deviations do not follow the deviations
in the action
 Even for the cycles where the action matches precisely the
action of �
�� the Lyapunov exponents are clearly di�erent
 We stress again
the fact that we are not using the same equations of motion as in �
�
 The
Kustaanheimo	Stiefel transformation introduced originally by G
 Tanner
and D
 Wintgen for colinear Helium seems to apply both models equally
well� in the sense that the calculations are e�ectively the same
 We have
used almost the same program code for the two systems� yielding actions
and Lyapunov numbers for the colinear model that match very well with
published results
 Therefore� one can say that we have an independent
check that we are doing things the right way


� Using the cycles

At this point� we have done the necessary determination of cycles and
found the properties we need to apply the Gutzwiller Zeta function
 This
Zeta function is approximated using a cycle expansion with the cycles we
have found� i
e
 all cycles op to code length 
� except the ���	cycle
 Zeroes
for the Zeta function are found using contour plot of the norm of the Zeta

��
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Table �� This table contains actions and Lyapunov exponents from our calcu

lations 
�rst and second column	 respectively� and from ��� 
fourth and third
column	 respectively�� We have placed the columns containing the Lyapunov
exponents side by side	 since these are the most interesting to compare	 see
text�
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function and a simple Newton iteration
 The resulting energy spectrum
is presented


��� The Zeta function

What we would ideally like to do is to determine the zeroes of the quantum
spectral determinant ���

det�E �  H� � �prefactor�
Y
n

�E � En�

The zeroes determine the eigenstates En of the Hamilton operator  H

The derivation of the Gutzwiller	Voros zeta function represents a semi	
classical path to an approximation of the energy spectrum
 The derivation
will be skipped completely here
 We present only the formula itself ����

Zqm �
Y
p

exp

	

�� �X

l��

exp�l� i
�h
Sp�E�� i�p

�
�
�

l
���det��� Jlp�

�������	
�

�

where J denotes the monodromy matrix� and �p is the Morse index along
the trajectory
 The Morse index equals twice the code length of the cycle
p
 For the s	wave system� we now write the denominator as ����

jdet��� J�j���� �
q
j�� �j j�� ���j �

�X
m��

j�jl�m����	

Inserting this� the sum over l in the Zeta function above gives just the
expansion of a logarithm and we get the semiclassical spectral determinant
as a product over dynamical zeta functions in the form

Zqm�E� �
�Y

m��

���m �
�Y

m��

Y
p

��� tmp � ����

where the weights tp of each cycle is given by �
�

tmp � ����m exp
�
i
�
�
zSp � �p




�

�
� �

�

�
m�

�

�

�
�pSp

�

The m quantum number represents exitations that are not covered well by
the s	wave model
 We therefore restrict the product to m��
 Moreover�
we shall consider the cycles in the fundamental domain instead of in the
entire phase space in order to exploit the symmetry of exchanging the
electrons
 The fundamental domain can be visualized in the �Q�

�	 Q
�
��	

plane as the area enclosed by e
g
 the Q�
�	axis� the diagonal� and the

equipotential line� see �gure �
 This gives a natural splitting af the cycles
into two groups� The ones that are symmetric with respect to re�ection
through the diagonal� and the ones that are not


��



The symmetric ones will have a full phase space tp equal to the square
of the fundamental domain tp
 The ones that are not symmetric will have
the same tp in both cases� but instead� each of them will have a �partner��
namely its re�ection through the diagonal
 These will both contribute a
factor ��� tp�
 This makes us write the Zeta function as

���m �
�Y
p�o

��� tp�
�
�Y
p�s

��� t�p� ����

Using now the simple identity �� � tp���� tp� � ��� t�p�� we can factorize
the above Zeta function as

���m � ���m���
��
m�� ����

���m�� �
�Y
p�o

��� tp�
�Y
p�s

��� tp� ��
�

���m�� �
�Y
p�o

��� tp�
�Y
p�s

�� � tp� ����

��� Cycle expansion

We now present the cycle expansion approximation to ��
�� using all cy	
cles of code length up to 
� except the ���	cycle� which we leave out
 We
shall write it up as suggested in ���� as a sum of the dominant fundamen�

tal contributions and the decreasing curvature terms� which are in sharp
brackets�

��� � � �t� � �t���� �t��� � �t��� � t��t��� ����

� �t���� � �t���� � t���t�� � �t���� � t���t���� ��� ����

It is from this formula �written up to code length 
� that we determine
the value of the zeta function


��� Zeroes for the Zeta function

Using a contour plot of the absolute value of the zeta function� we can scan
visually the complex plane� looking for zeroes
 A contour plot is shown
in �gure �
 A systematic scan is done by the computer� using simply a
Newton iteration on a large amount of points close to the real axis �as
mentioned in ��� we are only looking for zeros close to the real axis� and
determining whether there is convergence or not
 This method appears to
�nd all the zeroes
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Figure �� A contour plot of the absolute value of the zeta function� As a ground rule�
circular shapes indicate a zero� but one must be carefull not to judge to soon� especially
in regions where the Zeta function shows rapid variation� For the big circular spot in
the right part of the plot there is no doubt� but how about the small ones that lie closer
to the real axis
 The front page shows a zoom in the above plot� containing clearly
some zeros that could not really be seen in the above plot�

��� The energy spectrum

A point z� at which the Zeta function is zero� corresponds to an energy
through z � �p�E � see ���
 In this way� we compute an energy spectrum for

s	wave Helium
 The results are presented in �gure 
� along with energies
copied from �
�� where the same cycle expansion was used
 Also presented
are energies determined by quantum mechanical calculations� also copied
from �
�
 First of all� it appears that our cycle expansion yields energies
very close to the energies E�
�� which con�rms that our computations are
ok
 However� we have some bad news as well
 Along with all the correct
zeros� the computer �nds a lot of �false� zeros


False zeros can be a real threat to the entire method used to determine
the energy spectrum� since for increasing number of false zeros� one can
of course allways �nd zeros that lie close to any desired spectrum
 Fortu	
nately� it is not nearly that bad in our case
 The computer typically �nds
about equally many false and real zeros
 There is no trouble picking out
the real ones


We know from trying it out that when more cycles are used in the
cycle expansion� the number of zeros increase
 One can speculate what
will happen to the problem of false zeros
 It could be that the false zeros
would somehow move away from the real axis when the number of cycles
goes to in�nity
 We tried to check this by watching the zeros as we added
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Table �� This table gives the binding energies for the listed con�gurations� The
�rst column contains the energies that we have found using our cycle expansion�
The second and third column are copied from ���� The second is found using
the same cycle expansion that we have used	 the third comes from quantum
mechanics�

more cycles to the cycle expansion� but being limited by only cycles up to
code length 
� we were unable to detect any clear e�ect
 The problem of
false zeros is also mentioned in �
�


From the table we also see that the cycle expansion gives a reasonably
good prediction for the ground state binding energy� and surprisingly good
predictions of many of the other states listed in the table
 One must
remember how simple the s	wave model is


For some reason we cannot �nd the last energy in the list
 We have
not yet been able to �nd out why


� Conclusion

We have found all cycles up to code length 
� and made sure that given a
faster computer� we could have determined the actions in exact accordance
with �
�


We believe that our Lyapunov exponents are correct� although they do
not match the ones in �
�


Using a cycle expansion of the Zeta function� we have calculated an
energy spectrum that is in very good accordance with �
�
 It may be
concluded from this that the di�erence between our Lyapunov exponents
and the ones in �
� gives only a small change in the energy spectrum
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� An open problem

Let us consider again ��� and �
�
 In each of the two regions r� � r� and
r� � r�� the problem can be separated into

H� � E� �
p��
�
� Z

r�
H� � E� �

p��
�
� Z � �

r�
r� � r� ����

H� � E� �
p��
�
� Z � �

r�
H� � E� �

p��
�
� Z

r�
r� � r� ����

These equations describe Kepler motion in one dimension
 One is tempted
by this to construct a map� determining analytically the trajectory binary
string given by some initial condition in the Poincar�e plane


We have unsuccessfully attempted to construct such a map
 We leave
this as an open problem� since time does not allow us to persue this issue
further
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