EXACT COHERENT STRUCTURES IN SPATIOTEMPORAL
CHAOS: FROM QUALITATIVE DESCRIPTION TO QUANTITATIVE
PREDICTIONS

A Thesis
Presented to
The Academic Faculty

by

Nazmi B. Budanur

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Physics

Georgia Institute of Technology
version 2.0, Apr 3 2017

Copyright (© 2015 by Nazmi B. Budanur



ACKNOWLEDGEMENTS

I would like to thank to my advisor Predrag Cvitanovi¢ for his guidance and support. I
am tremendously grateful to him for patiently listening to all my ideas, even the ones that
were obviously wrong. I believe the most valuable lesson I learned over the last three years
is his approach to training researchers.

I would like to acknowledge collaborations with Daniel Borrero-Echeverry in our study
of the two-modes system, and Ashley Willis, Mohammad Farazmand, and Kimberly Short
in our study of the pipe flow. I am indebted to Xiong Ding for sharing his code for peri-
odic Schur decomposition, and to Ruslan Davidchack for sharing his solution data set for
Kuramoto-Sivashinsky system. In addition, I would like to thank to Evangelos Siminos,
Francesco Fedele, Roman Grigoriev, John Gibson, Yohann Duguet, and Bjérn Hof for fruit-
ful discussions; to the family of late G. Robinson, Jr. and NSF grant DMS-1211827 for
financial support.

Lastly, I would like to thank to my family for their unconditional love and support.

ii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . e
LIST OF ABBREVIATIONS . . . . . . . e e
SUMMARY . . . . e
1 INTRODUCTION . . . . o e e s e
1.1 Turbulence . . . . . . . . . e

1.2 Idealized geometries and symmetries . . . . . . . . . . .. ... ... ...

1.3 Overview of this thesis and itsresults . . . .. ... ... ... ... ...

I NONLINEAR DYNAMICS AND THE PERIODIC ORBIT THEORY . . . . .
2.1 Basicsof dynamics . . . . . . . . ...

2.1.1 Linear versus nonlinear . . . . . . . . . . ... ... ... ... ..

2.1.2  Equilibria, periodic orbits and their linear stability . . . . . . . ..

2.1.3 Time-invariant sets . . . . . . . . ... oL

2.2 Densities and averages . . . . . . . ..o e e e e e e e e

221 Chaos . . . . oo e

2.2.2 Evolving densities . . . . . .. ... oo

2.2.3 Averages . . . . ...

III  CONTINUOUS SYMMETRIES . . ... ... ... ..
3.1 Fields . . . . o e

3.2 Equivariance under a continuous symmetry . . . . . ... ... oL

3.2.1 Relative equilibria and relative periodic orbits . . . . . . ... ..

3.3 Symmetry reduction . . . . ...

3.3.1 Method of slices . . . . .. .. ... ...

3.3.2 Slice hyperplane . . . . . . .. .. ... ... .. .. o

3.3.3 First Fourier mode slice . . . . .. ... ... .. ... ... ...

3.3.4 Stability in the symmetry-reduced state space . . . ... .. ...

3.3.5  The first Fourier mode slice in higher spatial dimensions . . . . .

3.4 Conclusions . . . . . . . L L e

iii

ii

vi

vi

ot

© © © g9 o o O



v

VI

THE TWO-MODES SYSTEM . . . . ... .. o 30

4.1 Two-modes SO(2)-equivariant flow . . . . . . ... ... ... ... ..., 30
4.1.1 Invariant polynomial bases . . . . . . .. .. .. ... ... ... 31
4.1.2 Equilibria of the symmetry-reduced dynamics . . ... ... ... 32
4.1.3 No chaos when the reflection symmetry is restored . . . . . . . .. 34
4.1.4 Two-modes system in the first Fourier mode slice . .. ... ... 34
4.1.5 Visualizing two-modes dynamics . . . . . .. ... ... .. 35

4.2 Periodic orbits . . . . ... 37
4.2.1 Determining admissible cycles . . . . .. ..o oo 37
4.2.2  Finding relative periodic orbits . . . . . . .. ..o 40

4.3 Cycle Averages . . . . . . . o o 42
4.3.1 Cycleexpansions . . . . . . . ... Lo 42
4.3.2 Finite grammar approximation . . . . . . ... ... ... ... .. 43

4.4  Cycle expansions the of spectral determinant . . . . . .. ... ... ... 44
4.4.1 Numerical results . . . . .. ..o 45

4.5 Conclusions . . . . . . .. 47

KURAMOTO-SIVASHINSKY SYSTEM . . ... ... ... ... .. ..... 48

5.1 Kuramoto-Sivashinsky system and its symmetries . . . . ... ... ... 48

5.2  Continuous symmetry reduction . . . . . .. ... ... ... ... ..., 50
5.2.1 State space visualization . . . .. ... ... ... ... ... ... 52

5.3 Discrete symmetry reduction . . . . ... ..o 53

5.4 Kuramoto-Sivashinsky system at L =22 . . . . .. .. .. ... .. .... 54

5.5  Transition to chaos via torus breakdown . . . . . . .. ... ... ... 56
5.5.1 Interlude: Discrete time dynamical systems . . . . . . .. ... .. 57
5.5.2 Unstable manifolds of periodic orbits . . . . .. ... ... .... 59

5.6 Conclusions . . . . . . . .. L e 60

PIPE FLOW . . . . e 63
6.0.1 Subcritical transition to turbulence . . . . ... ... ... ... 63
6.0.2 Edgeofchaos . .. .. ... ... 64
6.0.3 Bifurcation scenario . . . . .. ... o oo 64

v



6.1 Problem formulation . . . . . . . . . ... e 65

6.1.1 Discretization and the state space . . . . . . . .. ... ... ... 67

6.1.2 Inner products and norms . . . . . . . ... ... 68

6.2 Symmetries of the pipe flow . . . . . . . . ... o oo 69

6.2.1 Shift-and-reflect invariant subspace . . . ... ... ... ... .. 69

6.2.2 Exact coherent structures . . . . . . ... oL 71

6.3 Turbulent pipe flow . . . . . . ... 72

6.3.1 Continuous symmetry reduction . . . . . ... ... ... .. .. 73

6.3.2 Traveling waves and relative periodic orbits . . . . . .. .. ... 76

6.3.3 Global visualizations - Principal Component Analysis . . . . . . . 77

6.3.4 Fundamental domain . . . . . ... ... ... oL 79

6.3.5 Numerical experiments . . . . . . . ... ... ... ... 81

6.3.6 Periodic orbit theory . . . . . ... ... oL 83

6.4 Conclusions . . . . . . . . . e e e 86

VII CONCLUSION AND FUTURE DIRECTIONS . . . . . ... ... ... .... 88

7.1 Summary of findings . . . . . . ... L 88

7.2 Future work . . ... 88

7.3 Potential applications . . . . . .. .. L o 89

APPENDIX A MULTIPLE SHOOTING METHOD . ... ... ......... 91

APPENDIX B PERIODIC SCHUR DECOMPOSITION . . . . . ... .. .. .. 93
APPENDIX C NUMERICAL INTEGRATION OF KURAMOTO-SIVASHINSKY

SYSTEM . . . . . o 94

References . . . . . . .« . 95



SUMMARY

The term spatiotemporal chaos refers to physical phenomena that exhibit irregular oscil-
lations in both space and time. Examples of such phenomena range from cardiac dynamics
to fluid turbulence, where the motion is described by nonlinear partial differential equations.
It is well known from the studies of low-dimensional chaotic systems that the state space,
the space of solutions to the governing dynamical equations, is shaped by the invariant
sets such as equilibria, periodic orbits, and invariant tori. State space of partial differential
equations is infinite-dimensional, nevertheless, recent computational advancements allow us
to find their invariant solutions (exact coherent structures) numerically. In this thesis, we
try to elucidate the chaotic dynamics of nonlinear partial differential equations by study-
ing their exact coherent structures and invariant manifolds. Specifically, we investigate
the Kuramoto-Sivashinsky equation, which describes the velocity of a flame front, and the
Navier-Stokes equation for an incompressible fluid in a circular pipe.

An important aspect of the problems studied in this thesis is the presence of continuous
symmetries, which complicates the state space by allowing solutions to have infinitely many
symmetry copies. Therefore, the main problem addressed in the thesis is the symmetry
reduction, i.e. a transformation to new coordinates where each symmetry-related solution
is represented by one. We solve this problem for continuous translation and discrete reflec-
tion symmetries by the method of slices and invariant polynomials respectively. Reducing
symmetries allows us to study unstable manifolds of high dimensional exact coherent struc-
tures such as relative equilibria and relative periodic orbits. Our visualizations of unstable
manifolds unveil the structure of the state space in the vicinity of exact coherent structures.

Besides understanding the state space geometry, periodic orbits can also be used for
predicting the long term behavior of chaotic systems by utilizing periodic orbit theory. We
show with examples that these techniques successfully extend to systems with continuous
symmetries, when relative periodic orbits are used in calculations. We argue with examples
that the methods developed in this thesis can contribute towards devising a theory of

turbulence with predictive capabilities.

vi



CHAPTER I
INTRODUCTION

In this thesis, we study spatiotemporally chaotic systems with the methods of dynamical
systems theory. In particular, our goal is to find the exact coherent structures in these
systems and understand their roles in shaping dynamics. Ultimately, we would like to use
this understanding to make quantitative predictions about the long term behavior of these
systems. As it will be clear further in the thesis, this is an ambitious goal, hence the study
that we present here is part of a longer research program. Specifically, we are going to
focus on the systems with continuous symmetries and construction of symmetry invariant
descriptions.

The term “spatiotemporal chaos” covers a wide range of phenomena in physics and
chemistry, whenever a physical observable exhibits irregular patterns in both space and time
while the underlying laws of dynamics are deterministic. Arguably, the most extensively
studied problem of spatiotemporal chaos is the fluid turbulence, in which the laws of motion
is governed by Navier-Stokes equation. In the next section, we are going to introduce the
turbulence problem and the dynamical systems approach to it in an informal way to motivate
the reader for the rest of the thesis.

1.1 Turbulence

Navier-Stokes equation

uT—i—u-Vu:—vpp—i—VV2u—|—f (1)
is purely classical statement of momentum conservation known since the 19th century. In
(1), u(x, 1) is the velocity of the fluid as function of space x and time 7, p(x, ) is pressure,
f(x,7) is external forcing, p and v are respectively the density and the kinematic viscosity
of the fluid. While it is possible to write Navier-Stokes equation on a single line, its solutions
can be as complicated as the turbulent water waves in Figure 1. Understanding the nature
of solutions u(x, 7) to (1) is a big challenge for mathematicians and physicists. In the purely
mathematical setting, existence and smoothness of solutions to the Navier-Stokes equation
is listed as one of the millennium problems by the Clay Mathematics Institute [36]. In
physics and engineering, one asks questions such as “under which conditions turbulence
occurs?”, “is turbulence transient or persistent?”, “how are the physical observables effected
by turbulence?”, “are the turbulent solutions of Navier-Stokes equation organized in a
certain way?”... The question, to which we will seek an answer in this thesis is the last one
and the method we are going to follow to this end is the dynamical systems approach to
turbulence.

From the dynamical systems viewpoint, turbulence is viewed as a motion in the infinite-
dimensional state space, where the solutions of the Navier-Stokes equation (1) are defined.
Let us try to explain what do we mean by this with a thought experiment: Suppose we
marked the center of Figure 1 as xg and measured the 3-dimensional fluid velocity at this
point u(xg,7) for a time interval [r;,7¢]. Then we can plot our measurements on a 3D
graph and obtain a trajectory similar to the blue curve sketched in Figure 2 (a). Now let



Figure 1: Turbulent water waves (photo by Marcus Ranum).

us pick three more points on Figure 1 and repeat our measurements to obtain Figure 2 (b).
While we can look only at three dimensions due to our visual limitations, we can think of
Figure 2 (b) as a single trajectory in 4 x 3 = 12 dimensions. If we continue picking more and
more points to cover entire Figure 1 and below it to until we reach the bottom of the ocean,
the data we are going to collect would correspond to a trajectory in an infinite-dimensional
space. Furthermore, if we know boundary conditions for the velocity field u(x, 7) at the ends
of Figure 1, the layers below it, and on the bottom of the ocean; then we can, in principle,
compute the shape of the water waves after time 74 by solving Navier-Stokes equation (1)
with incompressibility and free-surface conditions, using our final measurement u(x, 7¢) as
the initial condition. In other words, the turbulent dynamics of fluid can be thought as a
motion in an infinite-dimensional space.
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Figure 2: (a) Sketch of the fluid velocity measured at a single point x¢ for a time interval.
(b) Sketch of the fluid velocity measured at a points X ;2,3 for a time interval.

Now that we established the dynamical notion of turbulence as a trajectory in an infinite-
dimensional space, we can repose the question of “How are the turbulent solutions orga-
nized?” as “What is the geometry of the state space of turbulence?”

In order to build an intuition, let us ask the same question for a much simpler problem
with chaotic dynamics. An extensively studied nonlinear system of ordinary differential



equations is the Lorenz equations

z = O-(yix)’
) = pr—y—uz, (2)
z = xy—bz,

which were derived as an extreme simplification of the Rayleigh-Benard problem by Edward
Lorenz [74]. When parameters of (2) set to o = 10, = 8/3, p = 28, solutions of (2) yields
the famous “butterfly” attractor shown in Figure 3 (a). The equilibria Ey ;2 (points for
which the RHS of (2) is 0) and the unstable manifold of Ej are also shown in Figure 3 (a).
As can be seen from Figure 3 (a), the borders of the Lorenz attractor is set by the unstable
manifold of the equilibrium FEj at the origin. Dynamics on two sides of the attractor is
similar to the “spiral-out” dynamics in the neighborhood of equilibria Fy and E5. Thus, we
observe that the equilibrium solutions play an important role in shaping the 3-dimensional
state space of the Lorenz system.

20

Figure 3: (a) Lorenz attractor (blue), its equilibria E;, and the unstable manifold (brown
and green) of the equilibrium Ey . (b) 10 periodic orbits of the Lorenz system.

In Figure 3 (b), we show 10 periodic orbits of the Lorenz system (2), which we computed
using the data provided in ref. [109]. Periodic orbits are trajectories that close onto them-
selves after a certain amount of time, and they seem to be embedded in the chaotic attractor
as can be seen from Figure 3. In fact, we can use periodic orbits of a system to predict its
long-term behavior using periodic orbit theory. Foundational ideas behind the periodic or-
bit theory goes as far back as Poincaré’s geometric approach to the three body problem [36],
and Birkhoff’s proof of the ergodic theorem [10]. The key developments following them are
seminal works of Smale [105], Sinai [102], Bowen [11], and Ruelle [98]; where the mathemat-
ical foundations of thermodynamic approach to the deterministic chaotic dynamics can be
found. Following a different path Gutzwiller arrived at the periodic orbit sum formulas for
the energy spectrum of the quantum mechanical systems [51, 52]. The long-term goal of the
research program that this thesis is a part of is to extend these techniques for turbulence.

The dynamical approach to turbulence, which we tried to describe in this section, was
first articulated in 1948 by Hopf [61]. However, it took more than 40 years for researchers



to start to numerically find invariant solutions of Navier-Stokes equation [32]. Since then,
many groups started to compute equilibria, traveling wave, periodic, and relative periodic

solutions of plane Couette flow [(7, 83, | and pipe flow [34, , ]. In fluid dynamics
literature, these solutions are usually referred to as ‘exact coherent structures’ [112] (we
avoid the term ‘exact coherent states’ [I11], as that has a well established and different

meaning in quantum mechanics). We adopt this terminology in this thesis when we talk
about these solutions in fluid dynamics context. In addition to computation of the exact
coherent structures, Gibson et al. [15] discovery and low-dimensional visualizations of het-
eroclinic connections in the plane Couette flow is one of the most significant developments
in the dynamical description of turbulence.

1.2 Idealized geometries and symmetries

Our thought experiment of the previous section was too ambitious for a real life implemen-
tation. In reality, one studies the turbulence in much simpler geometries; such as water
flowing through a circular pipe (pipe flow, Figure 4 (a)), or between walls that move in
opposite direction (plane Couette flow, Figure 4 (b)). In these settings, fluid velocity at
the bounding walls, relative to the wall vanishes and if the experiment is carried out on a
computer, one typically imposes periodic boundary conditions in the unbounded directions.
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Figure 4: (a) Schematic of the pipe flow with the sketch (blue) of the laminar velocity
profile. (b) Schematic of the plane Couette flow with the sketch (blue) of the laminar
velocity profile.

Navier-Stokes equation (1) does not have an explicit dependence on space coordinates,
which is a confirmation of the fact that governing laws of physics does not change if you
move in space. Therefore, the turbulence problem in simple geometries such as the ones
illustrated in Figure 4 admits symmetries of the system. This, however, does not mean that
all the solutions of Navier-Stokes equation must have the symmetries of the problem. In
fact, turbulent structures, such as the ones in Figure 1 never have symmetries. The fact
that problem has symmetries only implies that one can obtain new solutions by applying
symmetry transformations to the known ones. This distinction and its implications are of
central importance for this thesis and we are going to study them in depth. As an example,
consider the pipe flow, in which one applies a net pressure gradient in z direction to sustain
a constant mean flow, thus all of its solutions drift in z direction. This physical constraint
disallows having stationary solutions such as those of the Lorenz system in Figure 3 (a);
thus the simplest nontrivial exact coherent structure one could obtain in this setting is a
traveling wave (relative equilibrium) that is a steady wave profile drifting in z direction at a
constant speed. Similarly, roles of periodic orbit in pipe flow are also taken over by relative



periodic orbit, which are wave forms that recur exactly after a certain period at a shifted
location.

According to Cushman, Bates [19] and Yoder [120], an early study of relative equilibria
was the work of Huyghens’ [63] on the spherical pendulum. Vierkandt [108] showed that all
solutions of the rolling disk are periodic, if the continuous symmetry of the system is reduced.
According to Chenciner [17], Poincaré [36] was first to propose finding relative periodic
solutions of the three body problem. In more recent mathematics literature, foundational
works on the dynamical systems with symmetries are those of Smale [106], Field [10], and
Ruelle [97]. In plane Couette flow, Nagata [33] was first to find a non-trivial traveling
wave solution and Viswanath [110] was first to find a relative periodic orbit numerically.
Traveling waves in pipe flow were first discovered by Faisst and Eckhardt [34] and relative
periodic orbits of the pipe flow was first found by Duguet et al. [32]. These developments
and many others that followed significantly improved our understanding of turbulence at
transitional Reynolds numbers, which we will review in Chapter 6.

Presence of continuous symmetries add a “redundant” degree of freedom to the state
space, since almost all solutions have continuously many symmetry copies. Such a redundant
degree of freedom is undesirable for us since our objective is to find dynamical relations
between exact coherent structures in order to understand the geometry of the state space.
For this reason, the main problem to be addressed in this thesis is the ‘translation symmetry
reduction’, that is, finding symmetry-invariant representations for systems with translation
symimetry.

1.3 Owverview of this thesis and its results

This thesis is divided into seven chapters including the current one. The next chapter is a
very brief summary of the theory of nonlinear dynamics that will be applied to the problems
in the rest of the thesis. A reader who is familiar with nonlinear dynamics and periodic
orbit theory may safely skip Chapter 2. If you are familiar with nonlinear dynamics, but
have never seen Perron-Frobenius operator and trace formulas, then you may find it useful
to review Sect. 2.2. Chapter 3 is devoted to the main problem of this thesis. In this chapter,
we introduce the SO(2) symmetry reduction problem, in a system-independent way, and
describe its solution via method of slices. Following three chapters presents applications
of the symmetry reduction to the problems of increasing difficulty. Our first application,
the two-modes system (Chapter 4), is a toy problem that has the same symmetry structure
with the problems to follow. In this example, we carry out all steps, including finding
all periodic orbits and computing dynamical averages with them, that one should apply
to spatiotemporally chaotic systems. The second example is the Kuramoto-Sivashinsky
system, where in addition to the translation symmetry, we also have a reflection symmetry.
In Chapter 5, we introduce reflection-invariant polynomials that take care of the remaining
symmetry of the Kuramoto-Sivashinsky system, and within its fully-reduced state space we
study Kuramoto-Sivashinsky system’s transition to chaos via torus-breakdown. Finally in
Chapter 6, we introduce the pipe flow, explain how its stream-wise translation symmetry is
reduced, and what one learns afterwards. We summarize our conclusions and outline some
future directions in Chapter 7



CHAPTER II

NONLINEAR DYNAMICS AND THE PERIODIC ORBIT THEORY

In this chapter, we introduce the essential concepts of nonlinear dynamics and periodic
orbit theory; and set up the notation for the rest of the thesis. The material covered in
this chapter is summary of the first 22 chapters of the ChaosBook.org [24], which as of
this writing, spans 412 pages with figures, examples, and exercises. In other words, the
purpose of this chapter is not to teach reader the periodic orbit theory, but to provide a
quick reference for rest of the thesis.

2.1 Basics of dynamics

As a mathematical abstraction, a dynamical system is defined by its state space M € RP
and evolution rule f7(a) that maps every point in the state space (or a state vector) a(0) €
M to a(t) € M after some time 7. A dynamical system for which 7 takes discrete values
is called a map, whereas the one for which 7 takes continuous values is called a flow. Our
main interest in this thesis will be flows that can be described by a set of first order ordinary
differential equations ([ode??]s):
a=v(a). (3)
Elements of a and the form of v depend on the underlying problem and physical laws.
For example, when (3) describes a classical mechanics problem, then a consists of position
and momenta of the particles involved, and v(a) reflects Newton’s laws of motion. Whereas
if (3) describes an electrical circuit, then a has voltages across capacitors and currents
flowing through the inductors and v(a) is determined by Kirchoff’s laws and the terminal
relations of components.

2.1.1 Linear versus nonlinear
If (3) can be brought into the following form
a=Aa, (4)

where A is a d x d matrix, the flow is said to be linear, since its velocity function is linear
in a . In this case, the solution is immediately given by the matrix exponential:

a(t) = e*7a(0), where €47 = Z (ATZ—')” . (5)
n=0

Thus, if A is diagonalizable, understanding the dynamics is equivalent to finding eigenvalues
(\;) and eigenvectors (v;) of A. Suppose that they satisfy Av; = \;v, and the initial condition
can be decomposed into a(0) = ", ¢;v;, then we can rewrite (5) as

a(t) = Z cieNiTv; . (6)

From (6), it is clear that as time advances, the flow will expand in directions v, with
Re[Ac] > 0 and components in directions v, with Re[\.] < 0 will vanish. The former are
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said to be unstable directions and the latter are called the stable directions. While (4) can
describe only a small portion of what actually happens in nature, as we shall see, this notion
of linear stability is essential in understanding general, nonlinear systems.

2.1.2 Equilibria, periodic orbits and their linear stability
2.1.2.1 FEquilibria

[ode??] form of a flow given in (3) is sometimes referred to as the Eulerian description of
the flow. We can write an equivalent description, so-called Lagrangian description of the
flow by integrating (3):

a(r) = f7(ap), where f7(ag) = an + /0 " v(a(r))dr (7)

An equilibrium is a special point such that its trajectory satisfies f'(aeq) = aeq, equivalently
v(aeq) = 0. For the linear dynamical system described by (4), we described stable and
unstable directions, in order to construct a similar notion for a nonlinear system, we consider
the time evolution of small perturbations around a state space point a and expand (3) up
to first order perturbations in every direction in the state space:

81}1

a; + (5@2 = Ul —|— Z (8)

We define the partial derivatives of velocity function as the stability matriz

ov;(a) .

Aij(a) = — -
J

(9)

For an equilibrium, by definition, @y = v(aeq) = 0 , hence the time evolution of the small
perturbations around the equilibrium is described by the linear relation

da = A(aeq)da (10)

In analogy with the linear case we described above, eigenvalues of A(aeq) determine the
stability of the equilibrium a, . If all eigenvalues of A, have negative real parts, then the
equilibrium is called a sink; if some of them has negative and some of them has positive real
parts, then the equilibrium called a saddle; and if all eigenvalues have positive real parts,
then the equilibrium is called a source.

2.1.2.2 Periodic orbits

If every state space point on an orbit closes onto itself after evolving for a non-zero period
T,, then such an orbit is called a periodic orbit. In other words, if a, is on a periodic orbit
with period 7}, then

ap = fT7(ap). (11)
Similar to the equilibrium, we study the stability of a periodic orbit again by investigating
the time evolution

T ofTr(a
[T (ap +da);, = [T (ap), + Z e,
j

(5aj . (12)

a=ap



of a slightly perturbed trajectory. Second term in (12) determines the expansion of nearby
perturbations to an orbit. We define the Jacobian of the flow as

af"(a),
Tylao) = 2L

(13)

a=ag

Since for a periodic orbit, f» (ap) = a, stability of perturbations to the periodic orbit is
determined by the Jacobian of the periodic orbit JP = J?#(a,), which has a special name:
the Floquet matrix. Eigenvalues A; and eigenvectors V; of the Floquet matrix, which we
will refer as Floquet multipliers and Floquet vectors respectively, determines the stability
of a periodic orbit. For every state space point on a periodic orbit, the Floquet matrix
has at least one Floquet vector with unit multiplier, at the same direction with the flow
velocity. In other words, velocity field evaluated at a state space point on a periodic orbit
is an eigenvector of Floquet matrix with unit eigenvalue:

JPv(ap) = Ayv(ap) , where Ay, = 1. (14)

This simply states that if one perturbs the periodic orbit along the orbit itself, the flow stays
on it. Directions with unit Floquet multipliers (A,, = 1) are called marginal. Directions
with Floquet multipliers greater (A, > 1) and lesser (A, < 1) than 1 are respectively called
erpanding and contracting. As the names suggest, periodic orbit is unstable against the
perturbations towards the former whereas it is stable against the perturbations towards the
latter.
We shall now explain how we compute the Jacobian (13) numerically. For infinitesimal
time 07, (13) becomes
J{SJ-T(GO) _ 0(ao,; + v(ag,;)oT) 7
30,]'
= 51'3‘ + Aij(ao)(ST, (15)

from which we see that J%(ag) = 1. By definition (7), flows satisfy the semi-group property
f(f™(a0)) = f 1 (ao) - (16)

Using which we can divide the evaluation of the perturbed flow into two steps

[ (ag 4+ 0a) = fT(f™(ao) + J™(ag)da),
S (ag) + J™(f™ (a0))J ™ (a0)da . (17)

We again kept terms up to first order in perturbations and showed that along the trajectory,
the Jacobian is multiplicative from the left: J™™™ = J™J™. Now we can divide a finite
time trajectory into infinitesimal pieces and write the Jacobian using its multiplicative
property as

J(ag) = Lim J (am-1)J (@m—2) ... % (a1)J% (ag) where,m = 7/d7. (18)

m— 00

Substituting the definition of the short time Jacobian into (18), we get

J7(ag) = lim (14 A(am—1)07)(1 + A(am—2)07) ... (1 + A(ag)d7),
—  lim eA@m-1)07 JA(am—2)d7  A(ao)éT 7
m—00
_ i drAGa(r) 7 19)



where in the last step, we took the m — oo limit and obtained the time-ordered integral.
In practice, we solve

J(ag) = A(a(1))J (ag) , where a(0) =ag, J%(ag) =1, (20)

numerically along with the [ode??]s (3). One can easily check that (19) is the solution of
(20).

2.1.3 Time-invariant sets

Since time evolution satisfies the semi-group property (16), we can talk about invariants of
this semi-group action. The orbit of a state space point ag is the set of points M,,, that
can be reached from ag by the flow mapping (7)

M, = {f"(a0) |7 € [0,00)}. (21)

The orbit (21) is by definition time invariant, that is if we act on the members of set (21)
with the flow mapping (7) the new set of points we obtained are contained in (21). Equi-
libria and periodic orbits we defined in the previous section form “compact” time-invariant
sets. Relative equilibria and relative periodic orbits, which we will introduce in the next
chapter, also form time-invariant sets. In several places in this thesis, we call these states
“invariant solutions” in reference to their time-invariance property.

2.2 Densities and averages

When a system is chaotic, numerical solutions of the equations of motion (3) describe
trajectory of a state space point, with exponentially decreasing accuracy; hence they by
themselves are not very useful for long-term predictions. However, as we shall see, we can
think in terms of collection of state space points, densities, and define long-term expectation
value of an observable as the average over an “invariant density”. We are going to start
with a few words on need for this way of thinking.

2.2.1 Chaos

Set of [ode??]s (3) which define a dynamical system are by definition time-invariant, hence
we say that the system is deterministic. Laws of physics underlying the motions of streams
in oceans or a double rod pendulum are also deterministic, yet, knowing them is not enough
to predict how much energy will the waves dissipate this year, or how many full turns will
the double pendulum make in a certain amount of time. The reason is chaos, which is the
extreme dependence on the initial conditions. We can state this in mathematical terms as
follows: Let dag be an infinitesimal perturbation to the initial condition ag. After some
time 7, let us denote the image of the original and perturbed trajectory as

a(t) = fT(ap) and a(7)+ da(r) = f"(ap + dap) . (22)

For every ap in a bounded volume of the state space, if the magnitude |dag| of the initial
separations grow as
6a(T)| ~ e |dag| with A > 0, (23)

we say the dynamics is chaotic with the leading Lyapunov exponent .



Above statements of chaos tells us that it is impossible to predict much about a chaotic
system by just solving equations of motions since no computer has infinite precision, or no
measurement device can provide us a perfectly accurate initial condition. We thus, move
from thinking in terms of points in the state space to thinking in terms of collection of
them.

2.2.2 Evolving densities

A density p(a,7) is a function of state space coordinates and time, which satisfies the
normalization condition

/ dap(a,7) =1. (24)
M

at all times. We think of a density as a continuous collection of state space points, each of
which evolves according to the evolution rule (7). A density will also evolve in time, which
we will describe by the action of Perron-Frobenius operator as

pla,7) = [Lpppl(a) (25)
= / daod(a — " (ao))p(ao,0), (26)
M
= plao, 0) where a = f7(ap)
det 8%@ ’
7p(a0,0) where a = 7 (a
D) here a = (o). 7

where the last two steps followed from the integration over the delta function in (26) and
we assumed every state space point a has only one pre-image. Since our attention here is
restricted to deterministic flows, this assumption is valid.

In order to develop some intuition, we can think of the kernel

Lpr(a,a0) = d(a — f7(ao))- (28)
of the Perron-Frobenius operator (26) as a matrix with continuous indices a and ag that
runs over all state space. In this sense, Perron-Frobenius operator is an infinite dimensional
transition matrix with a continuous time variable.

An invariant density or an invariant measure is a density that stays unchanged, in other
words, p(a) is called an invariant measure if it is an eigenfunction of Perron-Frobenius oper-
ator with unit eigenvalue

(L pl(a) = /M dagd(a — 7 (a0))plag) = p(a). (20)

It is possible to construct many invariant measures. Take, for example, a set of N, equilibria
Geg, then p(a) = (1/Neg) 3., 6(a—aeq) by definition is stationary. Another invariant set can
be a uniform density over all the points on a periodic orbit. An invariant measure that will
be important for what comes next is the so-called natural measure, or Sinai-Bowen-Ruelle
measure:

T—00 T

po(a) = Tim ~ /0 " drd(a— [(ap)) (30)

where ag is some initial point in M. If the natural measure limit (30) exists, it is by
definition an invariant measure since evolving it for finite time will not have an effect on
infinite time limit.

10



2.2.3 Averages

As we stated earlier, state space coordinates of a system completely specifies its physical
state and carries all relevant information at a certain instance. With this in mind, it is
reasonable to assume that we can define observables as functions of state space coordinates.
Let w(a) be an observable that we can define on a system, then its average over a certain
density is given by

(@) = [ dopla)eta). (31)

We dropped in (31) the time dependence of density p(a) since it is of no importance, and
assumed that it is normalized as in (24). Now let us evaluate (31) using the natural measure
(30)

i L[ T(ap))w(a
@ = tm = [ dT/Mda5(a—f (a0))w(a)

= tim L dre((ao). (32)

T—00 T 0

We obtained in (32) that average of an observable over the natural measure (30) is its long
time average. Existence of the limit (32) and its independence from the arbitrary initial
point ag are important questions that we do not attempt to answer in this thesis. However,
as we will show in our examples, this is not an unreasonable assumption.

In what follows, our goal is to develop a formalism to evaluate the integral

(w) = /M daco(a)po(a) (33)

which is the space average of the observable a over the natural measure, or as we have
shown in (32), long time average of a.

We restrict our attention to scalar observables which are additive along an orbit and
define the evolution operator

L7 p)(a) = /M dagd(a — f7(ag))e®¥ (@) p(ag, 0). (34)

Here, 8 is an auxiliary variable and Q7 (ag) is the integrated value of the w observable
along the orbit f7(ag), namely

07 (ag) = /OTw(a(T’))dT/, a(0) = ao. (35)

Note that when 8 — 0, the evolution operator becomes Perron-Frobenius operator (25).

Since we required the observable w to be additive along an orbit, the kernel
L7(a,a0) = 8(a — f7(ag))e ¥ (@) (36)
of the evolution operator (34) satisfies

L7 (a, a) = / day£7 (a, a1) L7 (ar, ap) (37)
M

Hence the evolution operator itself satisfies

LT = T2 (38)

11



Multiplicative, or semi-group property (38) of the evolution operator allows us to study
its action in infinitesimal pieces as we can divide every trajectory into smaller and smaller
steps and add them together. Let us consider the action of evolution operator (34) on a
density for an infinitesimal time:

£ p)(a) = / dage”*” 5(a — f°7 (a)) plac)
_ / dage® (@) §(a — ag — d7v(ag))plao)

_ / dao(1 + B8rw(a0))6(a — ap — rv(ao))plao)

pla—dro(@)
)

det (1 + o 2Zgleo)
Denominator of (39) requires some care. We start by applying the identity Indet M =
tr In M and expanding the logarithm to the linear order as

(14 BoTw(a)) (39)

Indet | 1+ 67 Ovao) = trin| 1467 Ov(ao)
dao |45—q dag |45—q
= tror dv(ao)
Odag do=a

0v;(agp)

= 0T 40
2 “an (40)

We exponentiate both sides and expand again to the linear order in 47 to obtain the de-

nominator of (39) as 1+ §70;v;(ap)|ag=a. Expanding the numerator also to the first order
in 07 we obtain

ap=a

o pla) — d7vi(ao)dip(ao)
[£77pl(a) = (1 + BoTw(a)) 1 + 670;vi(ao)

(41)

ap=a
Multiplying and dividing RHS of the above equation by 1 — 679;v;(ag) and keeping terms
up to the linear order in 7 we get
[£7pl(a) = (14 B67w(a))[p(a) — 570;(vi(ao)p(a0))|ag=d]
= pla) + Borw(a)p(a) — 679;(vi(ao)p(ao))lap=a - (42)
The final trick is to express the evolution operator in terms of its infinitesimal generator.

Since it satisfies the semi-group property (38), we can express evolution operator formally
as exponential of its infinitesimal generator A,

L=l (43)

Eigenfunctions of the evolution operator are also the eigenfunctions of its generator, and
corresponding eigenvalues are related by S(7) = €79, where s is the eigenvalue of A. Now
if we expand the infinitesimal-time evolution operator (42) in terms of its infinitesimal
generator we obtain

pla) + 01 Ap(a) = p(a) + poTw(a)p(a) — 670i(vi(ao)p(ao))lag=a , (44)

12



which simplifies as
Ap(a) = Bw(a)p(a) — di(vi(y)p(y))ly=a- (45)

Now we are going to restrict our consideration to the eigenfunctions of A, which are functions
of 3 satisfying,

Ap(a, B) = s(B)p(a; B) - (46)
Note that p(a,0) = po(a) and s(0) = 0. Plugging the eigenfunction p(a, ) in (45) we get
s(B)p(a, B) = fw(a)p(a, B) — di(vi(ao)p(ao, B))lag=a - (47)

This is the equation that we are going to use for relating long term average of the observable
w to the eigenvalue s(3). We are going to carry out this calculation step-by-step, starting
with differentiating (47) with respect to :

S@)0(a,5) + 55— s(@ipta )+ i@ PP o (wan )|
" (18)
We now set 5 — 0 and use s(0) = 0 and p(a,0) = po(a) to obtain
s'(0)po(a) = w(a)po(a) — Gi((vi(ao)jﬁp(ao, B))lao=a,8=0) » (49)

finally we integrate over a dropping the divergence term (assuming the p(a, 8) vanishes on
the surface at infinity) and get

£(0) = [ das(@pmla) = (). (50)

We have found that we can generate the long time average of an observable by differen-
tiating eigenvalues of the corresponding infinitesimal evolution operator. Before moving
onto developing techniques to find these eigenvalues, let us see if we can extract any more
information from s(/3).

We arrived at (50) by assuming the system in consideration produces the natural mea-
sure from all physically important initial distributions; and hence, the long term average of
observables exist. For (50) to be valid, as t — oo, expectation value (¢#?") must grow like

(P) o ets(B) (51)
thus we can define s(3) in terms of (") as
1 .
s(8) = lim = In(e”?). (52)

Let us first confirm (50)

= (W), (53)
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The second derivative

9*s() L L (@7 () — (7R (e
8,32 =0 o Tinolo; <6/BQT>2 50 ’
1
= lim - ((Q7Q7) — (@7)HQ7)) - (54)

gives us growth rate of the variance. We can obtain higher order moments by continuing
taking derivatives but we stop here.

Equations (50-54) relate statistical moments of an observable to the leading eigenvalue
of corresponding evolution operator (34). Thus, if we can find s(/3), we can generate long-
term averages of observables from it. For this purpose we construct the resolvent of the
infinitesimal evolution operator A, by taking Laplace transform of £7 = A7

oo 1
dte LT = 55
/0 5 — (55)

trace of which peaks at the eigenvalues of A. Hence, we are going to compute Laplace
transform of the trace of the evolution operator (34)

/ dre *Ttr LT = / dTe_ST/daET(a,a),
0 0

_ /0 " dres / das(a — f7(a))e" @) (56)

We see that periodic orbits will contribute to the trace (56).! We also know that integral over
delta function in (56) will produce terms that are inversely proportional to det (1—J7(a,)) =
[1,(1—A), which may cause a problem since every periodic orbit has one marginal (A, = 1)
Floquet multiplier corresponding to the perturbations along the orbit. In order to deal with
this, for every periodic orbit we carry out (56) in a local coordinate frame. We transform
from (a1, ag, ...,aq) to (a),a1,1,a1 2,...,a1,4-1), where a| is always parallel to the flow and
a ; are transverse. In this coordinate frame, we can write the contribution from a prime
cycle? p to the trace (56) as

/00 dre” *Ttr ,L7 = /oo dTe_ST/da”dalé(a — [T(a))é(arL — fT(a)L)eBQT@ . (57
0 0

Let us start with the integration along the orbit and the Laplace transform. By definition,
velocity field v(a) is parallel to the a, and its value on the periodic orbit is completely
specified by a| hence, we can parametrize both of them by a flight time 77 satisfying
da = dry|v(a)| as

oo 00 Tp
/0 dre—st f dayd(ay — 17 (a))) = /0 dre—sT /0 drlo(rp)|8(ay(s) — ay(ry + 7)) . (58)

Note that the integral over g is a loop integral, hence its time parametrization runs for only
one period. Note also that a) is a cyclic coordinate, hence, 7-integral will get contributions

! There can be contributions to the trace (56) from other invariant objects, such as equilibria and invariant
tori. For a trace formula for an equilibrium, as well for tori generated by relative periodic orbits, see ref. [24].

2 A periodic orbit that is not a repeat of a shorter one.
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at every repeat of the periodic orbit:
00 Tp 00
/0 dTeSdea”(S(a” — fT(a)H) = /0 drelv(ry)| /0 dre”*"6(a)(1p) — ay(1p + 7)),

Tp 0 T 1
= drylv(Ty)| e
/0 I ! ; \8a‘|/8T]T:er

o
= T, Z e (59)
r=0
where we have used |da)/07|,=,1,| = |v(7)| and in the last step, 7 integration simply gave

us the period of the prime cycle. Finally we compute the contribution from the transverse
integral for the 7" repeat of the prime cycle p:

/ dayd(ar — f T (a),) ! (60)

: = fdet (1 - 347)]

Where M, is the transverse monodromy matrix, eigenvalues of which are those of the
Jacobian JP except the marginal eigenvalue corresponding to the velocity field direction.
Summing over all the prime cycles, we obtain the classical trace formula

i~ r(BAp—sTp)
az;)s—s Z Z‘det l—M’“) ’ (61)

where sum over « runs over the eigenvalues of the evolution operator. Classical trace formula
(61) is the fundamental relation that will allow us determine the leading eigenvalue of the
evolution operator (34) and hence the dynamical averages via its derivatives (50-54).

It is important to note that the classical trace formula (61) is independent of the choice
of coordinates, since Floquet multipliers that will appear in the expansion of ‘det (1 - M, ) }
are invariant under smooth changes of coordinates (see e.g. ref. [24] for a proof). Hence,
long term averages of observables are independent from the particular parametrization of a
problem.

Computationally, it is more convenient to search for zeros of a function, rather than its
poles; for this purpose, one defines the spectral determinant

61417 sTp)
det (s — A) = exp( ZZ ‘det )‘> , (62)

logarithmic derivative of which yields (61). Computational aspects and convergence of (61)
and (62) are non-trivial and require case-by-case attention. We will come back to these
issues in Sect. 4.3 and Sect. 6.3.6.
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CHAPTER III
CONTINUOUS SYMMETRIES

We mentioned in Sect. 1.2 with heuristic arguments that the spatiotemporally chaotic sys-
tems with continuous symmetries have redundant degrees of freedom. We start this chapter
by restating this in mathematical terms and introducing the concept of “equivariance” and
its implications. We then move on to the symmetry reduction by method of slices and
present the central result of this study: SO(2) symmetry reduction by the first Fourier
mode slice. For simplicity, we are going to present the techniques in this chapter for a one-
dimensional scalar field with translation symmetry. We then generalize the first Fourier
mode slice to higher spatial dimensions and direct products of SO(2).

3.1 Fields

In the preceding chapter, we introduced nonlinear dynamics and the periodic orbit theory
for [ode??]s, but in this thesis we are interested in fields, dynamics of which is determined
by nonlinear [pde??]s. For concreteness, let us consider a real valued scalar field u(zx, T)
defined over a finite one-dimensional space z € [0, L] and time 7. Assume that its dynamics
is determined by a [pde??] of the following form

Ur = N(u7 U, Uggs Ugzzs - - -) 5 <63)

where subscripts 7 and x indicates partial derivatives with respect to time and space respec-
tively and N(.) is a general nonlinear functional of the field itself and its spatial derivatives.
We will assume that the solutions of (63) exist, are unique, and evolve smoothly.

When we defined the dynamical system in Sect. 2.1, we stated that the state space
vector contains all the necessary information regarding the physical state of a system at a
time 7; the velocity vector contains the information of laws, which describes the evolution
of the state space coordinates. Let us assume that we construct a state space vector which
contains the value of the field u(z, 7) everywhere in space at a time 7

a(t) = (w(0,7), u(x, 7), u(ze, 1), u(xs, 7),.. )T, x; € [0,L]. (64)

We can then, in principle, construct a velocity vector that would describe the evolution of
(64) by looking at the [pde??] (63). This, however, is not a trivial task since the space is
continuous and as a result the state space vector (64) is infinite-dimensional. Nevertheless,
we can think of a [pde??] as an infinite-dimensional dynamical system. This correspon-
dence can be made explicit if we expand the field u(z, t) as a sum over basis functions, which
satisfy the boundary conditions of the problem and form a complete set. In particular, let
us assume that we have periodic boundary conditions

uw(zx+ L,7) =u(x,7), (65)

then the natural choice is an expansion in Fourier basis

u(x,7) = Z i (7)€ | where q = 27k /L. (66)

k=—o00
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By plugging (66) in (63), we obtain an [ode??] for each Fourier mode 4y, since all partial
derivatives with respect to x will be replaced by multiplications by iq;. Furthermore, in
diffusive systems that we consider in this thesis, higher Fourier modes (short wavelengths)
are subjected to strong damping, hence a finite number of Fourier modes is typically enough
to study dynamics numerically. Thus we reduce the state space dimension from infinite to
a large, but finite number.

Our recipe for transforming a [pde??] to a set of [ode??]s is straightforward, however,
imposing periodic boundary conditions comes at a cost: Since the value of the field u(z, 7)
is subjected to the same boundary conditions at every point in [0, L], each solution of the
[pde??] (63) will have translation copies, namely, if u(z,7) is a solution to (63) then
the shifted field u(z + dx,7) is also one. In other words, the system is symmetric under
translations

u(z,7) = u(z + oz, 7). (67)

This symmetry operation shows itself as U(1) group action on the Fourier modes

iy — €™y, ,  where 0 = 2méx /L. (68)

To be more explicit, let us construct a state space vector for this system. For simplicity,
let us assume that u(x,7) is real valued, hence 4_j, = @}, and 0" Fourier mode has no
dynamics and decoupled from the rest. Hence we can set 4g = 0'. In this case, we can
construct a real valued state vector

a:(51,01,52,02,...,13]\[,61\7), bk:Reﬁk,ck:Imﬂ,k. (69)

In this state space, the continuous translation symmetry is represented by the SO(2) action

R(9) 0 e 0
0 R(20) --- 0
sy =| . ] (70)
0 0 <+ R(m@)
where
cosnfl —sinnd
R(nf) = (sin nd  cos n9> (71)

are 2x 2 rotation matrices. The groups U(1) and SO(2) are isomorphic, that is there is a
one-to-one correspondence of their elements: Complex phases e?*? (68) act on the subspace
of the k-th complex Fourier mode u; while rotation matrices R(kf) (71) act on the real
valued two-dimensional subspace (bg, cr) = (Re tg, Im ag).

In the next section, we will set up the terminology for the properties of dynamical
systems with continuous symmetries.

3.2 Equivariance under a continuous symmetry
A dynamical system is said to be equivariant under G if its evolution rule (7) commutes
with g(0)

a(r) = g~ (0)f7(g(6)a), (72)

'For the discussion of translation symmetry, this assumption does not cause a loss of generality since o
is invariant under translation.
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where ¢(6) is a member of the symmetry group G, 6 € [0,27) is a real number that
parametrizes the continuous symmetry action, which we assume to be compact, i.e. g(27) =
1.

We are going to refer (72) as equivariance condition. For flows, (72) can be equivalently
stated in the Eulerian description as

a=g " (0)v(g(0)a). (73)

The equivariance property (72) implies that dynamics of state space points that are related
by symmetry operations are equivalent, that is one can be obtained from the other by a
symmetry operation. For a state vector a, the set of all such dynamically equvialent points

My)a ={9(0)a |6 € [0,2m)} (74)

is called the group orbit of a.
Assuming the action of g(f) is smooth, we can define its infinitesimal action as

9(60) = 1 + 740, (75)

where T is called the generator of infinitesimal transformations, or the Lie algebra element.
We can express a finite transformation as a matrix exponential

g() = lim <1 + ZT)n =7 (76)

n—00

The direction, towards which an infinitesimal group action moves the state vector a
t(a) =Ta (77)

is called group tangent of a.
We can now express the equivariance condition (73) for infinitesimal transformations by
expanding (73) for small § — 00 < 1 to the first order

v(a) = (1—=00T)v((1+ 66T)a),
= (1-60T)(v(a)+ A(a)é0Ta),

keeping terms up to linear order in 66 and canceling common terms we obtain the infinites-
imal equivariance condition as

A(a)t(a) —Tv(a) =0 (78)
With these definitions, we can now investigate some of the consequences of continuous
symmetries, starting with the relative exact coherent structures and their stability.
3.2.1 Relative equilibria and relative periodic orbits
3.2.1.1 Relative equilibria

In Sect. 2.1.2, we introduced equilibria, periodic orbits and the notion of linear stability.
Dynamical systems with continuous symmetries have relative equilibria and relative peri-
odic orbits, which are equilibria and periodic orbits with additional dynamics in symmetry
directions. A relative equilibrium’s trajectory follows its group orbit:

a,, (1) = 9(0(7)) 4, (0) . (79)
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Using Lagrangian description of the flow (7) and expanding (79) for small times 7 we find

oT
00 (0) + /0 vl (P = T, (0),

4, (0) +v(a,,(0))o7 = (1+66T)q,(0),
v(a,(0)) = (60/07)t(a,,(0)) (80)

that the velocity field and the group tangent are parallel for a relative equilibrium. Since
we consider orthogonal (length preserving) group actions here, the proportionality constant
d6/7 in (80) is a constant along the orbit. Thus, we define the phase velocity of the relative
equilibrium as

66
= lim — 1
e= Jim 5 (81)

Multiplying the infinitesimal equivariance condition (78) with ¢ for the relative equilibrium,
we obtain

(A, ) = cT)v(a,,) =0, (82)

which tells us that the velocity field v(q,,,) is in the null space of (A(q,,) — ¢T'). Later in
this chapter, we are going to find that (A(q,,) — ¢T') is the stability matrix in the frame
that moves with the relative equilibrium.

8.2.1.2 Relative periodic orbits

Second type of relative exact coherent structure is a relative periodic orbit whose trajectory
intersects its group orbit after a finite time

Ao (Tp) = 9(0p)a,, (0) (83)

where T}, and 0, respectively are period and phase shift of the relative periodic orbit. We
determine the linear stability of a relative periodic orbit by rewriting (83) as

T
a’rpo = g(_ep)f (a'rpo) . (84)
Expanding RHS to the linear order in perturbations to q,,, as in (12), we obtain the Floquet
matrix for a relative periodic orbit as

o = 9(=0,) 77 (a,,,) (85)

TPO

Spectrum of (85) determines the linear stability of the relative periodic orbit. State space
points on the orbit (21) and group orbit (74) of q,,, satisfy (84). Let us write (84) for a
small perturbation a,,, + ev(a,,,) towards the orbit of a_,, and expand to linear order

0

0p) 1 (a,, + €v(a,,,)),
0p) S (a,) + €7, 0(a,,,)

a”r‘po + €v(arpo) = g(
a’rpo + ev(arpo) = g( TpO
U( po) = t]7"pov(a'rpo) N (86)
We found that v(a,,,) is an eigenvector of .J , with unit eigenvalue. The same steps follow

for a small perturbation a,,, + €t(q,,,), hence J_, has at least two marginal eigenvectors,
namely v(a,,,) and t(q,,,).

)
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3.3 Symmetry reduction

Symmetry reduction is a coordinate transformation @ = S(a) such that

S(a) = S(d) if d=ga, geG
S(a) # S(d) if d #ga, ge€G (87)

i.e. reduced coordinates @ are symmetry invariant. In such a representation, the relative
equilibria and relative periodic orbits respectively become equilibria and periodic orbits,
hence the theory of previous chapter becomes directly applicable. First question to ask is
whether if such a transformation exist or not. For compact Lie groups, the answer is given
by the Hilbert-Weyl theorem

Theorem 3.1 (Hilbert-Weyl) For a compact group G there exist a finite G-invariant
homogenous polynomial basis {ui,ua, ..., un}, m > d such that any G-invariant polynomial
can be written as a multinomial

h(a) = p(ui(a),uz(a), ..., un(a)) a€ M (88)

for proof of the Hilbert-Weyl theorem 3.1, see ref. [18]. What Hilbert-Weyl theorem tells us
is that there exists a finite set of polynomials, with which all G-invariant information in M
can be represented. Hence such polynomials can serve as a basis for a transformation like
(87). What Hilbert-Weyl theorem does not tell us is how to find such polynomials. For low-
dimensional systems, such as the Lorenz model (2), invariant polynomial methods are very
useful and studied in detail, see for example [1(]. For higher-dimensional systems, however,
computation of the polynomial invariants becomes a harder task, and the computer algebra
methods become impractical at dimensions larger than 12 [11]. We need a different strategy
to attack this problem, if we want to apply it to turbulent flows with ~ 105-dimensional
discretizations. The method of slices, which we introduce next, does the job.

3.3.1 Method of slices

Geometrical idea behind the method of slices is simple and intuitive: Since the action of the
symmetry group at consideration is smooth, the group orbits (74) of the nearby points in
the state space look alike. In mathematical terms, group orbits of infinitesimally close state
space points are also infinitesimally close. Imagine such a fiber bundle of nearby group orbits,
and a co-dimension 1 submanifold M € M that is cut by these group orbits transversally
as sketched in Figure 5 (a). Now if we take the intersections of group orbits with the slice as
their “representatives”, then we obtain a “local” symmetry reduced representation within
the slice M.

Cartan [16] used method of slices in differential geometry. In dynamical systems lit-
erature, slicing techniques appears in many places under different names, with various
applications. Therefore, we are going to list some examples from different sides of the early
literature as an incomplete review. Works of Field, [11] Krupa, [70] and Ashwin and Mel-
bourne, [7] are notable examples from the mathematics literature, where slicing methods
were used to prove rigorous results. Fels and Olver [37, 38] compute symmetry invari-
ant polynomials with the help of method of slices. In Hamiltonian dynamics, Haller and
Mezié¢ [54] used the method of slices, under the name “orbit projection map”. Rowley and
Marsden [96] used slicing methods in the reduced-order modeling of [pde??]s, and Beyn
and Thiimmler [9] used slicing methods to “freeze” spiral waves in the reaction-diffusion
systems. Our formulation of the slice hyperplanes will closely follow that of ref. [96].
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Figure 5: (a) A sketch of nearby group orbit segments and a slice that is cut by them
transversally. (b) The slice hyperplane M, which passes through the template point &
and is normal to its group tangent ¢/, intersects all group orbits (dotted lines) in an open
neighborhood of @'. The full state space trajectory a(7) (solid black line) and the reduced
state space trajectory a(7) (solid green line) belong to the same group orbit Mggya(r) and
are equivalent up to a ‘moving frame’ rotation by phase 6(7).

3.3.2 Slice hyperplane

We are now going to define a slice and formulate the symmetry reduced dynamics on it.
The conceptual definition of the slice as a codimension-1 submanifold does not say much
about its shape. The simplest choice one can think of is the set of points a satisfying the

hyperplane condition
(a—a t'y=0, (89)

in an open neighbourhood
la—a'|| <a, (90)

where @’ and ¢ = Ta' respectively are “slice template” and the “slice tangent”, which
together defines a hyperplane as the one sketched in Figure 5 (b). For orthogonal groups,
(a,Ta) = 0 by definition thus the first condition in (89) simplifies to

(a,t'y =0. (91)

Our textual definition of the slice relied on the assumption that the nearby group orbits are
similar to each other, hence we can find a surface that is locally cut by them transversally.
This notion of locality is included in the inequality condition of (89), where we ask for a to
be in the a neighborhood of the template @’ such that the transversality is not lost.

Full state space dynamics a(7) can be brought to the slice hyperplane (89) by finding
parameters 6(7) such that

a(r) = g(=0(7))a(r) (92)

satisfies the slice condition (89) as illustrated in Figure 5 (b). In order to find the dynamics
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within the slice, we take a time derivative of (92)
a(r) = 27
= g(=0(r))v(a(r)) = 6(r) T g(~0(7)) a(7)
= wv(a(r)) - 0(r) t(a(r)), (93)

where the last step followed from the commutativity of the group action and the velocity
field (73). Reduced velocity field v(a(7)) (93) satisfies the slice condition (91), thus we plug

it into (91) to find the phase speed 6 as

—~

(v(a(7)), 1)
(t(a(r)), ")

As it is of central importance for everything follows, we are going to rewrite (93) and (94)
dropping the time arguments for clarity as

0(r) = (94)

o(a) = :
ba) = (v(a),t)/(t(a),t). (96)

Equations (95) and (96) have a nice geometrical interpretation: In (95) we subtract from
the full state space velocity v(a), its component in the direction towards the group tangent
t(@); and the proportionality constant 6(a) is found in (96) by projecting the full state space
velocity onto the group tangent direction and dividing by a normalization factor.

The locality of the slice hyperplane also becomes apparent from the phase velocity (96),
which becomes singular if the inner product on its denominator is 0. The vanishing inner
product (t(a),t') exactly corresponds to the “loss of transversality”, that is if the group
tangent at a point does not have a component perpendicular to the slice hyperplane, then
the corresponding group orbit cannot pierce it. Froehlich and Cvitanovié¢ [13] defined such
codimension-2 set of points a* as the slice border, which satisfy

Q>
I~
—

Q>
> N
|
D
—
Q>
SN—
~~
—
Q>
~—

(t(a*),ty =0. (97)

Froehlich and Cvitanovié [13] studied what happens to the nearby reduced trajectories in
detail. The slice border (97) rigorously sets the border of a slice and if the trajectories cross
it, one has discontinuities.

Let us take a break and remember why we were concerned about the continuous sym-
metries in the first place. Our purpose in this thesis is to understand the chaotic dynamics
of nonlinear [pde??]s, by charting their infinite-dimensional state spaces. Our strategy
was to understand exact coherent structures in such systems and their dynamical relations.
However, the presence of continuous symmetries in these problems brought a huge compli-
cation due to the fact that the state space had infinite amount of redundant data, which we
would like to get rid off. Furthermore, the relative invariant solutions, which we introduced
in Sect. 3.2.1, had dimensions larger than their regular counterparts, which would make
their study much more challenging, if not impossible. For this reason, we attempted to
transform the dynamics to a symmetry-invariant representation, where we would quotient
out the symmetry copies. Finally, we ended up with a reduced description, which would
only be applicable in an open neighborhood of the state space, border of which is set by
(97). A strategy to overcome this difficulty was suggested in ref. [13] as using multiple slices,
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glued together to cover the strange attractor avoiding the border of each slice. This idea
was applied to the complex Lorenz equations in ref. [23] and to the pipe flow in ref. [115].
However, finding such intelligent templates is never straightforward and requires a careful
investigation of each problem at hand. In the course of this thesis study, we asked a different
question: Can we define a single slice hyperplane such that its border never visited by the
generic dynamics? The answer turned out to be affirmative for the SO(2) symmetry [14].

3.3.3 First Fourier mode slice

In previous section, we introduced method of slices for a general continuous symmetry.
Let us now focus on the specific problem we have: We would like to reduce the SO(2)
symmetry that we have as the result of studying a nonlinear [pde??] (63) under periodic
boundary condition (65). Notice that in the real-valued state space representation (69),
the projections of the group orbits onto the first Fourier mode subspace (b1, ¢1) are circles.
Therefore, we can think of transforming to polar coordinates in this subspace to quotient
out the SO(2) symmetry by the following transformation

a(r) = g(=0(7))a(r)  6(r) = arg(bi(7) +ic1(7)) (98)

as depicted on Figure 6. g

Figure 6: A sketch of the state space trajectory a(t) (blue and red) projected onto the
first Fourier mode subspace (b1, ¢1), and the rotation phases (71 2) (98) at times 7 and 9.

We are now going to cast this into slicing language. For that, we first need the generator
of infinitesimal SO(2) transformations, which for the representation (70) reads

T, 0 -+ 0
0o T, --- 0 _
T=1 . . , where T}, = 0 —1 ) (99)
. . ’ . . 1 0
0 0 - T
If we now choose a slice template as
a =(1,0,0,...,0)7, (100)

we find the corresponding template tangent as

t'=(0,1,0,...,0)", (101)
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these render the hyperplane condition (91) for state vectors (69) as ¢; = 0. Moreover, the
slice border condition (97) for this choice becomes by = 0. As can be seen from Figure 6
each circular group orbit in the (b1, ¢;) plane would cut ¢; = 0 line twice and the slice
border b; = 0 lies between the two intersections. Therefore, we need to pick one side of
b1 line in order to uniquely define our slice; the choice that agrees with the phase fixing
transformation of (98) is b > 0. We can now express the dynamics directly within the first
Fourier mode slice. Expressing (96) for the slice template (100) and plugging into (95) we
obtain

(a) = v(a) — 4(a), (102)

where ¢, and b; respectively denotes the second element of v(a) and first element of a. We
see that the reduced dynamics (102) is singular when by = 0. We regularize this by defining
the slice time as

d# = dr /by, (103)

which regularizes this singularity as the reduced dynamics with respect to the slice time is
defined by

da/di = biv(a) —é(a)t(a), (104)
d(a)/di = ¢é(a). (105)

We call this method first Fourier mode slice, since the effect of this transformation is fixing
the phase of the first Fourier mode to 0 as in (98).

The first Fourier mode slice is a valid SO(2) symmetry reduction method as long as
the amplitude of the first Fourier mode is non-zero. Moreover, if the first Fourier mode
amplitude is small, then the flow can be regularized by adapting the time steps as (103).
As we shall demonstrate in the applications of the following chapters, we found that this
method works for state space regions of interest.

3.3.4 Stability in the symmetry-reduced state space

3.8.4.1 Stability of relative equilibria

Since the relative equilibria become equilibria after symmetry reduction, we treat them as
equilibria in the slice, and compute the corresponding stability matrix similar to (10) by
computing partial derivatives of the reduced velocity (95) as

oua) - _ aA{v(&)i—@(d)’t/)t(&)i}y

MUGRIE (106)

A@) = A@) -

1 t(a) [({t(a),t")A@)" — (v(a),t")T" )¢1"
"
_ (@ t) (107)
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We stated the reduced velocity gradient matrix (107) for an arbitrary point and a slice
template and this is the formula one should indeed use when applying the first Fourier
mode slice. However, it is informative to check what happens when (107) is expressed
using a relative equilibrium itself as the template. Since for a relative equilibrium we have
v(a,,) = ct(q,,), when we substitute @’ = a,, in (107), expression in the brackets in the
second term becomes (82), hence vanishes. We then obtain a much simpler form

~

A(a‘tw)’dl:atw = A(atw) — T, (108)

which we know from (82) to have v(q,,) as an eigenvector with zero eigenvalue, as it should.

3.3.4.2  Stability of relative periodic orbits

We have shown in Sect. 3.2.1 that the Floquet matrix for a relative periodic orbit is J_, =
9(=0,)J" (q,,,). We are now going to show that its eigenvalues are invariant in a symmetry
reduced representation, except the marginal one corresponding to the continuous symmetry
direction. We will present this result in a representation invariant way, since the topological
invariance of the Floquet multipliers is essential for periodic orbit theory.

In a symmetry-invariant representation obtained by a transformation like (87), a relati-
ve periodic orbit becomes a periodic orbit since both initial and final points on its orbit is
mapped to the same point

., = S(9(0)a

rpo

), YOeo,2n). (109)

Now if we consider a small perturbation da to the relative periodic orbit in the full state
space, and expand (83) to the linear order, we obtain

a,, +0a(T,) = g(=0,)f"(a,,, + 6a(0)),

TpO TpO

= 9(=6,)f"(a,,) + J,, 6a(0), (110)

TPO

hence
da(Ty) = J_,, 6a(0) . (111)

If we transform a,_, + da(T},) to the symmetry reduced coordinates, we obtain

rpo

G, +0a(T,) = S(a,, +oa(T})),

rpo rpo

= 4, +T(a),,6a(0), (112)

rpo TPO

where I';; (a) = 0S;(a)/0a; is the Jacobian of the symmetry reducing transformation. There-
fore, if 6a(0) is an eigenvector V; # const. t(a,,,) of J , with eigenvalue A;, then the sym-
metry reduced relative periodic orbit would also have the same Floquet multiplier, with
corresponding eigenvector V; = I'V;. From the definition of the symmetry reduction (87),
we must have I'(a)t(a) = 0, hence this marginal eigenvector disappears after symmetry
reduction.

The periodic orbit formulas (61) and (62) both have |det (1 — M})| terms, which can
be expressed in terms of Floquet multipliers. Therefore, the topological invariance of the
Floquet multipliers is crucial for these formulas to make sense. In this section, we have
confirmed that the non-marginal Floquet multipliers of relative periodic orbits are preserved
in any symmetry reduced representation; hence we can use them to treat the relative periodic
orbits as if they are periodic orbits in the symmetry-reduced state space and apply periodic
orbit theory to these systems.
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3.3.5 The first Fourier mode slice in higher spatial dimensions

We introduced the method of slices in a general setting and then made a specific choice
of slice for the SO(2) symmetry, whose effect was essentially to fix the phase of the first
Fourier mode to 0 as shown in Figure 6. We can state this phase fixing transformation for
Fourier modes (66) as

g (1) = e iy (1), (113)

where 4y, is the kth symmetry reduced Fourier mode and ¢ is the phase of the first Fourier
mode. It is straightforward to check that 4y, is invariant under (68) and 4; is purely real.

We could have also formulated the first Fourier mode slice in the physical space without
transforming to the Fourier representation. Notice that the slice template (100) and tem-
plate tangent (101) correspond to the flow fields 2 cos(2wz/L) and 2sin(27x/L). Thus, for
the flow field u(x, 7), we can find the slice fixing phase as

¢1(7) = arg((u(x, ), cos(2rz/L)) + i{u(zx, T), sin(2rx/L))) . (114)

Thus the symmetry reduced field @(z,7) is given by

a(z,7) = u (a: - LQZ;ET),T> . (115)

The physical space formulation can be convenient if the data is not represented as a Fourier
expansion. In addition, it will be helpful to understand the generalization of the first Fourier
mode slice for vector fields.

8.8.5.1 Scalar field in two dimensions

Let us now consider a scalar field u(x,7) defined over a two-dimensional space x = (z,y)
with dynamics equvariant under translations

9o, ) u(m,y; 7) = w(z + Ly, y + Ly; 7). (116)
If periodic boundary conditions
w(x,y;7) =w(@+ Ly, y; 1), u(z,y;7) =u(z,y+ Ly;7) (117)
are imposed, then it is natural to express u(x,7) in a Fourier expansion

u(x,7) = Zakl(T)ei(qu+qu) ,  where gy =27k /Ly, q = 2rk/Ly . (118)
kl

The symmetry action (116) on the Fourier modes (118) is

WR0a+10y) gy . where Oy = 270y /Ly - (119)

g(éxagy)ﬂkl =€
Thus we can write the phase fixing condition analogous to (113) for Fourier modes ux; as

Qg () = e—i(kd)lo(T)+l¢01(7))akl(7-) , (120)

where 1y is the klth symmetry reduced Fourier mode and ¢y, is the phase of the Fourier
mode Up;.
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We could have also found the slice fixing phases ¢19 and ¢g; from flow fields as
$ro(r) = arg ({u(x,7), cos(2mx/L)) + i{u(x,7), sin(2mz/L))) ,
¢o1(1) = arg({u(x,7), cos(2my/L)) + i(u(x,7), sin(2my/L))) . (121)
Then the symmetry reduced flow field is

eyt =u (- 200 - g, 200 ) (122)
2 2

Finally, in the two dimensions, we have two conditions for the slice border

luo| = [{u(x,7), cos(2rz/L)) + i{u(x, ), sin(2rx/L))| =0,
|€L01| = |<U(X, 7—)7 COS(27Ty/L)> + i(u(x, 7_)7 Sln(2ﬂ—y/L)>’ =0. (123)
Thus the slice time can be defined as
dr
|ti10]|t01| (124)

3.8.5.2  Vector field in two dimensions

Generalization of the first Fourier mode slice for a two-dimensional scalar field on a periodic
box was straightforward. We shall now take one step further and consider a vector field

u(x,t) = u(@,y;t) X+ v(z,y;1) ¥ (125)
equivariant under
9Ua, by)u(z, y;7) = w(@ + Lo,y + £y 7) (126)
and satisfying the periodic boundary conditions
u(z,y;7) =u(@+ La,y; 7)), u(@,y;7) = u(z,y+ Ly 7). (127)
When we write the Fourier expansion for u(z,y;7) as
u(x,t) = Y [l (T)X + Ot (1)) 7T | where gy = 2k /Ly, q = 2rk/L,  (128)
kl

we see that we now have four modes (two for each continuous symmetry direction), namely
Uo1, W10, Vo1, V10 that we can fix the phase of, in order to obtain a symmetry reduced repre-
sentation. For instance, we can define a symmetry reducing transformation as

fi (1) = e kw10 +1ov01(M) g, (7) (129)

where ¢, i is the phase of the Fourier mode (). In fact, our choices are infinitely
many since we are allowed to express the flow field (125) as

u(x,t) = u'(z,y;t) X' + 0 (@, ;1) 9’ (130)

where X’ and §’ are linearly independent (not necessarily orthogonal) unit vectors that span
the 2D physical space. We can express the general first Fourier mode slice templates for

the two-dimensional vector field as
u',(x) = fcos(2nx/L,),

!/

uy(x) = gceos(2my/Ly), (131)
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where f and g are two-dimensional vectors that can be same or different. With (131), we
can express the slice-fixing phases as inner products

$10(r) = arg ((u(x, ), w'z(x)) + iu(x, 7), 9(La/4,0) W'z(x))) ,
gor(1) = arg ((u(x,7),wy(x)) +i(u(x,7),9(0, Ly/4) u'y(x))) (132)

and the symmetry reducing transformation as

i(z,y;t) =u <x — L, ¢1§7(:) Y= Ly%;(:); T) : (133)

The choice for f and g in (131) should be specific for the problem at hand such that the
slice border conditions

| = [(u(x,7),w's(x)) +i{ux, ), 9(Ls/4,0) u's(x))| = 0,
’ﬁ01| = ‘<U(X,T 7u/y<x)> +Z<U(X, T),g(O,Ly/4> u,y(x»‘ - 0 (134)
are avoided. Finally, we can define the slice time for this case as
d
10|01

3.8.5.83 Vector field in three dimensions

Final case we are going to consider is a three-dimensional vector field u(x, 7) with dynamics
equivariant under
9, by)u(z,y, 2 7) = a(@ + lo, y + by, 2,7) (136)

satisfying periodic boundary conditions
u(z,y,z;7) =u(r+ Ly, y,2;7), u(x,y,2,7) =u(x,y+ Ly, 2;7), (137)
and some Dirichlet boundary condition
u(x; 7)|ze00 = d(x). (138)
In this case, the slice templates that we are allowed to chose are in the following form

u',(x) = f(2)cos(2mx/L,),
Wy(x) = g(z)cos(2ny/Ly), (139)

where f(z) and g(z) are three dimensional vector functions of z. The rest of the formulation
is the same with that of the two-dimensional vector field case, and the functions f(z) and
g(z) should again be picked in order to avoid slice borders (134).

Notice that the case we consider here covers axially periodic pipe flow and stream-
wise and span-wise periodic plane Couette flow. In pipe flow (see Figure 4 (a)), periodic
directions are z and ¢ and the Dirichlet boundary condition (138) is u,—r = 0, where R is
the pipe radius. Similarly, in plane Couette flow(see Figure 4 (b)), the periodic directions
are x and z and the Dirichlet boundary condition (138) is w,—4p/p = v, where D is the
distance between walls.

28



3.4 Conclusions

In this chapter, we introduced continuous translation symmetry that frequently appears in
the studies of spatiotemporal chaos, its implications, and symmetry reduction by method
of slices. In Sect. 3.3.3 we presented the main contribution of this thesis: first Fourier mode
slice method for reducing the SO(2) symmetry for Fourier expansion of a field in one space
dimension. The main idea was to fix the phase of the first Fourier mode in order to reduce
the SO(2) symmetry and to regularize the singularity of the reduced flow by defining a
rescaled slice time. Finally, in Sect. 3.3.5, we presented different formulations of the first
Fourier mode slice in terms of flow fields, and its generalizations to the higher dimensional
settings. In the rest of this thesis, we are going to present three applications of the first
Fourier mode slice in problems with increasing difficulty.
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CHAPTER IV

THE TWO-MODES SYSTEM

We are now going to apply the theory we presented to a simple problem that has the
symmetry structure described in the previous chapter with only four dimensions, which is

just enough to have chaotic dynamics. The work presented in this chapter is published in
ref. [13].

4.1 Two-modes SO(2)-equivariant flow

Dangelmayr, [27] Armbruster, Guckenheimer and Holmes, [2] Jones and Proctor, [64] and
Porter and Knobloch [¢8] (for more detail, see Sect. XX.1 in Golubitsky et al. [18]) have
investigated bifurcations in 1:2 resonance [ode??] normal form models to third order in
the amplitudes. Here, we use this model as a starting point from which we derive what may
be one of the simplest chaotic systems with continuous symmetry. We refer to this as the
two-modes system:

2= (m—ie)z +arz|zl’ + b2z +az e

Z9 = (N2 — i€2) 29 + a9 22|Zl|2 + by 22|2’2|2 + o Z% , (140)

where z; and 29 are complex and all parameters are real-valued. The parameters {ej,es}
break the reflectional symmetry of the O(2)-equivariant normal form studied by Dangel-
mayr [27] leading to an SO(2)-equivariant system. This complex two mode system can
be expressed as a 4-dimensional system of real-valued first order [ode??]s by substituting
z1 =x1 +1Y1, 22 = To + 1y2, so that

#1 = (m+ari +bir3 + c)r + ayiys + ey,
g1= (m+arf +bird — aze)y + ciziys — e,
By = (uo 4 agri + bord)ze + co(2d — 1?) + ey,
U2 = (2 + aor} + bord)ys + 21y — €axo,
where 7¥ = 2 +y3, 15 =3 +y5. (141)

The large number of parameters (i, pe, a1, as, b1, ba, c1,c2, €1, €2) in this system makes
full exploration of the parameter space impractical. Following in the tradition of Lorenz, [74]
Hénon, [55] and Réssler, [95] we have tried various choices of parameters until settling on
the following set of values, which we will use in all numerical calculations presented here:

M1 p2 €1 ez ar  az by by e e
28 1 0 1 -1 -266 0 0 -77 1

(142)

This choice of parameters is far from the bifurcation values studied by previous authors, [2,

, 04, 88] so that the model has no physical interpretation. However, these parameters
yield chaotic dynamics, making the two-mode system a convenient minimal model for the
study of chaos in the presence of a continuous symmetry: It is a 4-dimensional SO(2)-
equivariant model, whose symmetry-reduced dynamics are chaotic and take place on a
three-dimensional manifold.
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It can be confirmed by inspection that egs. (140) are equivariant under the U(1) trans-
formation ' '
(21,29) = (€921, €% 2y). (143)

In the real representation (141), the U(1) group action (143) on a state space point
a is given by the SO(2) action (70) with the Lie algebra element (99) both truncated at
m = 2. One can easily check that the real two-modes system (141) satisfies the equivariance
condition (78).

From (140), it is obvious that the equilibrium point (z1,22) = (0,0) is an invariant
subspace and that z; = 0, 2o # 0 is a 2-dimensional flow-invariant subspace

z1 =0, Z9 = (/12 —1e9 + bQ|ZQ|2) 29 (144)

with a single circular relative equilibrium of radius ro = ||22] = /—pu2/bs with phase
velocity ¢ = —eg/2. At the origin the stability matrix A commutes with 7', and so, can
be block-diagonalized into two [2 x 2] matrices. The eigenvalues of A at (0,0,0,0) are
A12 = g1 with multiplicity 2 and A4 = po & iep. In the (x1,y1,x2,y2) coordinates, the
eigenvectors with eigenvalues A\; and Ay are (1,0,0,0) and (0,1,0,0) and the eigenvectors
with eigenvalues A3 and A4 are (0,0, 1, £i).

In contrast, zo = 0 is not, in general, a flow-invariant subspace since the dynamics

21:(#1—1'61)2’14-&121\2’1!2, 22:022%.

take the flow out of the zo = 0 plane.

4.1.1 Invariant polynomial bases

Before applying the first Fourier mode slice, we briefly discuss the symmetry reduction of
the two-modes system using invariant polynomials. While representations of our model
in terms of invariant polynomials and polar coordinates are useful for cross-checking our
calculations in the full state space a' = (21, 2,1, y2), their construction requires a bit
of algebra even for this simple 4-dimensional flow. For very high-dimensional flows, such
as Kuramoto-Sivashinsky and Navier-Stokes flows, we do not know how to carry out such
constructions. As discussed in refs. [2, 27, 88], for the two-modes system, it is easy to

construct a set of four real-valued SO(2) invariant polynomials

U = z121, U= 2929

w = 225+, q= (2% —Zm)/i. (145)

The polynomials [u,v,w, ¢] are linearly independent, but related through one syzygy,

w? 4+ ¢* —4uPv =0 (146)

that confines the dynamics to a 3-dimensional manifold M = M /SO(2), which is a symmetry-
invariant representation of the 4-dimensional SO(2) equivariant dynamics. We call this the
reduced state space. By construction, u > 0, v > 0, but w and ¢ can be of either sign. That
is explicit if we express z; and 2y in polar coordinates (z; = |u|'/2e1, 2o = |v|'/2€2), so
that w and ¢ take the form

w = 2Re(23%2) = 2ulv|"?cos v
¢ = 2Im(237) = 2u|v|'?siny, (147)
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where ¢ = 2(b1 - gf)g.
The dynamical equations for [u, v, w, ¢] follow from the chain rule, which yields

zZ121 + 2121, V= ZoZo + 207Z9
_ . _ - 2 _92.
= 2%Z92121 + 22972121 + 2{Z2 + Z{ 22
= (2%02141 — 2207171 + 237 — Za40) /i (148)

< & 2

Substituting (140) into (148), we obtain a set of four SO(2)-invariant equations,

U = 2u1u+2a1u2+2bluv+clw
v o= 2M2v+2a2uv+2b202+02w
w o= (2p1 4 p2)w+ (2a1 + a2) uw + (2by + b)) vw
+4ciuv + 2e9u + (2e1 —e2) q (149)
¢ = (2m +p2)q+ (201 +a2)ug

+(2b1 + b2)vg — (21 —ex) w.

Note that the O(2)-symmetry breaking parameters {e1, ea} of the Dangelmayr normal form
system [27] appear only in the relative phase combination (2e; — e3), so one of the two can
be set to zero without loss of generality. This consideration motivated our choice of e; =0
in (142). Using the syzygy (146), we can eliminate ¢ from (149) to get

T— 2u1u+2a1u2+2b1uv+clw
U = 2uv+2asuv+2bv® +cow (150)
W o= (2p1 4 p2)w+ (2a1 + az) uw + (2by + b)) vw

+4c1 uv + 2cu% + (261 — €2)(4uPv — w?)'/?

This invariant basis can be used either to investigate the dynamics directly or to visualize
solutions computed in the full equivariant basis (140).

4.1.2 Equilibria of the symmetry-reduced dynamics

The first step in elucidating the geometry of attracting sets is the determination of their equi-
libria. We shall now show that the problem of determining the equilibria of the symmetry-
reduced two-modes (149) system can be reduced to finding the real roots of a multinomial
expression. First, we define

Al =m+aiu+bv, Ay = o+ asu+ byv (151)
and rewrite (149) as

0 = 2A1u+cw, 0=2Av+cow
0 = AI+A2)w+2(cqu+2c1v)u

+(2e1 —e2) q (152)
0 = (2A14+ A2)q— (21 —ex) w

We already know that [0,0,0,0] and [0, —u2/b2,0,0] are the only roots in the v = 0 and
v = 0 subspaces, so we are looking only for the v > 0, v > 0, w, ¢ € R solutions; there could
be non-generic roots with either w = 0 or ¢ = 0, but not both simultaneously, since the
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syzygy (146) precludes that. Either w or ¢ can be eliminated by obtaining the following
relations from (152):

2 2
w = —qulz—lAg
C1 Cc2
2(—2
¢ = (—2e1 + 62)uv' (153)

cou+2civ

Substituting (153) into (152) we get two bivariate polynomials whose roots are the equilibria
of the system (149):

flu,v) = cuA; —cvAy =0,
glu,v) = (4A%* —4ciuv) (cau+2c v)?
+4ct(—2e1 +ex)ut v =0. (154)
We divide the common multiplier u? from the second equation and by doing so, eliminate
one of the two roots at the origin, as well as the [0, —pu2/b2,0,0] root within the invariant

subspace (14~4). Furthermore, we scale the parameters and variables as 4 = cau, v = ¢ v,
d1 = al/CQ, b1 = bl/cl, a~2 = GQ/CQ, bg = bg/cl to get

(
(

) = @A —54;=0, (155)
) = (A%—clﬁ)(a+2@)2+e§@2:o, (156)
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where 1211 = U1 +(1~1ﬂ+b~11~) and AQ = U9 —l—(fgﬂ-f—l;gf).

Solving coupled bivariate polynomials such as (155) and (156), is not, in general, a
trivial task. However, for the choice of parameters given by (142), Eq. (155) yields 0o =
(1 + arw)/(pug + asw). Substituting this into (156) makes it a fourth order polynomial in
u, which we can solve. Only the non-negative, real roots of this polynomial correspond to
relative equilibria in the two-modes state space since u and v are the squares of first and
second mode amplitudes, respectively. Two roots satisfy this condition, the equilibrium at
the origin

pe = [0,0,0,0], (157)

and the relative equilibrium
prw = [0.193569,0.154131, —0.149539, —0.027178] . (158)

Note that by setting by = 0, we send the relative equilibrium at [0, —p2/be, 0, 0] to infinity.
Thus, (158) is the only relative equilibrium of the two-modes system for our choice of
parameters. While this is an equilibrium in the invariant polynomial basis, in the SO(2)-
equivariant, real-valued state space this is a 1-dimensional relative equilibrium group orbit.
The point on this orbit that lies in first Fourier mode slice is (see Figure 9 (¢c)):

(x1,y1,22,y2) = (0.439966, 0, —0.386267,0.070204) . (159)
We computed the linear stability eigenvalues and eigenvectors of this relative equilibrium,
by analyzing the stability matrix within the first Fourier mode slice A;j(a) = 00;/0a;l4

(107), resulting in linear stability eigenvalues

A12 = 0.05073 £42.4527, A3 = —5.5055, A4 =0. (160)
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The 0 eigenvalue corresponds to the direction outside the slice. We expect this since the
reduced trajectory evolution equation (95) keeps the solution within the slice. The imag-
inary part of the expanding complex pair sets the ‘winding time’ in the neighborhood of
the equilibrium to T, = 27/Im (A1) = 2.5617. The large magnitude of the contracting
eigenvalue A3 yields a very thin attractor in the reduced state space, thus, when looked at
on a planar Poincaré section, the two-modes flow is almost one-dimensional, as shown in

Figs. 10(a) and 10(b).

4.1.3 No chaos when the reflection symmetry is restored

Before finishing our discussion of invariant polynomials, we make an important observation
regarding the case when both of the reflection symmetry breaking parameters, e; and e
are set to 0. In this case, 212 — Z1 2 symmetry is restored and the evolution equations for
u, v, and w in (149) become independent of q. Furthermore, the time evolution equation
for ¢ becomes linear in ¢ itself, so that it can be expressed as

¢ =¢&(u,v)q. (161)
Hence, the time evolution of ¢ can be written as
q(7) = elo dTET) ) g0y | (162)

If we assume that the flow is bounded, then we can also assume that a long time average of
¢ exists. The sign of this average determines the long term behavior of ¢(7); it will either
diverge or vanish depending on the sign of () being positive or negative respectively. The
former case leads to a contradiction: If ¢(7) diverges, the symmetry-invariant flow cannot
be bounded since the syzygy (146) must be satisfied at all times. If ¢(¢) vanishes, there are
three invariant polynomials left, which are still related to each other by the syzygy. Thus,
the flow is confined to a two-dimensional manifold and cannot exhibit chaos. We must
stress that this is a special result that holds for the two-mode normal form with terms up
to third order.

4.1.4 Two-modes system in the first Fourier mode slice

Reduction of SO(2) symmetry of the two-modes system via first Fourier mode slice is
straightforward as described in Sect. 3.3.3. We choose the slice template as &’ = (1, 0,0, O)T,
which defines the first Fourier mode slice as the half-hyperplane

y1=0,21>0. (163)

Reduced velocity field for the two-modes system in the first Fourier mode slice is given by

8(a) = v(@) — 2L ya), (164)
where we substituted the phase velocity 6 = ;(a)/#1. The slice border condition (97) for
the two-modes system corresponds to &1 = |21| = 0, however, in this particular problem, this
condition is never satisfied since z; = 0 is a flow-invariant subspace (144) of the two-modes
system.

Figure 7 shows visualizations of the slice half-hyperplane (blue, transparent), three
group orbits (yellow, green, and pink), and group tangents (red arrows) at the intersection

34



Figure 7: SO(2) group orbits of state space points (0.75,0,0.1,0.1) (orange),
(0.5,0,0.5,0.5) (green) (0.1,0,0.75,0.75) (pink) and the first Fourier mode (163) slice hyper-
plane (blue). The group tangents at the intersections with the slice hyperplane are shown as
red arrows. As the magnitude of the first Fourier mode decreases relative to the magnitude
of the second one, so does the group tangent angle to the slice hyperplane.

of group orbits with the first Fourier mode slice as projections onto (x1,y1, z2). In Figure 7,
the slice hyperplane appears two-dimensional as a result of its definition (163), however, one
should keep in mind that it has a third dimension ys that is not shown in this projection.
For the group orbits, we have chosen three points in the slice with decreasing first Fourier
mode amplitude in order to illustrate the following: When the magnitude of the first mode
is small relative to that of the second (pink curve), the group tangent at the representative
point for the group orbit (i.e., where the group orbit and the slice hyperplane intersect) has
a larger component parallel to the slice hyperplane. If the magnitude of the first mode was
exactly 0, the group tangent would lie entirely on the slice hyperplane, satisfying the slice
border condition (97).

4.1.5 Visualizing two-modes dynamics

We now present visualizations of the dynamics of the two-modes system in four different
representations: as 3D projections of the four-dimensional real-valued state space, as 3D
projections in the invariant polynomial basis, as dynamics in the 3D slice hyperplane, and
as two-dimensional spacetime diagrams of the color-coded field u(z, 7), which is defined as

follows:
2

u(x,T) = Z 2 (7) € (165)

k=—2

where z_ = Z, 20 =0, and = € [—m,w]. We can also define the symmetry reduced field
@(z, ), as the inverse Fourier transform of the symmetry reduced Fourier modes:

2

i, )= Y H(r)e*”, (166)

k=-2
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Figure 8: The relative equilibrium TW in (a) the scalar field representation becomes an
equilibrium of (d) the symmetry-reduced field. Two cycles of the relative periodic orbit 01
of (b) the symmetry-equivariant field become a periodic orbit of (e) the symmetry-reduced
field. (c¢) A typical ergodic trajectory of the two-modes system in the symmetry-equivariant
field representation, (f) in the symmetry-reduced field representation. The color scale used
in each figure is different to enhance contrast.

where 2 p = 2, , 2 =0 and 2 € [-7, 7. (165) defines an analogous physical space
representation for the two-modes system as a scalar field in one space dimension, similar
to the one we discussed in Sect. 3.1. In this representation, we expect SO(2) group action
to become translations in space coordinate z. Figures 8 (a) and 8 (d) show the sole rela-
tive equilibrium TW of the two-modes system as color coded amplitude of the symmetry-
equivariant and symmetry-reduced fields, respectively. After symmetry reduction, the rela-
tive equilibrium becomes an equilibrium. Figures 8 (b) and 8 (e) show the relative periodic
orbit 01 again respectively in the symmetry-equivariant and symmetry-reduced scalar field
representations. Similar to the relative equilibrium, the relative periodic orbit becomes
a periodic orbit after symmetry reduction. Finally, Figures 8 (c) and 8 (f) show a typical
ergodic trajectory of the two-modes system in symmetry-equivariant and symmetry-reduced
scalar field representations. Note that in each case, symmetry reduction cancels the ‘drifts’
along the symmetry (x) direction.

As can be seen clearly in Figure 9 (a), these drifts show up in state space as SO(2) rota-
tions. The relative equilibrium TW traces its SO(2) group orbit (green curve in Figure 9 (a))
as it drifts in space. The relative periodic orbit 01 (red) and the ergodic trajectory (blue)
rotate in the same fashion as they evolve. Figures 9(b) and 9(c) show a three-dimensional
projection onto the invariant polynomial basis and the 3-dimensional trajectory on the slice
hyperplane for the same orbits. In both figures, the relative equilibrium is reduced to an
equilibrium and the relative periodic orbit is reduced to a periodic orbit.
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Figure 9: The relative equilibrium TW (green), two repeats of the relative periodic orbit
01 (red), and a chaotic trajectory (blue) of the two-modes system (a) in a 3D projection
of the 4-dimensional state space, (b) in a terms of 3 invariant polynomials, (c) in the
3-dimensional first Fourier mode slice hyperplane. Note that in the symmetry reduced
representations (b and c), the relative equilibrium TW is reduced to an equilibrium, the
green point; and the periodic orbit 01 (red) closes onto itself after one repeat. In contrast
to the invariant polynomial representation (b), in the first Fourier mode slice hyperplane
(c), the qualitative difference between shifts by ~ 7 and ~ —7 in near passages to the slice
border is very clear, and it leads to the unimodal Poincaré return map of Figure 10.

4.2 Periodic orbits

The simple structure of the symmetry-reduced dynamics allows us to determine the relative
periodic orbits of the two-modes system by means of a Poincaré section and a return map.
We illustrate this procedure in Figure 10. Starting with an initial point close to the TW,
we compute a long, symmetry-reduced ergodic trajectory by integrating (95) and record
where it crosses the Poincaré section, which we define as the plane that contains TW and
is spanned the imaginary part of its unstable stability eigenvector and fj». We then project
these points onto a basis (v1, v2), which spans the Poincaré section and fit cubic splines to the
data as shown in Figure 10 (b). This allows us to construct a return map along this curve,
which can be expressed in terms of the distance s from TW as measured by the arc length
along the cubic spline fit. The resulting map, which is shown in Figure 10 (c), is unimodal
with a sharp cusp located at its critical point. Note that the region s € (0,0.6) corresponds
to the neighborhood of the relative equilibrium and is only visited transiently. Once the
dynamics fall onto the chaotic attractor, this region is never visited again. Removing this
region from the return map, we obtain the return map shown in Figure 10 (d), which we
can then use to determine the accessible relative periodic orbits with their respective binary
symbol sequences.

The unimodal return map of Figure 10 (d) diverges around s =~ 0.98 and this neigh-
borhood is visited very rarely by the flow. We took the furthest point that is visited by
the ergodic flow, s¢ = 0.98102264 as the critical point of this map and coded points to the
left and right hand sides of this point as ‘0’ and ‘1’ respectively, and constructed a binary
symbolic dynamics. This encoding is going to allow us to find all accessible periodic orbits
of the two-modes system as we shall explain next.

4.2.1 Determining admissible cycles

We would like to find all relative periodic orbits of the two-modes system up to a certain
period in order to carry out periodic orbit theory calculations. For unimodal maps such
as Figure 10 (d), we can achieve this by kneading theory. In this section, we are going to
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Figure 10: (a) A Symmetry-reduced ergodic trajectory within the slice hyperplane (blue).
Green arrows indicate the real and imaginary parts of the complex eigenvectors v, that
span the linear unstable manifold of TW. The Poincaré section, which contains TW and
is spanned by Im [v,] and §s, is visualized as a transparent plane. Points where the flow
crosses the section are marked in red. (b) A closer look at the Poincaré section shows that
the attractor is very thin. Note that the vertical axis, which corresponds to the direction
parallel to 7o is magnified by 100. All (blue) points are located relative to the TW, which is
at the origin. The black curve is a cubic spline interpolation of the data. (c¢) By measuring
arclengths s along the interpolation curve, a return map of the Poincaré section can be
constructed. Note that once the flow exits the neighborhood of the TW (s < 0.6) it stays
on the attractor and never comes back. Thus the data up to this point is transient. (d)
The return map without the transient points framed by orbit of the critical point. Dashed
lines show the 3-cycles 001 (red) and 011 (cyan).
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state the symbolic dynamics methods we use in this chapter and for a general pedagogical
introduction to these topics, we refer the reader to refs. [24, 30].

Let s1, $2, 83, . .. be the orbit of an initial point sy under a unimodal return map s,+1 =
f(sn), such as Figure 10 (d), then the future itinerary I (sg) = .iyizis ... of s is given by

0 if s, <sc
=14 C if s,=3sc . (167)
1 if s, > sc

Unimodal maps that contain all possible itineraries are said to have complete binary
symbolic dynamics. A canonical example of such maps is full tent map

fO)=1=29y=-1/2[,  ~yeM=[01], (168)

which has a critical point at v = 1/2 as shown in Figure 11 (a). Figure 11 (a) also shows
partitions of the unit interval according to the first iterate of the map. This partition should
not be mistaken with the future itinerary in (167): Labels in spatial partition of the unit
interval starts from the initial point i.e. 00 corresponds to the initials points on the LHS of
the y¢ that stays on the same side after iteration, 01 means initial points on the LHS of
the v¢ that goes to the RHS after one iteration, and so on. One can obtain finer partitions
of the unit interval by considering longer symbol sequences, doubling the precision at each
step. This yields the relation between the future itinerary I () = .i14273 ... of a point g
and its image 1 = f(70) that can be computed via the following algorithm

wpy = 1w if  ing1=0 wy = iy
nt 1—w, if dppp=1"

YIT) = =) . (169)

Since we can compute binary future itinerary of every point on a unimodal map, such
as the one in Figure 10, we can compute their counterparts on the full tent map via (169).
This defines a topological conjugacy between all unimodal maps and the full tent map,
hence (1) is called (future) “topological coordinate”.

It can be confirmed by inspection that the topological coordinate of the critical point
of the tent map is v(I7(7.)) = 1 as expected. However, this is not the case for any
unimodal map. In fact, this would be only true if the map had complete binary symbolic
dynamics, that is all possible itineraries are accessible in the system. Generically, topological
coordinate of the critical point x = v(I"(s¢)) is different from 1. As a canonical example,
consider the dike map

fo(v) =29 v € Mo =[0,r/2)
f(y)=4q fl(v) =& yEM:=[K/2,1-K/2] , (170)
fity) =2(1—v) ~yeMi=(1-k/2,1]

which is obtained by modifying the tent map (168) by setting images of v € [k/2,1—k/2] to
k. It can be seen from Figure 11 (b) that this modification disallows any orbit to reach v > &
part of the unit interval. Consequently, periodic orbits of the tent map, which visit v > k
part of the unit interval are “pruned” in the dike map (170). This is the main topological
correspondence that we are going to use to determine accessible periodic orbits. Due to
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Figure 11: (a) Full tent map (168) and its partition Moy, Mo1, Mig, M11 according
to symbolic dynamics. (b) The dike map is obtained by slicing off the top portion of the
tent map in (a). Any full tent map orbit that visits the primary pruning interval (x, 1] is
inadmissible.

their particular importance, future itinerary and the corresponding topological coordinate
of the critical point have special names: K = I (s¢) is called the “kneading sequence” and
k =~(K) is called the “kneading value”.

We are now ready to explain how admissible periodic orbits are determined. Let us
assume the future itinerary I7(s,) = .igi142...i,—1 belongs to a periodic orbit of discrete
period n and define the shift operator o as

ol " (sp) = .itiz...in—100 = 1T (f(sp)). (171)
The maximal value of a future itinerary is given by

AT (sp)) = sup V(o™ I (sp)) (172)

In any unimodal map, if the maximal value (It (sp)) of a periodic orbit p is smaller than
the kneading value x, then this orbit is admissible. By checking this for all possible binary
itineraries, we determine all admissible cycles of the two-modes system.

4.2.2 Finding relative periodic orbits

We are now going to summarize the procedure of locating relative periodic orbits in the
state space: Suppose the binary itinerary ¢giq%2...%,—1, where i; = 0,1 corresponds to
an admissible ‘n-cycle’, a relative periodic orbit that intersects our Poincaré section n-
times. We first find arc-lengths {sg, s1, ... sp,—1} that constitute this cycle on the return
map Figure 10 (d) from the fixed points of the nth iterate of the return map. We then
find corresponding reduced state space points {ag, a1, ... an—1}. Finally, we integrate the
reduced flow (95) and the phase (96) starting from each point @; until it returns to the
Poincaré section, and divide this trajectory into N small pieces. As a result, we obtain n x NV

state space points, durations and phase shifts {al(o) , Ti(o) , 01(0)}, where i =1,2,...n X N,
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which we feed into the multiple shooting Newton solver (see Appendix A) to precisely
determine the relative periodic orbit, its period and the associated phase shift. After finding
n x N state space points (a;), flight times (7;), and phase shifts (6;) associated with the n
cycle, we can compute the stability of the orbit. We do this by computing the Jacobian
associated with each segment of the orbit J7(a;), so that the Jacobian associated with the
relative periodic orbit is then

J = g(—Onxn) I (anxn) - - -

9(=02)J7(az)g(=01)J™ (a1) . (173)

This construction (173) of the Jacobian is equivalent to our definition in (85), since the
group action g and the Jacobian J are both multiplicative and commute with each other
as a consequence of g-equivariance of the flow. The form (173) is essential in determin-
ing its eigenvalues (Floquet multipliers) precisely, since it allows us to use periodic Schur
decomposition, as described in Appendix B.

Table 1: Itinerary, period (7), phase shift (0), Floquet multiplier (A), and Floquet
exponent (A) of the found two-modes relative periodic orbits with topological lengths up to
n =5, more (up to n = 12) available upon request.

Itinerary T 0 A A

1 3.64151221 | 0.08096967 | -1.48372354 | 0.10834917

01 7.34594158 | -2.94647181 | -2.00054831 | 0.09439516
001 11.07967801 | -5.64504385 | -55.77844510 | 0.36295166
011 11.07958924 | -2.50675871 | 54.16250810 | 0.36030117
0111 14.67951823 | -2.74691247 | -4.55966852 | 0.10335829
01011 18.39155417 | -5.61529803 | -30.00633820 | 0.18494406
01111 18.38741006 | -2.48213868 | 28.41893870 | 0.18202976

We found the admissible cycles of the two-modes system up to the topological length 12.
We listed binary itineraries of shortest 7 relative periodic orbits (with topological lengths
up to 5), along with their periods, phase shifts, leading (expanding) Floquet multipliers,
and corresponding Floquet exponents in Table 1. Remaining three Floquet multipliers of
the relative periodic orbits are two marginal ones corresponding to continuous symmetry
and velocity field directions and a strongly contracting one corresponding to the direction
pointing outside the attractor. In Figure 12 (a) we show shortest 4 of the relative periodic
orbits of the two-modes system within the first Fourier mode slice hyperplane. As seen from
Figure 12 (a), trajectories of 001 (red) and 011 (cyan) almost overlap in a large region of the
state space. This behavior is also manifested in the return map of Figure 10 (d), where we
have shown cycles 001 and 011 with red and cyan respectively. This is a general property of
the two-modes cycles with odd topological lengths: They come in pairs with almost equal
leading (largest) Floquet exponents, see Figure 12 (b). Floquet exponents (\;) characterize
the rate of expansion/contraction of nearby perturbations to the relative periodic orbits
and are related to Floquet multipliers (A;) by

1
A@jZfﬁlnlAml, i=12,....d, (174)

where the subscript p associates Aj ; and A; with the ‘prime relative periodic orbit’ p and
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its period T5. Having computed periods, phase shifts, and Floquet multipliers of relati-
ve periodic orbits, we are now ready to calculate dynamical averages and other statistical
moments of observables using cycle averaging formulas.

1/2f e
0.4
& & Bp » -
0.0 =
~0.4 e :
0.0 1/12f ' Sadm e BN R b
(a) _1'8f2_0'9 0.0 2.0 &lxo (b) 0.05 0.10 0.15 o.‘20>\0,‘25 0.30 0.35 0.40

Figure 12: (a) The shortest four relative periodic orbits of the two-modes system: 1
(dark blue), 01 (green), 001 (red), 011 (cyan). Note that relative periodic orbits 001 and
011 almost overlap everywhere except #1 ~ 0 (b) Distribution of the expanding Floquet
exponents of all two-modes cycles with topological lengths n from 2 to 12. .

4.3 Cwycle Averages

We finished Chapter 2 by writing down the spectral determinant (62), zeros of which were
located at the eigenvalues of the infinitesimal evolution operator A. This formula consist
of an exponential of sums of all periodic orbits of the system and their repeats and it is not
obvious at all how can we evaluate it using our numerically found relative periodic orbits
of the two-modes system. We begin this section by introducing the cycle expansions, which
will tell us how to order terms in the spectral determinant.

4.3.1 Cycle expansions

In order to understand the convergence properties of the spectral determinant, we are going
to make an approximation that greatly simplifies its form. The term }det (1 — Mp)| that
appears in the spectral determinant can be expanded as follows

‘det (1 - Mp)'

(1 —Aeq)(I—Ac2)..(1—Ac1)(1—Ac2)..|,

= ‘ (H Ae) (Aot — DA —1)(I = Aet)(1 = Aco)...| , (175)

where we labeled expending |A. x| > 1 and contracting |A.x| < 1 Floquet multipliers of
the periodic orbit p with subscripts e,c and in the second line we rewrote the expansion
by separating the product of expanding eigenvalues. Assuming that we do not have any
near-marginal (A ~ 1) Floquet multipliers, all terms in (175) except the product are order
O(1) or smaller, hence the dominant term of this expansion is the product at the front.
Defining |Ap| = [], |Ae| we approximate (175) for periodic orbit p and its repeats as follows

|det (1 — M))| = A" (176)
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The spectral determinant within this approximation is called dynamical zeta function

1em (BQp—sTp)
1/¢ = exp ZZ A (177)

prl

Notice in (177) that the terms inside the sum are all powers of r divided by r. Defining
t, = eP%=5Tp) /|A |, inner sum becomes 327, ty/r = —In(1 — t,), hence the dynamical
zeta function can be brought to the Fuler product form

1/¢ =[] -1t (178)

Cvitanovi¢ [20] realized that if one has complete binary symbolic dynamics, the Euler
product (178) can be expanded in the following form
1/< = 1—t0—t1—(t01—t0t1) (179)

—[(to11 — tort1) + (too1 — torto)] —

= 1=ty én, (180)
f n

where we labeled each prime cycle by its binary symbol sequence. In (180) we separated
the contributions to the zeta function into two groups: ‘fundamental’ contributions
and ‘curvature’ corrections c,. The curvature correction terms are denoted explicitly by
parentheses in (179) and correspond to ‘shadowing’ combinations where combinations of
shorter cycle weights, also known as ‘pseudocycle’ weights, are subtracted from the weights
of longer prime cycles. Since the cycle weights in (178) already decrease exponentially with
increasing cycle period, the cycle expansion (179) converges even faster than exponentially
when the terms corresponding to longer prime cycles are shadowed.

The cycle expansion (179) of the dynamical zeta function completes the theoretical
exposition of Chapter 2 by telling us that we should order cycle contributions according to
their topological lengths. Ref. [5] studied the properties of (180) in detail, and ref. [6] carried
out cycle averages in several low-dimensional dynamical systems. These papers concluded
that the cycle expansions is an effective method for computation of long term averages of
dynamical systems if one has a good understanding of the topology (symbolic dynamics)
and cycles are hyperbolic, i.e. they do not have marginal (JA| = 1) Floquet multipliers.
Following refs. [5, 6], Rugh [99] showed that if the symbolic dynamics is a subshift of finite
type, [24] with the grammar of admissible sequences described by a finite set of pruning
rules, and the flow is uniformly hyperbolic, cycle expansions of spectral determinants are
guaranteed to converge super-exponentially.

A generic unimodal map symbolic dynamics is not a subshift of finite type. However,
we have shown in Sect. 4.2 that the Poincaré return map for the two-modes system (Fig-
ure 10 (d)) diverges at s ~ 0.98 and approximated it as if its tip was located at the furthest
point visited by an ergodic trajectory. This brings the question of whether we can approx-
imate the map in Figure 10 (d) in such a way that corresponding symbolic dynamics has a
finite grammar of pruning rules? The answer is yes.

4.3.2 Finite grammar approximation

As shown in Figure 10 (d), the cycles 001 and 011 pass quite close to the tip of the cusp.
Approximating the map as if its tip is located exactly at the point where 001 cuts gives us
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what we are looking for: a single grammar rule, which says that the symbol sequence ‘00’
is inadmissible. This can be made rigorous by the help of kneading theory, however, the
simple result is easy to see from the return map in Figure 10 (d): Cover the parts of the
return map, which are outside the borders set by the red dashed lines (the cycle 001) and
then start any point to the left of the tip and look at images. You will always land on a
point to the right of the tip, unless you start at the lower left corner, exactly on the cycle
001. As we will show, this ‘finite grammar approximation’ is reasonable since the orbits
that visit outside the borders set by 001 are very unstable, and hence, less important for
the description of invariant dynamics.

The binary grammar with only rule that forbids repeats of one of the symbols is known
as the ‘golden mean’ shift, [24] because it has a topological entropy of In ((1 + \/5) / 2).
Binary itineraries of golden mean cycles can be easily obtained from the complete binary
symbolic dynamics by substitution 0 — 01 in the latter. Thus, we can write the dynamical
zeta function for the golden mean pruned symbolic dynamics by replacing Os in (179) by
01:

1/¢ = 1—tor —t1 — (tor1 — toit1) (181)
—[(to111 — to11t1) + (toro11 — tortorn)] — -

Note that all the contributions longer than topological length 2 to the golden mean dynam-
ical zeta function are in form of shadowing combinations. In Sect. 4.4.1, we will compare
the convergence of the cycle averages with and without the finite grammar approximation,
but before moving on to numerical results, we explain the remaining details of computation.

4.4 Cycle expansions the of spectral determinant

While dynamical zeta functions are useful for investigating the convergence properties, they
are not exact, and their computational cost is same as that of exact spectral determinants.
For this reason, we expand the spectral determinant (62) ordered in the topological length
of cycles and pseudocycles. We start with the following form of the spectral determinant
(62)

npr<N 1 eT(ﬁQp—STp)

det (S — A) = Hexp — Z ;mznpr 5 (182)
p

r=1

where the sum over the prime cycles in the exponential is taken out as product. We also
inserted the order tracking term z, which we will set to 1 at the final step, and truncated
the sum over cycle repeats at the expansion order N. For each prime cycle, we compute the
sum in (182) and expand the exponential up to order N. We then multiply this expansion
with the contributions from previous cycles and drop terms with order greater than V.
This way, after setting z = 1, we obtain the spectral determinant truncated to cycles and
pseudo-cycles of topological length up to n, < N,

N

Fx(B,5) =1=) Qu(B;s), (183)

n=1

where we denoted the Nth order spectral determinant by Fj and nth order term in its
cycle expansion by @,. In what follows, we shall drop the subscript, Fy — F, but actual
calculations are always done for a range of finite truncation lengths N. Remember that we

44



are searching for the eigenvalues s(f) of the operator A in order to compute the moments
(50) and (54). These eigenvalues are located at the zeros of the spectral determinant, hence
as function of  they satisfy the implicit equation

F(B,s(B)) =0. (184)
By taking derivative of (184) with respect to # and applying chain rule we obtain
ds OF [ OF

a8 =— 95/ o5 (185)
Higher order derivatives can be evaluated similarly. Defining
(T) = O0F)/os, (T?) = 9*F/0s*, (186)
Q% = —9*F/0p%, (QT) = 0°F/0p0s,
we write the cycle averaging formulas as
(w) = (Q/T), (187)
1 9 ds ds\?
A = ) ((Q )y — 2%(QT> + <dﬁ) (TQ))
_ LY oo 2
= l@-Tw)), (185)

with everything evaluated at 8 = 0, s = s(0).

By probability conservation, we expect that for an invariant measure pg(a), the eigen-
value s(0) is 0. However, we did not make this substitution in cycle averaging formulas since,
in practice, our approximations to the spectral determinant are always based on a finite
number of periodic orbits, so that the solution of F(0,s(0)) = 0 is small, but not exactly
0. This eigenvalue has a special meaning: It indicates how well the periodic orbits cover the
strange attractor. Following this interpretation, we define v = —s(0) as the ‘escape rate’:
the rate at which the dynamics escape the region that is covered by the periodic orbits.
Specifically, for our finite grammar approximation; the escape rate tells us how frequently
the ergodic flow visits the part of the Poincaré map that we cut off by applying our finite
grammar approximation.

We defined (T) in (186) as a shorthand for a partial derivative, however, we can also
develop an interpretation for it by looking at the definitions of the dynamical zeta function
(178) and the spectral determinant (62). In both series, the partial derivative with respect
to s turns them into a sum weighted by the cycle periods; with this intuition, we define (T")
as the ‘mean cycle period’. We are now ready to present our numerical results and discuss
their quality.

4.4.1 Numerical results

We constructed the spectral determinant (183) to different orders for two observables: phase
velocity 0 and the leading Lyapunov exponent. Remember that €2, appearing in (182) is the
integrated observable, so in order to obtain the moments of phase velocity and the leading
Lyapunov exponent from (187) and (188), we respectively put in Q, = 6, the phase shift
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Table 2: Cycle expansion estimates for the escape rate v, average cycle period (T'), Lya-

punov exponent A, average phase velocity (), and the diffusion coefficient D, using cycles
up to length N in the golden mean approximation (181) of the symbolic dynamics.

N y (T) A (0) D

1 | 0.249829963 | 3.6415122 | 0.10834917 | 0.0222352 | 0.000000
2 | -0.011597609 | 5.8967605 | 0.10302891 | -0.1391709 | 0.143470
3 | 0.027446312 | 4.7271381 | 0.11849761 | -0.1414933 | 0.168658
4 | -0.004455525 | 6.2386572 | 0.10631066 | -0.2141194 | 0.152201
5 | 0.000681027 | 5.8967424 | 0.11842700 | -0.2120545 | 0.164757
6 | 0.000684898 | 5.8968762 | 0.11820050 | -0.1986756 | 0.157124
7 | 0.000630426 | 5.9031596 | 0.11835159 | -0.1997353 | 0.157345
8 | 0.000714870 | 5.8918832 | 0.11827581 | -0.1982025 | 0.156001
9 | 0.000728657 | 5.8897511 | 0.11826873 | -0.1982254 | 0.156091
10 | 0.000728070 | 5.8898549 | 0.11826788 | -0.1982568 | 0.156217
11 | 0.000727891 | 5.8898903 | 0.11826778 | -0.1982561 | 0.156218
12 | 0.000727889 | 5.8898908 | 0.11826780 | -0.1982563 | 0.156220

of the prime cycle p, and €, = In|A, |, the logarithm of its expanding Floquet multiplier
of Ape.

In Sect. 4.1.5, we explained that SO(2) phase shifts correspond to the drifts in space.
We define the corresponding diffusion coefficient as

D= — lim —(0(7)% — (8())?), (189)

where d = 1 since the analogous physical space is one-dimensional.

Tables 2 and 3 respectively show the cycle averages of the escape rate -y, mean period
(T'), leading Lyapunov exponent A\, mean phase velocity <9> and the diffusion coefficient D
with and without the finite grammar approximation. In the latter, we input all the relative
periodic orbits we have found into the expansion (182), whereas in the former, we discarded
the cycles with symbol sequence ‘00’.

In Sect. 4.3.2, we motivated the finite grammar approximation by claiming that it would
lead to faster convergence of dynamical averages due to the nearly exact shadowing com-
binations of the golden mean zeta function (181). This claim is supported by the data in
Tables 2 and 3. Take, for example, the Lyapunov exponent. This converges to 7 digits for
the 12*® order expansion when using the finite grammar approximation in Table 2, but only
converges to 4 digits at this order in Table 3. Other observables compare similarly in terms
of their convergence in both cases. Note, however, that the escape rate in Table 2 converges
to v = 0.000727889, whereas in Table 3 it gets smaller and smaller with an oscillatory
behavior. This is due to the fact that in the finite grammar approximation, we threw out
the part of attractor that corresponds to the cusp of the return map in Figure 10 (d) above
the point cut by 001.

In order to compare with the cycle averages, we numerically estimated the leading
Lyapunov exponent of the two-modes system using the method of Wolf et al. [119] This
procedure was repeated 100 times for different initial conditions, yielding a numerical mean
estimate of A\ = 0.1198 £ 0.0008. While the finite grammar estimate Apg = 0.1183 is
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Table 3: Cycle expansion estimates of the escape rate «y, average cycle period (T'), Lya-

punov exponent A, average phase velocity (), and the diffusion coefficient D using all cycles
found up to length N.

N y (T) A (0) D

1 | 0.249829963 | 3.6415122 | 0.10834917 | 0.0222352 | 0.000000
2 1 -0.011597609 | 5.8967605 | 0.10302891 | -0.1391709 | 0.143470
3 | 0.022614694 | 4.8899587 | 0.13055574 | -0.1594782 | 0.190922
4 | -0.006065601 | 6.2482261 | 0.11086469 | -0.2191881 | 0.157668
5 | 0.000912644 | 5.7771642 | 0.11812034 | -0.2128347 | 0.168337
6 | 0.000262099 | 5.8364534 | 0.11948918 | -0.2007615 | 0.160662
7 | 0.000017707 | 5.8638210 | 0.12058951 | -0.2021046 | 0.160364
8 | 0.000113284 | 5.8511045 | 0.12028459 | -0.2006143 | 0.159233
9 | 0.000064082 | 5.8587350 | 0.12045664 | -0.2006756 | 0.158234
10 | 0.000093124 | 5.8536181 | 0.12035185 | -0.2007018 | 0.158811
11 | 0.000153085 | 5.8417694 | 0.12014700 | -0.2004520 | 0.158255
12 | 0.000135887 | 5.8455331 | 0.12019940 | -0.2005299 | 0.158465

within 0.6% range of this value, the full cycle expansion agrees with the numerical estimate.
This is not surprising since in the finite grammar approximation, we discard the most
unstable cycles to obtain faster convergence, and so can expect a slight underestimate of
the Lyapunov exponent.

4.5 Conclusions

In this chapter, we studied a simple dynamical system that exhibits chaos and is equivariant
under SO(2) symmetry as the first application of first Fourier mode slice. Our presentation
covers all steps that need to be taken in the study of equivariant systems: (1) reduction
of symmetries, (2) understanding of qualitative dynamics on Poincaré maps, (3) finding
exact coherent structures numerically using guesses from Poincaré maps, and (4) predicting
dynamical averages using periodic orbit theory. Relative simplicity of the two-modes sys-
tem’s strange attractor allowed us to carry out steps (2-4) in a straightforward manner, and
confirmed one of the main objectives of our approach: Relative periodic orbits can indeed
be used to predict the long-time averages of observables in chaotic systems with continu-
ous symmetries. Furthermore, improved convergence of cycle expansions within the finite
grammar approximation of Sect. 4.3.2 demonstrated the strong relation between qualitative
understanding of chaotic systems and quantitative predictions of their long term behavior.
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CHAPTER V

KURAMOTO-SIVASHINSKY SYSTEM

In the previous chapter, we showed that the relative periodic orbits of a chaotic system with
a continuous symmetry, can indeed be used to predict the long term behavior of the system.
However, the four-dimensional two-modes system is very easy compared to the applications
we have in mind and it also lacked the physical motivation for its study. Here, we take one
step further, and as soon as we do, we face new difficulties.

Originally derived as a simplification of the complex Ginzburg-Landau equation [71]
and in the study of flame fronts [103], the Kuramoto-Sivashinsky equation is perhaps the
simplest spatially extended dynamical system that exhibits spatiotemporal chaos. Similar
in form to the Navier-Stokes equation, but much easier computationally, the Kuramoto-
Sivashinsky partial differential equation ([pde??]) is a convenient sandbox for developing
intuition about turbulence [60].

In one space dimension with periodic boundary condition, the Kuramoto-Sivashinsky
equation is equivariant under both discrete reflection and continuous translations. In order
to avoid dealing with complications due to the continuous symmetry, a number of earlier
papers [18, 72, 91-93] study the Kuramoto-Sivashinsky equation within the flow-invariant
subspace of solutions antisymmetric under the reflection. However, such restrictions to
flow-invariant subspaces miss the physics of the problem: any symmetry invariant subspace
is of zero measure in the full state space, so a generic turbulent trajectory explores the state
space outside of it. Lacking continuous-symmetry reduction schemes, earlier papers on the
geometry of the Kuramoto-Sivashinsky flow in the full state space were restricted to the
study of the smallest invariant structures: equilibria [19], their invariant stable/unstable
manifolds, their heteroclinic connections [22], and their bifurcations under variations of the
domain size [3, 68].

In this chapter, we are going to study the state space geometry of Kuramoto-Sivashinsky
system in the symmetry reduced representation, which will enable us to study the invariant
manifolds of the relative equilibria and relative periodic orbits. We begin by introducing
the Kuramoto-Sivashinsky system.

5.1 Kuramoto-Sivashinsky system and its symmetries

We study the Kuramoto-Sivashinsky equation in one space dimension

(U2):L‘ — Ugy — Uggzzx » (190)

D[

Ur = —

with periodic boundary condition u(x,7) = u(xz + L, 7). The real field u(z, 7) is the “flame
front” velocity [103]. The domain size L is the bifurcation parameter for the system, which
exhibits spatiotemporal chaos for sufficiently large L: see Figure 13 (e) for a typical spa-
tiotemporally chaotic trajectory of the system at L = 22.

We discretize the Kuramoto-Sivashinsky system by Fourier expanding the field u(z, 1) =
>k Uk (7)e"® | and expressing (190) in terms of Fourier modes as an infinite set of ordinary
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Figure 13: Examples of exact coherent structures in the Kuramoto-Sivashinsky system
and the ergodic flow visualized as the color coded amplitude of the scalar field u(z,7): (a)
Equilibrium E4, (b) Relative equilibrium T'W7j, (¢) Pre-periodic orbit with period T' = 32.4,
(d) Relative periodic orbit with period T'= 33.5 . (e) Ergodic flow. Horizontal and vertical
axes correspond to space and time respectively. System size L = 22. The exact coherent
structures and their labels are taken from ref. [22].
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differential equations ([ode??]s)
2 ~ Gk L
g = (g — qp) @k — Yy E UmUk—m s Gk =~ - (191)

Kuramoto-Sivashinsky equation is Galilean invariant: if u(x,7) is a solution, then
v 4+ u(x — vr,7), with v an arbitrary constant velocity, is also a solution. In the Fourier
representation (191), the Galilean invariance implies that the zeroth Fourier mode g is
decoupled from the rest and time-invariant. Hence, we set iig = 0' and exclude @ from the
state space and represent a Kuramoto-Sivashinsky state u = u(z,7) by the Fourier series
truncated at k= N, i.e., a 2N-dimensional real valued state space vector (69). One can
rewrite (191) in terms of this real valued state space vector, and express the truncated set

of equations compactly as
a=uv(a). (192)

In our numerical work we use a pseudo-spectral formulation of (192), as described in Ap-
pendix C.

Spatial translations u(z,7) — u(x + 0z, 7) correspond to SO(2) rotations a — ¢(#) a in
the Kuramoto-Sivashinsky state space, with the matrix representation (70). The Kuramoto-
Sivashinsky dynamics commutes with the action of (70), as can be verified by checking that
(192) satisfies the equivariance relation (73). By the translation symmetry of the Kuramo-
to-Sivashinsky, each solution of [pde??] (190) has infinitely many dynamically equivalent
copies that can be obtained by translations (70). Hence, Kuramoto-Sivashinsky system has
relative exact coherent structures such as relative equilibria (79) and relative periodic orbits
(83), examples of which are visualized in Figure 13 (b) and (d), respectively.

The Kuramoto-Sivashinsky equation (190) has no preferred direction, and is thus also
equivariant under the reflection symmetry u(x,7) — —u(—=z,7): for each solution drifting
left, there is a reflection-equivalent solution which drifts right. In terms of Fourier compo-
nents, the reflection ¢ acts as complex conjugation followed by a negation, whose action

1 'We do not loose generality by this choice since each solution with nonzero mean velocity v can be
obtained from zero mean velocity (iio = 0) solution by transforming to the moving frame ' = z — vr.
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on vectors in state space (69) is represented by the diagonal matrix which flips the real
components b; to —b;,
o=diag[-1,1,-1,1,..., =1, 1] . (193)

Due to this reflection symmetry, the Kuramoto-Sivashinsky system also can also have strictly
non-drifting equilibria and (pre-)periodic orbits. An equilibrium is a stationary solution
a,,(7) = a,(0). A periodic orbit p is periodic with period T}, a,(0) = a(T}), and a pre-
periodic orbit is a relative periodic orbit

a,,,(0) = 0 a,,,(Tp) (194)
which closes in the full state space after the second repeat, hence we refer to it as ‘pre-
periodic’.

In Figure 13 (a) we show equilibrium FE; of Kuramoto-Sivashinsky equation (so labelled
in ref. [22]). If we were to reflect Figure 13 (a) with respect to x = 0 line, and then
interchange red and blue colors, we would obtain the same solution; all equilibria belong
to the flow-invariant subspace of solutions invariant under the reflection symmetry of the
Kuramoto-Sivashinsky equation. Figure 13 (b) shows a pre-periodic solution of the Kura-
moto-Sivashinsky system: The dynamics of the second period can be obtained from the
first one by reflecting it. Both equilibria and pre-periodic orbits have infinitely many copies
that can be obtained by continuous translations, symmetric across the shifted symmetry
line, g(8)og(—0). Due to non-commutativity of reflection o and translations g(6), (o g(6) =
—g(0) o, or, in terms of the generator of translations, the reflection reverses the direction
of the translation, 0 T = —T ). Let f7(a) denote the finite time flow mapping induced by
(192) and a,,, belong to a pre-periodic orbit defined by (194). Then the dynamics of the
shifted point a/ == g(0) satisfies

app o

() = g(6)og(~0)a

Ppo ppo *

In contrast, a relative periodic orbit (83) also has a distinct reflected copy ar’pa = oa,,, wWith
reversed phase shift:
aT'pO(O) =g(6p) arlpo(Tp) .

In order to carry out our analysis, we must first eliminate all these degeneracies. This we
do by symmetry reduction, which we describe next.

5.2 Continuous symmetry reduction

Similar to the two-modes system of the previous chapter, we reduce the continuous SO(2)
symmetry of the Kuramoto-Sivashinsky system by the choosing the first Fourier mode slice
template @’ = (1,0,0,...,0)” (100), which implies the symmetry reduced dynamics

o(a) =v(a) — —t(a) (195)
by
in the symmetry reduced state space
a = (b1,0,ba,é,...bx,¢N) . (196)

as we described in Sect. 3.3.3. The two-modes system had a flow invariant subspace z; =
0, zo # 0 (144), which prevented the flow from entering the slice border x1 = 0 (97); hence
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the first Fourier mode slice was guaranteed to be valid for generic trajectories. We have
no such guarantee here, and in fact, when we reduce the SO(2) symmetry via first Fourier
mode slice, the trajectories appear to be discontinuous.

In Sect. 3.3.3, we showed that the reduced velocity field (102) is singular if the am-
plitude of the first Fourier mode by vanishes and we proposed that this singularity can
be regularized by rewriting symmetry reduced dynamics in terms of a rescaled slice time
(103). As illustrated in Figure 14 for a traveling wave and an relative periodic orbit of the
Kuramoto-Sivashinsky system at L = 22, apparent fast jumps of the symmetry reduced
flow are well-resolved when the dynamics is sampled in slice time. Note also that when the
symmetry is reduced, the relative equilibrium and the relative periodic orbit respectively
becomes an equilibrium and a periodic orbit as expected.

200 200 665.4
= <=
100} 3320{)ﬁ —
0 % Lz L
B 2 67.0 () 801.2 ’
)
- &=
33500 400.6
L/2 L/2 L % Lj2 L
(d) z (e) x () T

Figure 14: Traveling wave TW; with phase velocity ¢ = 0.737: (a) the full state space
solution, (b) symmetry-reduced solution with respect to the lab time, and (c) symmetry-
reduced solution with respect to the slice time. Relative periodic orbit T), = 33.50: (d) the
full state space solution, (e) symmetry-reduced solution with respect to the lab time, and
(f) symmetry-reduced solution with respect to the slice time. The exact coherent structures
and their labels are taken from ref. [22].
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5.2.1 State space visualization

While the physical space visualizations of spatiotemporal chaos such as Figure 13 and
Figure 14 are intuitive, they do not tell much about the general organization of solutions
in the state space. It is not obvious how to effectively visualize the infinite-dimensional
state space of partial differential equations. Gibson et al. [15] addressed this problem for
Plane-Couette flow, where they captured dynamics within the neighborhoods of equilibria
by constructing projection frames from their stability eigenvectors. In this section, we are
going to show that this approach can be extended to the relative equilibria within the first
Fourier mode slice.

The exact coherent structure that we are going to study is TW; (Figure 14 (a-c)), found
in ref. [22] for the system size L = 22. We compute the linear stability properties of TW; by
computing eigenvalues and eigenvectors of A(arw,) (107). TW has 4 stability eigenvalues
with positive real parts

A2 = 0.11562 £ 40.81729,  A34 = 0.03366 £ ¢0.41891, (197)

which renders its unstable manifold four-dimensional. However, since the real part of A; is
3.4 times bigger than that of A3, we observed that the local expansion of dynamics nearby
TWj is exponentially dominated in the directions of the stability eigenvector V; correspond-
ing to A\;. Complex eigenvalue A\; with positive real part tells us that the dynamics in the
hyperplane spanned by real and imaginary parts of Vi has spiral-out behavior within the
linear approximation. Unstable manifolds of fixed points in nonlinear systems are in gen-
eral curved objects, that are not confined to this hyperplane. However, Hartman-Grobman
theorem [50] tells us that the linear and nonlinear unstable manifolds of a hyperbolic fixed
point are topologically conjugate to each other, that is one can be smoothly deformed to
the other. Furthermore, real unstable manifold converges to its linear approximation as one
gets closer and closer to the fixed point. Therefore, if we start trajectories that cover the
linear unstable manifold of the fixed point in close proximity to it, we expect to numerically
resolve its real unstable manifold by integrating these trajectories forward in time. Let €
be a small number, n be an integer, u; = Re A\, w; = Im A;, and é; = Re Vq, perturbations

i(8) = apw, + ee®?™1 /¥, where 6§ €[0,1), (198)

cover the two-dimensional subspace of the four-dimensional unstable manifold of TW; to
the linear approximation, since after 2w /w; (one return), a(0) comes to the initial location
of a(1). We set ¢ = 1079, took 20 equidistant values in [0,1) for § and integrated these
trajectories for 7 = 115 within the slice and the full state space and plotted the outcomes
in Figure 15. The coordinate axes are projections (e, ez, e3) onto three orthonormal vectors
(é1, é2,€3) constructed from Re Vi, Im V;, and Re V3 via Gram-Schmidt orthogonalization.

It is clear from Figure 15 that without continuous symmetry reduction, dynamics nearby
TW; is dominated by the drifts in the symmetry direction, and thus the continuous sym-
metry reduction is crucial to extract the physical (symmetry invariant) part of the unstable
manifold.

While the first Fourier mode slice eliminates infinitely many symmetry copies of the
solutions, within the slice, we still have a reflection copy for each solution that is not
invariant under it. We reduce this symmetry in the next section.
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Figure 15: Kuramoto-Sivashinsky system (a) in the full state space: Group orbit (also
the time orbit) of TW; (magenta) and its unstable manifold (blue) traced out by integrating
nearby points given by (198) (b) In the symmetry reduced state space TW; is reduced to
a single point, and the unstable manifold is a smooth 2D surface.

5.3 Discrete symmetry reduction

Our next challenge is to devise a transformation from (196) to discrete-symmetry reduced
coordinates, where the equivariance under reflection is also reduced. Consider the action of
reflection on the symmetry-reduced state space. In general, a slice is an arbitrarily oriented
hyperplane, and action of the reflection o can be rather complicated: it maps points within
the slice hyperplane into points outside of it, which then have to be rotated into the slice.

Fortunately, the action of o on the first Fourier mode slice is particularly simple. Action
oa of (193) on (196) flips the sign of the first element, i.e., makes the phase of the first Fourier
mode 7. Rotating back into the slice by (98), we find that the reflection within the first
Fourier mode slice acts by alternating the signs of even (real part) and odd (imaginary part)
Fourier modes:

Q>
|

g(—m)o
= diag[1, -1, -1,1,1, -1, -1, 1,1, .. ] . (199)

The action on the slice coordinates (where we for brevity omit all terms whose signs do not
change under reflection) is

5'(62, 637 647 657 Bﬁa 677 .. ) = (_EQa _63; _847 _657 _867 _677 . ) ; (200)

Our goal is to find a transformation from (196) to some new, reflection-invariant coordi-
nates. We could declare a half of the symmetry-reduced state space to be a ‘fundamental
domain’ [24], with segments of orbits that exit it brought back by reflection, but such
symmetry reduction makes orbits appear discontinuous and hard to visualize.

Miranda and Stone [16, 80] reduction of the Cy symmetry of the Lorenz system (or the
‘the doubled-polar angle coordinates’ of ref. [24]) into a smooth flow by a nonlinear coor-
dinate transformation into an invariant polynomial basis suggests our next step. Squaring
(or taking absolute value of) each sign-flipping coordinate in (200) is not an option, since
such coordinates would be invariant under every individual sign change of these coordinates,
and that is not a symmetry of the system. We are allowed to impose only one condition to
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reduce the 2-element orbit of the discrete reflections subgroup of O(2). Here is our proposal:
in order to achieve the desired 2—to—1 symmetry reduction, we construct the first coordi-
nate from squares, and ‘twine’ the successive sign-flipping terms into a quadratic invariant
polynomial basis set

(P2, 13,4, P55 - - -)
= (b3 — &3, bacs, bals, bacs, ...). (201)

The original coordinates can be recovered recursively by the 1—to—2 inverse transformation

by — i\/pz +V/p3 +4p3
2

c3 = p3/ba, by = pafcs, c5 = p5/ba,

To summarize: we first reduce the group orbits generated by the continuous SO(2)
symmetry subgroup by implementing the first Fourier mode slice (95), and then reduce the
group orbits of the discrete 2-element reflection subgroup by replacing the sign-changing
coordinates (200) with the invariant polynomials (201). The final O(2) symmetry-reduced
coordinates are

a = (b1,0,b3 — &2, ¢, b3, baés, baés, éq,bs, .. .) . (202)

Here pairs of orbits related by reflection o are mapped into a single orbit, and ¢; is identically
set to 0 by continuous symmetry reduction, thus the symmetry-reduced state space has one
dimension less than the full state space.

5.4 Kuramoto-Sivashinsky system at L = 22

In our initial studies of the Kuramoto-Sivashinsky system, we followed the work of ref. [22],
where authors succeeded to find over 30000 relative periodic orbits of the Kuramoto-Siva-
shinsky system as well as 3 equilibria and 2 traveling waves at L = 22.0. In ref. [22],
authors also find heteroclinic connections between equilibria by visualizing their unstable
manifolds. With the symmetry reduction, we were able to study unstable manifolds of
relative equilibria as we illustrated in Figure 15, however, we observed that these manifolds
directly connect to the strange attractor. Furthermore, we have also searched for recurrent
dynamics in these neighborhoods by studying them on local Poincaré sections, but we have
not succeeded identifying such locally low dimensional dynamics.

In order to develop a better intuition about the problem, we decided to try a data
driven approach for visualization of global dynamics. For this purpose, we adopted principal
component analysis ([pca??]), a statistical method for extracting directions of the largest
variations of a given data set.

PCA is widely used and has different names in different fields. In turbulence studies,
it is usually referred to as “proper orthogonal decomposition” (POD) [60] or “Karhunen-
Loeve expansion” [96]. Here, we preferred to use the term PCA, because our application
of the method is different from the general use in turbulence literature in one important
aspect: POD basis is generally defined in L?-space of the turbulent velocity field, where the
L2-norm of the velocity field (or [2-norm of its Fourier modes) is the “energy norm”. In
our symmetry-reduced state space (202), while we still have entire physical information of
the system, [>-norm no longer corresponds to the energy of the state. We treat the ergodic
flow in (202) as a statistical sample set, and hence we adopted the common terminology
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in statistics. We refer the reader to ref. [60] for an introduction to POD in the turbulence
context; for a general introduction to PCA, see ref. [118].

In order to obtain principal components P;, we first generate the data set from a very
long simulation (fgjna = 2 x 10°) of the Kuramoto-Sivashinsky equation sampled at every
0.1 time units, and transform the outcome to the reduced state space coordinates (202). P,
are the normalized eigenvectors of empirical covariance matrix X7 X, where X is the data
matrix. Rows of X are the samples a; — (a), where ay are the data from the long simulation
and (a) is their empirical mean. In computations, these eigenvectors are found by singular
value decomposition

X=UswT, (203)

where U is a unitary matrix, 3 is rectangular diagonal with singular values o; of X and
columns of W are the principal components P;. We utilized pca function of MATLAB for
this calculation. Principal components P; are ordered by decreasing principal component
variances 012 > af_l,z’ =1,2,3,... Figure 16 (a) shows three projections of the ergodic data
(gray) and 10 periodic orbits of the Kuramoto-Sivashinsky system onto the three leading
principal components.

Figure 16: Samples (separated equally in time) from a long simulation (gray) with
(a) the two shortest pre-perodic orbits (green and cyan) and the shortest relative periodic
orbit(red) of the Kuramoto-Sivashinsky system, (b) the shortest 10 relative periodic orbits
of the Kuramoto-Sivashinsky system, projected onto leading three principal components.

In Figure 16 (a), we show the two shortest pre-periodic orbits (green and cyan) and one
relative periodic orbit (red) of the Kuramoto-Sivashinsky system along with the samples
from ergodic trajectory (grey dots). Note the overlap of RPO; (red) and PPOy (cyan)
in Figure 16 (a); this is an example of how symmetry reduction reveals relations between
trajectories, which are otherwise very hard to detect. In Figure 16 (b), we show the shortest
10 periodic orbits (6 pre-periodic and 4 relative periodic orbitin full state space) of the Ku-
ramoto-Sivashinsky system, which appear to be “filling out” the ergodic cloud.

Variations of the density of ergodic data in Figure 16 already reveal some qualitative
properties of the chaotic attractor of Kuramoto-Sivashinsky system. In order to extract
more detailed information, we construct a Poincaré section from the hyperplane condition

55



and the directional constraint
(@ —(a),P3) =0 and (0(a),Ps)>0. (204)

Figure 17 shows intersections of 479 periodic orbits (blue) and an ergodic trajectory (green)
with the Poincaré section (204), projected onto the (Py, P») plane. The blue and green dots
appear to populate the same overlapping structures, indicating a surprisingly thin strange
attractor whose “backbone’ is formed by the relative periodic orbits.

1.5

1802 00 0.4 0.8

Py

Figure 17: Intersections of the long ergodic trajectory (green) and 479 periodic orbits
(blue) with the Poincaré section which contains the origin of the [pca??] coordinates
(empirical mean) and is parallel to (P, P;) plane.

Strikingly similar structures of ergodic trajectories and periodic orbits on the Poincaré
section Figure 17 motivated us to study unstable manifolds of the periodic orbits. However,
we have not succeeded in identifying one important relative periodic orbit (out of 479!)
whose invariant manifolds form the shape of this attractor. For this reason, we decided to
first investigate the system by varying its size and study its bifurcations, in order to see
whether one of these orbits plays the key role in shaping the strange attractor.

5.5 Transition to chaos via torus breakdown

We now investigate the transition to chaos in the neighborhood of a short Kuramoto-Siva-
shinsky pre-periodic orbit, focusing on the system sizes L € [21.0,21.48]. Our method
yields a symmetry-reduced velocity field 7(a) = G and a time-forward flow f7(a(0)) = a(r)
in the symmetry-reduced state space (202). Although we can obtain ¢(a) by chain rule,
we find its numerical integration unstable, hence in practice we obtain #(@) and f7(a) from
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the first Fourier mode slice by applying the appropriate Jacobian matrices, as described in
Appendix C.

At L = 21.0, we found that the Kuramoto-Sivashinsky system has a stable periodic orbit
po (pre-periodic in full state space), which satisfies a,, = fTvo (Gp,) for any point on the
periodic orbit pg. We have also observed that trajectories of random (outside an invariant
subspace) initial conditions converge to this orbit after sufficiently long time; indicating
that po has a large basin of attraction at L = 21.0. Linear stability of a periodic orbit is
described by the Floquet multipliers A; and Floquet vectors V; which are the eigenvalues
and eigenvectors of the Jacobian matrix jp of the time-forward flow f7» (ap)

JVi = NV

Each periodic orbit has at least one Floquet multiplier A, = 1 corresponding to the
velocity field direction. When L < 21.22, all other Floquet multipliers of py has absolute
values less than 1. At L ~ 21.22, leading Floquet multiplier A; crosses the unit circle,
and the corresponding eigenplane spanned by the real and imaginary parts of V; starts to
have ‘spiral out’ dynamics that connects to a 2-torus, as illustrated in Figure 18 (b). In
Figure 18 and the rest of the state space projections of this paper, projection bases are
constructed as follows: Real and imaginary parts of the Floquet vector V; define an ellipse
Re [V1] cos ¢ +1Im V] sin ¢ in the neighborhood of dp,, and we pick the principal axes of this
ellipse as the first two projection-subspace spanning vectors. As the third vector we take the
velocity field ©(ap,), and the projection bases (e1, ez, e3) are found by orthonormalization
of these vectors via the Gram-Schmidt procedure. All state space projections are centered
on Gy, i.e., ap, is the origin of all Poincaré section projections.

In order to study dynamics within the neighborhood of py, we define a Poincaré section
as the hyperplane of points in an open neighborhood of @y, , orthogonal to the tangent (a,, )
of the orbit at the intersection point,

(@ — i, ) =0 and  [[a— || < ar, (205)

where ||.|| denotes the Euclidean (or L2) norm, and the threshold « is empirically set to
a = 0.5 throughout. From here on, we study the discrete time dynamics induced by the
flow on this hyperplane, as visualized in Figure 18 (a). As an example, we follow a single
trajectory starting from ap, + 10~ 'Re [‘71] as it connects to the 2-torus surrounding the
periodic orbit in Figure 18 (b). For system size L = 21.25 the magnitude of the complex
unstable Floquet multiplier pair is nearly marginal, |A; 2| = 1.00636, hence the spiral-out
is very slow.

5.5.1 Interlude: Discrete time dynamical systems

As illustrated in Figure 18, continuous time flow in the state space induces discrete time
dynamics on the Poincaré section. In order to be able to explain the unstable manifold
calculations of the next section, we need to cover some basic results of the discrete time
linear dynamical systems. For our purposes here, it is sufficient to describe the 1 and 2-
dimensional cases. An autonomous discrete time linear system is defined by a difference
equation

aln + 1] = Aa[n], (206)
where A is a matrix, a is a state space vector and n is the integer time variable written in
square brackets to imply its discreteness. For an initial condition a[0] = ag, the solution is

aln] = A"ay (207)
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Figure 18: (a) Pre-periodic orbit py (red), its velocity field ©(a,,) at the starting point
(green), orthogonal vectors that span the eigenplane corresponding to the leading Floquet
vectors (blue) and the Poincaré section hyperplane (gray). (b) Spiral-out dynamics of a
single trajectory in the Poincaré section projected onto (e1, e2) plane, system size L = 21.25.

and if the system is one-dimensional, then (207) is all one needs.
Now let us assume that A is 2 x 2, has complex eigenvalue/eigenvector pairs Ajo =
\Al\eﬂ‘“g[\l and Vj 2 = Re Vi £ilmV} and V; are normalized, i.e. |ReV4|? + [Im V;|? = 1.
Since, Re V1 and Im Vj are linearly independent, an initial condition ag in the state space
can be written as
ao = c1Re Vi 4+ colm V7 | (208)

and the corresponding solution is
aln] = A"ag
= AT+ Vo) + AT (Vi - Vi)

Cl|A1|n inarg A —inarg A 02|A1|n
= 5 (e shiy, 4 e g 1{/'2)+ 5
A n
= 01‘21‘ (V1 + Vo) cos(narg Ay) + i(Vi — Vo) sin(narg Aq)]
A n
+62’2i1‘ (V1 — Va)cos(narg Ay) + i(Vi + Vi) sin(narg Aq)]

= c¢1|A1|"[ReVicos(narg A1) — Im Vjsin(narg Ay)]
+co|A1|"[Re Visin(narg A;) + Im V) cos(narg Ap)]. (209)

(einargAl‘/I _efinargAl‘/Q) ,

It is instructive to re-express (209) compactly by defining a matrix W = [Re Vi, Im V4] with
real and imaginary parts of V; on its columns, and a coefficient vector ¢ = (c1,c2)”. Then
the solution (209) can be written compactly as

aln] = |[M|"WR(—nargAj)c, (210)

where R(6) is the 2x 2 rotation matrix (71). Without loss of generality, we can also define
M = (1,0)T and express ¢ = rR(#)cM) and rewrite (210) as

aln] = |A|"rWR(0 — narg Ay)c™M . (211)
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While Re V1 and Im V; are linearly independent, they are not necessarily orthogonal. Hence,
(211) describes elliptic trajectories, spiraling or steady, depending on |A;].

5.5.2 Unstable manifolds of periodic orbits

We are now ready to compute two-dimensional unstable manifold of py on the Poincaré
section (205). Assume that 6a(0) is a small perturbation to ap, that lies in the plane
spanned by (Re[V1], Im[V1]). As we explained in the previous section, we can express this
initial condition as

6a(0) = 6rWR(0)cWY (212)

where W = [Re[V4], Im [V1]] has real and imaginary parts of the Floquet vector V; on
its columns and ér is the magnitude of small perturbation. In the linear approximation,
discrete time dynamics da(nT),) is given by

6a(nTyy) = |A1["0rWR(O — narg Ay)cY (213)

which can then be projected onto the Poincaré section (205) by acting from the left with
the projection operator
o q . ) ()
[[9(ap)I1*
where ® denotes the outer product. Defining ap = Pa, discrete time dynamics of a pertur-
bation dap in the Poincaré section is given by

Sap(n] = [A1|"6rWpR(O — narg Ay)cV) (214)

where Wp = [Re[Vip], Im[Vip]]. On the Poincaré section, the solutions (214) define
ellipses which expand and rotate by a factors of |A;| and arg A; respectively at each re-
turn. In order to resolve the unstable manifold, we start trajectories on an elliptic band
parameterized by (0, ¢), such that the starting point in the band comes to the end of it
on the first return, hence totality of these points cover the unstable manifold in the linear
approximation. Such set of perturbations are given by

Sap(5,0) = e|A1[°WpR(¢)cV) | where § € [0,1), ¢ € [0,27), (215)

and e is a small number. We set ¢ = 1073 and discretize (215) by taking 12 equidistant points
in [0,1) for 6 and 36 equidistant points in [0, 27) for ¢ and integrate each a,, + dap(d, @)
forward in time. Figure 19 (a) shows the unstable manifold of py resolved by this procedure
at system size L = 21.30, for which the torus surrounding py appears to be unstable. In
Figure 19 (b) we show initial points that go into the calculation, and their first three returns
in order to illustrate the principle of the method.

As we continue increasing the system size, we find that at L ~ 21.36, the invariant torus
is completely destroyed and two new periodic orbits p; and py emerge in the neighborhood
of pg. Both of these orbits appear as period 3 cycles in the Poincaré map. While p; is
unstable, ps is stable with a finite basin of attraction. The unstable manifold of pg connects
heteroclinically to the stable manifolds of p; and ps. As we show in Figure 20 (a), resolving
the unstable manifold of pgy enables us to locate these heteroclinic connections between the
pre-periodic orbits. Note that one-dimensional stable manifold of p; separates the unstable
manifold of py in two pieces. Green and blue orbits in Figure 20 (a) appear to be at two
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Figure 19: (a) Unstable manifold (gray) of po on the Poincaré section (205) and an
individual trajectory (red) within, system size L = 21.30. (b) Initial points (black) on the
Poincaré section for unstable manifold computation and their first (red), second (green),
and third (blue) returns. Inset: zoomed out view of the initial points and their first three
returns.

sides of this invariant boundary, while one of them converges to ps, the other leaves the
neighborhood following the unstable manifold of py.

As the system size is increased, po becomes unstable at L ~ 21.38. At L ~ 21.477 the two
complex unstable Floquet multipliers collide on the real axis and at L ~ 21.479 one of them
crosses the unit circle. After this bifurcation, we were no longer able to continue this orbit.
At L = 21.48, the spreading of the py’s unstable manifold becomes more dramatic, and its
boundary is set by the one-dimensional unstable manifold of py, as shown in Figure 20 (b).
We compute the unstable manifold of p; similar to (215) by integrating

a(8) = ap, = eASVip, where d €[0,1). (216)

Aq and V; in (216) are the unstable Floquet multiplier and the corresponding Floquet vector
of a,,, and the initial conditions (216) similarly cover the unstable manifold of a,, in the
linear approximation.

5.6 Conclusions

In this chapter, we presented the first application of first Fourier mode slice on a [pde??],
Kuramoto-Sivashinsky equation in one space dimension under periodic boundary condition.
We showed in Sect. 5.2 that the generic dynamics of this system can indeed come close to
the border (97) of the first Fourier mode slice, and rescaling time as in (103) regularizes
apparent discontinuities of the dynamics. In Sect. 5.2.1, we showed that continuous sym-
metry reduction allows us to visualize unstable manifolds of relative equilibria by canceling
symmetry drifts of these solutions. In addition to the continuous translation symmetry,
Kuramoto-Sivashinsky system was also equivariant under reflections and we reduced this
symmetry by constructing polynomial invariants in Sect. 5.3. In Sect. 5.4, we described our
attempts of studying invariant solutions found in ref. [22] in our symmetry-reduced rep-
resentation, which suggested that periodic orbits (relative periodic orbits and pre-periodic
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Figure 20: (a) Unstable manifold (gray) of pp on the Poincaré section (205) at L = 21.36.
Colored dots correspond to different individual trajectories within the unstable manifold
with qualitatively different properties. Diamond shaped markers correspond to the period-
3 orbits p; (magenta) and py (cyan). (b) Unstable manifold of py (gray) and two orbits
(black and green) within at L = 21.48. Red points lie on the one-dimensional unstable
manifold of pj.

orbits) are embedded in the strange attractor. In order to find which periodic orbits play
important roles in shaping the chaotic attractor, we decided to reduce the system size to
L = 21.0 and found a stable periodic orbit py at this size. As we increase the system size,
we found that this pg undergoes a torus bifurcation which gives birth to a stable torus in
the periodic orbit’s neighborhood, and the chaotic dynamics follow the breakdown of this
torus as the system size is further increased. We visualized the unstable manifold of this
periodic orbit, through this bifurcation sequence, which yielded the first dynamical relation
between periodic orbits of the system: heteroclinic connections between py and period-3
orbits p; and ps that emerge in its neighborhood.

We presented two new methods in this chapter: 1) a new method for reducing the O(2)-
symmetry of PDEs, and 2) a symmetry-reduced state space Poincaré section visualization
of 1- and 2-dimensional unstable manifolds of Kuramoto-Sivashinsky periodic orbits.

Our method for the computation of unstable manifolds is general and can find applica-
tions in many other [ode??] and [pde??] settings. The main idea here is a generalization
of Gibson et al. [15] method for visualizations of the unstable manifolds of equilibria, orig-
inally applied to plane Couette flow, a setting much more complex then ours here. Our
projections are 2-dimensional, but as all computations are carried out for the full Kura-
moto-Sivashinsky equation (190), in 30 dimensions, it is remarkable how much information
is captured by 2- and 3-dimensional projections of the O(2) symmetry-reduced Poincaré
section - none of that structure is visible in the full state space.

Invariant polynomials similar to (201) can be constructed for any problem where the
symmetry operation is the sign flip of a set of coordinates. Generalizations of this approach
to richer discrete symmetries, such as dihedral groups, remains an open problem, with
potential application to systems such as the Kolmogorov flow [35].
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An interesting feature of the bifurcation scenario studied here is the apparent destabiliza-
tion of the invariant torus before its breakdown. Note that in Figure 19 (a) the trajectories
within the unstable manifold of pg, diverge in normal direction from the region that was
inhabited by a stable 2-torus for lower values of L. This suggest that the invariant torus has
become normally hyperbolic [39]. This torus could be computed by the method of ref. [73],
but that would be a new, technically demanding computation, beyond the scope of this the-
sis. Note also that the stable period-3 orbit ps in Figure 20 has a finite basin of attraction,
and the trajectories which do not fall into it leave its neighborhood. In typical scenarios
involving generation of stable - unstable pairs of periodic orbits within an invariant torus
(see e.g. ref. [1]), the torus becomes a heteroclinic connection between the periodic orbit
pair. Here the birth of the period-3 orbits appears to destroy the torus.
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CHAPTER VI

PIPE FLOW

We now turn to the last, and the most challenging problem investigated in this thesis, the
turbulent fluid flow in a circular pipe. This is a vastly complicated phenomenon that has
been of experimental and theoretical interest for more than a century. From the standpoint
of this thesis, pipe flow is a dynamical system that exhibits chaotic dynamics. However, it
is worth noting that there many other reasons to study pipe flow, not least of which are
real life applications in engineering settings.

Our strategy for studying pipe-flow is going to be similar to the preceding chapters:
We are going to identify exact coherent structures and try to reveal their dynamical roles.
However, in contrast to the two-modes and Kuramoto-Sivashinsky systems, it is believed
that turbulent pipe flow does not have a strange attractor, but that it is organized around
a strange repeller (or a chaotic saddle). Moreover, the conditions that cause the fluid flow
to become turbulent are highly non-trivial and understanding them is crucially important
for the study of pipe flow turbulence. Therefore, before diving into the mathematical
description, we are going to review some well known facts of the turbulence transition in

pipes.

6.0.1 Subcritical transition to turbulence

Parabolic velocity profile of the laminar flow in a circular pipe was identified experimen-
tally by Hagen in 1839 [53] and Poiseuille in 1840 [27]. In his seminal 1894 experimental
study [94], Osbourne Reynolds investigated the conditions at which the laminar flow in the
pipe become “sinuous”. He showed that the appearance of “eddies” is controlled by a single
dimensionless parameter, which we now call the Reynolds number, Re = UD /v, where U is
the mean velocity, D is the pipe diameter, and v is the kinematic viscosity. While Reynolds
reported the critical value of the Re, above which the flow is inevitably turbulent, as 12000,
he also mentioned that the eddies may appear way below this value (~2000) given that the
incoming water has a sufficiently large disturbance. In modern experiments [$1], laminar
flow was maintained at Re as high as 105. These observations contradict a typical “linear
instability of the laminar state” type of explanation for the transition to turbulence. As of
this writing, there is no analytical proof of the linear stability of Hagen-Poiseuille flow for all
Re. However, Meseguer and Trefethen [79] conclude on the basis of numerical computation
of the eigenvalues of the linearized Navier-Stokes operator that the laminar state of the pipe
flow is linearly stable for Reup to 107, i.e., for all practical cases that can be observed in
laboratory experiments.

Linear stability of the laminar solution implies that the laminar-turbulent transition

has to be triggered by a finite-amplitude perturbation [57, 77, ]. In addition, both
laboratory and numerical experiments suggest that the pipe flow turbulence is a transient
phenomenon [59], namely, that regardless of the mean flow speed, turbulent fluid eventually

relaminarize. These two results together suggest that turbulent and laminar regions of the
state space are dynamically connected. This brings us to the first partitioning of the state
space: (1) turbulent saddle, (2) basin of laminarization, and (3) something in between,
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which goes by the name “edge of chaos”.

6.0.2 Edge of chaos

Physical observables, such as dissipation rate, laminarization time, or pressure drop are
completely different between laminar and turbulent flows. In order to identify the “edge of
chaos” that separates laminar and turbulent regions of the state space, Skufca et al. [101]
suggested tracking dependence of decay lifetimes on the amplitudes of perturbations to the
laminar state as illustrated in the sketch of Figure 21. They proposed a numerical scheme
for locating the edge states by bisecting between fast and slow laminarizing solutions with
respect to perturbation amplitudes and demonstrated these ideas on a reduced order model.
Skufca et al. computations also showed that the edge of chaos had a “folded” structure,
that is one can find edges not only one threshold amplitude but also at larger amplitudes
as sketched in Figure 21. Their methods were applied to the pipe flow by Schneider et
al. [100], who observed that the edge of chaos is a chaotic set, unstable directions of which
connect either to the laminar state, or to the turbulence. Duguet et al. [33] showed that
relative equilibria (traveling waves) are embedded within the edge by combining Newton-
Krylov searches with edge tracking methods. Moreover, they also showed that if the flow
is restricted to azimuthally doubly symmetric subspace of solutions, then the edge of chaos
can be a traveling wave, rather than a chaotic set.

A

Lifetime

Amplitude

Figure 21: A sketch of dependence of decay lifetimes on the amplitude of perturbations.
Dashed lines indicate the intervals where the perturbations appear to land on the edge of
chaos.

6.0.3 Bifurcation scenario

Several earlier studies [34, 89, 90] of travelling waves in pipe flow found that some of
these solutions come in pairs associated with a saddle-node bifurcation. The ones which
have higher dissipation rates and physical properties similar to those of the turbulence are
referred to as “upper branch” (UB) solutions, and their counterparts are referred to as “lower
branch” (LB). Duguet et al. [33] travelling waves embedded in the edge of chaos belonged
to the lower branch family. These developments had motivated detailed bifurcation studies
of these solutions in both pipe [75, 76] and plane Couette flows [69]. Common findings
of these studies can be summarized by the qualitative bifurcation diagram of Figure 22:
Lower and upper branch solutions are born out of a saddle node bifurcation. While the UB
is stable for an initial interval of Re values, it goes unstable through a set of period-doubling
bifurcations [(69], which give birth to a small attracting set. After further bifurcations, this
set reaches the lower branch solution (boundary crisis), which connects it to the laminar
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state; hence the chaotic set becomes transient. Thereafter, the only attracting object in the
state space is presumed to be the laminar solution and the turbulence is a “chaotic saddle”.

\

UB

Bifurcations \

Boundary crisis

17

Figure 22: A sketch of the subcritical transition to turbulence through a saddle-node
bifurcation with increasing Reynolds number.

Refs. [75, 76] studied pipe flow in small computational domains. Recently, Avila et
al. [3] showed that when double periodicity in azimuthal direction and reflection invariance
were imposed, localized solutions of a longer pipe also follow a similar bifurcation scenario,
however, with roles of upper and lower branch solutions taken over by relative periodic
orbits.

We should emphasize that bifurcation sequences of the sketch of Figure 22, with the
edge states given by exact coherent structures, were obtained only when the pipe flow was
restricted to symmetry invariant subspaces. We already know from refs. [33, | that if
such a condition is not imposed, than the edge of chaos itself is chaotic. Thus, the actual
transition scenario may have many more features not sketched in Figure 22. Nevertheless,
this bifurcation scenario sketch gives an useful mental picture by providing us the first,
and coarsest, partitioning of the state space. In the rest of this chapter, we are going to
demonstrate that the relative periodic orbits embedded in the turbulent set represent its
internal structure.

6.1 Problem formulation

We start by writing incompressible Navier-Stokes equation (1) without external forcing

uT—i—u-Vu:—vpp—i—VVQu, V-u=0. (217)
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Velocity field u vanishes at the pipe wall, and is periodic in azimuthal and axial directions:

u(r=R,0,z) 0, (218)
u(r,0+2m,z) = u(r6,z), (219)
u(r,0,z+L) = u(r,0,z). (220)

Let us denote radial, azimuthal, and axial components of velocity field u by u, v, and w
respectively. Hagen-Poiseuille flow ugp corresponds to a steady (Ougp/0T = 0) flow profile,
drifting only in the axial direction (ugp = vgp = 0), and depending only on the radial
coordinate (Qugp/0z = dugp/00 = 0). Rewriting (217) with these assumptions

v
0=—L 4 uVupp, (221)
p

tells us that the pressure gradient Vp may not have azimuthal and radial components.
Writing partial derivatives explicitly we have

10 dwgp 19p
-2 =_-2£ 222
Y or (T or ) p 0z’ (222)
which we can integrate as
1 0
wyp(r) = ma—iﬂ—l—qlnr—k@. (223)

For the solutions to be finite at the pipe center, ¢; has to be 0. We find ¢ from the no-slip
boundary condition (218) as ¢y = —(4pr)~1(9p/dz) R?, hence the axial velocity is given by

1 ap 2 2
=———(R" — 224
wip(r) 4pv Oz ( " ) ’ (224)
which depends on the radial coordinate parabolically. As we can see from (224), in order to
sustain the Hagen-Poiseuille flow we need a pressure gradient, which we will assume to be
constant —IT = dp/0z. We can now compute the mean axial speed of the Hagen-Poiseuille
flow

1 (B I1R?
U= 7(]'22/0' ’UJHP(?")27T7'CZT = 8’7 . (225)
In summary, the base flow (Hagen-Poiseuille) solution of pipe flow is given by
uyp(r,0,2) =2U (R? — )z, (226)

where U is the mean axial speed (225). We can now nondimensionalize quantities in (217)
by picking a length scale as the diameter D = 2R of the pipe and a time scale as D/U.
Denoting dimensionless quantities with primes, we have

o =u/U, 7 =7(U/D), p = (p/p)U2. (227)
After substituting these definitions into (217) we obtain

U? U? U? U
Bu’ﬂ + Eu’ V' = —6V’p' + l/ﬁV’zu'. (228)
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If we now multiply above equation by D/U?, define the Reynolds number Re = DU /v, and
drop primes, we obtain

L oo
- . = — . 229
u, +u-Vu Vp—I—ReV u (229)

This result confirms Osbourne Reynolds’ observation that the transition to turbulence in
the pipe flow depends on the value of a single parameter, i.e., the Reynolds number. In the
dimensionless variables, Hagen-Poisouille (226) flow becomes

ugp(r,0,z) =2(1— (2r)?)z. (230)
Let us now express the velocity and pressure fields as sum of “base flow fields” and deviations
u=uyp+u, Vp=-Ilz+Vyp, (231)

and plug these into Navier-Stokes equation (229) to obtain

u. +ugp-Vu' +u - Vugp+u'-Vu' =-Vp' + Rl—eVQu’. (232)

When the flow becomes turbulent, it experiences pressure drops and mean mass flux de-

creases from its value for the laminar state. However, in experiments (see e.g. refs. [57,

]), one typically controls the mean mass flux. In order to account for that, we add an

additional axial pressure gradient and drop the primes again to obtain our final form of the
Navier-Stokes equation for fluctuations from the base flow

u, +ugp-Vu+u-Vugp+u-Vu= —Vp+32R£i+%V2 (233)

where 5 = [5(7) is a time dependent parameter to be adjusted to ensure the mean mass flux

is equal to that of the Hagen-Poiseuille flow (230).

In (233) and hereafter, velocity field u = [u, v, w|(r,0, z) and the pressure p = p(r, 0, z)
correspond to their deviations from their base flow values (230). We use a primitive variable
version of the Openpipeflow.org [!14] for numerical integration of u(r, 8, z). Details of this
implementation is outside the scope of this thesis, however, before moving onto presenting
our results, we need to explain the representation of data in this implementation, and norms
to be used in the numerical results of the following sections.

6.1.1 Discretization and the state space

For the Kuramoto-Sivashinsky system in one space dimension under periodic boundary
condition, Chapter 5.1, discretization of the flow field as a Fourier series was the obvious
choice. However, we now have a three dimensional vector field defined over a three dimen-
sional space and time. Openpipeflow discretizes flow fields in Fourier series in periodic
directions (axial and azimuthal) and uses finite difference methods for the radial direction,

u(ry, 0, 2) Z Z Uy o €’ (R Fmom) (234)

|k|<K |m|<M

where a@ = 27/L is the axial wave number, mg = 1,2,3,... imposes a higher azimuthal
periodicity condition if its value is other than 1, and indices n, k and m respectively denote
elements in radial, axial, and azimuthal discretizations. Decomposition (234) corresponds
to the values of flow fields u,v,w at a particular radial position r, (n =0, 1, ..., N). To
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develop a sense for the dimension of the state space, let us make a rough estimate. If we
were to pick N = 2M + 1 = 2K + 1 = 10, we would need to store 3 x 10° data points
to represent each state. This is a large number and this fact by itself makes this problem
orders of magnitude harder than the examples we studied in previous chapters.

While (234) is in fact how the data is represented in our integrator, we can still think of
the state of a fluid u(x, 7) at the time instant 7 as a vector a(7) in the state space. For the
most parts of the following sections, we are going to use state space notation for presenting
our results, however, the reader should keep in mind that a state space vector corresponds
to the N velocity fields (234). Most of our results are going to be in terms of inner products
in this state space, which we describe next.

6.1.2 Inner products and norms

As we have visualized for several examples in the previous two chapters, strange sets have
complex geometries and “closeness” of two points in a given projection of the state space can
be very misleading. Take, for example, the return map Figure 10 of the two-modes system
and consider two points on left and right hand sides of its cusp. These points are very
close to each other in the Euclidean distance that was used to parametrize the arclengths in
the Poincaré section, yet, their forward time dynamics are completely different. However,
given the difficulty of the current problem, our choices are limited and inevitably, norms
will appear in our calculations and visualizations. In this section we introduce the norms
that we will use here and explain the motivations for our particular choices. In the following
sections, we will try to avoid the dangers associated with using a given norm by presenting
our results in different norms and visualizations.

Let a1 and ao denote state vectors that correspond to velocity fields u; and uy respec-
tively, we define the L2 distance between these vectors by the inner product

1

<a1, a2>L2 = QEHP /Vul - U9 dV, (235)

1 1/2
B EHP/O rdr ) 0 g (r) - g (). (236)

k,m
where V' is the volume of the pipe and Egp is the kinetic energy of the Hagen-Poiseuille flow.
In (236), we wrote the integral explicitly in terms of Fourier modes and radial integration,
which in practice is approximated numerically. The factor 1/2 in (235) is included so that
the norm square of a state in L2 metric yields its kinetic energy

E(a) = ||a|}, = (a,a). (237)

Hence in literature, the L2 norm is frequently referred to as the “energy” norm.

As we will illustrate in our numerical results, we found that it is sometimes informative
to use a metric that emphasizes larger scale structures in continuous symmetry directions.
For this reason, we define the “low pass” metric, where we penalize the higher Fourier modes
(short wavelengths) as follows

1 [2 p 1 . 5
(a1, a2)pp = V/o rdr) T (k)2 & (mgm)2 ™ Lk (7) - W2k (7) - (238)

k,m

In the axial and azimuthal directions this is a variant of a Sobolev H~! norm [1, 15, ):
the weights are smaller for larger values of k and m, hence shorter wavelengths are de-
emphasized.
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6.2 Symmelries of the pipe flow

In infinite space, Navier-Stokes equation (1) are equivariant under translations, rotations,
and reflections [12]. Pipe walls disallow translations in radial direction and permit rotations
only in azimuthal direction. Moreover, the net pressure gradient in the axial direction
breaks z — —z reflection symmetry, and thus the remaining symmetries are translations in
axial direction and rotations and reflections about the pipe axis. We are going to denote
continuous symmetries by g(¢,¢) and reflection by o; their actions on flow fields are

g(qﬁ,E) [u7 v, w,p](r, 0> Z) = [u> v, w,p](r, 0 — ¢,z — f) 5
ou,v,w,pl(r,0,z) = [u,—v,w,p|(r,—0,z). (239)

The symmetry group of stream-wise periodic pipe flow is thus SO(2), x O(2)g: a generic
state of fluid (no symmetry) has infinitely many copies with respect to both translations
and rotations. In this thesis, we are not going to tackle this problem in full, but will for
pedagogical reasons focus on dynamics restricted to a flow-invariant subspace of SO(2),
solutions with no drift in the azimuthal direction.

6.2.1 Shift-and-reflect invariant subspace

There are many ways one can construct a flow-invariant subspace using symmetries of the
pipe flow. Our choice is the so-called “shift-and-reflect subspace” of flow fields invariant
under a half domain axial translation and the reflection

a = 09(0,L/2)a, (240)
[u,v,w,p|(r,0,2) = [u,—v,w,p|(r,—0,z—L/2). (241)

While restriction of dynamics is to this subspace is not physical in the sense that it cannot
be realized experimentally, all solutions that satisfy (240) are also solutions of the full
Navier-Stokes equation, and laboratory experiments [58] observe flow fields rather similar
to the traveling wave solutions found in this subspace [34].

We are now going to show that the solutions satisfying (240) define a flow-invariant
subspace of Navier-Stokes equation (217). Let us denote the shift-and-reflect operation by
g = 0g(0,L/2). Since azimuthal reflections and axial shifts commute, 7 is its own inverse
1 = &2. Therefore we can define projection operators

Pt = %(1 +3), (242)

with which we can decompose velocity fields u into symmetric and antisymmetric parts as
ut = P*u. (243)

Note that each velocity field can be expressed as sum of its symmetric and antisymmetric
parts
u=u"+u" (244)

and the action of & on symmetric and antisymmetric fields is
gut = +ut. (245)

We can decompose the pressure field similarly and express each term in Navier-Stokes
equation (217) in terms of sum of their symmetric and anti-symmetric parts. With this
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separation, each term will separate into the sum of two components, except the nonlinear
term u - Vu

u-Vu = (ur+u)-V@u"+u)
= u"-Vut+u" - Vu +u - Vut +u - Vu . (246)

Action of P* on the nonlinear term (246) yields

PE(u-Vu) = [ut-Vut+ut-Vu +u - Vut +u - Vu-

N |

+ut - Vut Fu" - Vu  Fu -Vu'+tu - Vu]. (247)

If we now act Navier-Stokes equation (217) from the left with P*, we obtain the following
decomposition

uf = —(u"-Vu"+u -Vu ) -Vpt+ Rievzlfr . (248)
1
u, = —(ut-Vu +u -Vuh)-Vp + %V2u_ . (249)

If we set u~ = Vp~ = 0, then all terms on RHS of (249) vanish, and an initial condition in
the shift-and-reflect symmetric subspace u™ stays within it; the subspace is flow-invariant.
Setting u™ = Vp' = 0, however, does not keep u within the shift-and-reflect antisymmetric
subspace u~.

We next show that the shift-and-reflect invariance (240) fixes the azimuthal rotation
symmetry to discrete rotations by 7. Consider the rotated solution

ad = g(¢,0)a, (250)
[u,v,w,p|(r,0,2) = [u,v,w,p|(r,0 — ¢, 2) (251)

where a satisfies (240) and is thus in shift-and-reflect subspace. If we require (251) to satisfy
(241), we get

[u, —v,w,p|'(r,—0,2 — L/2) = [u,v,w,p|(r,0,2),
[u, —v,w,p|(r,—0 — ¢,z — L/2) = [u,v,w,p|(r,0—o,z). (252)

Now the question of which azimuthal shifts are allowed becomes which values ¢ can take,
such that (252) is satisfied given (241). We can simplify the notation as follows. Given (i)
f(0) = f(—0), (i) f(0 +n27) = f(f),n € Z, and (iii) # € R, what values can ¢ take for
f(0—@) = f(—0— ¢) to be true? Since 0 is arbitrary we can shift it as § — 6 + ¢, then the
condition becomes f(#) = f(—6 — 2¢), and from (i) and (ii) we find

¢ =nm. (253)

In other words, shift-and-reflect invariance (240) allows for azimuthal rotations only by 7.
We illustrate this property in Figure 23.
To summarize, the symmetry group G of the pipe flow in the shift-and-reflect subspace
is
G ={99.9:(D)}, (254)
where gy = g(m,0) and g.(I) = g(0,1).
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Figure 23: (a) Sketch of a shift-and-reflect symmetric state on (0, z) € [—m, 7] x [0, L].
(b) If the state in (a) is rotated by an angle ¢ other than 7, the shift-and-reflect symmetry
is broken. (c) State in (a) rotated by 7, hence shift-and-reflect symmetric.

Before moving on, we should state what shift-and-reflect invariance implies for our data
representation (234). Action of shift-and-reflect operation (241) on flow fields u,w,p are
same, while v picks up an extra minus. Consider the shift-and-reflect invariant flow field,
u(rn, 0, 2) = u(ry,, —0,z — L/2), in the computational basis:

Z Z unkmei(%ﬂkZerome) - Z Z “nkmei(%ﬂk@iwmimoma),

|k|<K |m|<M |k|<K |m|<M
(27 (27
Z Z Uk ot kztmomb) Z Z Y ot kz—mk—mom8) 7
|k|<K |m|<M |k|<K |m|<M
(27 - 27
Z Z unkmez(fk:z-i-momﬁ) — Z Z (_1)kunkmez(fl€z—mom9) ’
|k|<K |m|<M |k|<K |m|<M
(27 (2
Z Z unkmel( 7 kz+mom0) — Z Z (_1)kunk(—m)el( 7 szrmomG) , (255)
|k|<K [m|<M |k|<K |m|<M

where in the last step we replaced m with —m on the right hand side, which we are allowed
to, as m is summed over. Since the Fourier modes are orthogonal, (255) implies that
[u, v, W, Plnkm in shift-and-reflect invariant subspace has to satisfy

k
[U, wap]nk:m = (_]-) [U, va]nk(—m) )

Unkm = (_1)k+lvnk(—m) ) (256)
where we have an extra minus sign for v, as v picks up extra minus sign under the shift-
and-reflect operation.

6.2.2 Exact coherent structures

Since all solutions of the pipe flow drift in the axial direction, the simplest exact coherent
structures are relative equilibria (traveling waves)

arw (1) = g:(crw T)arw (0), (257)

whose sole dynamics is drifting along the axial direction with constant phase speed cryy.
Given the symmetry group (254), we are allowed to have two types of relative periodic
orbits: those recur after one period with a stream-wise shift [gpo,

arro(TrPo) = 9:(—lrPo) arpo(0), (258)
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and those recur after one period with a stream-wise shift by lgpo and azimuthal rotation
by w
arro(TrPo) = 99 9-(—IrPO) arRPO(0) . (259)

6.3 Turbulent pipe flow

We are now ready to present results of our turbulent pipe flow collaboration [117]. Ashley
Willis is the author of the Openpipeflow.org code used in all our numerical Navier-Stokes
calculations [114]. Kimberly Short had determined most of the exact coherent structures
listed in Table 4; several were contributed by Ashley Willis and Mohammad Farazmand.
As a result, some of the implementation details are skipped in this chapter and appropriate
references are provided. Emphasis is on the results contributed by the author of this thesis,
presented in Sect. 6.3.1 and Sects. 6.3.4 to 6.3.6.

We have explained in Sect. 6.2.1 that the solutions we are going to present belong to
the shift-and-reflect invariant subspace, with only one continuous symmetry in the system.
In addition, we also set my = 4 in (234), thus all states we are going to study will be
azimuthally 4-fold symmetric. Other parameters that go into simulations are the wave
number o = 1.7 and Re = 2500, which corresponds to a periodic pipe of length L =
m/a = 1.85 D with empirical turbulent lifetimes that can go up to 1000 D/U. In simulations,
Fourier expansions (234) were truncated at i = 17 in stream-wise and M = 11 in azimuthal
directions; and N = 64 points were used for radial discretization, which corresponds to a
3Xx (2x174+1)x (11 + 1) x 64 = 80640-dimensional state space. Here modes with m < 0

. R
are excluded from the state space since Uy, =y ;.

,:i;i':i?\

firiiiae

Figure 24: (a) A snapshot of a turbulent state in a pipe flow simulation. Red and blue
respectively correspond to fast (0.1U) and slow (—0.1U) stream-wise velocity isosurfaces.
(b) TWa2 .04, the grandmother relative equilibrium of the ‘first family’ (see Figure 28). The
color shows the averaged streamwise vorticity w,. The arrows show (a,., 1) where @, and
ug are averaged radial and azimuthal velocities, respectively. Only a quarter of the tube is
shown.

In this setting, a typical turbulent state looks like Figure 24 (a), where we visualized
the slow (—0.1U) and fast (0.1U) stream-wise velocity isosurfaces of the flow (relative to
the base flow). Note also that fast structures are closer to the pipe walls, while slower
ones concentrated in the middle; this is a typical feature of the pipe flow turbulence. As
we have imposed mg = 4 symmetry, the flow structures come in four identical copies in
the pipe cross section. In addition, due to the imposed shift-and-reflect symmetry (254),
the fundamental domain is restricted to z € [0, L/2] and is thus 1/8 of the computational
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cell. For example, this tiling by 8 copies of a fundamental tile is manifest in the streamwise
averages of any solution we consider, such as the relative equilibrium of Figure 24 (b).

The reader my wonder: surely 1/8th of a very stubby, periodic cylinder has nothing
to do with generic turbulence in a pipe of infinite length? And the reader is right. It is
just that with the existing methods we are not able to find sets of physically important
exact coherent structures even in only a slightly longer pipe [115], with L = 2.5, with
all the same imposed symmetries. Our purpose here is more modest, but apparently still
computationally challenging: to show that we can triangulate the state space of any variant
of pipe flow in terms of exact coherent structures and their invariant manifolds.

6.3.1 Continuous symmetry reduction

One can approach symmetry reduction from two radically different points of view: global,
group-theoretical viewpoint, or local, dynamical ‘moving frame’ viewpoint. Neither is per-
fect. In the group-theoretical viewpoint, since the symmetry and dynamics commute, the
reduction of the full state space stratification by group orbits to a symmetry-reduced state
space, where each orbit is a point, is a purely group theoretic exercise, to be solved without
any reference to the dynamics. An example is the invariant polynomials approach of the
Hilbert-Weyl theorem 3.1, beautiful, but due to proliferation of invariant polynomials and
the syzygies relating them, useless for the problem at hand. That was realized almost im-
mediately by Cartan [16] who took a local, differential geometry point of view. Unlike the
invariant polynomials approach, here the symmetry-reduced state space has one dimension
less for every continuous parameter, and remains embedded in the original state space. For a
fluid dynamicist, Cartan’s notion of ‘moving frames’ is very intuitive: if the flow has a trav-
elling wave solution, one immediately uses the continuous symmetry to change coordinates
to the co-moving frame, and bring the study of the bifurcations (infinitesimal neighborhood
of the solution) to the standard equilibrium setting. That goes by the name ‘the Equivari-
ant Branching Lemma’ [17, 62]. The method of slices then takes the particular, physically
important solution as a ‘template’ [9, 96] and then tries to extend its neighborhood to as
large a set as possible of nearby solutions that qualitatively resemble the template. In gen-
eral, one expects that a slice covering the dynamically interesting region of the state space
(‘inertial manifold’) requires a set of overlapping charts [23] whose construction appears to
be largely a dark art.

Our first Fourier mode slice (handcrafted to fit only SO(2) and its abelian extensions)
is a happy combination of the two approaches: it is purely group-theoretical, based on the
eigenfunctions of the symmetry (Fourier modes), but prefered dynamically, by establishing
that the border of the corresponding slice is optimal, in the sense that a generic dynamical
orbit does not cross it. It comes at its own price, by distorting the dynamics close to the
slice border. In Sect. 3.3.5 we outlined the procedure for extending the first Fourier mode
slice to higher-dimensional settings, which included three-dimensional vector fields that are
equivariant under SO(2) x SO(2), i.e. the case of pipe and plane Couette flows.

The pipe flow project had started in 2009 and in its first phase [1 15] symmetry reduction
was implemented by the method of slices, with as many as 12 templates needed to capture
one relative periodic orbit. = That has since been brought down to a single, judiciously
chosen template [117]. The second phase [1 16] was a hybrid, based on implementing our first
Fourier mode slice [14] in the axial direction, but using a ‘generic’ turbulent state template
in the azimuthal direction. As a consequence, implementation of the first Fourier mode slice
for the axial SO(2) symmetry of the pipe flow that we used in results to be presented in
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upcoming sections is slightly different from our prescription in Sect. 3.3.5. Before describing
this approach, we will show how extend the first Fourier mode slice method to the current
problem, as defined in Sect. 3.3.5.

6.3.1.1 A first Fourier mode slice template from geometry

We begin by rewriting the slice templates (139) required for reducing SO(2) x SO(2) for the
pipe geometry

u',(x) = f(r)cos(2rz/L), (260)
u'g(x) = g(r)cos(2n6). (261)

Our problem is now to find an f(r), such that the flow does not visit the slice border. In
Sect. 6.2.1, we found the conditions (256) that flow fields in the shift-and-reflect invariant
subspace must satisfy. We also know that u,i, = u;;(_k) (=m) since u is real valued. If we
rewrite (256) using this property, we obtain

[u,w,p]nkm = (_1)k[u7w7p]z(—k)m7
Unkm = (_1)k+11’:(—k)m' (262)

The template (260) corresponds to Fourier modes with (kK = 1,m = 0). If we write (262)
explicitly for these modes, we obtain

[u7w7p]n10 = _[uawap];‘;(_l)()a
Un10 = 'U:;(_l)()- (263)

From the property of u being real valued, we also now that (kK = 1,m = 0) modes should
satisfy
[u7v7w7p]n10 = [va,w,p];;(_l)o . (264)

Hence, from (263) and (264), we conclude that [u,w,p|n,10 = 0. This leaves us with only
one choice among the flow fields, namely v-component, for constructing a first Fourier mode
slice template (260).

We still need to determine the r-dependence of our template. Motivated by the fact
that the Bessel functions are eigenfunctions of Laplacian in polar coordinates, we decided
to try the following slice template

v'(x) = Jo(2017) cos(2mz /L), (265)
[ulu wlap/] (X> =0 )

where Jy is the 0" Bessel function of the first kind and a; = 2.4048 is the first root of Jy,

thus (265) satisfies the no-slip boundary condition (218) on the pipe wall r = 1/2.

With the slice template @' corresponding to the flow fields (265), for each state a finding
the slice-fixing shifts accounts to computing

arg ((a(7), @) 12 +i{a(7)) , g-(L/4)d")

L1)=1L 2
7) o , (266)
and the axial translation symmetry reduced state a can be found by

a(t) = g.(—l)a(r). (267)
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Figure 25: Group orbit (dashed line) of a state a projected on the hyperplane spanned
by the slice template @’ and its quarter-domain translation g,(L/4)a’. A similar group orbit
exists for every point on the orbit (green) of a, unless it intersects the slice border a* (red
dot). In this 2-dimensional projection the entire symmetry-reduced state space projects
onto the horizontal half-line, and the slice border projects onto the origin. Adapted from
ref. [110].

as illustrated in Figure 25.

In order to test this approach, we ran two numerical experiments. We applied the
symmetry reduction method to a relative periodic orbit RPOsg o6 to verify that it becomes
a periodic orbit within the slice. Figure 26(a) shows one period of the RPOgg g orbit within
the slice defined by the template (265) (projected on arbitrary basis, details of which are
irrelevant for the current discussion). The symmetry-reduced relative periodic orbit closes
onto itself after one period, as it should. The second thing we need to check is whether
ergodic trajectories cross the slice border. As we explained in Sect. 3.3.2, if a trajectory
visits the slice border (97), the phase velocity (96) diverges. For this reason, we reduced
the translation symmetry of an ergodic trajectory for 200 time units using the template
(265) and measured d¢/dr. Figure 26(b) shows the result of this experiment, where time
sampling points of simulation are marked with red + signs. While we do see two peaks in
Figure 26, these instances are still well resolved, and corresponding trajectory segments do
not appear discontinuous.

For the chronological reasons we mentioned in the beginning of this section, results we
show in Figure 26 are the only ones in this thesis that uses (265) as the slice template.
However, since validation of this approach is crucial for the extendibility of the first Fourier
mode slice method to direct products of SO(2), we decided to present this treatment here.

6.3.1.2 A first Fourier mode slice template from dynamics

We shall now explain the adaptation of first Fourier mode slice in ref. [116], which we
used in the results of the remaining of this chapter. Prior to the work presented in the
previous two chapters of this thesis, Willis et al. [115] used method of slices in pipe flow by
setting multiple slices and transition rules between them, such that individual slice borders
are avoided by the symmetry reduced flow. These slice templates were typically found in
state space regions corresponding to low energy solutions, motivated by the experimental
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Figure 26: (a) In the first Fourier mode slice Relative periodic orbit RPOgg 0s becomes a
periodic orbit. (b) A numerical experiment showing time derivative of the slice fixing shifts
for a long ergodic trajectory.

observation that such slices had larger region of applicability. This approach was also
followed at the early stages of this project. After we formulated first Fourier mode slice
in ref. [14] , Willis et al. [116] adopted our method to the pipe flow by taking one of the
slice templates of the previous approach, and setting all of its discretization elements (234),
except the real parts of the ones with £k = £1. Such a construction corresponds to a flow
field of the following form

u'(r,0,2) = £(r,0) cos(2rz/L) . (268)

For the shift-and-reflect invariant case at hand, the flow field (268) is a valid first Fourier
mode slice template, and procedure of finding slice fixing shifts (266) and reducing stream-
wise translation symmetry (267) is exactly same as we described earlier in this section.
The weakness of this approach is if we use a slice template in the form of (268) without
shift-and-reflect restriction, then the azimuthal rotation operation might take translation
symmetry-reduced states outside the slice, since f in (268) depends on . Therefore, it is
hard to imagine the extendibility of this approach to the case of two commuting continuous
symmetries. Nevertheless, at the current stage, we use this slice template to present our
results. Applicability of this method was demonstrated in ref. [116] where the authors
carried out numerical experiments, similar to ours in Figure 26(b), which showed that the
flow rarely visits the vicinity of the slice border constructed this way.

6.3.2 Traveling waves and relative periodic orbits

In Chapter 4, we found all relative periodic orbits of the two-modes system by guessing
their locations from a Poincaré return map. For the Kuramoto-Sivashinsky system, in
Chapter 5, we had a globally stable relative periodic orbit for small system sizes, and we
numerically followed this orbits’ bifurcations and found longer orbits. Strategy adopted
here is completely different, which we will summarize in this section.

Our starting hypothesis was “the state space of turbulence is shaped by the exact coher-
ent structures”. Assuming this is correct, then one would expect to see similarities in the
behavior of turbulent trajectories if they are in the vicinity of an exact coherent structures.
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For example, if a trajectory visits neighborhood of an equilibrium, then we would expect
it to slow down, or if it visits neighborhood of a periodic orbit of period T, then we would
expect it to approximately repeat itself after T. Such information is encoded in recurrence

function
la(r) — a(r — &)
lla(r)ll

for relative equilibria and relative periodic orbits since they respectively become equilib-
ria and periodic orbits after continuous symmetry reduction. Willis et al. [116] found
guesses for relative periodic orbits and relative equilibria from the minima of (269) obtained
from turbulent trajectories a(7). These guesses were fed into a Newton-Krylov-hook step
solver [110], which yielded the discovery of 8 relative equilibria and 38 relative periodic
orbits of the pipe flow. In addition, by picking points on the unstable manifolds of different
short relative periodic orbits and feeding them into multi point shooting Newton solver,
8 new relative periodic orbits were found [117]. Finally, the mo = 4 upper/lower branch
(N4U/L) traveling waves of ref. [33] are numerically continued to the current domain, adding
two more exact coherent structures to the list. A summary of the currently known exact
coherent structures and their properties is given in Table 4.

f(Ta TR) =

(269)

6.3.3 Global visualizations - Principal Component Analysis

Arguably, the biggest difficulty in the study of infinite-dimensional the systems is the mere
fact that humans can see only three dimensions at once. It is therefore crucial to have
well-thought visualization methods. In Chapter 5, visualizing the unstable manifold of a
relative periodic orbit enabled us to extract important dynamical information about the
flow, and to find longer periodic orbits. Here, we take, again, an experimental approach
to find coordinates where most of the dynamical information is contained using principal
component analysis ([pca??]), which we already introduced in Sect. 5.4.

Here, the principal components p; are found by the following procedure: We first gen-
erate N = 2000 data points a; from different simulations of the turbulent dynamics; and
then we take their discrete symmetry copies gga; and reduce their continuous symmetry
as described in Sect. 6.3.1 to obtain the data set a;. Consider the data matrix X with
ar — (a) on its rows, where (a) is the empirical mean of the data, then X has a singular
value decomposition

X=UswT, (270)

where U is a unitary matrix, X is rectangular diagonal with singular values o; of X and
columns of W are the principal components p;. p; are ordered in decreasing principal
component variances UZ-Q > 01-271,1' =1,2,3,..., therefore, they align at directions where the
variance of the data is largest. A solutions is then projected on these coordinates by

ap, (1) = (a(r) — (a), pi)r2 - (271)

Projection of the relative periodic orbits, 5 traveling waves, and an ergodic trajectory
found onto the first three principal components is shown in Figure 27. The reason we
avoided showing remaining 5 traveling waves in these figures is because they appear to sit
far from the turbulent set and relative periodic orbits, and make it harder to see the relevant
orbits if included. First thing to note in Figure 27 is that there appears to be two clouds
where relative periodic orbits are located. Ergodic trajectory spends most of its time in one
of them, occasionally switching to the other; 4 times in the example shown from a simulation

77



Table 4: Summary of the exact coherent structures found so far. Travelling waves are
labeled by their dissipation rates and relative periodic orbits labeled by their period T.
Average rate of dissipation D, average down-stream phase velocity €, dimension of the
unstable manifold dy/, real part of the largest stability eigenvalue / Floquet exponent p™* is
shown. Last column corresponds to the imaginary part w of the leading stability eigenvalue
for travelling waves and phase 6 of the leading Floquet multiplier for relative periodic orbits.
The family of relative periodic orbits which appear to have similar physical properties are
grouped together and labeled with subscript F.

D c dU pmax w Oor 6 D c dU pmax w Or 6
TWNai/1.38 1.38  1.238 3 0.1809 0 TW1.578 1.578 1.108 9 0.2877 0
TW2.039 2.039 1.091 7 0.1159 0 TW1.845 1.845 1.039 11  0.5166 0.891
TW1.968 1.968 1.105 9 0.1549 0.259 TW1.783 1.783 1.035 8 0.323 1.119
TW1.885 1.885 1.073 8 0.4568 0.206 TW2 041 2.041  1.095 8 0.1608 0
TWN4U/3.28 3.279  1.051 30 0.9932 1.89 TW1.926 1.926 1.096 8 0.2504 0.414
RPOFr/6.668 1.805  1.12 3 0.0534 1.69 RPOF/33.81 1.805 1.128 5 0.0471 1.727
RPOp/13.195 1.839  1.117 5 0.0581 2.038 RPOp/33.968 1.806 1.127 5 0.0588 1.671
RPOp/20.427 1.809  1.128 5 0.0771 0 RPOp/40.600 1.814 1.125 5 0.0505 0.315
RPOr/og861 1.84 1121 5 0.0679 n RPOr/y7.420 1.826 1126 5  0.0586 P
RPOp/26.964 1.826 1.124 6 0.0493 0.986 RPOp/s3.87¢  1.83  1.124 6 0.0457 1.253
RPOp/27.299 1.815  1.126 4 0.0678 0.961
RPOy4.954 2.015 1.084 3 0.1509 1.643 RPO14.045 1.903 1.107 6 0.1403 s
RPOs5.468 2.003 1.091 6 0.1452 1.351 RPO14.544 2.015 1.102 6 0.1846 0
RPOs.119 1.875  1.081 7 0.1912 0 RPO14.646 1.776  1.133 5 0.1473 ™
RPO¢.134 1.86  1.086 7 0.1596 0 RPO15.081 2.06  1.081 8 0.1392 0
RPOs.18 1.865 1.091 5 0.211 0 RPO15.46 1.781 1.146 7 0.1166 0
RPOs.359 1.769 1.054 11  0.2614 0 RPO15.798 1.869 1.125 6 0.1089 T
RPOg.458 2.117  1.074 7 0.2055 0 RPO1s5.915 1.951 1.106 8 0.1547 ™
RPO7.246 1.982 1.105 5 0.209 0 RPO15.972 1.956  1.097 7 0.1473 T
RPO7.272 2.015 1.1 5 0.1852 0 RPO16.271 1.978  1.09 7 0.1454 1.977
RPO7.423 1.838 1.109 6 0.1195 0.387 RPO16.878 1.969  1.099 5 0.1219 T
RPO7.741 1.707 1.138 5 0.0983 0 RPO17.21 1.999 1.098 7 0.1523 ™
RPOg.735 2.05  1.086 7 0.1872 T RPO17.46 1.917 1.121 6 0.0842 0.205
RPO11.696 1.961 1.108 9 0.1129 ™ RPO21.704 1.868 1.12 7 0.0951 ™
RPO12.026 2.09 1.088 6 0.1476 0 RPO22.063 2.032 1.101 7 0.1352 1.723
RPO12.566 2.053 1.083 10 0.1677 ™ RPO23.047 1.874  1.12 6 0.1848 0
RPO12.706 2.156 1.07 6 0.1692 1.083 RPO23.356 1.98 1.112 6 0.101 1.249
RPO13.5902 1.987  1.099 7 0.1072 0 RPO26.049 2.028 1.097 8 0.1635 T
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Figure 27: Relative periodic orbits and 5 traveling waves (marked with black dots) and
an ergodic trajectory (gray, 7w = 360) of the pipe flow projected onto first three principal
components from two different viewing angles.

of 360 time units. This is not a coincidence and two clouds are related by the discrete gy
symmetry of the system. While, we show all relative periodic orbits and traveling waves on
the side where they were numerically found; each of them have gy symmetry copies on the
other side of the cloud, except the upper branch traveling wave TW y47/325. The reason
that TW y417/3.08 does not have a gp-copy is because it is invariant under it; we emphasize
this in the viewing angle of Figure 27 (b), where TW y477/3.98 is located at p; = p3 = 0.

Our motivation for using [pca??] for visualizations was to capture as much dynamical
information as we can in three dimensions, but we ended up finding 2 out of 3 principal
components aligned in the symmetry plane. This, of course, is not a good deal, and thus
our next step is discrete symmetry reduction.

6.3.4 Fundamental domain

In Chapter 5, after SO(2) symmetry reduction, we reduced the remaining discrete symmetry
of the system by introducing invariant polynomials. In principle, we can take a similar
approach here, and first find the representation of discrete symmetry within the slice, and
then transform to new coordinates that are invariant. However, we would have to face
several difficulties in the process: Firstly, the representation of azimuthal half-rotation
within the slice is not simple. Since the slice template is experimentally picked from a
turbulent simulation, one would expect the action of gy to break the slice condition and the
transformation that would bring the state back to the slice is presumably non-trivial. We
could have overcome this by revising our slicing scheme, and picking a rotation-invariant
slice template, which would then make the representation of rotations within the slice same
as in the full state space. Second difficulty has to do with our representation of data
(234) in Openpipeflow, where we have finite difference points in radial direction. If we
produced polynomial invariants just as we did in Chapter 5 by multiplying adjacent state
space coordinates directly, then the resulting polynomials would correspond to our specific

79



representation of data, which would not be reproducible by other researchers, unless they
use the same computational scheme. The last difficulty we should mention is that most
of our results in this chapter depend on particular norms, which we have some physical
interpretation for. These insights would have been lost if we produced quadratic polynomials
from our Fourier modes. For these reasons, we take a different approach in this sections
that has its own issues, which are easier to overlook.

As it is clearly seen from Figure 27, p; = 0 hyperplane separates two discrete symmetry
related halves of the state space. We define p; > 0 half of the state space as the fundamental
domain [21] and bring all of our traveling wave, relative periodic orbit, and ergodic solution
data to this region by transforming each state with p; < 0 by acting on them with gy. Using
the same procedure we described in the previous section, we compute principal components
from the data in the fundamental domain, and use these bases for visualizations.

0.03

000

0.03

0.04 0.00
(a) —0.03 P2

Figure 28: (a) Relative periodic orbits projected onto first three fundamental domain
principal components. (b) 11 orbits, which appear to fill out a region of the state space.

Figure 28 (a) shows 45 relative periodic orbits listed on Table 4 in fundamental domain,
projected onto first three principal components computed within the fundamental domain.
Notice that in Figure 28 (a) a subset of orbits appear very close to each other; we show
these 11 orbits in Figure 28. We listed these in Table 4 separate from the rest with a
subscript F', which stands for ‘first family’. Besides their striking similarities in the state
space projections, these orbits also have similar physical properties such as the mean rate
of dissipation and mean drift speeds. Moreover, their leading Floquet exponent is roughly
an order of magnitude smaller then the rest of the relative periodic orbits, suggesting that
these orbits may have a significant influence on the turbulent dynamics. We are going to
present more results involving these orbits in the upcoming sections.

Before moving on, we should explain the shortcoming of the present discrete symmetry
reduction scheme. Since gy is a discrete transformation, when the trajectories that cross
p1 = 0 hyperplane are brought back to the fundamental domain p; > 0, they become
discontinuous. For the particular case at hand, we ignore this problem, since the switchings
of ergodic trajectories between symmetry related saddles are rare, see Figure 27 (b). In
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addition, since we have not found any (259) type relative periodic orbit that connects one
cloud to the other, we do not need to worry about discontinuities that they will have either.
We should emphasize that the fact that we could not find any relative periodic orbits that
satisfies (259) does not mean that they do not exist. In fact, it is merely a consequence of
our experimental approach of searching orbits nearby close recurrences. Since switchings
between two symmetry-related saddles are quite rare, we did not have any seeds to search
for relative periodic orbits in these occurrences.

6.3.5 Numerical experiments

We have found quite a few exact coherent structures, but what are they good for? In
this section, we present results of simple numerical experiments to further develop our
intuition about dynamical roles of exact coherent structures in the pipe flow turbulence.
For this purpose, we are ran a long ergodic trajectory, until it laminarizes at the final time
7 = 681.0 D/U. We then computed its minimum distance to all exact coherent structures
for its lifetime. Let a(7) and a.(7') respectively denote the ergodic trajectory and an exact
coherent structure in the fundamental domain; then the minimum distance function is

d(r) = min|a(r) — ac(7)|. (272)

In (272), we did not specify, which metric we are going to use in computing the distances
because we are going to use both L2 and low pass norms which we introduced in Sect. 6.1.2.

6.3.5.1 Switchings between symmetry copies

Within the shift-and-reflect invariant subspace, once the continuous symmetry is quotiened,
the turbulent pipe flow consist of two chaotic saddles that are related to each other by a
discrete half-domain rotation about the pipe axis. All the relative periodic orbits and the
relative equilibria we found by searching nearby the close recurrences of the flow belonged
one of these two saddles and had a symmetry copy on the other. Upper and lower branch
traveling waves TW ny7/1.38 and TW nyp /308 are exceptions to this description. They were
found as upper and lower branch solutions in a ref. [33] with an extra azimuthal half-rotation
symmetry and numerically continued to the current domain. Therefore, they are invariant
under rotation symmetry that relates two chaotic saddles and located in between them.

In order to investigate possible dynamical roles of these orbits, we computed the mini-
mum distance (272) of ergodic trajectories from these orbits and the results are shown in
Figure 29. For the most parts, these orbits are further away from the ergodic trajectory
than relative periodic orbits; compare typical numbers to Figure 30. However, at certain
instances, there are dips and/or bumps in the distances; which are more pronounced in
the low pass norm. We found that these events coincide with episodes, in which ergodic
trajectory leaves the fundamental domain and brought back by the discrete symmetry op-
eration. We marked these instances with vertical dashed lines in Figure 30. Moreover, note
at 7 > 600 in Figure 29, distance from the upper branch is very large, but the lower branch
has a dip. This is because this is right before the laminarization of the system, which is
mediated by the unstable manifold of the edge, to which the lower branch solution belongs.

6.3.5.2  Minimum distance from relative periodic orbits

Let us now turn our attention to the relative periodic orbits . We expect them to play
an important role in describing turbulent dynamics, as they should be embedded in the
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Figure 29: Distances from TWyyz, /398 (blue) TWnar/1.38 (green) and instances corre-
sponding to the switchings between symmetry copies marked with vertical dashed lines.

chaotic set. However, when we look at the distances from all found relative periodic orbits
for the lifetime of an ergodic trajectory, the outcome (Figure 30) is not very informative.
The distance between the ergodic trajectory and almost all relative periodic orbits peaks at
the same instances, which is against the description of chaotic dynamics as transient visits
to the neighborhoods of different orbits. Notice, however, that the peaks that dominate the
axes scales in Figure 30 corresponds to instances, at which the ergodic trajectory travels
from one chaotic saddle to its symmetry copy. As we mentioned earlier, these excursions
could have been captured by relative periodic orbits, which satisfies (259); however we do
not have such a solution. Therefore, the peaks in Figure 30 corresponds to flow behavior,
that is not captured any of the found relative periodic orbits .

Since we know that our relative periodic orbits are unable to capture dynamics that
connects two chaotic saddles, we decided to restrict our attention to an episode, during
which the dynamics stays within one. Figure 31 (a) shows 8 relative periodic orbits of
the pipe flow and the ergodic trajectory for 7 € [0,165]D/U projected onto fundamental
domain principal components and Figure 31 (b) shows the minimum distances from these
orbits. Figure 31 is too crowded to make a detailed observation, however, note that in
Figure 31 (b), curves with different colors have minima at different instances throughout
the evolution of turbulent dynamics. This suggests that the flow may indeed be bouncing
between the neighborhoods of relative periodic orbits .

Our final example correspond to a much shorter time segment 7 € [135, 165], which illus-
trates a striking example of “shadowing”. In Figure 32 (a), we show RPO /6 665, RPOg 458,
and the ergodic trajectory segment; and in Figure 32 (b) we show the minimum distance
of ergodic trajectory from the relative periodic orbits shown. While the distance from
RPOg 458 is initially larger than that from RPOgggs, this changes at about 7 &~ 150 and
the ergodic trajectory appears to enter to the neighborhood of RPOg 4558. Notice also the
similarities between the ergodic trajectory and RPOg 455 on Figure 32 (a) after time 150,
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Figure 30: Minimum distance between ergodic trajectory and relative periodic orbits .

which is an indication of shadowing of ergodic trajectory by RPOg 45s.

Results of the numerical experiments presented in this section suggest that as long as
flow stays in one of the symmetry related chaotic saddles, the relative periodic orbits within
that saddle captures some portion of that dynamics. However, we should emphasize that
these observations should be taken no serious than being suggestive. As we have mentioned
in Sect. 6.1.2, the “distance” in any metric in the state space of a chaotic system might be
very misleading.

Finally, we would like to make a general remark about the difference between L2 and
low pass norms. Notice that in all distance figures of this section, L2 distances have more
fluctuations compared to their low pass counterparts. Assuming that the small scale flow
structures fluctuate more than the larger ones, this observation is consistent with our def-
inition of the low pass metric (238), where large wave numbers (small wavelengths) are
penalized. Note also that the differences between distances from traveling waves are more
pronounced in the low pass norm in Figure 29, while in Figure 33 it appears to be the other
way around. These, at first glance, might seem as two conflicting observations; however,
they are in fact consistent with the definitions of norms. Upper and lower branch solutions,
from which the distances are shown in Figure 29 have completely different physical proper-
ties, see Table 4, hence they are likely to have large scale differences. On the other hand,
relative periodic orbits shown in Figure 32 have relatively similar physical properties, there-
fore their differences are more emphasized in L2 norm, in which the small scale structures
are not, suppressed.

6.3.6 Periodic orbit theory

In Chapter 4, we explained that the convergence of cycle expansions heavily relies on the
topological organizations of cycles and grammar rules of symbolic dynamics. For the two-
modes system, we obtained this information from a Poincaré return map, and showed that
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Figure 31: (a) Ergodic trajectory (gray dots) and 8 different relative periodic orbits (var-
ious colors) of the pipe flow projected on to the fundamental domain principal components.
(b) Minimum distance of ergodic trajectory from the relative periodic orbits shown in (a).

symbolic dynamics with finite grammar rules yields quickly converging spectral determi-
nants.

In the present problem, we do not have a Poincaré section that captures topological
properties of periodic orbits, or a return map that yields grammar rules. We do not even
now whether we have found all periodic orbits up to a certain period or not. However,
we do have a set of orbits, namely the first family, which appear close by in visualizations
of Figure 28 and have very similar physical properties as can be seen at Table 4. Having
periods that are approximately integer multiples of the smallest 6.7, these orbits seem to
belong to a fractal set that may be result of a local Smale horseshoe [105]. Motivated with
these observations we propose the following: Sets of exact coherent structures such as the
first family describe certain regions that has similar physical properties in the state space
of turbulence. Each such family has to be a strange repeller, possibly connected to other
families via longer relative periodic orbits .

An important quantity in the proposed description is rate of escape from strange re-
pellers and we can use periodic orbit theory to predict this. In fact, we have already
computed an escape rate for the two-modes system in Sect. 4.4.1. In the finite grammar
approximation Sect. 4.3.2, we considered a subset of two-modes periodic orbits that had
golden mean symbolic dynamics; and in Sect. 4.4.1, we found a finite escape rate for the
state space region represented by these orbits.

In order to compute cycle expansions without knowing the topological ordering of the
periodic orbits, we are going to adopt the stability ordering method. This was introduced
by Dahlqgvist and Russberg in studies of classical [25] and quantum [26] billiards. Dettmann
and Morriss [29] used stability ordering for cycle expansions of strong-field Lorentz gas and
Dettmann and Cvitanovi¢ [28] used the method to investigate intermittent diffusion. We
start with rewriting (178) as a power series

¢=Ja-t)=1- Y (-1 ptp .. 1, (273)

P1,P2,---Pk

where the sum is carried over all distinct combinations of prime (non-repeating) cycles p;.
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Figure 32: (a) Ergodic trajectory (gray), RPOggss (blue), and RPOg458 (green) of
the pipe flow projected on to the fundamental domain principal components. Instances
7 = 140, 150, 160 are marked on the ergodic trajectory with red, green, and blue respectively
to indicate the direction of the flow. (b) Minimum distance of ergodic trajectory from the
relative periodic orbits shown in (a).

We define each such combination as a pseudo-cycle with label m = p; + p2 + ... 4+ p and
pseudo-cycle weights

(5Q7F_ST7T)
e
tr = (-1 (274)
|Ax|
where
A AplAp2 .. Apk ,
T = Ty +Tp, ... +Tp,,
Qe = Qp +Qp, ...+ Q. (275)

With the definition (274), we can now express the dynamical zeta function (273) compactly
as

1/(=1-) tr. (276)

In stability ordering, one orders the terms in dynamical zeta function (276) in increasing
|A;| and discards terms with |[A;| > A¢

(BQr—sTx)
1/(=1- (—1)’“+1€|AW|T. (277)

[Ar|<Ac

Physical motivation behind the stability ordered zeta function (277) is the emphasis on the
cycles that are less unstable. For example, if a system has a highly-unstable short cycle,
the flow is unlikely to stay within its neighborhood, hence it will appear as a higher order
correction in (277).

We computed the stability ordered cycle expansions (277) with the first family relative
periodic orbits listed in Table 4 for Ac € [10,10%]. We find the leading zero of the zeta
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function by solving
1/¢(B=0,s0) = 0. (278)

Figure 33 (a) shows the cycle expansion estimates of the escape rate v = —sp against the
stability cut-off Ac. All members of the first family except RPOp/s53 576, enters into the
zeta function at Ac = 103. Up to this value, escape rate have a converging trend around
~v = 0.095. For larger values of Ax, we observed large fluctuations of ~, which indicates
that we are missing cycles with |A,| > 103.
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Figure 33: (a) Cycle expansion estimates of the escape rate  from the neighborhood of
the first family. (b) Minimum distances from first family relative periodic orbits.

An escape rate of v & 0.095 tells us that turbulent trajectories within the neighborhood
of the first family leaves this region of the state space after v~ ~ 10.5D/U. However, it is
not clear how to test this number, since it is not obvious how to determine a boundary in the
state space that sets the borders of the neighborhood of these orbits. To have an indicative,
we turn our attention back to the minimum distance experiments. In Figure 33(b), we show
the minimum distance of the ergodic trajectory to the first family relative periodic orbits
in L2 and low pass norms for 7 € [0,160]. In order to have a time scale for the oscillations
in the minimum distance experiments, we took Fourier transform of these measurements,
which we show in Figure 34.

We see from Figure 34 that both time-dependent minimum distance measurements
that in both metrics, highest-amplitude oscillations lie within the frequency range f €
(0,0.2)(U/D), which contains our escape rate prediction v &~ 0.095. We should stress that
this is just a sanity check, based on a single, non-exhaustive numerical experiment.

6.4 Conclusions

In this chapter, we presented a study of the turbulent pipe flow, with shift-and-reflect
symmetry, which disallows for continuous rotations in the azimuthal direction. As we have
mentioned earlier, the results we presented was part of a collaborative effort, and we tried
to emphasize our own contributions to the project. These were analysis of the system’s
discrete symmetry in Sect. 6.2.1, applying fundamental domain method for reduction of
this symmetry in Sect. 6.3.4, and tests of several hypotheses by numerical experiments in
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Figure 34: Fourier transforms of the time-dependent distance measurements shown in
Figure 33(b) shown for f € (0,10)U/D (a) and f € (0,0.8)U/D (b).

Sect. 6.3.5 and by a periodic orbit theory calculation in Sect. 6.3.6. In addition to these, we
have also shown in Sect. 6.3.1 that the first Fourier mode slice can be applied to the pipe
flow by setting a slice template with a Bessel function dependence in the radial direction.
With our symmetry analysis, and [pca??] visualizations in Sect. 6.3.3, we understood
that the turbulent pipe flow in the shift-and-reflect subspace has two chaotic saddles that are
related by azimuthal rotation by 7. Our numerical experiments in Sect. 6.3.5 showed some
indication that as long as the ergodic trajectory stays in one of these chaotic saddles, relative
periodic orbits embedded in the chaotic set influences the dynamics. Finally, in Sect. 6.3.6,
we carried out a periodic orbit theory calculation with a subset of relative periodic orbits
that appear to have similar physical properties, and predicted an escape rate for their
neighborhood. Since, as of now, we do not have a way of designing an experiment to test
this calculation, all we could do to make a sanity check of the predicted escape rate verified
that it falls into the timescales that are observed in the system. We would like to emphasize
that this calculation is only suggestive and the reason we presented it in this thesis is not
to draw a strong conclusion from it, but to suggest new directions for turbulence research.
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CHAPTER VII

CONCLUSION AND FUTURE DIRECTIONS

In this thesis, we asked the following question: Can we understand spatiotemporal chaos
by studying exact coherent structures embedded in the chaotic sets? While we do not have
a certain answer yet, we are optimistic. We believe the methods we presented in this thesis
can help towards a deeper understanding of fluid turbulence and ultimately establishing a
theory of turbulence with predictive power.

7.1 Summary of findings

Developments we presented in this thesis lie within the ongoing research program of studies
of spatiotemporal chaos in terms of exact coherent structures. The contributions of the
work presented in this thesis to the existing literature are:

e We developed first Fourier mode slice method for reducing SO(2) symmetry and its
direct products, which are present when [pde??]s are studied in periodic domains.

e In our study of the two-modes system, we verified that periodic orbit theory extends
to the systems with continuous symmetries when relative periodic orbits are used in
calculations.

e For Kuramoto-Sivashinsky system, we combined invariant polynomials with the first
Fourier mode slice to reduce the O(2) symmetry.

e We computed and visualized 1- and 2-dimensional unstable manifolds of periodic
orbits in the symmetry reduced state space of the Kuramoto-Sivashinsky system.

e We applied the first Fourier mode slice to the pipe flow in a minimal computational
cell and presented analysis that suggests relative periodic orbits play an important
role in shaping the state space geometry of the turbulence.

The main message to be taken from the results of all three applications in this thesis
is that the symmetry reduction is absolutely necessary for understanding the state space
geometry of chaotic systems with continuous symmetries. The first Fourier mode slice can
be used for this purpose when the symmetry group is SO(2).

7.2 Future work

Throughout this thesis, we applied first Fourier mode slice problems with only one contin-
uous symmetry. For pipe flow, this meant the study of system in an invariant subspace,
such that continuous symmetry in azimuthal direction is restricted to discrete rotations by
m. While this study thought us many interesting aspects of the problem, this construc-
tion has little experimental relevance due to the fact that laboratory experiments cannot
be designed in invariant subspaces. Therefore, a natural next step for our research is the
simultaneous reduction of SO(2), x O(2)y symmetry of the pipe flow. We have described
how one can reduce axial and azimuthal symmetries SO(2), x SO(2)p simultaneously in
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Sect. 3.3.5, and reduced the axial translation symmetry of the shift-and-reflect symmetric
pipe flow in Sect. 6.3.1.

For the remaining reflection symmetry, we can try to construct polynomial invariants for
the pipe flow just as we did for the Kuramoto-Sivashinsky system in (201). However, since
we multiply adjacent sign changing elements while constructing our invariants, such polyno-
mials would depend on our particular discretization of the problem, and hard to reproduce
in different numerical schemes. Therefore, before determining invariant polynomials, it
makes sense to represent the data in a fully spectral form, such as

u(r,0,z) = Z Wy S (1) €2 OFHMO) (279)

n,k,m

where s, (r) are some functions that form a complete orthonormal basis for the radial
expansion, satisfying pipe’s boundary condition s,(1/2) = 0. As it is irrelevant for the
present discussion, we do not specify s, (r), but candidates are solenoidal (divergence-free)
functions [78] or Bessel functions. One can convert data to the form (279) by post processing
regardless of their numerical scheme.

Let us now write down the action of ¢ on discretization elements explicitly

olu,v,w|(r,0,z) = Z [, =0, W] G (7)€ @RZ=m0)
n,k,m
= 3 [0, Wl ga(r)e ) (280)
n,k,m

where in the second line, we replaced m — —m since it is summed over. This gives us the
action of reflection in spectral representation as

U[u, v, w]nkm = [u7 -, w]nkfm ) (281)

which is different than sign changes that we had in the Kuramoto-Sivashinsky system. As
of this writing, finding an invariant basis for (281) remains an open problem.

7.3 Potential applications

We believe that the techniques we developed in this thesis can find applications in various
studies of spatiotemporal chaos. The most obvious one is the continuous symmetry reduc-
tion in studies of [pde??] s under periodic boundary conditions. An important application
that is not immediately obvious is the symmetry reduction of experimental data as it is
uncommon to have experiments with periodic boundary conditions.

In ref. [35] Fedele, Abessi, and Roberts applied the first Fourier mode slice and another
continuous symmetry reduction method based on fixing phase of a higher Fourier mode to
the turbulent pipe flow experiments. They measured the fluid velocity in a finite region
of the pipe in one dimension and took Fourier transform of their data and demonstrated
that the symmetry reduction cancels stream-wise drifts of the turbulent structures. This
approach can be extended to the three-dimensional velocity measurements to investigate
roles of exact coherent structures in turbulence.

Bifurcation scenarios similar to that of the Kuramoto-Sivashinsky system that we stud-
ied in Sect. 5.5 are ubiquitous in high-dimensional systems. For example, Zammert and
Eckhardt’s study of the plane Poiseuille flow [121] and Avila et al. [3] study of transition
to turbulence in pipe flow, both report torus bifurcations of relative periodic orbits along
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transitions to chaos. Avila et al. [3] also showed that a localized, reflection invariant rela-
tive periodic orbit of the pipe flow has strikingly similar features to turbulent puffs. In the
reflection-invariant subspace, this localized relative periodic orbit is initially stable, then
undergoes a torus bifurcation, followed by chaotic dynamics as the Reynolds number is
increased. Methods of Sect. 5.5 combined with the symmetry reduction of the pipe flow can
lead to a detailed understanding of the state space geometry of turbulent puffs. Hence, we
are planning to study these solutions in near future.
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APPENDIX A

MULTIPLE SHOOTING METHOD FOR FINDING RELATIVE
PERIODIC ORBITS OF THE TWO-MODES SYSTEM

Let us assume that we have a set of good guesses for a set of state space points, flight times
and 1D symmetry group parameter increments {al(-o) , Ti(o) , qﬁl(-o)} such that the points {al(-o)}
lie close to the relative periodic orbit p such that

(0)
o9 ~ 9= (@) eyelicini=1,...n. (282)

Here, the period and the shift of the relative periodic orbit p are T, = )" 7;, and ¢, = > ¢;.
The Lagrangian description of the flow is then a(r) = f7(a(0)). We want to determine
corrections (Aa;, A1, Ag;) so that

aiv1 +Daip1 = g(—¢i — AG) fTAT(a; + Aay)

cyclicini=1,...,n. (283)
To linear order in
(Aa{™ Y ArTY Agm) (284)
_ (aEmH) . al(m) : 7_’L‘(m—i-l) . 7_Z(m) ’ ¢§m+l) . ¢Z(m))

(m+1) (m+1) ¢(m+1))

the improved Newton guess (a; p is obtained by minimizing the effect

of perturbations along the spatial, time, and phase directions,

1 — girr S (@)

= gi+1 (Jir1Qa; + i1 AT — tip1A¢;) (285)
where, for brevity, agmﬂ) = az(-m) + Aagm) = a;, agm) = a;, 9(— i) = gi+1, v(ai(1)) = vVit1,
J7(a;) = Jit1, tlai(r;)) = Tai(m;) = tiy1, ete. For sufficiently good initial guesses, the
improved values converge under Newton iterations to the exact values (Aa;, A1, Ag;)
= (Aagoo) , ATZ-(OO) , Agzﬁz(»oo)) at a super-exponential rate.

In order to deal with the marginal multipliers along the time and group orbit directions,
one needs to apply a pair of constraints, which eliminate variations along the marginal
directions on the relative periodic orbit’s 2D torus. These can be formulated as a local
Poincaré section orthogonal to the flow and a local slice orthogonal to the group orbit at
each point along the orbit,

(v(a;),Aa;) =0, (t(a;), Aa;) =0. (286)
We can rewrite everything as one matrix equation:

AA =F, (287)
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where

g2J2  g2v2 —Tg2fT1(a1) -1 0 0 0 0 0 0
v(ay) 0 0 0 0 0 0 0 0 0
t(ay1) 0 0 0 0 0 0 0 0 0
0 0 0 93J3  g3vs —Tgsf'2(a2) -1 0 0 0
0 0 0 v(as) 0 0 0 0 0 0
A = 0 0 0 t(az) 0 0 0 0 0 0 ,
21 0 0 0 0 0 o .. g1 givn —Tg1f™(a1)
0 0 0 0 0 0 0 v(an) 0 0
0 0 0 0 0 0 0 e t(ap) 0 0
(288)
T
A = (Aaly ATlv A¢17 AG,Q, ATQv A¢27 ceey Aanv ATnv A¢n> ) (289)
n T
E = (ag — gng1 (al), 07 0, asz — gngQ(ag), 0, 0, N glfT (an), 0, 0) . (290)

We then solve (287) for A and update our initial guess by adding the vector of the
computed A values to it and iterate.
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APPENDIX B

PERIODIC SCHUR DECOMPOSITION

Here, we briefly summarize the periodic eigendecomposition [31] needed for the evalua-
tion of Floquet multipliers for two-modes periodic orbits. Due to the non-hyperbolicity of
the return map of Figure 10 (d), Floquet multipliers can easily differ by 100s of orders of
magnitude even in a model as simple as the two-modes system.

We obtain the Jacobian of the relative periodic orbit as a multiplication of short-time
Jacobians from the multiple shooting computation of Appendix A, so that

J = gangn—IJn—l --~91J1 = jnjn—l o (291)

where J; = giJ; € R¥™4 § =1,2 ... ,n. This Jacobian is the same as the definition in
(85) since J; and g; commute with each other and are multiplicative in time and phase,
respectively. In order to determine the eigenvalues of J, we bring each term appearing in
the product (291) into periodic, real Schur form as follows:

J; = QiR:QL ., (292)

where @); are orthogonal matrices that satisfy the cyclic property: Qo = Q.. After this
similarity transformation, we can define R = Ry Ry_1...R; and re-write the Jacobian as:

J=Q.RQT. (293)

The matrix R is, in general, block-diagonal with 1 x 1 blocks for real eigenvalues and 2 x 2
blocks for the complex pairs. It also has the same eigenvalues as J. In our case, it is diagonal
since all Floquet multipliers are real for relative periodic orbits of the two-modes system. For
each relative periodic orbit, we have two marginal Floquet multipliers corresponding to the
time evolution direction and the continuous symmetry direction, as well as one expanding
and one contracting eigenvalue.
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APPENDIX C

NUMERICAL INTEGRATION OF KURAMOTO-SIVASHINSKY
SYSTEM

Throughout Chapter 5, we used the 16 Fourier mode truncation of Kuramoto-Sivashinsky
equation (191), which renders the state space 30-dimensional. Sufficiency of this truncation
was demonstrated for L = 22 in ref. [22]. In order to avoid the computational complexity
of the discrete convolution, we rewrite (191) as

2 - gk 1~

i = (af — af) iy — i L F e (294)
where F and F~! denotes forward and backward Fourier transformations. We then find
the elements of 30-dimensional velocity field as (192) as

Vop—1 = Redy,, wvop =Imuy, k=1,2,...,15. (295)

We compute stability matrix A (9) from partial derivatives of this velocity function.

For the results of Sect. 5.2, we numerically integrated (192) and (102) for Kuramo-
to-Sivashinsky equation using Exponential Time Differencing fourth-order Runge-Kutta
(ETDRK4) method of ref. [66]. The MATLAB/Octave code is openly available at ref. [12].

In Sect. 5.5, we integrate (102) and its gradients (107) numerically, using a general
purpose adaptive integrator odeint from scipy.integrate [(5], which is a wrapper of
1soda from ODEPACK library [56].

Transformation of trajectories and tangent vectors to the fully symmetry-reduced state
space (202) is applied as post-processing. For a trajectory a(7), we simply apply the reflec-
tion reducing transformation to obtain the trajectory as a(7) = a(a(7)). Velocity field (95)
transforms to (202) by acting with the Jacobian matrix

da(a)

%) = —Za

().

Floquet vectors transform to the fully symmetry-reduced state space similarly, however,
their computations in the first Fourier mode slice requires some care. Remember that
the reflection symmetry remains after the continuous symmetry reduction, and its action is
represented by (199). Thus, denoting finite time flow induced by (95) by fr (a), pre-periodic
orbit within the slice satisfies

&pp = Upr( ppo)

with its linear stability given by the spectrum of the Jacobian matrix

where JTP( ,) is the Jacobian matrix of the flow function fTP( ,). Thus, in order to find
the Floquet Vectors in fully symmetry-reduced representation, we ﬁrst find the eigenvectors
V of the Jacobian matrix J , and then transform them as V(a) = da(a, ,)/daV(a).

ppo)

94



[9]
[10]
[11]

[12]
[13]

[14]

[15]

References

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed. (Academic, New York,
2003).

D. Armbruster, J. Guckenheimer, and P. Holmes, “Heteroclinic cycles and modulated
travelling waves in systems with O(2) symmetry”, Physica D 29, 257-282 (1988).

D. Armbruster, J. Guckenheimer, and P. Holmes, “Kuramoto-Sivashinsky dynamics
on the center-unstable manifold”, STAM J. Appl. Math. 49, 676691 (1989).

V. I Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Fquations
(Springer, Berlin, 1982).

R. Artuso, E. Aurell, and P. Cvitanovié¢, “Recycling of strange sets: I. Cycle expan-
sions”, Nonlinearity 3, 325-359 (1990).

R. Artuso, E. Aurell, and P. Cvitanovié, “Recycling of strange sets: I1. Applications”,
Nonlinearity 3, 361-386 (1990).

P. Ashwin and I. Melbourne, “Noncompact drift for relative equilibria and relative
periodic orbits”, Nonlinearity 10, 595-616 (1997).

M. Avila, F. Mellibovsky, N. Roland, and B. Hof, “Streamwise-localized solutions at
the onset of turbulence in pipe flow”, Phys. Rev. Lett. 110, 224502 (2013).

W.-J. Beyn and V. Thiimmler, “Freezing solutions of equivariant evolution equa-
tions”, SIAM J. Appl. Dyn. Syst. 3, 85-116 (2004).

G. D. Birkhoff, “Proof of the Ergodic Theorem”, Proc. Natl. Acad. Sci. USA 17,
656-660 (1931).

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms
(Springer, Berlin, 1975).
N. B. Budanur, FFM Slice, GitHub.com/burakbudanur/ffmSlice, 2014.

N. B. Budanur, D. Borrero-Echeverry, and P. Cvitanovié¢, “Periodic orbit analysis of
a system with continuous symmetry - A tutorial”, Chaos 25, 073112 (2015).

N. B. Budanur, P. Cvitanovi¢, R. L. Davidchack, and E. Siminos, “Reduction of the
SO(2) symmetry for spatially extended dynamical systems”, Phys. Rev. Lett. 114,
084102 (2015).

M. Budisi¢ and I. Mezi¢, “Geometry of the ergodic quotient reveals coherent struc-
tures in flows”, Physica D 241, 1255-1269 (2012), http://arXiv.org/abs/1204.2050.

E. Cartan, La méthode du repére mobile, la théorie des groupes continus, et les espaces
généralisés, Vol. 5, Exposés de Géométrie (Hermann, Paris, 1935).

A. Chenciner, “A note by Poincaré”, Regul. Chaotic Dyn. 10, 119-128 (2005).

F. Christiansen, P. Cvitanovié¢, and V. Putkaradze, “Spatiotemporal chaos in terms
of unstable recurrent patterns”, Nonlinearity 10, 55-70 (1997).

R. H. Cushman and L. M. Bates, Global Aspects of Classical Integrable Systems
(Birkh&user, Boston, 1997).

P. Cvitanovié¢, “Invariant measurement of strange sets in terms of cycles”, Phys. Rev.
Lett. 61, 27292732 (1988).

95


http://books.google.com/books?vid=ISBN9780080541297
http://dx.doi.org/10.1016/0167-2789(88)90032-2
http://dx.doi.org/10.1016/0167-2789(88)90032-2
http://dx.doi.org/10.1016/0167-2789(88)90032-2
http://dx.doi.org/10.1137/0149039
http://dx.doi.org/10.1137/0149039
http://dx.doi.org/10.1137/0149039
http://books.google.com/books?vid=ISBN9781461210375
http://dx.doi.org/10.1088/0951-7715/3/2/005
http://dx.doi.org/10.1088/0951-7715/3/2/005
http://dx.doi.org/10.1088/0951-7715/3/2/005
http://dx.doi.org/10.1088/0951-7715/3/2/006
http://dx.doi.org/10.1088/0951-7715/3/2/006
http://dx.doi.org/10.1088/0951-7715/10/3/002
http://dx.doi.org/10.1088/0951-7715/10/3/002
http://dx.doi.org/10.1088/0951-7715/10/3/002
http://dx.doi.org/10.1103/PhysRevLett.110.224502
http://dx.doi.org/10.1103/PhysRevLett.110.224502
http://dx.doi.org/10.1103/PhysRevLett.110.224502
http://dx.doi.org/10.1137/030600515
http://dx.doi.org/10.1137/030600515
http://dx.doi.org/10.1137/030600515
http://dx.doi.org/10.1073/pnas.17.2.656
http://dx.doi.org/10.1073/pnas.17.2.656
http://dx.doi.org/10.1073/pnas.17.2.656
http://books.google.com/books?vid=ISBN9783540776956
https://github.com/burakbudanur/ffmSlice
http://dx.doi.org/10.1063/1.4923742
http://dx.doi.org/10.1063/1.4923742
http://dx.doi.org/10.1063/1.4923742
http://dx.doi.org/10.1103/PhysRevLett.114.084102
http://dx.doi.org/10.1103/PhysRevLett.114.084102
http://dx.doi.org/10.1103/PhysRevLett.114.084102
http://dx.doi.org/10.1103/PhysRevLett.114.084102
http://dx.doi.org/10.1016/j.physd.2012.04.006
http://dx.doi.org/10.1016/j.physd.2012.04.006
http://dx.doi.org/10.1016/j.physd.2012.04.006
http://www.turpion.org/php/paper.phtml?journal_id=rd&paper_id=306
http://www.turpion.org/php/paper.phtml?journal_id=rd&paper_id=306
http://dx.doi.org/10.1088/0951-7715/10/1/004
http://dx.doi.org/10.1088/0951-7715/10/1/004
http://dx.doi.org/10.1088/0951-7715/10/1/004
http://dx.doi.org/10.1007/978-3-0348-8891-2
http://dx.doi.org/10.1103/PhysRevLett.61.2729
http://dx.doi.org/10.1103/PhysRevLett.61.2729
http://dx.doi.org/10.1103/PhysRevLett.61.2729

[32]

[33]

P. Cvitanovi¢ and B. Eckhardt, “Symmetry decomposition of chaotic dynamics”,
Nonlinearity 6, 277-311 (1993), http://arXiv.org/abs/chao-dyn/9303016.

P. Cvitanovié¢, R. L. Davidchack, and E. Siminos, “On the state space geometry of
the Kuramoto-Sivashinsky flow in a periodic domain”, SIAM J. Appl. Dyn. Syst. 9,
1-33 (2010).

P. Cvitanovi¢, D. Borrero-Echeverry, K. Carroll, B. Robbins, and E. Siminos, “Car-
tography of high-dimensional flows: A visual guide to sections and slices”, Chaos 22,
047506 (2012).

P. Cvitanovié¢, R. Artuso, R. Mainieri, G. Tanner, and G. Vattay, Chaos: Classical
and Quantum (Niels Bohr Inst., Copenhagen, 2017).

P. Dahlqvist, “Determination of resonance spectra for bound chaotic systems”, J.
Phys. A 27, 763-785 (1994).

P. Dahlqvist and G. Russberg, “Periodic orbit quantization of bound chaotic sys-
tems”, J. Phys. A 24, 4763-4778 (1991).

G. Dangelmayr, “Steady-state mode interactions in the presence of O(2)-symmetry”,
Dyn. Sys. 1, 159-185 (1986).

C. P. Dettmann and P. Cvitanovié, “Cycle expansions for intermittent diffusion”,
Phys. Rev. E 56, 6687 (1997).

C. P. Dettmann and G. P. Morriss, “Stability ordering of cycle expansions”, Phys.
Rev. Lett. 78, 4201-4204 (1997).

R. L. Devaney, An Introduction to Chaotic Dynamical systems, 2nd ed. (Westview
Press, 2008).

X. Ding and P. Cvitanovi¢, “Periodic eigendecomposition and its application in
Kuramoto-Sivashinsky system”, STAM J. Appl. Dyn. Syst. 15, 1434-1454 (2016).

Y. Duguet, C. C. T. Pringle, and R. R. Kerswell, “Relative periodic orbits in tran-
sitional pipe flow”, Phys. Fluids 20, 114102 (2008).

Y. Duguet, A. P. Willis, and R. R. Kerswell, “Transition in pipe flow: the saddle
structure on the boundary of turbulence”, J. Fluid Mech. 613, 255-274 (2008).

H. Faisst and B. Eckhardt, “Traveling waves in pipe flow”, Phys. Rev. Lett. 91,
224502 (2003).

F. Fedele, O. Abessi, and P. J. Roberts, “Symmetry reduction of turbulent pipe
flows”, J. Fluid Mech. 779, 390-410 (2015).

C. L. Fefferman, Existence and smoothness of the Navier-Stokes equation, 2000.

M. Fels and P. J. Olver, “Moving coframes: 1. A practical algorithm”, Acta Appl.
Math. 51, 161-213 (1998).

M. Fels and P. J. Olver, “Moving coframes: II. Regularization and theoretical foun-
dations”, Acta Appl. Math. 55, 127-208 (1999).

N. Fenichel, “Persistence and smoothness of invariant manifolds for flows”, Indiana
Univ. Math. J. 21, 193-226 (1971).

M. Field, “Equivariant dynamical systems”, Bull. Amer. Math. Soc. 76, 1314-1318
(1970).

96


http://dx.doi.org/10.1088/0951-7715/6/2/008
http://dx.doi.org/10.1088/0951-7715/6/2/008
http://dx.doi.org/10.1137/070705623
http://dx.doi.org/10.1137/070705623
http://dx.doi.org/10.1137/070705623
http://dx.doi.org/10.1137/070705623
http://dx.doi.org/10.1063/1.4758309
http://dx.doi.org/10.1063/1.4758309
http://dx.doi.org/10.1063/1.4758309
http://dx.doi.org/10.1063/1.4758309
http://ChaosBook.org
http://ChaosBook.org
http://dx.doi.org/10.1088/0305-4470/27/3/020
http://dx.doi.org/10.1088/0305-4470/27/3/020
http://dx.doi.org/10.1088/0305-4470/27/3/020
http://dx.doi.org/10.1088/0305-4470/24/20/012
http://dx.doi.org/10.1088/0305-4470/24/20/012
http://dx.doi.org/10.1088/0305-4470/24/20/012
http://dx.doi.org/10.1080/02681118608806011
http://dx.doi.org/10.1080/02681118608806011
http://dx.doi.org/10.1103/PhysRevLett.78.4201
http://dx.doi.org/10.1103/PhysRevLett.78.4201
http://dx.doi.org/10.1103/PhysRevLett.78.4201
http://dx.doi.org/10.2307/3619398
http://dx.doi.org/10.1137/15M1037299
http://dx.doi.org/10.1137/15M1037299
http://dx.doi.org/10.1137/15M1037299
http://dx.doi.org/10.1063/1.3009874
http://dx.doi.org/10.1063/1.3009874
http://dx.doi.org/10.1063/1.3009874
http://dx.doi.org/10.1017/S0022112008003248
http://dx.doi.org/10.1017/S0022112008003248
http://dx.doi.org/10.1017/S0022112008003248
http://dx.doi.org/10.1103/PhysRevLett.91.224502
http://dx.doi.org/10.1103/PhysRevLett.91.224502
http://dx.doi.org/10.1103/PhysRevLett.91.224502
http://dx.doi.org/10.1017/jfm.2015.423
http://dx.doi.org/10.1017/jfm.2015.423
http://dx.doi.org/10.1017/jfm.2015.423
http://www.claymath.org/millennium-problems/navier%E2%80%93stokes-equation
http://dx.doi.org/10.1023/A:1005878210297
http://dx.doi.org/10.1023/A:1005878210297
http://dx.doi.org/10.1023/A:1005878210297
http://dx.doi.org/10.1023/A:1006195823000
http://dx.doi.org/10.1023/A:1006195823000
http://dx.doi.org/10.1023/A:1006195823000
http://dx.doi.org/10.1512/iumj.1972.21.21017
http://dx.doi.org/10.1512/iumj.1972.21.21017
http://dx.doi.org/10.1512/iumj.1972.21.21017
http://dx.doi.org/10.1090/S0002-9947-1980-0561832-4
http://dx.doi.org/10.1090/S0002-9947-1980-0561832-4
http://dx.doi.org/10.1090/S0002-9947-1980-0561832-4

[57]

[58]

[59]

[60]

M. J. Field, “Equivariant dynamical systems”, Trans. Amer. Math. Soc. 259, 185—
205 (1980).

U. Frisch, Turbulence (Cambridge Univ. Press, Cambridge, 1996).

S. Froehlich and P. Cvitanovié¢, “Reduction of continuous symmetries of chaotic flows
by the method of slices”, Commun. Nonlinear Sci. Numer. Simul. 17, 2074-2084
(2012), http://arXiv.org/abs/1101.3037.

K. Gatermann, Computer Algebra Methods for Equivariant Dynamical Systems (Springer,
New York, 2000).

J. F. Gibson, J. Halcrow, and P. Cvitanovi¢, “Visualizing the geometry of state-space
in plane Couette flow”, J. Fluid Mech. 611, 107-130 (2008).

R. Gilmore and C. Letellier, The Symmetry of Chaos (Oxford Univ. Press, Oxford,
2007).

M. Golubitsky and I. Stewart, The Symmetry Perspective (Birkh&user, Boston, 2002).

M. Golubitsky, I. Stewart, and D. G. Schaeffer, Singularities and Groups in Bifurca-
tion Theory, Vol. 2 (Springer, New York, 1988).

J. M. Greene and J.-S. Kim, “The steady states of the Kuramoto-Sivashinsky equa-
tion”, Physica D 33, 99-120 (1988).
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and

Bifurcations of Vector Fields (Springer, New York, 1983).

M. C. Gutzwiller, “Phase-integral approximation in momentum space and the bound
states of an atom”, J. Math. Phys. 8, 1979-2000 (1967).

M. C. Gutzwiller, “Phase-integral approximation in momentum space and the bound
states of an atom. II”, J. Math. Phys. 10, 1004-1020 (1969).

G. Hagen, “Uber die bewegung des wassers in engen cylindrischen réhren”, Ann.
Phys. 122, 423-442 (1839).

G. Haller and I. Mezi¢, “Reduction of three-dimensional, volume-preserving flows
with symmetry”, Nonlinearity 11, 319-339 (1998).

M. Hénon, “A two-dimensional mapping with a strange attractor”, Commun. Math.
Phys. 50, 94-102 (1976).

A. C. Hindmarsh, “ODEPACK, a systematized collection of ODE solvers”, in Sci-
entific Computing, Vol. 1, edited by R. S. Stepleman (North-Holland, Amsterdam,
1983), pp. 55-64.

B. Hof, A. Juel, and T. Mullin, “Scaling of the turbulence transition threshold in a
pipe”, Phys. Rev. Lett. 91, 244502 (2003).

B. Hof, C. W. H. van Doorne, J. Westerweel, F. T. M. Nieuwstadt, H. Faisst, B.
Eckhardt, H. Wedin, R. R. Kerswell, and F. Waleffe, “Experimental observation of
nonlinear traveling waves in turbulent pipe flow”, Science 305, 1594-1598 (2004).

B. Hof, J. Westerweel, T. M. Schneider, and B. Eckhardt, “Finite lifetime of turbu-
lence in shear flows”, Nature 443, 59-62 (2006).

P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynam-
ical Systems and Symmetry (Cambridge Univ. Press, Cambridge, 1996).

97


http://dx.doi.org/10.1090/S0002-9947-1980-0561832-4
http://dx.doi.org/10.1090/S0002-9947-1980-0561832-4
http://dx.doi.org/10.1090/S0002-9947-1980-0561832-4
http://dx.doi.org/10.1016/j.cnsns.2011.07.007
http://dx.doi.org/10.1016/j.cnsns.2011.07.007
http://dx.doi.org/10.1016/j.cnsns.2011.07.007
http://dx.doi.org/10.1016/j.cnsns.2011.07.007
http://books.google.com/books?vid=ISBN9783540671619
http://dx.doi.org/10.1017/S002211200800267X
http://dx.doi.org/10.1017/S002211200800267X
http://dx.doi.org/10.1017/S002211200800267X
http://books.google.com/books?vid=ISBN9780195310658
http://books.google.com/books?vid=ISBN9783034881678
http://dx.doi.org/10.1007/978-1-4612-4574-2
http://dx.doi.org/10.1007/978-1-4612-4574-2
http://dx.doi.org/10.1016/S0167-2789(98)90013-6
http://dx.doi.org/10.1016/S0167-2789(98)90013-6
http://dx.doi.org/10.1016/S0167-2789(98)90013-6
http://dx.doi.org/10.1007/978-1-4612-1140-2
http://dx.doi.org/10.1007/978-1-4612-1140-2
http://dx.doi.org/10.1063/1.1705112
http://dx.doi.org/10.1063/1.1705112
http://dx.doi.org/10.1063/1.1705112
http://dx.doi.org/10.1063/1.1664927
http://dx.doi.org/10.1063/1.1664927
http://dx.doi.org/10.1063/1.1664927
http://dx.doi.org/10.1002/andp.18391220304
http://dx.doi.org/10.1002/andp.18391220304
http://dx.doi.org/10.1002/andp.18391220304
http://dx.doi.org/10.1088/0951-7715/11/2/008
http://dx.doi.org/10.1088/0951-7715/11/2/008
http://dx.doi.org/10.1088/0951-7715/11/2/008
http://dx.doi.org/10.1007/978-0-387-21830-4_8
http://dx.doi.org/10.1007/978-0-387-21830-4_8
http://dx.doi.org/10.1007/978-0-387-21830-4_8
https://computation.llnl.gov/casc/nsde/pubs/u88007.pdf
https://computation.llnl.gov/casc/nsde/pubs/u88007.pdf
https://computation.llnl.gov/casc/nsde/pubs/u88007.pdf
http://dx.doi.org/10.1103/physrevlett.91.244502
http://dx.doi.org/10.1103/physrevlett.91.244502
http://dx.doi.org/10.1103/physrevlett.91.244502
http://dx.doi.org/10.1126/science.1100393
http://dx.doi.org/10.1126/science.1100393
http://dx.doi.org/10.1126/science.1100393
http://dx.doi.org/10.1038/nature05089
http://dx.doi.org/10.1038/nature05089
http://dx.doi.org/10.1038/nature05089
http://books.google.com/books?vid=ISBN9781107008250
http://books.google.com/books?vid=ISBN9781107008250

E. Hopf, “A mathematical example displaying features of turbulence”, Commun.
Pure Appl. Math. 1, 303-322 (1948).

R. Hoyle, Pattern Formation: An Introduction to Methods (Cambridge Univ. Press,
Cambridge, 2006).

C. Huygens, L’Horloge a Pendule (Swets & Zeitlinger, Amsterdam, 1673).

C. A. Jones and M. R. E. Proctor, “Strong spatial resonance and travelling waves in
Benard convection”, Phys. Lett. A 121, 224-228 (1987).

E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools for
Python, 2001.

A.-K. Kassam and L. N. Trefethen, “Fourth-order time-stepping for stiff PDEs”,
SIAM J. Sci. Comput. 26, 1214-1233 (2005).

G. Kawahara and S. Kida, “Periodic motion embedded in plane Couette turbulence:
Regeneration cycle and burst”, J. Fluid Mech. 449, 291 (2001).

I. G. Kevrekidis, B. Nicolaenko, and J. C. Scovel, “Back in the saddle again: a
computer assisted study of the Kuramoto-Sivashinsky equation”, STAM J. Appl.
Math. 50, 760-790 (1990).

T. Kreilos and B. Eckhardt, “Periodic orbits near onset of chaos in plane Couette
flow”, Chaos 22, 047505 (2012).

M. Krupa, “Bifurcations of relative equilibria”, STAM J. Math. Anal. 21, 1453-1486
(1990).

Y. Kuramoto and T. Tsuzuki, “On the formation of dissipative structures in reaction—
diffusion systems”, Progr. Theor. Phys. 54, 687-699 (1975).

Y. Lan and P. Cvitanovi¢, “Unstable recurrent patterns in Kuramoto-Sivashinsky
dynamics”, Phys. Rev. E 78, 026208 (2008).

Y. Lan, C. Chandre, and P. Cvitanovi¢, “Variational method for locating invariant
tori”, Phys. Rev. E 74, 046206 (2006).

E. N. Lorenz, “Deterministic nonperiodic flow”, J. Atmos. Sci. 20, 130-141 (1963).

F. Mellibovsky and B. Eckhardt, “Takens-Bogdanov bifurcation of travelling-wave
solutions in pipe flow”, J. Fluid Mech. 670, 96-129 (2011).

F. Mellibovsky and B. Eckhardt, “From travelling waves to mild chaos: A supercrit-
ical bifurcation cascade in pipe flow”, J. Fluid Mech. 709, 149-190 (2012).

A. Meseguer, “Streak breakdown instability in pipe Poiseuille flow”, Phys. Fluids 15,
1203-1213 (2003).

A. Meseguer and F. Mellibovsky, “On a solenoidal Fourier-Chebyshev spectral method
for stability analysis of the Hagen—Poiseuille low”, Appl. Numer. Math. 57, 920-938
(2007).

A. Meseguer and L. N. Trefethen, “Linearized pipe flow to Reynolds number 1077,
J. Comput. Phys. 186, 178-197 (2003).

R. Miranda and E. Stone, “The proto-Lorenz system”, Phys. Lett. A 178, 105-113
(1993).

98


http://dx.doi.org/10.1002/cpa.3160010401
http://dx.doi.org/10.1002/cpa.3160010401
http://dx.doi.org/10.1002/cpa.3160010401
http://books.google.com/books?vid=ISBN9780521817509
http://dx.doi.org/10.1016/0375-9601(87)90008-9
http://dx.doi.org/10.1016/0375-9601(87)90008-9
http://dx.doi.org/10.1016/0375-9601(87)90008-9
http://www.scipy.org
http://www.scipy.org
http://dx.doi.org/10.1137/S1064827502410633
http://dx.doi.org/10.1137/S1064827502410633
http://dx.doi.org/10.1017/s0022112001006243
http://dx.doi.org/10.1017/s0022112001006243
http://dx.doi.org/10.1017/s0022112001006243
http://dx.doi.org/10.1137/0150045
http://dx.doi.org/10.1137/0150045
http://dx.doi.org/10.1137/0150045
http://dx.doi.org/10.1137/0150045
http://dx.doi.org/10.1063/1.4757227
http://dx.doi.org/10.1063/1.4757227
http://dx.doi.org/10.1063/1.4757227
http://dx.doi.org/10.1137/0521081
http://dx.doi.org/10.1137/0521081
http://dx.doi.org/10.1137/0521081
http://dx.doi.org/10.1143/PTP.54.687
http://dx.doi.org/10.1143/PTP.54.687
http://dx.doi.org/10.1143/PTP.54.687
http://dx.doi.org/10.1103/PhysRevE.78.026208
http://dx.doi.org/10.1103/PhysRevE.78.026208
http://dx.doi.org/10.1103/PhysRevE.78.026208
http://dx.doi.org/10.1103/PhysRevE.74.046206
http://dx.doi.org/10.1103/PhysRevE.74.046206
http://dx.doi.org/10.1103/PhysRevE.74.046206
http://dx.doi.org/10.1007/978-0-387-21830-4_2
http://dx.doi.org/10.1007/978-0-387-21830-4_2
http://dx.doi.org/10.1017/s0022112010005239
http://dx.doi.org/10.1017/s0022112010005239
http://dx.doi.org/10.1017/s0022112010005239
http://dx.doi.org/10.1017/jfm.2012.326
http://dx.doi.org/10.1017/jfm.2012.326
http://dx.doi.org/10.1017/jfm.2012.326
http://dx.doi.org/10.1063/1.1564093
http://dx.doi.org/10.1063/1.1564093
http://dx.doi.org/10.1063/1.1564093
http://dx.doi.org/10.1016/j.apnum.2006.09.002
http://dx.doi.org/10.1016/j.apnum.2006.09.002
http://dx.doi.org/10.1016/j.apnum.2006.09.002
http://dx.doi.org/10.1016/j.apnum.2006.09.002
http://dx.doi.org/10.1016/s0021-9991(03)00029-9
http://dx.doi.org/10.1016/s0021-9991(03)00029-9
http://dx.doi.org/10.1016/0375-9601(93)90735-I
http://dx.doi.org/10.1016/0375-9601(93)90735-I
http://dx.doi.org/10.1016/0375-9601(93)90735-I

[81]

T. Mullin and J. Peixinho, “Recent observations of the transition to turbulence in a
pipe”, in IUTAM Symposium on Laminar-Turbulent Transition, Vol. 78, edited by
R. Govindarajan, Fluid Mechanics and Its Applications (Springer, New York, 2006),
pp- 45-55.

M. Nagata, “Three-dimensional finite-amplitude solutions in plane Couette flow: bi-
furcation from infinity”, J. Fluid Mech. 217, 519-527 (1990).

M. Nagata, “Three-dimensional traveling-wave solutions in plane Couette flow”,
Phys. Rev. E 55, 2023-2025 (1997).

W. Pfenninger, “Transition in the inlet length of tubes at high reynolds numbers”,
in Boundary layer and flow control, edited by G. V. Lachmann (Pergamon, Oxford,
UK, 1961), pp. 970-980.

N. Platt, L. Sirovich, and N. Fitzmaurice, “An investigation of chaotic Kolmogorov
flows”, Phys. Fluids A 3, 681-696 (1991).

H. Poincaré, “Sur les solutions périodiques et le principe de moindre action”, C. R.
Acad. Sci. Paris 123, 915-918 (1896).

J. L. Poiseuille, “Recherches expérimentales sur le mouvement des liquides dans les
tubes de trés-petits diametres”, C. R. Acad. Sci. Paris 11, 961 (1840).

J. Porter and E. Knobloch, “Dynamics in the 1:2 spatial resonance with broken
reflection symmetry”, Physica D 201, 318-344 (2005).

C. C. T. Pringle and R. R. Kerswell, “Asymmetric, helical, and mirror-symmetric
traveling waves in pipe flow”, Phys. Rev. Lett. 99, 074502 (2007).

C. C. T. Pringle, Y. Duguet, and R. Kerswell, “Highly symmetric travelling waves
in pipe flow”, Philos. Trans. R. Soc. A 367, 457-472 (2009).

E. L. Rempel and A. C. Chian, “Intermittency induced by attractor-merging crisis
in the Kuramoto-Sivashinsky equation”, Phys. Rev. E 71, 016203 (2005).

E. L. Rempel, A. C. Chian, E. E. Macau, and R. R. Rosa, “Analysis of chaotic saddles
in high-dimensional dynamical systems: the Kuramoto-Sivashinsky equation”, Chaos
14, 545-56 (2004).

E. L. Rempel, A. C. Chian, and R. A. Miranda, “Chaotic saddles at the onset of
intermittent spatiotemporal chaos”, Phys. Rev. E 76, 056217 (2007).

O. Reynolds, “On the dynamical theory of incompressible viscous flows and the
determination of the criterion”, Proc. Roy. Soc. Lond. Ser. A 56, 40-45 (1894).

O. E. Rossler, “An equation for continuous chaos”, Phys. Lett. A 57, 397-398 (1976).

C. W. Rowley and J. E. Marsden, “Reconstruction equations and the Karhunen-
Loéve expansion for systems with symmetry”, Physica D 142, 1-19 (2000).

D. Ruelle, “Bifurcations in presence of a symmetry group”, Arch. Rational Mech.
Anal. 51, 136-152 (1973).

D. Ruelle, Thermodynamic formalism: the mathematical structure of equilibrium sta-
tistical mechanics, 2" (Cambridge Univ. Press, Cambridge, 2004).

H. H. Rugh, “The correlation spectrum for hyperbolic analytic maps”, Nonlinearity
5, 1237 (1992).

99


http://dx.doi.org/10.1007/1-4020-4159-4_5
http://dx.doi.org/10.1007/1-4020-4159-4_5
http://dx.doi.org/10.1007/1-4020-4159-4_5
http://dx.doi.org/10.1017/S0022112090000829
http://dx.doi.org/10.1017/S0022112090000829
http://dx.doi.org/10.1017/S0022112090000829
http://dx.doi.org/10.1103/physreve.55.2023
http://dx.doi.org/10.1103/physreve.55.2023
http://dx.doi.org/10.1016/B978-1-4832-1323-1.50013-0
http://dx.doi.org/10.1016/B978-1-4832-1323-1.50013-0
http://dx.doi.org/10.1063/1.858074
http://dx.doi.org/10.1063/1.858074
http://dx.doi.org/10.1063/1.858074
http://dx.doi.org/10.1016/j.physd.2005.01.001
http://dx.doi.org/10.1016/j.physd.2005.01.001
http://dx.doi.org/10.1016/j.physd.2005.01.001
http://dx.doi.org/10.1103/physrevlett.99.074502
http://dx.doi.org/10.1103/physrevlett.99.074502
http://dx.doi.org/10.1103/physrevlett.99.074502
http://dx.doi.org/10.1098/rsta.2008.0236
http://dx.doi.org/10.1098/rsta.2008.0236
http://dx.doi.org/10.1098/rsta.2008.0236
http://dx.doi.org/10.1103/PhysRevE.71.016203
http://dx.doi.org/10.1103/PhysRevE.71.016203
http://dx.doi.org/10.1103/PhysRevE.71.016203
http://dx.doi.org/10.1063/1.1759297
http://dx.doi.org/10.1063/1.1759297
http://dx.doi.org/10.1063/1.1759297
http://dx.doi.org/10.1063/1.1759297
http://dx.doi.org/10.1103/PhysRevE.76.056217
http://dx.doi.org/10.1103/PhysRevE.76.056217
http://dx.doi.org/10.1103/PhysRevE.76.056217
http://dx.doi.org/10.1098/rspl.1894.0075
http://dx.doi.org/10.1098/rspl.1894.0075
http://dx.doi.org/10.1098/rspl.1894.0075
http://dx.doi.org/10.1016/0375-9601(76)90101-8
http://dx.doi.org/10.1016/0375-9601(76)90101-8
http://dx.doi.org/10.1016/S0167-2789(00)00042-7
http://dx.doi.org/10.1016/S0167-2789(00)00042-7
http://dx.doi.org/10.1016/S0167-2789(00)00042-7
http://dx.doi.org/Bifurcations in presence of a symmetry group
http://dx.doi.org/Bifurcations in presence of a symmetry group
http://dx.doi.org/Bifurcations in presence of a symmetry group
http://books.google.com/books?vid=ISBN9780521546492
http://books.google.com/books?vid=ISBN9780521546492
http://dx.doi.org/10.1088/0951-7715/5/6/003
http://dx.doi.org/10.1088/0951-7715/5/6/003
http://dx.doi.org/10.1088/0951-7715/5/6/003

[100]

[101]

[102]
[103]
[104]
[105]

106
107]

[108]
[109]
[110]
[111]
[112]
[113]

[114]

[115]
[116]
[117]

[118]

[119]

T. M. Schneider, B. Eckhardt, and J. Yorke, “Turbulence, transition, and the edge
of chaos in pipe flow”, Phys. Rev. Lett. 99, 034502 (2007).

H. Shan, Z. Zhang, and F. Nieuwstadt, “Direct numerical simulation of transition
in pipe flow under the influence of wall disturbances”, Int. J. Heat Fluid Flow 19,
320-325 (1998).

Y. G. Sinai, “Gibbs measures in ergodic theory”, Russian Math. Surveys 27, 21
(1972).

G. L. Sivashinsky, “Nonlinear analysis of hydrodynamical instability in laminar flames
- I. Derivation of basic equations”, Acta Astronaut. 4, 1177-1206 (1977).

J. D. Skufca, J. A. Yorke, and B. Eckhardt, “Edge of Chaos in a parallel shear flow”,
Phys. Rev. Lett. 96, 174101 (2006).

S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc. 73, 747-817
(1967).
S. Smale, “Topology and mechanics, I.” Inv. Math. 10, 305-331 (1970).

J.-L. Thiffeault, “Using multiscale norms to quantify mixing and transport”, Non-
linearity 25, 1-44 (2012), http://arXiv.org/abs/1105.1101.

A. Vierkandt, “Uber gleitende und rollende bewegung”, Monatshefte fiir Math. und
Phys. ITI, 31-54 (1892).

D. Viswanath, “Symbolic dynamics and periodic orbits of the Lorenz attractor”,
Nonlinearity 16, 1035-1056 (2003).

D. Viswanath, “Recurrent motions within plane Couette turbulence”, J. Fluid Mech.
580, 339-358 (2007).

F. Waleffe, “Three-dimensional coherent states in plane shear flows”, Phys. Rev.
Lett. 81, 4140-4148 (1998).

F. Waleffe, “Exact coherent structures in channel flow”, J. Fluid Mech. 435, 93-102
(2001).

H. Wedin and R. R. Kerswell, “Exact coherent structures in pipe flow”, J. Fluid
Mech. 508, 333-371 (2004).

A. P. Willis and R. R. Kerswell, “Turbulent dynamics of pipe flow captured in a
reduced model: puff relaminarisation and localised edge states”, J. Fluid Mec. 619,
213-233 (2009).

A. P. Willis, P. Cvitanovié¢, and M. Avila, “Revealing the state space of turbulent
pipe flow by symmetry reduction”, J. Fluid Mech. 721, 514-540 (2013).

A. P. Willis, K. Y. Short, and P. Cvitanovié¢, “Symmetry reduction in high dimen-
sions, illustrated in a turbulent pipe”, Phys. Rev. E 93, 022204 (2016).

A. P. Willis, M. Farazmand, K. Y. Short, N. B. Budanur, and P. Cvitanovié¢, Relative
periodic orbits form the backbone of turbulent pipe flow, In preparation., 2017.

S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis”, Chemometr.
Intell. Lab. 2, Proceedings of the Multivariate Statistical Workshop for Geologists
and Geochemists, 37-52 (1987).

A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining Lyapunov
exponents from a time series”, Physica D 16, 285-317 (1985).

100


http://dx.doi.org/10.1103/PhysRevLett.99.034502
http://dx.doi.org/10.1103/PhysRevLett.99.034502
http://dx.doi.org/10.1103/PhysRevLett.99.034502
http://dx.doi.org/10.1016/S0142-727X(98)10008-5
http://dx.doi.org/10.1016/S0142-727X(98)10008-5
http://dx.doi.org/10.1016/S0142-727X(98)10008-5
http://dx.doi.org/10.1016/S0142-727X(98)10008-5
http://dx.doi.org/10.1070/RM1972v027n04ABEH001383
http://dx.doi.org/10.1070/RM1972v027n04ABEH001383
http://dx.doi.org/10.1070/RM1972v027n04ABEH001383
http://dx.doi.org/10.1016/0094-5765(77)90096-0
http://dx.doi.org/10.1016/0094-5765(77)90096-0
http://dx.doi.org/10.1016/0094-5765(77)90096-0
http://dx.doi.org/10.1103/PhysRevLett.96.174101
http://dx.doi.org/10.1103/PhysRevLett.96.174101
http://dx.doi.org/10.1090/S0002-9904-1967-11798-1
http://dx.doi.org/10.1090/S0002-9904-1967-11798-1
http://dx.doi.org/10.1090/S0002-9904-1967-11798-1
http://dx.doi.org/10.1007/BF01418778
http://dx.doi.org/10.1007/BF01418778
http://dx.doi.org/10.1088/0951-7715/25/2/R1
http://dx.doi.org/10.1088/0951-7715/25/2/R1
http://dx.doi.org/10.1088/0951-7715/25/2/R1
http://dx.doi.org/10.1088/0951-7715/16/3/314
http://dx.doi.org/10.1088/0951-7715/16/3/314
http://dx.doi.org/10.1017/S0022112007005459
http://dx.doi.org/10.1017/S0022112007005459
http://dx.doi.org/10.1017/S0022112007005459
http://dx.doi.org/10.1017/s0022112001004189
http://dx.doi.org/10.1017/s0022112001004189
http://dx.doi.org/10.1017/s0022112001004189
http://dx.doi.org/10.1017/S0022112004009346
http://dx.doi.org/10.1017/S0022112004009346
http://dx.doi.org/10.1017/S0022112004009346
http://dx.doi.org/10.1017/s0022112008004618
http://dx.doi.org/10.1017/s0022112008004618
http://dx.doi.org/10.1017/s0022112008004618
http://dx.doi.org/10.1017/s0022112008004618
http://dx.doi.org/10.1017/jfm.2013.75
http://dx.doi.org/10.1017/jfm.2013.75
http://dx.doi.org/10.1017/jfm.2013.75
http://dx.doi.org/10.1103/PhysRevE.93.022204
http://dx.doi.org/10.1103/PhysRevE.93.022204
http://dx.doi.org/10.1103/PhysRevE.93.022204
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1016/0167-2789(85)90011-9

[120] J. G. Yoder, Unrolling Time: Christiaan Huygens and the Mathematization of Nature
(Cambridge Univ. Press, Cambridge, 1988).

[121] S. Zammert and B. Eckhardt, “Crisis bifurcations in plane Poiseuille flow”, Phys.
Rev. E 91, 041003 (2015).

101


http://books.google.com/books?vid=ISBN9780521524810
http://dx.doi.org/10.1103/PhysRevE.91.041003
http://dx.doi.org/10.1103/PhysRevE.91.041003
http://dx.doi.org/10.1103/PhysRevE.91.041003

