
Chapter �

�h corrections

��� �h corrections to the Gutzwiller trace formula

The Gutzwiller trace formula ������ is the most compact formulation of the
semiclassical quantization of multidimensional systems� In recent years it has
been demonstrated�	
� on many classically chaotic systems that it is indeed a
very good approximation�

As mentioned the starting point of the Gutzwiller derivation of the trace
formula can be taken in the Feynman path integral form���
 
�� of the propa�
gator� But
 calculations with path integrals are di�cult in general� It is often
easier to �nd the numerical solution of the underlying Schr�odinger equation�
The most convenient asymptotic method to evaluate the path integral is the
saddle point approximation� The leading Gaussian approximation is easy to
perform and gives very good results
 as we saw in the two previous sections�

There are many attempts to improve the semiclassical approximation within
the framework of the Gaussian approximation in order to get accurate energies
and resonances� But the Gaussian approximation has its inherent limitation
and one should go beyond it to improve the accuracy� Recently
 Gaspard and
Alonso �		� computed corrections of the Gutzwiller trace formula and showed
that the resonances of the two and three disk scattering systems�	�
 ��� can
be improved considerably� They have used the usual Feynman graph technique
of the perturbation theory and computed large number of graphs to get the
corrections� In general the conventional graph calculus is very cumbersome� In
this chapter we shall describe an alternative approach to the calculation of �h
corrections
 using ordinary di�erential equations�

The basic idea is the following� Suppose you have a time independant bound
system and are looking for the energy eigenvalues of the Hamilton operator� An
eigenfunction �n
 ful�lls the time independant Schr�odinger equation

�H�n � En�n� �����

Now if you consider a periodic orbit of the corresponding classical system
 then

�	
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you can expand the potential in the Hamiltonian around this orbit and try
to solve the Schr�odinger problem with appropriate boundary conditions in the
neighbourhood of this orbit� This will in general give a complete eigenspectrum
with coresponding eigenfunctions� However
 since the local problem contains
the full problem as a special case
 the original spectrum will be contained in the
local spectrum� If you now follow the same procedure for all the periodic orbits
in the system
 and if the set of periodic orbits are su�ciently proliferating then
the union of restrictions prescribed by all the periodic orbits will �nally lead
to the spectrum we were originally looking for� Now the �h correction scheme
enters in the solution of the local Schr�odinger problem� If we make the usual
ansatz that the local wave function is given by

�p � �pe
iSp��h� �����

then by inserting this expression into the local Schr�odinger equation and ex�
panding in orders of �h
 we end up with the Hamilton�Jacobi equation for the
�local� action Sp and with an evolution equation for the amplitude �� In this
last equation one usually neglects the �h� term and is then led to the classi�
cal continuity equation for the amplitude
 which gives the usual semiclassical
result as we saw in section ���� Here we instead expand the amplitude in a
perturbation series in �h
 and keep the �h� term in the equation for the purpose
of connecting di�erent orders in �h in the expansion� This results in an iterative
scheme where the coe�cients in the �h expansion of the amplitude can be de�
termined successively� Finally the �h corrected amplitude function can then be
connected to the spectral determinants of the local problem
 and by multiplying
these together
 we �nally end up with an �h corrected spectral determinant for
the full problem�

The above considerations are of course in no sense rigorous but they give
the main idea of the strategy we are going to follow in this chapter� It should
be emphasised that the theory sketched in the following sections is still not in

complete mathematical rigour� We take this theory as the starting point
 and
concentrate in this thesis on applications of the theory to billiard systems�

The strategy of this chapter is therefore the following� �rst we describe the
method developed in �

� and obtain di�erential equations for computing �h cor�
rections to the Gutzwiller trace formula� We then specialize to billiard systems
and develop an algorithm to compute the corrections which using geometrical
information about periodic orbits
 such as their lengths
 stabilities
 bouncing
angles etc� Finaly we carry out several numerical computations on the two�
and three�disk scattering systems and compare the results to the exact quan�
tum results and to the work by Gaspard et al� �		� to show that our theory
gives equivalent results�

��� Path integrals and partial di�erential equations

In this section we show how the path integral expression for the propagator
can be connected to a set of partial di�erential equations in the case where
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one uses the saddlepoint approximation to restrict the path integral to tubes
around classical paths
 or paths that has a minimal action�

The path integral representation of the propagator is

G�q� q�� t� �

Z
Dq��e

i
�h
S�q�q��tjq���� ���	�

where
R
Dq�� represents the functional integral measure for all the paths con�

necting q with q� in time t
 and S�q� q�� tjq��� is the classical action between q
and q� computed along a given path q��� We are interested in the path integral
expression for the trace which reads

TrG�t� �

Z
dqG�q� q� t� �

Z
Dq��e

i
�h
S�tjq���� �����

where
R
Dq�� now represents the functional integration for closed paths� In

the saddle point approximation the leading contribution to the path integral
is coming from the neighbourhood of paths for which the classical action is
stationary� This condition singles out the classical periodic trajectories from
the in�nite variety of possible paths�

TrG�t� �
X
p

Z
Dqp exp

�
i

�h
Sp�qp� t�

�
� ���
�

where
P

p denotes the summation for the classical primitive periodic orbits
and

R
Dqp denotes a functional integral in the neighborhood of periodic orbits


where we Taylor expand the classical action around the periodic orbit xp�t�

Sp�x� t� �
�X
n

sn�t��x� xp�t��
n�n�� �����

The symbol n � �n�� n�� ���� nd� denotes the multi index in d dimensions
 n� �Qd
i�� ni� the multi factorial and �qp � xp�t��

n �
Qd
i���qp�i � xp�i�t��

ni 
 respec�
tively�

Since the saddle points are taken in the con�guration space
 only spatially
distinct periodic orbits
 the so called primitive periodic orbits
 appear in the
summation� If we continue the standard textbook calculation scheme
 we should
truncate the Taylor expansion in the exponent at the quadratic order term
while treating the higher order terms as corrections� Then we can compute the
path integrals with the help of Gaussian integrals� In this way one can derive
Gutzwiller�s trace formula� Corrections to the Gaussian approximation can be
found by expanding the action to higher orders
 expanding the exponential and
performing the Gaussian cumulant integrals�

Here we do not follow the textbook approach� Instead we observe that
the terms in ���
� are similar to the original path integral expression of the



�� CHAPTER �� �H CORRECTIONS

trace ������ The only di�erence is that each term has to be computed in the
neighborhood of a periodic orbit and that the classical actions are given in
power series form�

We now consider the local Schr�odinger equation


�Hp�p�x� t� � i�h
��p�x� t�

�t
�����

which leads to the local path sumZ
Dqpe

i��h
P
n
Sn�xp�t��t�qnp �n� � TrGp�qp� qp

�� t�� �����

The saddle point expansion of the full trace in terms of local traces then
becomes

TrG�x� x�� t� � TrGW �x� x�� t� �
X
p

TrGp�qp� qp
�� t�� �����

where GW �x� x�� t� denotes formally the Green function expanded around zero
length �non moving� periodic orbits
 known as the Weyl term���� Each Green
function can be seperately Fourier transformed and we get in the energy domain�

TrG�x� x�� E� � g��E� �
X
p

TrGp�qp� qp
�� E�� ������

Notice
 that in contrast to the derivation of section ��� we do not need here
to take further saddle points in time
 since we are dealing with exact time and
energy domain Green functions�

The local spectral determinant �p�E� for the local operators is de�ned as

TrGp�qp� qp
�� E� �

d

dE
log�p�E�� ������

Using ������ we can express the full spectral determinant as a product over the
sub�determinants

��E� � eW �E�
Y
p

�p�E�� ������

where W �E� �
R E g��E��dE� is the term coming from the Weyl expansion�

In general
 there are many di�erent types of closed periodic orbits which
can contribute to the product ������� The spectral determinant of the zero
length orbits gives a smooth contribution
 which is the counterpart of the Weyl
or Thomas�Fermi terms� From now on we neglect these terms since they do
not change the location of the zeroes of the spectral determinant� Also
 the
periodic orbits in the complexi�ed phase space of the Hamiltonian system can
contribute���
 as well as the di�raction cycles introduced in section ���� In the
following we concentrate only on the usual classical periodic orbits�
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We should mention that here we do not investigate the general validity of the
saddle point approximation� However
 it is important to note that the power
series expansion of the action is an asymptotic expansion
 where contributions
from di�erent orbits overlap and this causes some overcounting in the formula
���
�� Therefore in computations the number of periodic orbits included in
the sum should depend on the order of truncation of the power series� In the
semiclassical or Gaussian approximation the criterion proposed by Berry and
Keating ��� can be used� We hope
 that a similar condition can be derived for
the situation discussed here�

Local spectra of the Schr�odinger equation

To compute the local spectral determinants �p�E� we have to solve the local
Schr�odinger problem ����� in the neighborhood of a classical periodic orbit
 and
all variables should be indexed with a p� For simplicity we shall drop this index
in the rest of this section�

The local Schr�odinger equation

i�h�t� � �
�h�

�m
�� � U� ����	�

can be constructed by expanding the Hamilton operator in the neighbourhood
of the periodic orbit and imposing appropriate boundary conditions in the direc�
tion orthogonal to the velocity direction of the orbit� The boundary conditions
are

maxj�j�RjA�s� �	�j � �� for R�� ������

A�s� L� �	� � ei�A�s� �	� ����
�

where A is the amplitude of the wave function
 s measures the length along
the periodic orbit and �	 is a small vector orthogonal to the direction of the
 ow� With the conditions ����
� the local Schr�odinger equation ����� becomes
a precisely formulated boundary value problem� This idea is described in detail
and with all the mathematical rigour in �
��

The equation is most conveniently solved by rewriting it with the usual
ansatz

� � �eiS��h� ������

where we have not yet imposed any restrictions on the functions ��x� t� and
S�x� t�� Inserting these equations into the Schr�odinger equation ����	� yields

���tS � i�h�t� � �
�h�

�
���� �i��hr�rS

� i��h��S � ���h���rS��� � U�� ������
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Here we have many possibilities to group the terms since we have not made
any restriction for S and � yet� Our main concern is to separate the classical
and the quantum time evolution� Therefore
 we require the phase to ful�ll the
Hamilton�Jacobi equation

�tS �
�

�
�rS�� � U � �� ������

which yields the classical action solution� As we see the Hamilton�Jacobi equa�
tion is an autonomous equation which can be solved by just using the knowledge
of the behaviour of the potential in the neighbourhood of the periodic orbit� We
note that the potential only occurs in this equation� Having found the solution
S�x� t� to the Hamilton�Jacobi equation
 the amplitude �which we now allow to
be complex� ful�lls

�t��r�rS �
�

�
��S �

i�h

�
�� � �� ������

It is this partial di�erential equation that corresponds to the local path sum
������ It is driven by the solution of the Hamilton�Jacobi equation and should
be solved in the neighborhood of a periodic orbit with the action expanded like
in ������

If the local Schr�odinger equation around the periodic orbit has an eigenen�
ergy E the corresponding eigenfunction ful�lls

�p�t� Tp� � e�iETp��h�p�t�� ������

For a general energy value E
 the eigenfunctions of the local Hamiltonian �lp�t�
ful�ll

�lp�t� Tp� � e�iETp��h
lp�E��
l
p�t�� ������

where 
lp�E� � exp�i�E � El�Tp��h�� If the eigenvalues 
lp�E� are known
 the
local functional determinant ������ can be formally written as

�p�E� �
Y
l

��� 
lp�E��� ������

since �p�E� � � yields the eigenenergies of the local Schr�odinger problem� We
can insert the ansatz ������ and reformulate ������ as

e
i
�h
S�t	Tp��lp�t� Tp� � e�iETp��h
lp�E�e

i
�h
S�t��lp�t�� ����	�

The phase change is given by the action integral for one period S�t�Tp��S�t� �R Tp
� L�t�dt� Using this and the identity for the reduced action Sp�E� of the
periodic orbit

Sp�E� �

I
pdq �

Z Tp

�
L�t�dt�ETp� ������
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we get

e
i
�h
Sp�E��lp�t� Tp� � 
lp�E��

l
p�t�� ����
�

Introducing the eigenequation for the amplitude

�lp�t� Tp� � Rl
p�E��

l
p�t�� ������

the local spectral determinant can be expressed as

�p�E� �
Y
l

���Rl
p�E�e

i
�h
Sp�E��� ������

To get the full spectral determinant we therefore have to solve the equation
������ in order to get the local eigenvalues� As we shall see this equation can
be easily solved on an analytic basis�

We can also reexpress the quantum Gutzwiller�Voros spectral determinant
in terms of the local eigenvalues� This reads

��E� �
Y
p

Y
l

���Rl
p�E�e

i
�h
Sp�E��� ������

The trace formula can be recovered from �������

TrG�E� �
�

i�h

X
p

X
l

Rl
p�E�e

i
�h
Sp�E�

��Rl
p�E�e

i
�h
Sp�E�

�

�
Tp�E�� i�h

d logRl
p�E�

dE

�
� ������

To keep an overview over the work that is to be done
 it seems appropriate
at this point to emphasize an outline over the steps we are going to persue in
the following�

�� First of all we have to solve the local Hamilton Jacobi equation ������
 in
order to be able to drive the amplitude transport equation� This is done
by expanding the phase function in a Taylor series
 inserting this into the
Hamilton�Jacobi equation
 and solve the resulting ordinary di�erential
equations�

�� Next we should solve the amplitude transport equation ������� This is
basically done by using the same strategy as with the phase function
 i�e�
by expanding the amplitude in a Taylor series around the periodic orbit
and solving the ordinary di�erential equations obtained after insertion
into the amplitude equation� However
 the i�h� term in ������ suggest us
to expand the Taylor coe�cients in a polynomial series in �h� Having done
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this
 we then solve the amplitude equation in two steps� �rst we solve the
autonomous set of semiclassical equations where we set �h � �� Next we
can solve the equation recursively to any desired order in �h by inserting
the previously obtained solutions and keeping the term i�h�
 that connect
di�erent orders in �h�

	� Now we can concentrate on our main point
 namely to solve equation
������� By also expanding the local eigenvalues Rl in a powerseries in �h
and inserting this in the eigenvalue equation ������
 we can
 by comparing
terms of same order in �h
 solve for the Rl coe�cients in the expansion of
the eigenvalues� This again de�nes an iterative scheeme
 where we can get
the �h corrections to the eigenvalues by successively inserting the previous
found solutions of the eigenvalue equation to lower orders in �h�

�� Having found the �h corrections of the local eigenvalue problem
 we can
now get an �h corrected local spectral determinant for each periodic orbit

by using ������� Multiplying these together we �nally end up with an �h
corrected spectral determinant according to ������
 or we can get an �h
corrected trace formula from �������

Solving the equations ����������� and ������ can be done by a variety of numer�
ical methods� The analytic perturbation method we develop here
 can be easily
applied also in numerical calculations�

��� Analytic eigenbasis

To get the local eigenvalues we have to solve the Hamilton�Jacobi� and the am�
plitude equations ������ ������ in order to follow the evolution of a wavepacket
around the periodic orbit� In this section we show how the Hamilton�Jacobi
equation and the amplitude equation can be solved by changing them into or�

dinary di�erential equations� For simplicity we shall keep the derivation in one
dimension but as we shall demonstrate later the equations are easily obtained
in higher dimensions as well�

The Hamilton�Jacobi equation

In the saddlepoint approximation of the trace ����� we expressed the phase
function S in a powerseries form to get a sum over the local traces� In the
neighborhood of a classical periodic orbit we can therefore look for the solution
of the Hamilton�Jacobi equation in a power series form� Let xp�t� denote a
classical periodic orbit with period Tp� Let us expand the phase around the
time dependent trajectory as in ������ To derive ordinary di�erential equations
for the expansion coe�cients we expand also the potential around the periodic
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orbit

U�x� �
�X
n

un�t��x� xp�t��
n�n�� ���	��

where un are rank n tensors in general� If we put these two expressions into
the Hamilton�Jacobi equation we get in the one�dimensional case

!sn � sn	� !q �
�

�

nX
l��

n�

�n� l��l�
sn�l	�sl	� � un � � ���	��

which represents a hierarchy of equations� In the multidimensional case we get
similar expressions for the entries of the s matrices� In the Hamilton�Jacobi
equation it is common to interpret the gradient of the phase function as the
momentum� If the s� vector is choosen to be the momentum of the classical
orbit

p � !q � s�� ���	��

the equations are simpler and their meanings are obvious� The �rst equation
in the hierarchy corresponds to the classical action along the path�

!s� �
p�

�
� u� � L�t�� ���		�

where L�t� is the Lagrange function evaluated on the periodic orbit� The second
is the Newton equation

!p � �u�� ���	��

since u� is the force along the trajectory� The d� d matrix s� is familiar from
the wave packet theory and describes the shape of a Gaussian wave packet�	��

!s� � �s�� � u�� ���	
�

We earlier encountered this equation in �
���� where we studied the time evolu�
tion of the curvature matrix M� Equation ���	
� is simply the one dimensional
version of this evolution equation for the curvature matrix
 which in this case is
just the Sinai Bunimovic curvature� We therefore also know that Trs� describes
the expansion of in�nitesimal volume elements evolving along the classical orbit�
The next equation

!s
 � �	s�s
 � u
� ���	��

and the rest of the equations are linear equations for sn� These are pure classical
equations describing the analytic structure of the action around the periodic
orbits p�
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Since the phase change along the periodic orbit is just given by the action
integral ������
 the gradient of S�x� t� entering in the amplitude equation ������
must be a periodic function along the periodic orbit� Therefore
 the sn� n � �
matrices are also periodic yielding the boundary conditions sn�t� � sn�t � Tp�
where Tp is the period of the orbit� The term s��t� given by the action integral
s��t� �

R t
� L�t�dt is then not periodic whereas for instance the momentum s��t�

along the periodic orbit varies periodically with time� The most complicated
equation we have to solve is ���	
�� In general it has more than one periodic
solution� In case of unstable periodic orbits the solution of the equation ���	
�
converges to a single stable solution starting from almost all initial conditions�
A simple example of this can be obtained by considering the periodic orbit "��
of the 	�disk system� This has the Jacobian�

J� �

�
� �

� �

�
� ���	��

The rational fraction transformation �
���� in this case yields

f�s�� �
� � �s�
� � �s�

���	��

and starting from almost any point this converges after a few iterations to
the stable solution s� � f�s�� � ���������� � � �� The rest of the solutions are
unstable� The wave packet described by the stable solution is decaying in time

while the rest of the solutions describe wave packets with increasing amplitudes�
These solutions are non�physical
 since they describe local wave functions with
exponentially increasing norms� We have to exclude these solutions� In case
of stable periodic orbits we also have only one solution of ���	
� for which the
local wave function is decaying and we have to choose this solution� The higher
order �n � �� equations are linear in sn and their unique periodic solutions can
be found order by order�

The evolution of the amplitude

After solving locally the Hamilton�Jacobi equation we can look for the local
solution of the amplitude equation� In a similar way as with the phase function

we can expand the amplitude around the classical path in power series� This
analytic basis is appropriate for classical Perron�Frobenius operators since it is
very easy to diagonalize the evolution operator on this basis����� Inserting the
expansion

�p�x� t� �
�X
n

�n�t��x� xp�t��
n�n� ���	��

into the equation ������ yields in one dimension the following equations for the
coe�cients

!�n � �n	� !q �
nX
l��

n�

�n� l��l�

�
�n�l	�sl	� �

�

�
�n�lsl	�

�
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�
i�h

�
�n	� � �� ������

Note that the term i�h���n	� connects di�erent orders in �h�

In the multidimensional case we get similar equations for the expansion
coe�cient matrices� Using eq� ���	�� one can slightly reduce these equations�

!�� � �
s�
�
�� �

i�h

�
��

!�� � �
	s�
�
�� �

s

�
�� �

i�h

�
�
 ������

!�� � �

s�
�
�� � �s
�� �

s�
�
�� �

i�h

�
��

and so on� These equations are linear and have the general form

!�n � �
��n� ��s�

�
�n����

i�h

�
�n	�� ������

In the semiclassical limit where we can set �h � �
 we see that the hierachy of
equations take the form

!� � T� ����	�

where T is a lower triangular matrix� This means that the solutions �l can be
found successively by setting all �li � � for i � l� In the case of higher dimen�
sions this still holds but the indexation is more tedious
 since the equations are
matrix equations in higher dimensions� However the structure of the hierachy
of equations remain the same in any number of dimensions�

��� Stationary solutions

The set of equations ���	��
������ and ������ de�ne the full set of equations
we have to solve� Furthermore we know
 that we are seeking the stationary
solutions of the Schr�odinger equation� The stationarity condition implies that
the phase of the wave function ful�lls the condition

�S�x� t�

�t
� �E� ������

and the amplitude has no explicit time dependence

���x� t�

�t
� �� ����
�

These equations give us additional equations for the expansion coe�cients

which have the form

!s��t�� !q�t�s��t� � �E� ������

!sn�t�� !q�t�sn	��t� � � for n � �� ������

!�n�t�� !q�t��n	��t� � � for n � �� ������
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in the one�dimensional case� In the multidimensional case the coe�cient matri�
ces ful�ll similar equations� These equations can help us to reduce the number
of equations that we have to solve
 since some of the higher order expansion
coe�cients can be expressed by the time derivatives of the lower order coe��
cients� In one dimension all the higher coe�cients can be directly computed
from the time derivatives of the zero order terms� In two dimensions the num�
ber of sn and �n matrix elements is n� �� For example we need the � � 	 � �
coe�cients Sx� � Sx�y� Sxy� � Sy� in the Taylor expansion of the phase function to
the n � 	�rd order� The number of the additional equations derived above is n�
Therefore
 on each level we need to solve � new equation� In three dimensions
we get n entirely new equations for the phase and the amplitude on each level�
In section ��� we show how the reduction of the equations can be carried out�

��� �h expansion in the analytic base

As we saw in ������ the amplitude equation expanded in the analytical basis
yields a coupling between di�erent orders of �h� Since �h is a small parameter we
can develop a perturbation series for the amplitudes

�l�t� �
�X

m��

�
i�h

�

�m
�l�m��t� ������

which we can then insert into the equation ����� ������� This results in a tower
of coupled equations� In this section we discuss the semiclassical or zeroth order
in �h of these equations whereas the coupling to higher orders in �h which yields
the �h corrections
 will be discussed in the next section� The zeroth order or
semiclassical equations form an autonomous system

!����
n � �

���
n	� !q �

nX
l��

n�

�n� l��l�

�
�
���
n�l	�sl	� �

�

�
�
���
n�lsl	�

�

� �� ���
��

For example
 the �rst three equations have the form

!�
���
� � �

s�
�
�
���
� �

!�
���
� � �

	s�
�
�
���
� �

s

�
�
���
� � ���
��

!�
���
� � �


s�
�
�
���
� � �s
�

���
� �

s�
�
�
���
� �

The important feature of these equations is that they are linear and have the
general form

!����
n � �

��n� ��s�
�

����
n � ���� ���
��
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and so on� We note that this hierachy of equations has the same structure
as ����	� and can therefore be solved in the same fashion
 i�e� by successively
putting the low order n � l equal to zero in order to get the l�th eigen function�

Now the eigenvalue Rl�E� which it is our main task to obtain
 can also be
expanded in powers of i�h���

Rl�E� � exp

�
�X

m��

�
i�h

�

�m
C
�m�
l

	
� ���
	�

Expanding the exponential yields

Rl�E� � exp�C
���
l �

�
� �

i�h

�
C
���
l

�
i�h

�

�� ��
�
�C

���
l �� � C

���
l

�
� ���

�
����
��

The eigenvalue equation ������ in �h expanded form now reads

�X
m��

�
i�h

�

�m
�l�m��t� Tp� �

exp

�
�X

m��

�
i�h

�

�m
C
�m�
l

	
�
�X

m��

�
i�h

�

�m
�l�m��t�� ���

�

Expanding the eigenvalue like in ���
�� and collecting the terms of the same
order in �h yield a set of eigenequations

�l����t� Tp� � exp�C
���
l ��l����t��

�l����t� Tp� � exp�C
���
l ���l����t� � C

���
l �l����t���

�l����t� Tp� � exp�C
���
l ���l����t� � C

���
l �l����t�

��C
���
l �

�

�
�C

���
l ����l����t��� ���
��

and so on� These equations are the conditions selecting the eigenvectors and
eigenvalues and they hold for all t� Without loss of generality we can also assume
that �l������ � � and �l�m���� � � for m � �� By adding these assumptions we
can simplify the equations ���
���

�l����Tp� � exp�C
���
l ��

�l����Tp� � exp�C
���
l �C

���
l � ���
��

�l����Tp� � exp�C
���
l ��C

���
l �

�

�
�C

���
l ����

Now by solving the �rst of these equations ���
�� we get

�
����
� �t� � �

����
� ��� exp

�
�

Z t

�

�

�
s��t�dt

�
� ���
��

By using ���
�� we can read o� the zeroth eigenvalue

C
���
� � �

Z Tp

�

�

�
s��t�dt� ���
��
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The s� in general goes through ��t type singularities� If this happens the
integral should be carried out by principal value integration
 as we saw in section
���

The rest of the equations do not play a role in yielding the �rst eigenvalue�

The solution �
����
� �t� can be inserted into the next equation ���
��� Since equa�

tion ���
�� is a linear one driven by �
����
� �t� its particular solution ful�lls the

condition ���
��� The rest of the equations can be solved the same way and we

get the eigenamplitudes �
����
n � The rest of the semiclassical eigenvalues Rl�E�


l � � can be recovered by setting �
l���
n � � for n � l since the system of equa�

tions has the upper triangular structure as we saw in the previous section� Then
the l�th semiclassical eigenvalue is given by

C
���
l � �

�l � �

�

Z Tp

�
s��t�dt� ������

The semiclassical eigenvalues are connected with the stability properties of
the periodic orbits� For example the �rst �l � �� eigenvalue is related to the
product of the expanding eigenvalues�
	�

exp�C
���
� � �

ei�p�

j
Q
i #ij���

������

and in the general l case we obtain

exp�C
���
l � �

ei�p�

j
Q
i #ij����

Q
i #i�l

������

where #i denotes the expanding �#i � �� eigenvalues of the linear stability or
Jacobi matrix of the periodic orbit and 
p is the Maslov index of the periodic
orbit� The Maslov phase comes from the singularities of s��t� �see ref��
	��� The
product

��E� �
Y
p

Y
l

��� exp�iSp��h� C
���
l ��

�
Y
p

�Y
l��

���
exp�iSp��h� i	p��

j
Q
i #ij����

Q
i #i�l

�

����	�

in this approximation is the previously obtained Gutzwiller�Voros zeta function�

��	 The �h correction equations

By following the strategy outlined in section ����� we have now �nished the
semiclassical part where we put �h � � in all the equations� As we have demon�
strated we end up �not surprisingly� with the usual Gutzwiller Voros results�
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After the calculation of the local semiclassical eigenvalues and eigenvectors we
can now concentrate on the main item� to �nd �h corrections to the semiclassical
eigenvalues� As mentioned in section ����� we can use the semiclassical results to
�nd the �rst �h correction by inserting them in the next level of approximation�

The di�erential equations connecting the m � ��th order amplitudes with
the m�th order amplitudes are

!��m	��
n � �

�m	��
n	� !q �

nX
l��

n�

�n� l��l�

�
�
�m	��
n�l	�sl	� �

�

�
�
�m	��
n�l sl	�

�
� �

�m�
n	� � �� ������

which we get from the original amplitude equations ������
 or ������ which still
contains the �h term� Again
 using ���	�� we can reduce these equations

!�
�m	��
� � �

s�
�
�
�m	��
� � �

�m�
� �

!�
�m	��
� � �

	s�
�
�
�m	��
� �

s

�
�
�m	��
� � �

�m�

 � ����
�

!�
�m	��
� � �


s�
�
�
�m	��
� � �s
�

�m	��
� �

s�
�
�
�m	��
� � �

�m�
� �

and so on� These equations are linear and have the general form

!��m	��
n � �

��n� ��s�
�

��m	��
n � ���� �

�m�
n	�� ������

Inserting the eigenamplitudes �
l�m�
n �t� we get linear driven equations for the

next order of the amplitudes� The solutions of these equations
 which satisfy

the conditions of type ���
��
 yield the corrections C
�m�
l of the semiclassical

eigenvalues C
���
l �

In the following we just want to calculate the �rst �h correction C
���
l to the

eigenvalues Rl� To do this we have to proceed in the following way

�� First we observe from ���
�� that C
���
l can be obtained if we can �nd

�l����t�� More precisely
 it su�ces to �nd �
l���
� �t� since all the expansion

coe�cients in �l��� decays with the same ratio during one period� This
means that we just have to solve equation ����
� with m � ��

�� From equation ����
� we see that this implies that we need �
l���
� 
 that is


the zeroth order in �h or semiclassical solution of the l�th eigenfunction to
the second order in the powerseries expansion� To get this
 we then have
to solve the equations ���
� � ��
�� successively for the l�th eigenfunction�

	� Finaly we see from equation ���
�� that the above item �� requires that we
solve the Hamilton�Jacobi equation ������ up to fourth order to provide
us with s�� s�� s
 and s��
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In the following we shall refer to the above list as the prescription to obtain
the �rst order �h correction to the local eigenvalues� Of course
 to get the �rst
�h correction
 one should start from the last item and �nally end up with

C
���
l �

�l����Tp�

exp�C
���
l �

� ������

The higher order �h corrections can be found in a similar fashion by observing

which ingredients are needed in equation ���
�� to provide us with C
���
l and so

on�

As a consequence of the above hierarchy of equations one has to solve
 it
is increasingly di�cult to get corrections to the eigenvalues corresponding to
large l� It is more convenient to reorganize the quantum Selberg product as a
product of quantum inverse zeta functions

��E� �
Y
l

���l �E� ������

where the quantum zeta functions are de�ned by

���l �E� �
Y
p

�
�� exp�iSp�E���h �

X
m

�i�h���mC
p�m�
l �E��

�
� ������

These zeta functions are the quantum generalizations of the Ruelle zeta functions��


	�� The leading resonances and the eigenenergies can be computed from the ze�
roes of the l � � quantum zeta function� The curvature expansion explained in
section �	��� can also be applied using the new quantum mechanical weights

tp � exp

�
iSp�E���h �

X
m

�i�h���mC
p�m�
� �E�

�
� ������

In the next section we show how the method can be applied to obtain the

�rst �h correction C
���
l in the case of two�dimensional billards�

��� Billards

To apply the theory on billiard systems we �rst have to discuss some special
features of these systems� In billiards the potential is not an analytic function�
the Dirichlet boundary condition for the wave function on a hard wall implies
that the wave function should vanish on the wall� Our approach here is basically
to trace a wave packet along the classical trajectory in the con�guration space�
When the packet hits the wall
 the incoming wave function at time t is given
by the packet right before the collision
 evaluated on the wall

�in�x�s�� y�s�� t� � ��x�s�� y�s�� t���e
iS��x�s��y�s��t�����h� ������
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where �x�s�� y�s�� is some analytic parametrization of the wall around the clas�
sical point of re ection� The outgoing wave function is the wave function right
after the collision

�out�x�s�� y�s�� t� � ��x�s�� y�s�� t	��e
iS��x�s��y�s��t�����h� ������

The sum of the incoming and the outgoing wave functions should vanish on the
hard wall due to the Dirichlet condition� This implies that the incoming and
the outgoing amplitude and the phase are related by

��x�s�� y�s�� t��� � ��x�s�� y�s�� t	�� ����	�

S�x�s�� y�s�� t��� � S�x�s�� y�s�� t	�� � i�� ������

These relations mean that the power series with respect to s of these functions
are equal on both sides of the collision modulo the � phase shift� This phase
shift can be interpreted as the Maslov phase coming from the hard wall�

The stationarity conditions for billards

In this paragraph we derive the stationarity conditions ������ and ����
� for the
special case two�dimensional of billards� We start by introducing the notation

�xn � �x� qx�t��
n

�ym � �y � qy�t��
m ����
�

where �qx�t�� qy�t�� denotes the classical trajectory of the particle� We can then
expand the phase function S�x� y� t� as

S�x� y� t� � S� � Sx�x� Sy�y

�
�

�
�Sx��x

� � �Sxy�x�y � Sy��y
��

� � � � ������

By choosing the right hand orientated coordinate system so that the x axis
is directed along the particle trajectory we can already simplify the equations
considerably since we then have

Sx � !qx � �

Sy � !qy � � ������

because the gradient of the phase function is just equal to the momentum which
we have set to be of unit size� From the general stationarity conditions ������
and ����
� we then get

�S

�t
� !S� � !qxSx � !qySy

� � !Sx � Sx� !qx � Sxy !qy��x

� � !Sy � Sxy !qx � Sy� !qy��y

� � � �

� �E� ������
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From this we get by using ������ the relations

!S� � !qxSx � �E

!Sx � Sx� !qx � � ������

!Sy � Sxy !qx � �

where the last two relations can also be written

Sx� � �

Sxy �
!Sy
Sx

������

since !Sx � � and Sx � !qx� In general we get to order �x
n�ym where n�m � ��

�S

�t
j�xn�ym �

�

�n�m��
�

�
n�m
n

�
!Sxnym � !qy�m� ��

�
n�m� �

n

�
Sxnym��

� !qx�n� ��

�
n�m� �

m

�
Sxn��ym �

� � ������

which by use of ������ gives the stationarity conditions

Sxn��ym �
!Sxnym

Sx
� ������

For the amplitude everything works in exactly the same fashion and we get

�xn��ym �
!�xnym

Sx
� ����	�

for all orders n�m � ��

The Hamilton�Jacobi equation for billards

In order to solve the Hamilton�Jacobi equation along the periodic orbit we
shall in the following �rst investigate how the phases change in the case of a
bounce on the hard walls� Here we keep the calculation in two dimensions but
the generalization to higher dimensions follows the same strategy� We start by
expanding the phase function S around the periodic orbit in the neighbourhood
of the bouncing point� The expansion must be to the fourth order since we
need this in order to solve equation ���
�� according to the 	�rd item in the
prescription� The expansion then reads�

S�x� y� t� � S� � Sxx� Syy

�
�

��
�Sxxx

� � �Sxyxy � Syyy
��

�
�

	�
�Sxxxx


 � 	Sxxyx
�y � 	Sxyyxy

� � Syyyy

�

�
�

��
�Sxxxxx

� � �Sxxxyx

y � �Sxxyyx

�y� � �Sxyyyxy

 � Syyyyy

��

� � � � ������



���� BILLARDS ���

Here x and y are shorthand notations for the previously introduced notation
x � �x � �x � qx�t�� and y � �y � �y � qy�t��
 i�e� the deviations from
the periodic orbit at time t in a right hand orientated coordinate systems with
x�axis in to the momentum direction� According to the stationarity conditions
������ some of these terms are zero so we get�

S�x� y� t� � S� � Sxx

�
�

��
Syyy

�

�
�

	�
�	Sxyyxy

� � Syyyy

� ����
�

�
�

��
��Sxxyyx

�y� � �Sxyyyxy

 � Syyyyy

���

We should of course work with two such expansions
 one corresponding to
the incomming wave packet
 which we shall denote S�
 and an expansion
S	 corresponding to the outgoing wave� Consequently we also have two dif�
ferent coordinate representations �xin� yin� and �xout� yout� each of wich are
right hand orientated and with the x�axis in the momentum direction� It is
in these coordinates that S� and S	 should be expanded� The two expan�
sions S� and S	 should then coincide locally on the wall at the bouncing
point� In the general case the wall is determined locally by the set of points
f�x� y�jx�y� � C�y

���� � C
y

�	� � C�y

����g� where �x� y� now denotes a local
intermediate coordinate system with y�axis tangent to the wall at the bouncing
point� The geometry of the entire construction is shown in �gure ���� It is in

y

x(y)

y
out

y in

x
out

x in

in

Figure ���� The coordinate systems introduced�

the local intermediate coordinates that we shall make the incoming and outging
phase function coincide�

The incoming and outgoing coordinate systems are given by the set of trans�
formation equations�

xin � cos �x� sin �y

yin � sin �x� cos �y ������
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and

xout � � cos �x� sin �y

yout � sin �x� cos �y� ������

As mentioned
 the transformations are chosen in order to get Sx � p both
before and after the bounce
 and so that all the coordiante systems are right
hand orientated� Taking each of the terms in ������ and expanding them in
terms of the intermediate �x�y�� y� yields

xin � sin �y � cos ��C�y
���� � C
y


�	� � C�y
���� � � � ��

yin � � cos �y � sin ��C�y
���� � C
y


�	� � C�y
���� � � � ���

Now
 by expanding S� and S	 in the intermediate coordinate system
 and by
comparing terms of same order in y we can get the equations that describes the
discontinuous change of the expansion coe�cients at the bouncing point� To
the second order in y we get�

Sx cos �
C�

�
�

�

��
S�yy cos

� � � �Sx cos �
C�

�
�

�

��
S	
yy cos

� � ������

which just yields the usual formula ������ for the Sinai�Bunimovich curvature�

S	
yy � S�yy �

�C�

cos �
� ������

To the third order in y we get �

S	
yyy � �S�yyy �

�C
Sx
cos� �

�
	 sin �

cos� �
C��S

�
yy � S	

yy�

�
	 sin �

cos �
�S�xyy � S	

xyy�� ������

and �nally we get to the fourth order of y�

S	
yyyy � S�yyyy

� �
sin �

cos �
�S�xyyy � S	

xyyy�

� �
sin� �

cos� �
�S�xxyy � S	

xxyy�

� �
sin �

cos� �
C��S

�
yyy � S	

yyy�

� ���
�

� cos �
�

sin� �

cos
 �
�C��S

�
xyy � S	

xyy�

� 	
sin� �

cos� �
C�
� �S

�
yy � S	

yy�

� �
sin �

cos
 �
C
�S

�
yy � S	

yy�

�
�C�

cos
 �
� ������
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As we see
 the result of the discontinuous bounce evolution is still not a closed
expression� In addition we should also obtain the bouncing rules for the mixed
derivatives� This is accomplished by applying the stationarity conditions �������
For instance we have

Sxyy �
!Syy
Sx

� �
S�
yy

Sx
�

which gives us

S	
xyy � �

�S�yy �
�C�
cos � �

�

Sx
� ������

and similarly we get

Sxyyy �
!Syyy
Sx

� �
	SyySyyy

Sx
�

and

Sxxyy �
!Sxyy
Sx

�
�Syy
S�
x

� �
!S�
yy

S�
x

�
�S


yy

S�
x

�

This concludes our derivation of the discontinuous evolution of the coe�cients
Sxnym 
 at the bouncing points�

To derive the continuous time evolution we have to solve the Hamilton�
Jacobi equations ������� Since we can �nd the mixed coe�cients by the station�
arity conditions ������
 we only have to solve for the Syn coe�cients� Inserting
the expansion ������ into the Hamilton�Jacobi equations ������ the equations
for these becomes

!Syy � S�
yy � �

!Syyy � 	SyySyyy � �

!Syyyy � �SyyyyySyy � 	S�
yyy � 	S�

xyy � ��

����	�

since there is no potential present except for the hard walls� By integration
these equations immediately yield

Syy�t� �
�

t� t�

Syyy�t� �
A

�t� t��

������

Syyyy�t� � �
	

�t� t��

�

B

�t� t���
�

	A�

�t� t��


where the constants are to be determined from the initial values of the coe��
cients of the phase function� We now have the necessary ingredients for solving
the Hamilton�Jacobi equation to the ��th order� between the bounces we use
the continuous time evolution ����
�
 and on the bouncing points we use the
derived bouncing relations ������
������ and ������ to follow evolution of the
phase function�
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The amplitude evolution for billards

Next we need to solve the amplitude equations� As before
 we start by looking
at the amplitude and how its expansion coe�cients change when the wave
goes through a bounce� This is done by using exactly the same procedure
as outlined above� For simplicity we start by only looking at the ��th order
l � � eigenfunction� We �rst expand the amplitude in the same fashion as we
expanded the action� According to the second item in the prescription we only
need the expansion to second order�

��x� y� � �� � �xx� �yy �
�

��
��xxx

� � ��xyxy � �yyy
�� � � � �

Here again we actually have two expansions �� and �	 corresponding to the
incomming and the outgoing wavepacket� By comparing the di�erent powers
of y in the intermediate coordinate system we get�

�	
� � ��� ����
�

�	
x sin � � �	

y cos � � ��x sin � � ��y cos � ������

for the zeroth and �rst order
 and

��x cos �
C�

�
� ��y sin �

C�

�
� ��xx sin

� �
�

�
� sin � cos ���xy �

�

�
��yy cos

� � �

��	
x cos �

C�

�
� �	

y sin �
C�

�
� �	

xx sin
� �

�

�
� sin � cos ��	

xy �
�

�
�	
yy cos

� �

for the second order in y� This gives the set of bounce equations�

�	
� � ���

�	
y � ���y � tan ����x � �	

x � ������

and

�	
yy � ��yy � � tan ����xy � �	

xy� � tan� ����xx � �	
xx�

� C�
sin �

cos� �
���y � �	

y � �
C�

cos �
���x � �	

x �� ������

To reduce these equations further we have to make use of the stationarity equa�
tions for the amplitude ����	�� The ones we need are given by

!�� � �xSx � ��

!�x � �xxSx � ��

!�y � �xySx � ��

������

These equations together with the semiclassical amplitude equations ���
� �
��
�� for the �yn �s yield the reductions� In the two�dimensional case the semi�
classical amplitude equations becomes

!�� �
�

�
Syy�� � �
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!�y �
	

�
Syy�y �

�

�
Syyy�� � � �������

!�yy �



�
Syy�yy � Syyx�x �

�Syyy�y �
�

�
�Sxxyy � Syyyy��� � �

Using these equations and the above stationarity conditions we get

�	��
x �

!�
	��
�

p
�
�S

	��
yy �

	��
�

�p
�

By using this reduction and the previously obtained expressions for the Sy�s we
can derive the explicit bouncing relations�

�	
� � ��� � �������

�	
y � ���y �

C� sin �

cos� �
��� �������

Similarly we have

�xx � !�x � �
�

�

d

dt
Syy�� �

	

�
S�
yy��� �����	�

and

�xy � !�y � �
�

�
�	Syy�y � Syyy���� �������

Introducing these relations in ������ we get

�	
yy � ��yy

� tan ��	�S�yy�
�
y � S	

yy�
	
y � � �S�yyy � S	

yyy����

� tan� �
	

�
��S�yy�

� � �S	
yy�

��

� C�
sin �

cos� �
���y � �	

y �

�
C�

� cos �
�S�yy � S	

yy���� �����
�

which ends our set of bouncing rules for the amplitude coe�cients up to second
order�

To �nd the continuous time evolution of the amplitudes we can use the
solution of the Hamilton�Jacobi equation to drive the di�erential equations
������� for the amplitudes� From the �rst equation in ������� and the initial
condition ����� � � we get

���t� �
Et

���
�

�t� t�����
� �������

Substituting this solution into the next equation yields

�y�t� �
E

�t� t��
��



�C �

�
�At

���
�

�t� t��

�

 � �������
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and �nally after yet another substitution and a tedious calculation we get

�yy�t� �
E

�t� t��
��



�D �

�AC � �
�Bt

���
�

�t� t��
�



�A

�t
���
�

�t� t���

�

 � �������

In the last calculation we have made use of the stationarity conditions for Sxyy
and Sxxyy in equation �������� Again the constants C�D and E are to be
determined from the initial conditions of the amplitude coe�cients and the
previously determined constants from the phase functions� This concludes our
derivation of the evolution equations for the l � � amplitude coe�cients�

The general l�th order amplitude equations for billards

Next we shall obtain the analogous amplitude evolution equations for general
l�th order eigenfunction� The l�th order eigenfunction of course obeys the same
amplitude evolution equations as the l � � eigenfunction� However
 if we just
start with some arbitrary function and iterate the amplitude evolution equa�
tions
 we will in general end up just with the l � � eigenfunction since this is
given by the leading eigenvalue of the evolution operator� This is completely
analogous to iterating a matrix A on a �nal dimensional vector x� This analogy
also holds for the subleading eigenfunctions� if we subtract the leading eigenvec�
tor from x and iterate with A we will generate the next�to�leading eigenvector
etc� In our evolution operator �the amplitude equations� this subtraction of the
leading eigenfunction is quite straightforward� In the semiclassical hierarchy of
equations ���
����
�� we can simply get the l � � eigenfunction by �rst setting

�
���
� � �
 and then iterating� This is because of the triangular structure of

the system of equations� If we keep the �
���
� term we cannot get anything but

the l � � eigenfunction
 but by removing this part we get the next eigenfunc�
tion� To get the l�th eigenfunction one should therefore set all the coe�cients

�
���
� � � � � � �

���
l�� equal to zero and then iterate the evolution operator on some

initial wavefunction� By using these considerations we can also characterize the
l�th order eigenfunction by being the one for which all the �rst l� � expansion

coe�cients are identical zero
 and which has �
���
l �� ��

In two dimensions the situation is completely the same
 except that we
have two indeces on our expansion coe�cients �xnym � We also should keep
in mind that all the �xnym can be obtained from pure �ym coe�cients by
using the stationarity conditions ����	�� Thus it is su�cient to consider only
the �ym coe�cients� The speci�c continuous time evolution of the amplitude
coe�cients of the l�th order eigenfunction can therefore be derived from the
original semiclassical equation ���
��

�t � �Sx�x � Sy�y� �
�

�
�Sxx � Syy�� � � �������

by taking the �l

�yl
derivative and using that we can set �ykxm � � for k � l�

Also using the stationarity equations

!�ykxm � �ykxm��
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we get

!�yl � ��l �
�

�
�Sy��yl

!�yl�� � ��l �
	

�
�Sy��yl�� �

�

�
�l � ���Sy��yl

!�yl�� � ��l �



�
�Sy��yl�� �

�

�
�l � ���Sy��yl��

�
�l � ���l � ��

�
�
l

	
�
�

�
�Sy��yl

�
�l � ���l � ��

�
Sx�y��yl

�
�l � ���l � ��

�
Sxy��xyl �������

for the semiclassical equations� The solutions to these equations are easily
obtained

�yl�t� � E

�
t�

t� t�

�l	���

�yl���t� �
E

�t� t��l	
��

�
C �

A

�
�l � ���t

l	���
�

�

t� t�

�

�yl���t� �
E

�t� t��l	
��
fD �

�

t� t�
�
�l � ���

�
AC

� Bt
l	���
�

�l � ���l � ��

�
�
l

	
�
�

�
��

�
�

��t� t���
A�t

l	���
� �

�l � ����l � ���

�

�
	

�
�l � ���l � ���

l

	
�
�

�
��g �������

Next we should derive the semiclassical bouncing equations for the amplitudes�
The nonvanishing terms in �l are

�l �
yl

l�
��yl �

�

l � �
�yl��y �

�

�l � ���l � ��
�yl��y

�

� �xylx�
�

�
�x�ylx

� �
�

l � �
�yl��xyx�� �������

where we note the factor yl

l� in front of the expression� As usual we now expand
the incoming and outgoing amplitude in the intermediate coordinate system
and set

�in � �out �����	�

on the bouncing point on the wall� Because of the above factor yl

l� we can now
write the bouncing condition

�	
yl
�

�

l � �
�	
yl��

yout � � � � �

�
yin
yout

�l
� ���

yl
�

�

l � �
��
yl��

yin � � � ��
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Since to get the �rst correction where we only need �
l���
� according to second

item in the recipe
 we only have to compare terms up to the second order in
y �on the wall�� We therefore expand the fraction factor to second order in y�
Using the coordinate transformations ����������� this reads

�
yin
yout

�l
� ����l

�
�� ay � by�

� � ay � by�

�l

� ����l��� �lay � �l�la� � b�y� �O�y
�� �������

where

a �
C�

�
tan �� b �

C


�
tan �

The detailed equations ������� then become

�	
yl
� y��	

ylx
sin � �

�	
yl��

l � �
cos �� �

y����	
xyl

cos �
C�

�
�
�	
yl��

l � �
sin �

C�

�
�

�

�
sin� ��	

ylx�
� sin � cos �

�	
xyl��

l � �
�

�	
yl��

cos� �

�l � ���l � ��
� � ����l��� l tan �C�y � �l�l

C�
� tan

� �

�
�
C


�
tan ��y��

� ���
yl
� y���

ylx
sin � �

��
yl��

l � �
cos ��

� y����
xyl

cos �
C�

�
�
��
yl��

l � �
sin �

C�

�

�
�

�
sin� ���

ylx�
� sin � cos �

��
xyl��

l � �

�
��
yl��

cos� �

�l � ���l � ��
���

This gives the equations

�	
yl

� ����l��
yl
� �����
�

�	
yl��

� ����l	����
yl��

� C��l � ���
tan �

cos �
��
yl
�� �������

to the zeroth and �rst order in y
 and

�	
yl��

� ����l��
yl��

� �����l��
xyl

� �	
xyl

�
C��l � ���l � ��

� cos �
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� �����l��
yl��

� �	
yl��

�
sin �C��l � ��

� cos� �

� �����l��
ylx�

� �	
ylx�

�
�l � ���l � �� tan� �

�

� �����l��
xyl��

� �	
xyl��

��l � �� tan �

� ����l����
ylx

sin � �
��
yl��

�l � ��
cos ��

l tan �C��l � ���l � ��

cos� �

� ����l�
lC�

� tan
� �

�
�
C
 tan �

�
���

yl
�l�l � ���l � ��

cos� �
� �������

to the second order in y�

The last equation can of course again be simpli�ed by using the stationarity
conditions for the mixed derivatives
 which yields a formula similar to �����
��
This ends our derivation of the discontinuous evolution of the l�th order ampli�
tude coe�cients at the bouncing points�

The �rst �h correction for billards

To get the �rst �h correction C
���
l to the local eigenvalues Rl we use ���
�� and

get

C
���
l �

�l����Tp�

exp�C
���
l �

� �������

To get the time dependance of the full function �l��� we have to solve the
amplitude equation to �rst order in �h and to order xl in the one�dimensional
case� Since we shall later need the result for ��dimensional billard systems we
here show how the calculation goes in this case � This also illustrates how the
stationarity conditions �����
���	� are applied in general� In two dimensions
we therefore have to solve the amplitude equation up to order xmyn where
m� n � l� From the stationarity conditions ����	� we get

!�xmyn � Sx�xm��yn �������

which can the be used to reduce all the mixed amplitude coe�cients to time
derivatives of pure �yn coe�cients� It is therefore su�cient to look at the
equation of order yl� Now the original amplitude equation reads

�t��r�rS �
�

�
��S �

i�h

�
�� � �� �������

We now should �nd out which ingredients are needed in this equation to get
the �rst order in �h and the order yl� Since we are dealing with the l�th solution
we can put all the amplitude coe�cients �xnym � � for m � l
 because of the
triangular structure of the hierarchy of equations� This simpli�es the situation
considerably� Next we can select our coordinate system so that the x�axis is
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directed along the momentum direction� This means that the zeroth order of
the gradient of the phase function will take the form

rS � �p

� ��� ��� �������

where �p is the momentum set to j�pj � ��

Expandig the amplitude in a power series around the periodic orbit like in
���� we get the following necessary ingredients

!�l �
yl

l�
� !�yl � !xcl�ylx � � � ��

r�l � ��ylxy
l�l� � � � � � �yl��y

l�l� � �yly
l��l�l� � � � ��

��l �
yl

l�
��ylx� � �yl��� � � � � � �������

and for the phase function we get similarly

rS � �Sx � Sxy � � � � � Sy � Sy�y � � � ��

�S � Sx� � Sy� � � � �

� Sy� � � � � � �����	�

where we in the last equation used that Sx� � � since by the stationarity
conditions this is proportional to the time derivative of Sx which is zero since Sx
is the constant momentum px � The di�erential equation for the l�th amplitude
function now reads

!�
���
yl
� !xcl�

���
ylx

� �
���
ylx
Sx � Sy�

���
yl��

� lSy��
���
yl

� �
���
ylx�

� �
���
yl��

�������

to the �rst order in �h� This implies

!�
���
yl

�

�
l �

�

�

�
Sy��

���
yl

� �
���
ylx�

� �
���
yl��

�����
�

to the zeroth order in �h we get analogously

!�
���
yl

�

�
l �

�

�

�
Sy��

���
yl

� � �������

The last equation immediately yields

�
���

yl
�t� � exp

�
�
�l � �

�

Z t

�
Sy�dt

�
�

� exp�C
���
l �

which is the two�dimensional equivalent to the result ������� We can therefore
write the solution of equation �����
� as

�
���

yl
�t� � exp

�
�
�l � �

�

Z t

�
Sy�dt

�
�Z t

�
��

���

ylx�
� �

���

yl��
� exp

�
�l � �

�

Z t

�
Sy�dt

�
�

�������
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and the �rst correction �nally reads

C
���
l �

Z Tp

�

��
���
ylx�

� �
���
yl��

�

�
���
yl

dt �������

This concludes the derivation of the �rst order �h correction term in the case of
two dimensional billiards� To implement this integration one should determine
the phase and amplitude coe�cients for each individual periodic orbit� This we
shall do in section ������

����� A numerical algorithm to calculate the �rst �h correction

The above derivations now allow us to follow an initial wave along the periodic
orbit� Each such iteration changes the initial amplitude coe�cients and will
for almost all initial conditions converge to the leading eigenfunction of the
evolution operator� To get the action coe�cients and the leading amplitude
function we can therefore just select a set of initial S and � coe�cients and
iterate the evolution equations derived above while properly normalizing the
amplitudes after each iteration�

Now the iteration sequence goes as follows� choose initial �random� values
of the derivative constants of the action function� From these you calculate the
initial values of t�� A and B�

t� � ��Syy���

A � Syyy���t


�

B � Syyyy���t
�
� � 	t� �

	A�

t�

Then you evolve the Syn �s to the �rst bouncing point is reached� Here one
makes use of the derived bouncing relations to establish the Syn�t

	
i � values�

These are then used to calculate the new constants t�� A and B� In this way
one can by a few iterations around the periodic orbit obtain the action function
corresponding to the local Schr�odinger problem� Actually the calculation can be
speeded up a bit since we can calculate the Syy term directly from the solution
of the rational fraction transformation of the curvature matrix M which were
derived in section 
�	��� In the two dimensional case this can be demonstrated
very easily� First we have to �nd the Jacobian of the periodic orbit which we
also need to in the case of the usual Gutzwiller�Voros zeta function� To �nd
M we need in general to work on the symplectic matrix T that diagonalizes J�
We know that T�� must contain the eigenvectors of J so that we can write

T�� �

�
u� s�

u� s�

�
�������

where u is the unstable and s is the stable eigenvector� Then T is given by

T �
�

detT��

�
s� �s�

�u� u�

�
����	��
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and from the solution formula �
���� for M we obtain

M � �TppT
��
pq

� u��u� or s��s� ����	��

where the last solution corresponds to interchanging the rows of T� Here in the
two dimensional case the M solutions are then just the slopes of the invariant
manifolds at the periodic orbit �see �g� refmanifolds in appendix ����� To
get an explicit expression for M �which in this case is actually just the Sinai
Bunimovic curvature �� in terms of the ingredients of the Jacobian and the
stability
 we note that the eigendirections can also be represented in the form

$u �

�
�
�u

�

$s �

�
�
�s

�

and we then have

J$u � #$u

which then gives

�u � �#� J����J�� ����	��

and similarly for the stable direction� For the "�� orbit of the R � a � ��� 	�disk
system the exact calculation yields �u � ����������� � � �
whereas the numerical
algorithm sketched above gives �u � ����������� � � � after �
 iterations� This is
of course the same result ���	�� as we obtained in section ���	� by iterating the
rational fraction transformation for the Sinai Bunimovic curvature� In higher
dimensions the M solution formula �
���� of course provides this �rst step as
well�

The evolution of the amplitudes take place in exactly the same fashion� The
equations for the constants are here�

E � a��� � �

C �
t

��
�

E
�y��� �

A

�t���
����		�

D �
t

��
�

E
�yy����

�AC �
Bt

���
�

�

t�
�


A�

�t

��
�

where the a��� constant is �xed by normalization after each iteration�

When these calculations are done we have just to calculate the correction

C
���
l by means of the integral �������� A program that performs this calculation

is listed in appendix ��	�
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Putting the results of the constants t�� A�B�C�D and E into the expression
������� for the �rst order �h correction we get

C
���
l �

Z Tp

�

�yl�� � �ylx�

�yl
dt

�
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�
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� �l �
�

�
��l �

	

�
�

�

�
�

�t� t��


�
�l � ���

�

AC

t
�l	����
�

�B
�l � ���l � ��

�
�
l

	
� �

�

�
�

�

�
�

�t� t���
A�

�

�
�l � ����l � ���

�
�
�l � ���l � ��

�
�
l

	
� �

�

�
�	

	

����	��

which �nally gives

C
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l �

�
�l �

�

�
��l �
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t

t��t� t��
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�
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�t� t��

� ����	
�

��
 Application to the ��disk system

To test our method outlined above we here investigate how it works on the
three disk scattering system� Taking as starting point the �h corrected spectral
determinant ������

��E� �
Y
l

���l �E� ����	��

we can study either the entire determinant or the individual quantum zetafunc�
tions

���l �E� �
Y
p

�
�� exp�iSp�E���h �

X
m

�i�h���mC
p�m�
l �E��

�
� ����	��

where we can get the leading resonances from the l � � zeta function�

For the 	�disk system our calculation involved the ��� shortest periodic or�
bits of the system including all cycles up to topological length ��� We computed
the corrections to these orbits in the fundmental domain
 since our method
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makes it possible to utilize the symmetry reduction of Cvitanovi%c and Eck�
hardt ����� The results can be compared to the exact quantum resonances as
well as to the pure semiclassical calculation based on the usual Gutzwiller Voros
determinant� We have studied the leading scattering resonances in the region
� 	 Rek 	 ��� and ���
 	 Imk 	 �
 in the complex k�plane
 by using the
Gutzwiller�Voros zeta function and also by just using the leading quantum zeta
function ����k� with and without the �h corrections� The latter has been done
for comparison reasons with Ref� �		��

We start by considering the shortest periodic orbit in the 	�disk system

which is the one bouncing back and forth between the same two disks� The
situation is here similar to that in the confocal hyperbola problem
 where the
�rst correction term to the Gutzwiller trace formula has been computed numer�
ically �
��� The geometry of the orbit in these problems is so simple that we
can calculate the �rst correction term directly� The result of this calculation
yields

C
����
� �

�

p

�
C� �

	

�
C�

� � LC��	C
�
�

� � C�L

�
� ����	��

where C� and C� denotes the expansion coe�cients of the wall at the bouncing
point and where L is the length of the periodic orbit� This result can be
compared with the �ndings of ref��		� for the two disk system and with those of
ref��
�� for the confocal hyperbolae� In case of the two disk scattering system
C� � ��a and C� � 	�a

 where a is the radius of the disk� In this case we get

C
���
� �




�ap
� ����	��

which coincides withe the result of Ref��		� derived via Feynman graph tech�
nique� In the case of the two disc scattering system our results will therefore
be identical to the results of Ref �		�� In the case of the confocal hyperbolae we
have C� � ��C�

��L
 and the correction is

C
���
� �

C�

p
� �������

which was numerically con�rmed in ref��
���

Next we study the �h corrections to the genuine 	�disk orbits� First we

can try to compare our �h corrections C
���
� to the fullspace calculation of Ref

�		�� Here we do not use the symmetry reduction
 but �nd the �rst correction
to all the �
 shortest orbits of topological length up to � in the full 	�disk
domain� The calculation can then be compared directly with the results in �		��
Our results are listed in table ������ We see that the two calculations which
takes quite di�erent approaches gives the same results except for a few of the
orbits� On the base of the results in table ��� Gaspard et al� also calculates
the �rst few resonances of the 	�disk system using the full space dynamical
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Orbit deg� C
���
��GA C

���
��V R

�� 	 ����
�� ����
��
��	 � ������� �������
���	 	 ���	��� ���	���
����	 � ���
��� ���
���
���	�	 	 	����		 	���	�	
�����	 � �����
� �����
�
������	 � 	������ 	������
����	�	 � 	������ 	������
���	��	 � 	������ 	������
�������	 � 	�	���	 	�	���	
�����	�	 	 	�	���� 	�	����
�����	�	 � 	��
��� 	��
���
����	��	 � ���	�	� ���	�	�
����	��	 � 	��	��
 	��	��

���	���	 	 �����	� �����	�
��������	 � 	���	
� 	���	��
������	�	 � 	������ 	������
������	�	 � 	������ 	������
�����	��	 � ��	
��� ��	
���
�����	��	 � ��	
��� ��	
���
����	�	�	 � �����
� �����
�
����	���	 � ������	 ������	
����	���	 � ������	 ������	
����	�	�	 � ������� �������
���	��	�	 � ����	�	 ����	��

Table ���� The �rst order �h correction for the �rst �
 orbits in the full 	�disk
scattering system� First two columns show the symbolic representation of the
periodic orbit and its symmetry degeneracy� Next two columns show the �h
correction obtained by Gaspard and Alonso
 and the �h correction obtained by
our method
 respectively�
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quantum zeta function and periodic orbits up to topological length � and ��
We tried to compare the analogue fundamental domain calculation to these
results using only the �rst �ve periodic orbits �all up to topological length 	� in
the fundamental domain as input in the dynamical l � � quantum zeta function�
The results are displayed in �gure ��� together with the resonances from �		��

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 2 4 6 8 10

’HBRES3DISK3.zeta’
’gaspres9.dat’

’exa3disk.lager’

Figure ���� The �rst � A� resonances in the R � a � ��� 	�disk scattering
system� The squares denotes the exact data from A� Wirzba
 crosses denotes
the full space calculation to curvature order � of Gaspard and Alonso and �nally
diamonds denotes our fundamental domain calculation using the shortest 

periodic orbits as input� The last two calculations are both corrected to the
�rst order in �h�

Next we can compare our results for the leading A� resonances to the exact
data which are provided by A� Wirzba� First we note that at curvature order �
the �h corrected as well as the usual Gutzwiller�Voros zeta function resonances
does not change in the leading digits by inclusion of more periodic orbits
 and
that they are located basically on top of the exact resonances� In the following
calculations we therefore keep the truncation of the cycle expansions at topo�
logical order �� The leading part of the resonance spectrum is depicted in �gure
��	 As it can be seen it is not di�cult to identify the exact resonances with the
corresponding semiclassical Gutzwiller�Voros and �h corrected resonances� From
this correspondance we can compare the pure semiclassical results to the �h cor�
rected calculation� We do this by plotting the deviation in real and imaginary
k from the corresponding exact resonance as a function of for instance Rek�
A plot like this is shown in �gure ��� The �h corrected resonances are seen to
be clearly better than the ordinary Gutzwiller�Voros resonances� Even more
instructive it might be to look at a plot of the relative error of the resonances

that is the ratio jRek�h�Rekexactj�jRekGV �Rekexactj as function of Rek or Imk
and the analogous plots for the imaginary part� Such two plots are shown in
�gures ��� and ��� By comparing the two �gures one can see that in general
the �h corrected resonances are much better than the semiclassical resonances
except for a very few resonances in the area Rek � ��� and for Imk 	 �����
For instance the � resonances where the relative deviation is larger than or of
order �
 are all located far down in the complex plane� By inclusion of the l � �
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Figure ��	� The leading part of the A� resonance spectrum of the R � a � ���
	�disk scattering system� The exact spectrum is from A� Wirzba and is denoted
with dotted squares� The Gutzwiller�Voros zeta function resonances are denoted
with a "�� and the �h corrected resonances from the l � � quantum zeta function
with a ��
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Figure ���� The deviation in real part of the Gutzwiller Voros resonances and
the �h corrected l � � and l � �� � quantum zeta resonances ��� from the exact
quantum resonances� The exact data are from A� Wirzba� By inclusion of
l � �� 	 the picture does not change in a visible way�
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Figure ��
� The same as above except the di�erent Re k domain�
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Figure ���� Relative deviation in real part of k as function of Re k� The �rst
picture compares the Gutzwiller�Voros zeta function resonances to the l � �
dynamical quantum zeta resonances with the �rst �h correction included� In the
right side picture both l � �� � are included with the �rst �h correction� Note
the di�erent scales on the y�axis�
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Figure ���� Relative deviation in real part of k as function of Imk� The same
calculations as in the previous �gure are compared� Again one should note the
di�erent scales in the y�axis�
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corrected quantum zeta function as well the picture improves further� whereas
for the �rst quantum zeta most of the resonances improved by a factor � in
real part of k
 we obtain by inclusion of the next corrected zeta function an im�
provement of a factor �� for most of the resonances� By inclusion of further zeta
functions this picture does not change considerably at least not by inclusion of
the �rst four l � �� �� �� 	 quantum zeta functions�

The leading part of the A� resonance spectrum is therefore in general im�
proved by a factor ����
 in the real part of k
 by inclusion of the �rst �h correction
in the �rst few zeta functions of the Gutzwiller�Voros product�

Making the analogue plots for the deviation in imaginary part results in
�gures ��� and ���� Here we see basically the same tendency as for the real
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Figure ���� Relative deviation in imaginary part of k as function of Rek� The
�rst picture compares the Gutzwiller�Voros zeta function resonances to the l � �
dynamical quantum zeta resonances with the �rst �h correction included� In the
right side picture both l � �� � are included with the �rst �h correction� Note
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Figure ���� A blow�up of the previous picture reveals that approximately only
half of the resonances are improved in the imaginary part�

part except that approximately only half of the resonances are improved in
imaginary part by the inclusion of the �h correction� The picture is thus not
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Figure ����� Relative deviation in imaginary part of k as function of Imk�

as clear as for the real part� most of the �h corrected resonances are as good
as
 or even better than their semiclassical counterparts but for some resonances
the situation is completely opposite� The reason for this is at least partially
explained by Gaspard who observed that the �rst order �h correction entering in
the Gutzwiller�Voros zeta function has the same phase as the stability whereas
the second order �h correction has an additional ei��� phase� Consequently the
�rst order �h correction improves the real part of the resonance whereas we have
to go to second order in the �h expansion to also improve the imaginary part
of the resonances� So even though we also observe an improvement for half
of the resonances by inclusion of only the �rst order �h correction
 the above
explanation might account for the other resonances� This could of course be
investigated by using the procedure outlined in this section to obtain also the
second order �h correction to the local eigenvalues� However
 also in the case of
the imaginary deviation we see a considerable improvement when going from
the pure �h corrected quantum zeta function to the product of the �rst few �h
corrected zeta functions� This can clearly be seen from the �gures ��� and ����
by noting the di�erent scale on the y�axis�

Generally we note
 that the relative error of the corrected calculation ver�
sus the error of the semiclassical calculation decreases with the real part of
the wavenumber and increases with the magnitude of the imaginary part of
the wavenumber� By inclusion of still more corrected zeta functions in the
Gutzwiller�Voros product we at �rst see a nice improvement� We do not expect
this to continue when including still further corrected zeta functions in the prod�
uct� This is because the �h expansion is only an asymptotic series� From ����	
�

we see that the �rst order correction C
���
l is at most a fourth order polynomial

in l� This can easily be checked by computing C
���
l for l � �� �� 	� � � � � lmax and

�t the result by a polynomial� For the � orbit of the 	�disk system such a �t
�by Mathematica� for l � �� �� � � � � ��
 yields

C
����
l � ����
 � ���	�
l � ��	��
l� � ����
l
 � 	�	���� � ����
l�

which has been numerically con�rmed by A� Wirzba in ��� For the � orbit a
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similar calculation yields

C
����
l � ������� � 	����
�l � ��
�	���l� � �����		
l
 � ���	�����l�

� 	����
������
��� � �����l


For large l the numerical value of C
���
l therefore diverges and the �rst order

corrected Gutzwiller�Voros product will therefore also diverge�

��� Conclusions

In this chapter we have described a new method developed by G� Vattay to
evaluate corrections to the leading saddle point approximation of the Feynman
path integral �

�� The method reduces the problem to a set of ordinary di�er�
ential equations which have to be solved at certain boundary conditions� In all
orders the product structure of the functional determinant ��E� is maintained�
One can introduce the quantum zeta functions� The corrections to the leading
zeta function is easier to calculate than a general l � � term and it is very
practical to use it for extended computations� Taking the theory as a starting
point we found analytically the necessary ingredients for calculating the �rst
�h correction term in the case of a general ��dimensional billard system� We
obtained this formalism for a general l value
 in order to be able to correct
several of the quantum zeta functions ���l �k�� A simple numerical calculation
scheme for the method has been evolved for the special case of two dimensional
billiard systems� The calculation scheme which works for general values of l

was implemented in a FORTRAN program� The program only uses simple geo�
metrical information from the periodic orbits namely the lengths of their  ight
sections
 their transverse stabilities and the local derivatives of the walls at
the bouncing points� The program is therefore immediately applicable to any
two�dimensional billiard system� The program has been tested on the 	�disk
scattering system and the results compared to the exact as well as the pure
semiclassical calculations� The comparison shows a clear improvement in real
part of k of the predicted resonances by including the �rst correction term� By
inclusion of further corrected quantum zeta functions in the Gutzwiller�Voros
product the calculation improves considerably for both the real and imaginary
part of the resonances� The imaginary part of our estimates however
 does not
improve as dramatically as the real parts
 and only approximately half of the
resonances are directly improved in the imaginary part by inclusion of the �rst
�h correction� We expect that inclusion of the second order �h correction will
result in a general improvement of the imaginary part of the resonances as well�



Chapter �

Perspectives

In this thesis we have adressed three main points concerning the general purpose
of improving the semiclassical rules of quantization in hyperbolic Hamiltonian
systems that classicaly display chaos�

First we investigated the quasiclassical propagator introduced by Vattay
�
	� and derived the spectral determinant for this in the general N dimensional
case� As a byproduct of this we obtained an explicit solution formula to the
Hamilton�Jacobi equation to the second order in the case of a periodic orbit
by solving the �xpoint equation of the generalized rational fraction transforma�
tion that governs the evolution of the second derivative or curvature matrix of
the phase function� By numerical calculation we showed that the determinant
indeed seems to be an entire function since the expansion coe�cients in the
cycle expansion of the determinant exhibits a super exponential decay towards
�
 indicating that the determinant has no poles� By considering the numerical
studies of A� Wirzba
 which are based on the periodic orbits obtained by our
numerical routines
 we concluded that to obtain the lowlying resonances of the
R � a � ��� 	�disk system one has to expand the determinant to ���th order in
the cycle expansion� This means that one here has to do more work than is nec�
essary when using the Gutzwiller�Voros spectral determinant� The advantage
on the other hand
 is that in contrast to the Gutzwiller�Voros spectral determi�
nant the Vattay determinant is not just an asymptotic series� The resonances
thus obtained will therefore stay put by inclusion of still more periodic orbits�
The price we have to pay for this is then the work of obtaining more periodic
orbits and to calculate the stabilities of the periodic solutions of the curvature
matrix  ow�

Second we introduced the geometrical theory of di�raction develloped by
Keller
 and showed how the semiclassical expression of the propagator can
be condisderably improved by introducing generalized minimal action rays or
creeping orbits that has no physical classical limit but still ful�lls the gener�
alized Fermat principle� In this theory the semiclassical propagator is then
extended from the usual Van Vleck propagator to also include a summation
over di�ractive or creeping orbits that connects q with q� in time t� As a fur�

�	�



�		

ther development of the Keller procedure we showed how di�raction from edges
can also be described by this theory� By making the usual cycle expansion of
a generalized spectral determinant that allows di�ractive periodic orbits
 and
by comparing this to the exact quantum mechanical cumulant expansion for
the simple ��disk scattering system
 we obtained a rule relating the ingredients
of the di�ractive propagator to the cycle expansion of the di�raction spectral
determinant� By analyzing the order of approximation
 we could derive an ex�
pression for the trace of the k domain Greens function in the case of di�ractive
periodic orbits by using the relation

TrG�k� � �
d

dk
ln��k�� �����

By numerical investigation of the scattering resonances of our �� and 	�disk
systems and by comparison to the exact results
 we showed that the semiclas�
sical calculation including di�raction e�ects deviated clearly from the usual
Gutzwiller�Voros results and that the correct quantum results were at least
qualitatively obtained� For instance families of resonances that were not at
all present in the pure geometrical calculation could be uniquely identi�ed by
resonances resulting from the di�ractive spectral determinant� These new res�
onances however
 showed a systematical deviation from the exact results� We
expect that this is due to the cuto� in the Airy corrections since the numerical
studies by A� Wirzba indicates a tremendous improvement of the resonances
when including the higher order Airy corrections in the simple case of the ��disk
scatterer�

Our expression of the semiclassical creeping propagator still has short com�
mings
 which are open to improvements�


 The creeping expression for G�x� x�� t� is only valid if x� does not lie in
the penumbra region i�e� x� should either be in the illuminated region or
in the shadow region� So our propagator can not deal with the socalled
penumbra correction introduced recently by Smilansky et al� as it stands�


 In the cycle expansion of the di�raction spectral determinant the exact
cancellation of the curvature terms is only correct for the l � � modes�
For higher modes one has to keep track of the full set of curvature terms

since the propagator is only multiplicative for the l � � mode�


 In the di�ractive part of the propagator we make use of the Airy approx�
imation of the Hankel function and their zeros� By numerical studies A�
Wirzba ��	� showed that the results of the calculations using our prop�
agator highly improves when taking the polynomial corrections to this
approximation into account� At this point however
 there does not seem
to be any simple way to include these corrections into the expression of
the propagator and at the same time keep the nice multiplicative structure
even for the l � � mode�

Third we introduced the method of obtaining �h corrections to the Gutzwiller
trace formula by using ordinary di�erential equations as developed by Vattay
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et� al� in �

�� Taking this theory as the starting point we showed how it could
be specialized to the case of two dimensional billard systems and we develloped
a simple algorithm that gives the contribution associated with each periodic
orbit
 to the �rst order �h correction to the dynamical quantum zeta functions
���l �k�� By applying our solution to the Hamilton�Jacobi equation obtained
in the section on entire spectral determinants
 we could slightly speed up this
calculation� The method however
 works nicely even without this result�

By calculating numerically the �h corrections to all the periodic orbits with
topological length less than � in the full 	�disk system
 we showed that our re�
sults are almost equivalent to the �h corrections obtained by Gaspar and Alonso

using the Gaussian corrections to the saddlepoint approximation� At this point
it is still not clear where the origin of the small deviations in this comparison
lies� In the special case of the ��disk system the agreement is exact though�

As a further study
 we calculated the �rst �h correction to the l � �� �� �� 	
quantum zeta functions in the A� representation
 for all the orbits up to topo�
logical legth �� in the fundamental domain of the R � a � ��� 	�disk system�
The resonances of the corrected quantum zeta functions were compared to the
pure semiclassical and the exact quantum resonances by including more and
more corrected zeta functions in the Gutzwiller�Voros product� Generally we
observed that the relative error of the corrected calculation versus the error
of the semiclassical calculation decreases with the real part of the wavenumber
and increases with the magnitude of the imaginary part of the wavenumber� By
comparing �rst the l � � and next the l � �� � product of corrected quantum
zeta functions to the Gutzwiller�Voros determinant we found a good improve�
ment of almost all the resonances of approximately a factor � respectively �� in
the real part of the wave number� By inclusion of further corrected quantum
zeta functions in the Gutzwiller�Voros product the calculation did not improve
dramatically� The imaginary part of our estimates however
 does not improve
as much as the real parts
 and only approximately half of the resonances are
directly improved in the imaginary part by inclusion of the �rst �h correction�
We expect that inclusion of the second order �h correction will result in a general
improvement of the imaginary part of the resonances as well�


