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SUMMARY

With this work I have made an attempt to examine what dynamical systems approach

avails the scientist in tackling the formidable problem of statistics of complex systems.

Whether conceptual works of mathematics, applied to realistic dynamical systems can be

practicable and useful. The underlying ideas are grounded in one subject of dynamical sys-

tems theory, the periodic orbit theory which o�ers formulae to compute averages of chaotic

systems with the best accuracy available. On the conceptual level, the theory manages to

�nd a common denominator between such apparently detached concepts, as periodic orbits,

escape rates, statistical averages, spectrum of a Green's operator (asymptotic approximation

is involved in the latter).

The price to pay is severe. In short: one has to understand qualitatively, and has to

have means to extract periodic orbits from a given dynamical system.

In this work we develop methods to partition the phase space of complex 2-dof Hamil-

tonian system, called the planar crossed-�elds in terms of periodic orbits.

We also study extensions to 3-dof setting, and discuss relevance of high-dimensional

complex saddles.

Finally we develop methodology to compute unstable invariant tori in 3-dof setting and

apply these methods to explaining trapping of trajectories in the model of planar carbonyl-

sul�de (OCS) molecule.
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CHAPTER I

INTRODUCTION

We investigate chaotic ionization of highly excited hydrogen atom in crossed electric and

magnetic �elds (Rydberg atom) and intra-molecular relaxation of highly excited planar OCS

(both 3-dof Hamiltonian systems).

1.1 The crossed-�elds problem

By applying strong electromagnetic �elds on an atom, it is possible to promote one or several

of its electrons to a high-energy state. Such an electron is only loosely bound to the atomic

core; it spends most of the time at distances from it so immense, that, if the atom were solid,

it could be visible to the naked eye. Electrons in such atoms have extreme properties, they

behave almost like classical particles and o�er a natural laboratory for the investigation of

many physical phenomena which they display with exceptional clarity.

Atoms with such properties are called Rydberg atoms. In Chapter 3 we study classical

chaos in such a setting, with hydrogen atom placed in crossed electric and magnetic �elds

at right angles (the crossed-�elds problem).

A quantum state of an electron in a �free� Rydberg atom is approximately hydro-

genic [21]. Such states are characterized by very large principal quantum numbers (n &

50) [61, 46] and Rydberg formula for the energy levels [46] holds. Deviations from the hy-

drogenic eigenenergies are induced by the screening e�ect of the charge cloud of the remain-

ing near-core electrons, and are described by the quantum defect δl, entering the Rydberg

formula as a correction to the principal quantum number n [46].

In these conditions, electron becomes sensitive to even weak stray laboratory-scale elec-

tric �elds [7], and dynamical phenomena such as, for example, manifestations of chaos can

be studied experimentally[116]. Among experimentally observed phenomena are the quasi-

Landau (QL) oscillations in the quantum photo-absorption spectra, high energy chaotic

ionization, Ericson �uctuations (closely related to the phenomenon of chaotic scattering)
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and full spatial localization of electronic wave packets [122].

While low-energy atoms in weak external �elds have been studied since the beginning of

the modern quantum mechanics (see Zeeman and Stark e�ects in [9, 14]), only in the past

few decades the increases in the level of experimental sophistication have allowed to reach

for the realm of Rydberg atoms in strong external �elds.

One of the landmark experimental studies is the work of of Garton and Tomkins [47]

on the oscillations in the photo-absorption spectrum of rubidium atoms in magnetic �eld.

They have detected quasi-Landau (QL) resonance, characterized by the energy spacing

∆ε1 = γ(E)~ωc , (ωc = eB/me).

where the energy dependent factor γ(E) was related to a classical two-dimensional periodic

orbit of the electron, in particular to its period T = 2π/γ10ωc [110]. It was found, for exam-

ple, that γ(0) = 1.5 at the ionization energy E = 0. It took the next 13 years to observe the

second resonance, with γ20 = 0.64 [63]. Shortly thereafter theoretical investigations of hy-

drogen in magnetic �eld ( this problem is often called the �Diamagnetic Kepler Problem,� or

DKP) have revealed that all periodic solutions contribute to the semi-classical spectrum [82]

and another 10 years to complete this study [112]. As a result of two decades of sustained

research [42, 60, 64, 83], this problem has been extensively investigated and theory of photo-

absorption of hydrogenic atoms in external �elds near the ionization threshold [30, 11, 120]

has been developed.

A super�cially similar arrangement, resulting from addition of an electric �eld, perpen-

dicular to the magnetic �eld (the crossed-�elds problem) [109] remains the least under-

stood of all Rydberg problems [118, 116]. The experimental challenge has been taken up

in [120, 94, 95], who identi�ed a class of QL resonances in rubidium Rydberg atoms. Similar

to the original resonances in [47], those of the crossed-�elds problem were also associated

with a small set of planar (z = 0) periodic orbits.

Evidence of chaotic scattering in the crossed-�elds problem came when Main and Wunner

detected Ericson �uctuations in the quantum spectrum [84], which was further asserted

from experiments with ionization of hydrogen in circularly polarized �elds [16] � a problem
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intimately connected to the crossed-�elds. In experimental work on localization of electronic

wave packets in all three spatial dimensions [122], observations have led to new insights into

the dynamics of the electron in the correspondence principle regime.

And so, the Rydberg atoms allow us to enter the elusive domain of semiclassical physics.

It has been known from studies of the asymptotic behavior of the wave equation [4, 5] �

the simplest variant of the Schrödinger's equation, and the Gutzwiller's trace formula [55,

56] that closed, periodic orbits play a central role in the spectrum. Furthermore, almost

inevitably, when Rydberg atom is placed in external �elds, part of its classical Hamiltonian

dynamics is �chaotic�. In crossed-�elds problem the chaotic dynamics is mixed with regular.

The three dimensionality of this problem makes it still a very obscure and uncharted terrain,

even when only the classical dynamics is considered. This problem is so complex because no

continuous symmetry survives the extensive symmetry breaking induced by the two �elds.

Relativistic corrections have been shown to play a minor role in the crossed-�elds prob-

lem, therefore the Hamiltonian H in scaled units (for scaling, see Appendix A.1, Eq. (3.1)

and Chapter 3) can be written as

H = p2/2 +BLz/2 +B2ρ2/8− 1/r + Fx, (1.1)

where p2 = p2
x + p2

y + p2
z, ρ

2 = x2 + y2, Lz = pyx − pxy, r =
√
x2 + y2 + z2. The pertur-

bative regime of classical dynamics was studied using Kepler orbits as unperturbed states

of Hamiltonian with F = B = 0 in [109], and later in [53], using the Kustaanheimo-Stiefel

regularization procedure [72, 111]. The action-angle representation, found in [53] showed

that the principal quantum number of the unperturbed problem n remains a �good� approx-

imate quantum number. The dynamics of trajectories with small, nonzero F and B was

interpreted as if regular in the n manifold and slowly mixing (Arnol'd di�usion) between the

manifolds. The intra-manifold chaos and the di�usion along the resonance channels were

investigated in [119]. Geometric analysis of the lowest nontrivial terms in the normal form

has revealed that a nontrivial phase space topology is present even in the vanishing �elds

limit [100, 22].

Systematic studies of periodic orbits in the crossed-�elds problem start with [38], where

3



four periodic orbits were identi�ed, labeled by SSp, S+, S−, S ⊥ and an analogy with orbits

in the three-body problem was drawn.

To summarize; in the crossed-�elds the external electromagnetic �elds couple to atomic

�elds, as if by attaching �handles� to them, and by probing the atoms we are provided with

a unique experimental glimpse into the fundamental phenomena that arise when quantum

meets classical. The prominence of this paradigm in diverse areas of physics range from

atoms and molecules, to excitonic systems, to plasmas and neutron stars [29, 101]. Most of

its features and experimental accessibility continually renewed interest in the problem.

1.2 Complex energy �ow in OCS molecule

Chemical reactions typically proceed through a complex choreography of energy �ow pro-

cesses that deliver the needed vibrational energy to the reactive mode. The manner and

time in which energy travels determine the outcome of the reaction and the properties of

the products. The conventional wisdom concerning this fundamental process is that vibra-

tional energy travels very fast, and well before a reaction takes place, it distributes itself

statistically among the modes of the molecule, assumed to resemble an ensemble of coupled

oscillators. Reaction rate theories based on these assumptions � known collectively as sta-

tistical theories [91] � have been vindicated in a number of chemical reactions. However,

there is increasing evidence that the approach to equilibrium usually proceeds more slowly

than predicted by statistical theories [37] � and also that it is nonuniform, proceeding by

intriguing �ts and starts. This anomalous di�usion is caused by variety of phase space

structures, such as resonant islands or tori [123] that can strongly slow down the trajec-

tories passing nearby [123, 102], and therefore are said to be �sticky� [92]. To date, the

theories so successfully applied in pioneering works [26, 27, 54, 86, 106] to lower-dimensional

systems have not been extended beyond 2 degrees of freedom (dof) due to severe technical

di�culties [50, 51, 114].

In Chapter 7 we investigate these phenomena in carbonyl sul�de (OCS) molecule. This

chemical compound is a major pollutant and an ingredient of �biogeochemical cycle of sul-

fur� and �greenhouse e�ect�. Its relevance has increased together with the increasing level

4



of emission, caused by anthropogenic activities (combustion and agriculture [115]). Because

the breakup energy of its �weaker� C-S is low, OCS is a highly reactive compound. Describ-

ing precise reaction scenarios and the reaction rates remains a problem of great practical

importance.

Answering the question of how vibrational energy �ows in molecules succinctly seems

a hopeless task, considering complexity of inter-atomic interactions in a molecule. The

statistical (or RRKM) theories [52, 96, 40, 91] posited an answer: Vibrational energy travels

�very fast�, distributes among the vibrational modes, and reaches a statistical equilibrium

well before a reaction takes place. Such theories remain a tool of practising chemists to

this day. Origins of this assumption lie the ansatz of molecular chaos (see Section 1.3) and

the successes of thermodynamics have established this ansatz �rmly. Nevertheless, there

is an increasing body of evidence that processes in high dimensional systems violate this

ansatz. The doubts into validity of the molecular chaos assumption were set in motion

with the work of Fermi-Pasta-Ulam [36, 37]. Soon thereafter, studies of small perturbations

of integrable Hamiltonian systems � the Kolmogorov-Arnol'd-Moser theory [70, 71, 1] (see

also Section 1.3) uncovered a generic mechanism of how the metric transitivity fails.

It is commonly assumed that in �typical� Hamiltonian systems with N degrees of freedom

with N large, in the thermodynamic N → ∞ limit the relative measure of N -dimensional

invariant tori (N local integrals) tend to either zero or one [43]. The implication is that

chaotic systems with large N approach conditions of the stochastic ansatz, and hence that

the trapping phenomenon described in Chapter 7 is insigni�cant. On the other hand, it

has been established recently that high order resonances form robust islands of secondary

structures with positive measure [59].

Models of OCS have served as a test-bed for studying intra-molecular dynamics in the

chaotic regime [17] and these classical �ndings have been con�rmed in parallel quantal wave

packet calculations [49]. In Chapter 7 we use the Hamiltonian [39], Eq. (7.1)

H = T (R1, R2, α, P1, P2, Pα) + V (R1, R2, α), (1.2)

where T is the standard kinetic energy of a rotation-less triatomic molecule represented by
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two inter-atomic distances R1, R2, and a bending angle α (with their canonically conjugate

momenta P1, P2 and Pα). The potential V consists of Morse potentials Vi for each diatomic

pair and an interaction potential VI of the Sorbie-Murrell form [17],Chapter 7 and Eq. (7.3)

The dynamics, given by Hamiltonian of Eq. (1.2) of the collinear version of OCS (with

α = π, Pα = 0) was �rst studied by Carter and Brumer [17]. They characterized the

motion of this system at a number of energies, extending up to 20, 000 cm−1 (which amounts

to E = 0.09). After integrating trajectories for 2.4 ps, they arrived at a relaxation time (as

de�ned in Refs. [105, 35, 57]) of 0.17 ps. However, they found that this system does not

relax to statistical equilibrium after 2.4 ps. When this contradiction was investigated by

integrating the equations for much longer times (45 ps), two distinct timescales for relaxation

were found, the longer of which characterized energy redistribution that was incomplete even

after 45 ps [28]. Sudden transitions between relatively long-lived regions of localized mode

energies were observed all the way to the picosecond time scale.

Davis and Wagner continued to study collinear OCS [28]. This 2-dof model allows the

use of Poincaré surfaces of section as a visualization tool for phase space structures. They

revealed that even at the high energy of 20, 000 cm−1 (E = 0.09), the system has a �divided

phase space�, with coexisting regular and chaotic regions. They observed that trajectories

could be trapped in restricted regions of phase space for many vibrational periods, after

which they would suddenly move to other regions of phase space to repeat the pattern.

Further progress came with the recognition that then-recent �lobe dynamics� [81, 8] could

help explain non-statistical relaxation in 2-dof systems [26]. With increasing perturbation

strength, the two dimensional invariant tori of a 2-dof Hamiltonian system develop sets of

�holes,� with the systematics of Cantor sets. These holes, dubbed �cantori� [81], form leaky

barriers which can act as bottlenecks to the phase space transport. These bottlenecks are

associated with broken tori with irrational frequency ratios, with those with �noble� number

ratios being generically the very last to be destroyed by an increasing perturbation. These

numbers are the most robust as they are the most poorly approximated by rationals [58].

For OCS, this has been con�rmed in [26] in a region between two resonances ωCO/ωCS = 3/1

and ωCO/ωCS = 5/2. The noblest irrational number between the rationals 5/2 and 3/1 is
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2 + γ, where γ = (
√

5 − 1)/2 ≈ 0.6180339887 is the so-called golden mean [81, 58]. These

results, obtained from classical mechanics, were con�rmed using a quantal wave packet

calculation [49]. These results could not be extended to the planar, 3-dof OCS due to severe

technical and computational di�culties [50, 51]. However, there were indications that this

problem of intra-molecular energy �ow in higher dimensions is also related to the resonant

and non�resonant structures [86].

1.3 Using methods of dynamical systems theory

The two physical problems, described in Sections 1.1 and 1.2, have in common that the

Hamiltonians (Eq. (1.1) and Eq. (1.2)) generate both regular and chaotic trajectories, i.e.

they are mixed systems from a dynamical systems point of view. These Hamiltonians de�ne

velocity vector, which in turn de�nes a �ow ϕ on the phase space M. These concepts are

studied by the theory of dynamical systems, (also called the �qualitative theory of ordinary

di�erential equations�). Hamiltonian �ows constitute a special class of dynamical systems.

They arise as a natural setting to study problems of physics, and their distinctive character-

istic is existence of conserved integrals, constraining dynamics to sub-manifolds of the 2D

dimensional phase space M. There is always at least one integral, called the Hamiltonian

(or �energy�) and the dynamics is constrained to a 2D − 1 dimensional �energy shell�.

The prerequisite to application of the theory is a good control of invariants of the dynami-

cal system under investigation: equilibrium points, periodic orbits, quasi-periodic manifolds.

The theory brings is the methodology of how to compute expectation values of physical ob-

servables in chaotic systems by relating the spectrum of a certain evolution operator to

dynamical invariants, such as equilibria and periodic orbits. Its predictive power and ele-

gance rivals those of the statistical physics and the quantum �eld theory.

A basic feature of dynamical systems is the notion of asymptotic behavior of a (typical)

solution. This leads to certain invariant sets and in particular to attractors of the dynam-

ical system. Dynamical systems have two kinds of classical attractors which persist under

small perturbations of the di�erential equations. These are the stable equilibria and the

stable nontrivial periodic solutions or oscillators For a physical example, consider states of a
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harmonic oscillator and the Kepler problem. The corresponding phase space is chockablock

with invariants (all orbits are periodic). Classical physics approach is to assume that these

states become attractive under perturbations, and one can use them as zeroth-order approx-

imations to physical systems by accounting for weak nonlinearities using the perturbation

theory (for example see Chapter 3).

A great new development was the discovery [78] and very general description of a strange

attractor [108]. It is robust in the sense that its properties persist under perturbations of the

di�erential equation (i.e. it is structurally stable [107, 12, 13, 98, 99, 87]. A good model, cap-

turing the two essential ingredients of strange attractors, is the �Baker's Map� [121, Chapter

4]. Every point in the (two dimensional) phase space is everywhere locally unstable, i.e. has

positive Lyapunov exponent. Therefore the map is often (informally) called stretching. The

global constraints force the the stretched volume of the phase space to fold back, introduc-

ing mixing into the system. If a deterministic system is locally unstable (positive Lyapunov

exponent) an globally mixing (positive entropy) it is said to be a chaotic dynamical system.

Already Poincaré was familiar with this vision of chaos, with unstable periodic orbits

providing instability, and interweaving of their stable and unstable manifolds providing

global mixing. A chaotic system any open ball of initial conditions, no matter how small,

will in �nite time overlap with any other �nite region and in this sense spread over the extent

of the entire asymptotically accessible state space. The focus of the theory of such systems

shifts to a description of the geometry of the space of possible outcomes, and evaluation of

averages over this space.

In many of the real world systems that are considered chaotic, complexity comes about

from their ability to comprise attractors of very di�erent nature in one state space. A good

example of this situation is provided by the crossed-�elds problem, studied in Chapter 4.

A typical �chaotic� system is bounded, and a scale L can be prescribed, measuring the

size of the system. Any two trajectories that start out very close to each other (with initial

di�erence in coordinates δx(0), separate exponentially with time, and in �nite (in practice,

a short) time their separation δx(t) attains the magnitude of L, the size of the whole system.
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This property of sensitivity to initial conditions can be quanti�ed as

|δx(t)| ∼ exp (λt)|δx(0)|.

The rate of separation is described in terms of the factor in the exponent, called the Lyapunov

exponent. The practical consequence is that for any �nite accuracy ε = |δx(0)| of the initial
data, the dynamics is practically unpredictable beyond the �nite Lyapunov time

TLyap =
1
λ

ln
L

ε

The second necessary ingredient is the property of mixing, which can be described as the

coming together again and again of trajectories. This is not unusual, especially when the

phase space has boundaries. The trajectories necessarily fold back at the boundaries.

A closed invariant set A is called an attractor if all nearby solutions lead to A as t→∞.

The Bowen-Ruelle theorem states that for an Axiom A system, except for an initial set of

Lebesgue measure zero, time averages exist for continuous phase functions. More precisely,

except for this initial set, a solution t 7→ ϕt tends to some attractor A. The attractor A has

a canonical invariant ergodic measure µ and if f is continuous function on the phase space,

then

lim
T→∞

∫ T

0

1
T
f(ϕt)dt =

∫
A
fdµ (1.3)

The invariant measures in chaotic systems are unusually complex, non-di�erentiable, and

in all imaginable ways unpleasant to deal with functions of the phase space. In fact, hidden

in the complexity of chaotic attractors there is a rigid skeleton, an invariant set, called the

�repeller� with the structure of a Cantor set, and with periodic orbits as its elements. The

periodic orbit theory [23] has the advantage that one does not need to compute the invariant

measure explicitly. It expresses the density evolution in terms of a linear operator Lt:

ρ(x) L
t−→
∫
M
δ(x− ϕt(y))ρ(y), (1.4)

and reformulates the problem of �nding the spectrum of Lt in terms of �nding zeros of the

dynamical Zeta function ζ(s):

ζ(s) =
∏

pi∈unstable cycles

(
1− exp (ιsA)

Λpi

)
, (1.5)
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expressed as an in�nite product. Each unstable periodic orbit (�cycle�) contributes a term

in this product, where A is a value of an observable computed on the orbit, and Λpi is the

Lyapunov multiplier of the orbit [23].

The main instrument of computing averages is the trace formula, a weighted sum over

such periodic orbits. There are methods to accelerate the convergence of the sum, but that

requires knowledge the orbital order. Of the symbolic dynamics � that is.

The critique of dynamical systems approach is the �overhead�, caused by a need of

sophisticated numerical calculations. It requires solid skills, developed by years of practice,

in locating particular solutions of nonlinear equations in high dimensional spaces.

On the other hand, statistical methods, quite often produce reasonable results requiring

only rather pedestrian numerical simulations.

In statistical physics, it is inevitable to make assumptions about the asymptotic behavior

of the system, the �rst and most famous example being the Boltzmann ansatz.

The dynamical systems approach deals with problems in a de�nitive way: the invariants

are genuine objects of a dynamical system, and description of mechanisms of transitions or

spectra in terms of these objects provide a faithful, no-assumption description of physical

phenomena.

1.4 Outline of the thesis

Throughout the work we explore several concepts, which can be summarized as follows:

Periodic orbits can be interpreted as nonlinear modes of dynamics.

Unstable invariant structures (saddles, periodic, quasi-periodic orbits) play a major role

in trapping of trajectories and as bottlenecks of transitions.

Stable and unstable manifolds and their intersections can be used to partition the phase

space for symbolic dynamics.

In Chapter 2 and Chapter 5 we present concepts of the dynamical systems theory and

develop general methods that use these concepts to solve physical problems studied in this

work. In particular, Chapter 2 is devoted to presenting our methods of projection from
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continuous time �ows to the mapping of the surface of section and their applications to

periodic orbit searches. Then, in Chapter 5, we apply our methodology to searching for

2-dimensional invariant tori.

Chapter 3 presents our introductory study of various limiting cases of the crossed-�elds

problem. We focus on the strong magnetic �eld and perturbative limits. We top this chapter

o� with the study of the onset of chaos using the Melnikov analysis.

In the following Chapter 4, we present our work on the symbolic dynamics of crossed-

�elds problem in 2-dof in the regime of strong chaos.

Chapters 6 and 7 are devoted to study of 3-dof chaotic Hamiltonian systems, and to the

role of 2-dimensional invariant tori in processes of trapping (see Chapter 7) and symbolic

dynamics (see Chapter 6). In Chapter 6 we use methods, developed in Chapter 5, and high

order normal forms to compute a high dimensional saddle of the crossed-�elds problem in

3-dof setting. In Chapter 7 we present a detailed study of trapping in the carbonyl sul�de

(OCS) molecule.
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CHAPTER II

SOME ASPECTS OF DYNAMICAL SYSTEMS' THEORY

In problems of chaotic molecular or atomic dynamics, a natural approach is to use the

methods of dynamical systems theory. In this chapter we summarize some basic concepts

of the theory. We also discuss practical issues such as reduction to the surface of section

and �nding complicated periodic orbits on constant energy shell, used in Chapter 4. These

ideas will be extended to computations of quasi-periodic invariant structures in Chapter 5

2.1 Fundamental concepts

A dynamical systems is usually de�ned by a pair (M, ϕt). These constituent symbols stand

for:

A �phase space� M, whose elements or �points� represent possible states of the system.

Phase space may be compact or open.

�Time� t, which may be discrete or continuous and extend only into the future or into the

future as well as the past.

The time evolution law ϕ. It is the rule that allows us to determine the state of the system

at each moment of time t from its state at any particular moment. Thus if our system

was initially at a state x ∈ M, it will �nd itself after time t at a new state, which

is uniquely determined by x and t, and thus can be denoted by F (x, t). Fixing t, we

obtain a �ow ϕ, a transformation ϕt(x) : x 7→ F (x, t) of the phase space into itself.

These transformations for di�erent t are related to each other. Namely, they are said

to satisfy (semi-)group (composition) property ϕt ◦ ϕt′ = ϕt+t
′
and may or may not

be de�ned for all x and t.
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2.1.1 Continuous time �ows

A continuous time dynamical system is usually given in�nitesimally (for example, by means

of di�erential equations) and the reconstruction of the dynamics from this in�nitesimal

description involves integration of a system of ordinary di�erential equations. We assume

that the phase spaceM is a smooth manifold of dimension m and thus the time evolution is

given by a smooth function F (x, t) = ϕt(x), x ∈M, t ∈ R. When we �x x ∈M, and vary t

we obtain a parameterized smooth curve onM. Let ξ(x) be the tangent vector to this curve

at t = 0, that is, at the point x. Properly speaking, the vector ξ(x) belongs to the tangent

space TxM, which is an m-dimensional linear space �attached� to M at the point x. The

map x 7→ ξ(x) forms a vector �eld onM. Consider the tangent bundle TM =
⋃
x∈M TxM.

Let U ⊂M be a coordinate neighborhood with coordinates (s1, . . . , sm). Then the tangent

bundle TU is simply a direct product U × Rm and a vector �eld is determined by a map

from U to Rm, that is by m real-valued functions v1, . . . , vm, as follows. Denoting ∂
∂si

the

basic vector �elds which associate to every point the ith vector of the standard basis in Rm

we can represent every vector �eld locally as
∑m

i=1 vi(s1, . . . , sm) ∂
∂si

. If our initial point x is

represented by coordinates s0
i , . . . , s

0
m then the evolution of this point is obtained by solving

the system of �rst-order ordinary di�erential equations

dsi
dt

= vi(s1, . . . , sm) (2.1)

with initial conditions si(0) = s0
i for i = 1, . . . ,m. Thus, at least for small t, the transfor-

mation ϕt can be recovered from the vector �eld. For larger t one should take compositions

of maps de�ned in local coordinates. For all t we can write a formal expression

F (x, t) =
∫ t

0
v(F (x, t′)) dt′. (2.2)

2.2 Phase space and the surface of section

There are useful relations between continuous-time and discrete-time dynamical systems.

Usually it is possible to associate a map to any �ow, but the opposite of this statement in

general is not true [69, Chapter 0.3].
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A local, but very useful method is the construction of a Poincaré (�rst-return) map. Let

us take a point x ∈ M such that ξ(x) 6= 0 and an m − 1 dimensional (co-dimension-one)

sub-manifold S containing x and transverse to the vector �eld. The latter property simply

means that for every point y ∈ S the vector ξ(x) is not tangent to S. If we assume that

the point x is periodic for the �ow, that is, ϕt0(x) = x for some t0 > 0, then every nearby

orbit of the �ow intersects the surface S at a time close to t0 so we have de�ned for a

neighborhood U of x on S a map PS : U → S such that PS(x) = x. This map is called a

section map or �rst-return map or Poincaré map for the �ow. The manifold S is called the

surface of section. Let ϕt be a (semi-) �ow on the manifold M, and a periodic point p of

period T (p) > 0. We assume that (x, t) 7→ ϕtx is continuous, and that in a neighborhood

of (p, T (p)), the map (x, t) 7→ ϕtx has at least one continuous derivative. Let S be a sub-

manifold of co-dimension 1 transversal at p to the orbit of p. For x near p inM, there is a

unique τ(x) near T (p) in R such that ϕτ(x)x ∈ S. The function τ has as many derivatives

as the map, and the �rst return map P : x 7→ ϕτ(x)x from a neighborhood of p in S to S.
Explicit construction of the derivative on the Poincaré section is illustrated in Figure 2.5.2.

Going in the opposite direction, we can consider di�eomorphism f : S 7→ S and construct
a suspension �ow on the suspension manifold Sf which is obtained from the direct product

S × [0, 1] by identifying pairs of points of the form (x, 1) and (f(x), 0) for x ∈ S. The

suspension �ow σtf is determined by the �vertical� vector �eld ∂
∂t on Sf .

The surface of section is the main concept in the �Method of the surface of section�

(see Section 2.5). In the studies of geometric properties of continuous time �ows it is useful

to reduce the �ows in the phase space to the map of the surface of section, usually de�ned

by an equation

S : Σ(x) = 0 x ∈M , (2.3)

and study the associated discrete-time system FS : S 7→ S.
Contrary to the locally de�ned Poincaré map, global surfaces of section are typically

non-transversal.
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2.3 Linearization and Jacobian

Constructs of linearization plays a central role in the theory of smooth dynamical sys-

tems. If U ⊂ Rm is an open neighborhood of x0 and FS : U → Rm is a di�erentiable

map, we can represent FS near the point x0 as the constant part FS(x0) plus the linear

part DFS(x0)(x − x0) plus higher order terms. The di�erential DFS is a linear opera-

tor in Rm that is represented in coordinate form by the matrix of partial derivatives. if

FS(t1, . . . , tm) = ((FS)1(t1, . . . , tm), . . . , (FS)m(t1, . . . , tm)), then

DFS(x0)(t1, . . . , tm) =
(
∂(FS)i
∂tj

)
i,j=1,...,m

, (2.4)

where the partial derivatives are calculated at the values of the coordinates corresponding

to the point x0. The picture remains essentially the same for di�erentiable maps of smooth

manifolds with the only di�erence that instead of the standard coordinate system in Rm one

should use appropriate local coordinate systems near a point and its image. A more invariant

way to express the same idea is to describe the di�erential DFS(x0) of the map FS : S → S
as a linear map of the tangent space Tx0M into the space TFS(x0)M if FS is a di�eomorphism

the di�erential is invertible. This construction can be globalized by considering the tangent

bundle TM =
⋃
x∈M TxM which can be provided with the structure of a di�erentiable

manifold whose dimension is twice the dimension of TM. Any local coordinate system on

M induces a coordinate system in TM which is global in the tangent direction. Namely,

tangent vectors to the coordinate curves form a basis in each tangent space and the 2n

coordinates of a tangent vector include n coordinates of its base point plus the coordinates

of the vector with respect to that basis.

When we consider iterates of a map FS (Eq. (2.5)), the di�erential DFSn(x) : TxM→
TFSn(x)M of the nth iterate is a composition of the di�erentials DfFS i(x) : TM FS i(x)−−−−→
TFS i+1(x)M, i = 0, . . . , n− 1:

x1
FS(x1)−−−−→ x2

FS(x2)−−−−→ x3 . . .
FSxi−1−−−−−→ xi (2.5)

Tx1S
DFS(x1)−−−−−→ Tx2S

DFS(x2)−−−−−→ Tx3S . . .
DFS i−1(x)−−−−−−−→ TFS i(x)S (2.6)

The situation for �ows is similar. Given that the law of evolution is determined by a
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system of ordinary di�erential equations

dx

dt
= v(x) (2.7)

The derivative is called the Jacobian J(x, t) = ∂F (x,t)
∂x . The time evolution of the Jacobian

is

dJ(x, t)
dt

=
∂v(x)
∂x

J(x, t) (2.8)

The formal solution for all t can be derived from Eq. (2.2) by di�erentiation of F :

J(x, t) =
∫ t

0

∂v(x)
∂x

(F (x, t′))J(x, t′)dt (2.9)

The initial conditions are

J(x, 0) = 1 . (2.10)

The Eq. (2.9) and Eq. (2.10) are usually integrated numerically together with the evolution

law, given by Eq. (2.7).

In this localized picture the asymptotic properties of FS correspond to the properties of

products of linear maps thus obtained, when the number of factors goes to in�nity. Once the

behavior of such products is understood, the question arises as to what extent this behavior

re�ects the properties of the original nonlinear system. The crucial point here is that the

di�erential at any given point approximates well the behavior of points near the point at

which the di�erential has been calculated. The quality of this approximation depends on

the nonlinear terms, for example, on the size of second derivatives grows (by the chain

rule), so, a priori, the quality of the linear approximation should deteriorate. Under certain

conditions the in�uence of nonlinear terms can be controlled, so that we obtain a picture

of the behavior of those orbits that stay near the original orbit for su�ciently long time.

Considerations of this kind represent the content of what is usually called the local analysis

of smooth dynamical systems.

An ideal setting for the local approach appears when the original orbit is periodic, say,

FSn(x0) = x0. Then the sequence of di�erentials is also periodic and the main role in the

local analysis is played by the iterates of a single linear operator DFSn(x0), which represents

the in�nitesimal behavior of nearby orbits for the period. In particular, the eigenvalues of
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that operator play a crucial role in the local analysis near a point x0. For continuous-time

dynamical systems the role of the di�erential is played by the variational equation (Eq. (2.9))

whose right-hand side represents the in�nitesimal generator for the one-parameter group of

di�erentials of the maps forming the �ow.

Though the local analysis concerns itself with the relative behavior of nearby orbits of, in

the case of a neighborhood of a periodic orbit, with the behavior if orbits or orbit segments

as long as they stay near the periodic orbit, the main goal of the theory of smooth dynamical

systems is to understand the global behavior of nonlinear maps. Sometimes local analysis

plays a crucial role in the global consideration. This happens, for example, if a periodic

point represents an attractor, that is, if neighboring orbits approach it asymptotically with

time. More generally, we may try to localize certain parts of the phase space that play

a particularly important role for the asymptotic behavior and to study the orbits inside

and nearby this part. It is also possible that the behavior of orbits with certain initial

conditions is particularly important due to the nature of a particular physical problem

which is represented by the dynamical system.

2.4 Hamiltonian systems

Hamiltonian systems, or Hamiltonian �ows constitute a special class of dynamical systems.

Their characteristic feature is existence of conserved quantities. Each conserved quantity

corresponds to an integral, a function of phase space variables, that is left unchanged by the

�ow. Any Hamiltonian �ow has at least one such function, the Hamiltonian H, correspond-

ing to the energy of the system E. It is customary to express the relation by H(x) = E,

but for our purposes it is more useful to use the notation H(x)−E → H(x;E). The energy

shell the is de�ned as a sub-manifold ofM, such that

H(x;E) = 0 (2.11)

The derivative of the energy is de�ned as DH(x;E). It is a 2D dimensional vector with

components

(DH(x;E))i =
∂H(x;E)

∂xi
(2.12)
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2.5 Some techniques used in the method of surface of section

In most applications the reduction to the surface of section is achieved by parameterizing

the phase space M in such a way, that one of the level surfaces of one of the parameters

coincides with the surface of section. Without loss of generality we can set the level surface at

zero. The parameters can be taken as new coordinates, with the exception of one parameter,

corresponding to the surface. Furthermore the derivative of the surface (mapping of tangent

space of the surface to the tangent space of the same surface) will be constructed. In

Hamiltonian �ows, additional reduction can be achieved by eliminating one more parameter.

2.5.1 Projection M→ S

The reduction of dimension using one or more equations of constraints, such as the energy

condition Eq. (2.11), or the surface of section condition Eq. (2.3), is a very common proce-

dure to eliminate a set of chosen coordinates, thus reducing the dimensionality of the phase

space. This method is called projection. The reverse procedure (restoring the full set of the

original coordinates) involves solving the equations of constraints.

Without loss of generality we can assume that a transformation T :M 7→ M is given,

not necessarily linear in x, and that y = T (x) de�nes new parameterization of the phase

space y = (y0, . . . , yn−1). Suppose that Eq. (2.3) is equivalent to setting y0 = 0, i.e. that

T (x) = (Σ(x), y1(x), . . . , yn−1(x)).

Given a Hamiltonian system, one additional coordinate can be eliminated. We can

assume, that the surface of section S is parameterized by z = (y2, . . . , yn−1). Supposing

a point z on the surface S is given, and that we know a value of y1 that is �close� to the

surface. Then coordinate in the phase spaceM can be found by solving the energy equation

H(x(y);E) = 0 for y1 = y1(z;E).

One method to �nd such solution, once an approximate solution is given, is the Newton's

method. Assuming, that such x0 is given, that T (x0) = (0, y1+ε, z0), corresponding to point

z0 on the S, we obtain a one-dimensional linear iteration

H(x0;E) +
[
DH(x0;E)DT−1(x0)

]
1
ε = 0 (2.13)
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Supposing the iterations converge, we achieve the following two goals: a) the coordinate on

the surface z is preserved and b) the Hamiltonian condition H(x;E) = 0 is satis�ed.

The above method is useful when it is imperative to preserve the surface of section

coordinate. If this condition can be relaxed, and is is required to �nd a solution on the

surface of section, close to a given initial condition x0. In this case there is available a large

pool of options one can choose from. Two examples follow, two- and one- step solution.

There are two points to have in mind. The equation Σ(x) = 0 has to be satis�ed, and

equation H(x,E) has to be satis�ed. In general these equations are both nonlinear and we

look for a solution using Newton's iterations, assuming that such an initial condition can be

found, which will guarantee convergence of the iterations.

Our approach is to construct a suitable cost function, whose (local or global) minimum

corresponds to our solution. Then, provided there is a good initial condition, the solution is

found by iterations using Newton iteration scheme. In general, suppose the cost functional

is I(x) ≥ 0 is given such that I(x0) = 0. To �nd the solution x0 we start with an initial

guess x, and iterate

x→ x− (DI(x))−1I(x)

In this context we will always use the �distance� between two points as a cost,

I0(x, x′) = d(x′, x)2/2

motivated by the attempt to �nd the solution which is the �closest� to an initial guess. The

precise de�nition of norm � or distance � can be adapted to the problem. We have used

Euclidean norm d(x, x′) =
√∑

i(xi − x′i)2, but other norms can be used as well1

In general we have two constraints, H(x,E) = 0 and Σ(x) = 0, therefore the constrained

variations read

ISE (δ, λ, µ) =
δ2

2
+ λH(x+ δ, E) + µΣ(x+ δ) (2.14)

1A weighted Euclidean norm da(x, x
′) =

pP
i[ai(xi − x′i)]2 is useful in the OCS Hamiltonian

(see Eq. (7.1)), where typical trajectories in (R1, R2, α) oscillate on small �1� scale in Ri, while the corre-
sponding momenta oscillate on a �102� scale. Scaling �large� variables down may lead to improved stability
of computations.
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The variation δIS and derivative DIS reads

δISE =



δ + λDH(x0) + µDΣ(x0)

DH(x0)δ +H(x0, E)

DΨ(x0)δ + S(x0, E)

DISE =

 1 DH(x) Σ(x)

DH(x) Σ(x) 0

 (2.15)

If the equation Σ(x) = 0 is linear in x, the above method can be simpli�ed. The

problem can be solved in two steps. First, a coordinate on the energy shell is found. Sec-

ond, Eq. (2.13) is solved to put the coordinate on S. For the �rst step the cost function

is

IE(δ, µ) =
δ2

2
+ λH(x+ δ, E) (2.16)

and variation and derivative read as

δIE =


δ + λDH(x0)

DH(x0)δ +H(x0, E)
DIE =

 1 DH(x)

DH(x) 0

 . (2.17)

Curiously, for the matrix in Eq. (2.17), we can provide eigenvalues explicitly.

P(λ) = |D(x0, E)− λ1| =

∣∣∣∣∣∣∣
 1− λ1 DH(x0)

DH(x0) λ


∣∣∣∣∣∣∣ (2.18)

along the last row (column), from right to left: the �rst term is (−1)2mλ(1 − λ)m; the

second term is DH(x0)m times the remaining determinant, which then is expanded by

the row, which contains only zeros except for one (possibly) nonzero entry of DH(x0)m,

obtaining −(−1)2mDH(x0)2(−1)2(m−1)(1− λ)m−1. The remaining terms are obtained in a

similar fashion. The result is

P(λ) = (1− λ)m−1
(
λ(1− λ)− |DH(x0)|2) (2.19)

In particular, the coe�cient of λ0 is the determinant |D(x0, E)| = −|DH(x0)|2, which can

be read o� the Eq. (2.19).

2.5.2 Projection TM→ TS, general and symplectic case.

In the preceding section we have described several techniques of how to manipulate projec-

tion operators to obtain di�erent coordinate representations of a point in the phase space.
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Commonly it is also necessary to control the projections of in�nitesimal displacements from

a given point in the phase space. It is necessary to know what controls projections of tangent

spaces TM→ TS. This projection involves reduction of matrices, from n×n in the original

phase space TM ∼ Rn to (n − 1) × (n − 1) in the reduced phase space TS ∼ Rn−1. How

to project the Jacobian J of the �ow to the surface of section in the absence of any symme-

tries is pictorially explained in Figure 2.5.2. Because of symplectic symmetry, inherent to
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−→n = DΣ(Σ−1(0))

x(t)

x(t) + δx(t)

Jδx

x′

v′δt

Figure 2.1: Reduction of the Jacobian J(x, τ) to derivative of the map DFS(x). If x(t)
intersects the Poincaré section at x′ ∈ S at time τ , the nearby x(t) + δx(t) trajectory
intersects it time τ + δt later. As (−→n · v′δt) = −(−→n · J δx), the di�erence in arrival times
is given by δt = −(−→n · J δx)/(−→n · v′), and the projection of the Jacobian to the surface of
section is DFS(x0) ' J̃ij = Jij − v′i(−→n · J)j/(−→n · v′).

Hamiltonian systems, marginal eigenvalues always come in pairs. In many cases energy is

the only conserved quantity. Then we can reduce the phase space by restricting the �ow on

the energy shell and to SE ∼ Rn−2.

The derivative maps tangent spaces,DFS : TMx 7→ TMF (x,t), and if the �ow is generated

by a Hamiltonian, it additionally satis�es symplectic symmetry requirement Ω(DFS(x)ξ,DFS(x)ξ′) =

Ω(ξ, ξ′). In coordinates we obtain the relation

JI>J = I (2.20)

More generally, if (X,Ω) and (Y,Ξ) are symplectic vector spaces, a smooth map f : X 7→ Y

is called symplectic (canonical) if it preserves the symplectic (canonical) forms, that is, if

Ξ(Df(z) · z1,Df(z) · z2) = Ω(z1, z2)
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We will exploit this de�nition de�ne the surface of section manifold and to endow its tangent

space with the symplectic structure. The projection operator Π : V 7→ W , Π(v, w), v ∈
V, w ∈ V ∗

Π(u, v)x = x− 〈v, x〉u/〈v, u〉 (2.21)

or in matrix form it is

(P(u, v))ij = 1ij − uivj
〈v, u〉 (2.22)

We construct the derivative matrix of the induces �rst-return map. The normal vector

to the co-dimension-one surface of section is n(x), x ∈ S. The surface of section maps

x′ = FS(x). We denote derivative of the Hamiltonian as a vector by h(x) = dH(x), and

h = h(x), h′ = h(x′), and similarly v = v(x), v′ = v(x′). We also denote ñ(x) = In(x). We

construct the Jacobian as

J̃ = P(v(x′), n(x′))JP(In(x), Iv(x)) (2.23)

In practice, one constructs a local coordinate chart at each point on the S such that for

example at least locally S is de�ned by xm = 0. In that case the normal n(x)i = δim, and

the (In(x))i = δiσ(m), where σ(m) is the index of the canonically conjugate variable to xm.

J̃ij = Jij − v(x′)iJmj/v(x′)m − Jiσ(m)h(x)j/h(x)σ(m)

+v(x′)iJmσ(m)h(x)j/(v(x′)mh(x)σ(m)) (2.24)

One needs to take the square sub-matrix with rows and columns corresponding to indices

m and σ(m) excluded. The resulting matrix has a symplectic structure.

2.5.3 Non-transversal surfaces of section

In practice, now matter how hard we try to invent a suitable global surface of section S,
the phase space topology will not cooperate. Globally de�ned surfaces S will satisfy the

condition of non-transversality, de�ned by Eq. (2.25), somewhere. The Poicaré surface of

section is transversal only locally. Non-transversality may be invisible when applications call

for only a small number of periodic orbits. Whenever a large number of orbits is required,

the �defects� in S become a signi�cant nuisance.
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γ γ′
Σ

p1

p′
1

p′
2

Figure 2.2: Counting problem, caused by nontransversal intersections. Two loops γ and
γ′ are identical, but have di�erent number of intersections with the surface of section S.



Σ(x) = 0

H(x,E) = 0

DΣ(x) · v(x) = 0

(2.25)

Points where v(x) is parallel to Σ(x) are called tangential points. They are obtained by

solving Eq. (2.25). If this equation does not have a solution, the surface Σ(x) is globally

transversal to the �ow. Whenever dimS > 3, there are more independent variables than

there are equations and Eq. (2.25) may be expected to have a family of solutions.

Existence solutions to Eq. (2.25) results in discontinuous maps FS . This causes problem
predicting the number of intersections with S of a particular periodic orbit, bearing severe

consequences to the symbolic dynamics. This issue is illustrated in Figure 2.5.3

2.6 Methodology of computing periodic orbits

Successful implementation statistical approach to chaotic dynamical systems relies heavily

on the competency to compute periodic orbits.

Here we brie�y summarize our method of computing periodic as �xed points on the

surface of section. This methods re�nes multiple shooting algorithm, by combining it with

the local stable and unstable manifold information and symbolic dynamics. This method is
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suitable for searches of short and extremely long and complex orbits.

Fastest algorithms of periodic orbit searches utilize the Jacobian of the orbit de�ned

by Eq. (2.9). Whenever this matrix is evaluated at any point on the periodic orbit, one of

it's eigenvalues, related to indi�erence with respect to translation along the orbit, is equal to

one. Existence of such �marginal� eigenvalues is a cause of nuisance when applying numerical

methods.

The computational overhead, required for reducing the �ow to a map of S 7→ S and

to Eq. (2.4) pays o� here, because we have reduced the dimension of the map and explicitly

eliminated (two in Hamiltonian case) marginal eigenvalues. We can proceed with calculations

as if crossed-�elds problem was de�ned in terms of a symplectic map.

2.6.1 Newton's method and shooting algorithm

A primitive cycle of FS is a point x, such that

x
FS−−→ x

Newton's method is based on the linearization of the map FS(x) = x, assuming x0 is given

�close to x�, x ≈ FS(x0) +DFS(x0)(x−x0). This expression has the solution implicitly; the

explicit solution is obtained by converting this linearization into an iterative scheme:

x 7→ x− (DFS)−1(FS(x)− x) (2.26)

The longer cycles consist of a cyclic sequence of points on the surface, {xi}0≤i<N such that

x0
FS−−→ x1 x1

FS−−→ x2 . . . xN−1
FS−−→ x0 (2.27)

The shooting algorithm consists in applying the Newton's method to an equation F (x0, . . . , xN−1) = 0,

obtained by combining the entire itinerary and taking all intersection points as a set of in-

dependent variables x = (x0, . . . , xN−1):

F (x0, . . . , xN−1) = (FS(x0)− x1,FS(x1)− x2, . . . ,FS(xN−1)− x0) (2.28)
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The matrix of partial derivatives DF (x) has a block-cyclic form

DF (x) =



DFS(x0) −1

DFS(x1) −1

· · ·
−1 DFS(xn−1)


. (2.29)

By experimentation we have arrived at the conclusion that the topology of the phase spaces

and domains of convergence of Newton method are similar. In order to compute the correct

periodic orbits, it is necessary to be able to set initial guess within the boundaries of symbolic

partition. To provide such information it is necessary to know a priori approximate location

of orbits. The way out of this vicious circle is provided by synthetic longer orbits from stable

and unstable manifolds of shorter orbits.

2.7 Zero modes: the Maupertuis principle

The problem of elimination of marginal eigenvalues from the derivative matrix and corre-

sponding reduction from the phase space to tangent space transverse to the orbit is tightly

related to other problems in physics, such as �zero modes� in the �eld theory [89] and in

mechanics. We present an example of reduction in mechanics: the variational principle

to determine the shape of a trajectory of a mechanical system (the Maupertuis principle)

and the resulting equations, in which dimension has been reduced by one, eliminating the

tangential directions.

The cost function for a conservative mechanical system with Lagrangian L = v2/2 +

A(x)v−V (x) is I =
∫
γ |v|dl+

∫
γ A(x)dx, where dl =

√
dx2. The variational principle asserts

that I is stationary on a solution of Lagrange equations of motion (AKA �true paths�).

The �rst variation is δI =
∫
γ

[
∂|v|
∂x − d

dl (|v|τ̂ )
]
δxdl +

∫
γ(δAdx− dAδx) , which yields

∂|v|
∂x
− d

dl
(τ̂ |v|) + F τ̂ = 0 . (2.30)

The equation (2.30) is used to obtain variational equations for trajectory. Assuming that

trajectory is parameterized in some independent parameter σ, we can write it as

δ

∫ σ1

σ0

T (x(σ))s(x′(σ))dσ + δ

∫ σ1

σ0

A(x(σ)x′(σ)dσ = 0

25



Without independent parameterization:

0 =
∫
∇Tdlδx+

∫
T

(dxdδx)
dl

.

Second term is integrated by parts to obtain

∇T − d

dl
(T τ̂ ) = 0 ,

where T (x) =
√

2(E − V (x)), s(x′) =
√∑

(x′)2 . Expanding the di�erentials one gets

∇T (x)(1− τ̂ τ̂ )− T dτ̂
dl

= 0

Integration by parts results in variational equation

∂T (x)
∂xi

s(x′)− d

dσ

(
T (x)

∂s(x′)
∂x′i

)
+
∑
j

(
∂Ai(x)
∂xj

− ∂Aj(x)
∂xi

)
x′j = 0

which we will use to determine trajectories between two given points. Note that the magnetic

term is x′jFji, and in the crossed �elds problem it is B(x′1x̂2 − x′2x̂1). Note that x′/s = τ̂

tangent vector to the trajectory, and s(x′)dσ =
√∑

(dx)2 = dl is the length element.

Dividing the above equation by s(x′), on obtains parameterization independent variational

equation

∇T (x)− d

dl
(T (x)τ̂ ) + τ̂ · F̂(x) = 0 (2.31)
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CHAPTER III

CROSSED FIELDS

This chapter provides preliminary investigations to subsequent Chapter 4 and Chapter 6.

Apart from introducing key equations, such as the Hamiltonian in Eq. (3.1), we will study

limits of strong �elds, perturbative regime, and the onset of chaos via geometric perturbation

theory (also called the Melnikov analysis).

3.1 Static properties of the phase space

3.1.1 Hamiltonian and the equations of motion

The crossed-�elds Hamiltonian (in atomic units) looks deceptively simple:

HB =
1
2

(px −By/2)2 +
1
2

(py +Bx/2)2 +
1
2
p2
z − 1/r + Fx, (3.1)

but comes with a bewildering wealth of dynamics (see Chapter 4). Commonly B = 1 scaling

is used, but we'll keep all three parameters (for discussion of scaling, see Appendix A.1).

Without loss of generality we may choose F > 0.

The equations of motion are obtained using standard Hamiltonian formalism and Eq. (3.1)

ẋ = px −By/2

ṗx = −x/r3 −Bpy/2−B2x/4− F

ẏ = py +Bx/2

ṗy = −y/r3 +Bpx/2−B2y/4

ż = pz

ṗz = −z/r3

(3.2)

Detailed analysis of the phase space dynamics will require knowledge of the behavior of a

distribution of trajectories, which locally is governed by the properties of the �rst variational
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equation:

dẋ = dpy − (B/2)dy

dṗx =
[
(3x2 − r2)/r5 −B2/4

]
dx+ (3xy/r5)dy − (B/2)dpy + (3xz/r5)dz

dẏ = (B/2)dy + dpy

dṗy = (3xy/r5)dx+ (B/2)dpx +
[
(3y2 − r2)/r5 − (B2/4)

]
dy + +(3xz/r5)dz

dż = dpz

dṗz = (3xz/r5)dx+ (3yz/r5)dy +
[
(3z2 − r2)/r5

]
dz

(3.3)

3.1.2 Time reversibility

Hamiltonian system are said to be time reversible if the symmetry operation

T (P1, . . . , PN , Q1, . . . , ON ) = (−P1, . . . ,−PN , Q1, . . . , QN ) (3.4)

leaves the Hamiltonian H(Q1, . . . , PN ) invariant and the equations of motion acquire an

overall sign change. Because the Hamiltonian of Eq. (3.1) has terms, that are linear in PiQj ,

and are not invariant with respect to symmetry operation T , this Hamiltonian is considered

as non time-reversible (see for example [65]). The equations of motion Eq. (3.2) maintain

their form if time direction is reversed together with the signs of y and px. We can show,

that there is a linear coordinate transformation (singular at B = 0), which transforms the

Hamiltonian of Eq. (3.1) into a Hamiltonian of Eq. (3.6), which is explicitly time reversible

in the new set of coordinates. The transformation

Q1 = (−py −Bx/2)/
√
B

P1 = (−px +By/2)/
√
B

Q2 = (py −Bx/2)/
√
B

P2 = (−px −By/2)/
√
B

Q3 = z

P3 = pz

(3.5)

has the following properties:

28



1. It is symplectic, i.e. it preserves the Poincaré invariant

∑
PidQi = pxdx+ pydy + pzdz .

2. The Hamiltonian, expressed in the new variables has momentum dependence in the

potential.

3. The Hamiltonian in new variables is �time-reversible� in the usual sense (of Eq. (3.4))

and in particular trajectories of have the symmetry of an oscillator T (qi, Pi) = (qi,−Pi)
in each degree-of-freedom.

The proof follows by construction. The new Hamiltonian in the new variables

H̃ =
1
2
[
B(P 2

1 +Q2
1) + P 2

3

]−√B/r̃ − 1
R2
F

√
B

(Q1 +Q2), (3.6)

where r̃2 = (P1 − P2)2 + (Q1 + Q2)2 + BQ2
3. Because r̃ is a homogeneous polynomial of

order two in momenta, the r̃ is T -invariant. All the remaining terms in Eq. (3.6) contain

only square terms of Pi, and therefore H̃ can be easily shown to be T -invariant.

3.1.3 Geometric parameters

In many instances it is worthwile to eliminate the original (F , E) parameters in favor of a

new set of parameters (s,µ) which may not be directly measurable, but are more convenient

for the analysis. In particular they scale as distance and therefore have a geometric inter-

pretation. We introduce s = F−1/2, and µ = −2/E, and assuming we are in the range of

E < 0; we require that µ > 0. An arti�cial singularity in the range of ultra-high energies,

E = 0 and higher, is not relevant because all the e�ects, attributed to chaotic dynamics are

present already at negative energies.

F = 1/s2 E = −2/µ (3.7)

The merits of geometric parameters will be used studying geometric constraints imposed by

the Hamiltonian on the phase space, and when studying the integrable and nearly integrable

limits.
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3.1.4 Boundaries in phase space

The Hamiltonian of the crossed-�elds problem (Eq. (3.1)) de�nes a one-parameter family of

5-dimensional invariant surfaces, parametrized by energy. For a �xed energy, this surface

de�nes a region of the phase space, that can be used to sample the trajectories, and that

can be reached, at least in principle by trajectories with a given energy. In the context of

lunar dynamics, three body and other celestial mechanics problems, this domain is usually

called the Hill's region. The boundary of this domain is called the zero velocity surface. Its

-2

-1

 0

 1

 2

-3 -2 -1  0  1
x

ρ

Figure 3.1: The zero velocity curve (see Eq. (3.9)) of the crossed-�elds Hamiltonian
of Eq. (3.1) for several energy parameters and �xed electric �eld parameter s = 2.2. Be-
cause of symmetry, px = y/2 and py = −x/2, the placeholder ρ may be replaced by any of
(y,z = 0), 2px. Several curves re�ect the setting studied in this thesis (s = 2.2, µ = 2.5,
black curve) and examples of critical energy (s = µ = 2.2, blue curve) and of a spatially
bounded setting with energy slightly (1%) below the critical value (s = 2.2, µ = 2.178, red
curve).

projection on the con�guration space (x, y, z) does not cover entire space. The boundaries

of this surface are de�ned by the zero velocity condition in Eq. (3.1), which has the form of

HB = v2/2 + pot. energy. In particular we solve

E = −1/r + Fx (3.8)
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The zero velocity curve has the explicit form

y2 + z2 = −x2 +
s4

(x+ 2s2/µ)2 , (3.9)

We have de�ned ρ =
√
y2 + z2 and plotted several representative curves with s = 2.5

in Figure 3.1.4. Depending on the value of s/µ, the phase space comprises two disjoint do-

mains (s/µ > 1), or one domain (s/µ ≤ 1) (see Figure 3.1.4). In the former case interesting

dynamics happens inside a closed volume which is approximately an ellipsoid of rotation,

centered at the origin with the major semi-axes

ax =
s2

µ

(
1−

√
1− µ2

s2

)
aρ =

µ

2

In the limit µ � s this volume approaches the sphere with radius R = µ/2. The open

volume consists of left half-plane, approximately, with a wall at x = −2s2/µ.

These volumes are separated by a boundary layer, with a width d ≈ 2s2

µ

√
1− µ2

s2
. When

s/µ < 1, the boundary layer vanishes, in a merging of the two domains. There opens a

channel between the two domains, of diameter roughly 2s2

µ

√
µ4

s4
− 1.

In the critical case (s/µ = 1) the domains just touch at a point. This point is actually a

dynamical equilibrium point, v = 0. Its linear stability is of type center-center-saddle. For

µ > s there is a Hopf cycle in the neighborhood of (x = − s2

µ , y = 0, z = 0). The critical

situation re�ects a pivotal situation, the corresponding energy is called the �Stark� (saddle

point) energy E = −2/µ = −2
√
F .

The system becomes open, making it possible for the body under investigation (electron)

to penetrate from nuclear to external region through a channel in a neighborhood of a saddle

point. The dynamics in this area is especially sensitive and complicated. In the context of

atomic physics this phenomenon models (chaotic) ionization. In a more general setting this

system is a suitable model to investigate problems of absolutely di�erent origins: chemical

reactions and astrodynamics for it is a minimalist model to capture complicated dynamics

of three degrees of freedom systems near saddles of potential energy surface.

One way to parametrize the hills region is to use a set of parameters (p, θ1, θ2,θ3,θ4),

where
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x(p) = p (3.10)

y(p, θ1) = ρ(p) cos θ1 (3.11)

z(p, θ1) = ρ(p) sin θ1 (3.12)

px(p, θ1, θ2, θ3) = ν(p, θ1) cos θ2 cos θ3 +By(p, θ1)/2 (3.13)

py(p, θ1, θ2, θ3) = ν(p, θ1) cos θ2 sin θ3 −Bp/2 (3.14)

pz(p, θ1, θ2, θ3) = ν(p, θ1) sin θ2 (3.15)

where ρ(p) and ν(p, θ1) are de�ned as:

ρ(p) = =
√
−p2 + s4/(p+ 2s2/µ)2 (3.16)

ν(p, θ1) =
√
E + 1/r(p)− p/s2 (3.17)

r(p) = =
√
ρ2(p) + p2 (3.18)

The parameter p ⊂ R spans the range of allowed values of the x coordinate (in fact p is

equal to x). The range is de�ned by requiring that the left-hand side of Equations (3.16)�

(3.18) be real. The remaining parameters are angular; the range of θ1 is a circle, θ1 ∈ S1;

the range of a pair θ2 and θ3 is a sphere, (θ2, θ3) ∈ S2.

3.2 Limits of strong �elds

The crossed-�elds scaled Hamiltonian has two parameters, s and E, and depending on their

magnitudes several limiting regimes are possible. Di�erent limits imply di�erent types of

qualitative dynamics. The limit of strong magnetic �eld corresponds to large s and, strong

electric �eld and strong Coulomb �eld. The �rst limit, of strong magnetic �eld occurs

when in�uence of potential is small, is realized for small electric �eld parameter and high

energy or large distance from the origin. The second - electric - limit occurs when electric

�eld parameter is large. The third - Coulomb - limit corresponds to low energy and �eld

parameter not too large. The phase space dynamics is qualitatively di�erent in each of these

limits. In the coulomb or electric �eld limits trajectory is concentrated in the core, near

origin of coordinates. Velocity exhibits very large �uctuations, when solution approaches
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singularity. In contrast, the magnetic �eld limit, forces solution to explore larger part of

con�guration space, not spending much time in the core.

3.2.1 Strong magnetic �eld limit

The qualitative behavior of trajectories can be roughly divided in two parts: magnetic

propagation in smooth potential and re�ection o� the hard wall. Given a particular small

neighborhood in con�guration space where third and higher derivatives of 1/r potential are

small, we expand this potential in power series and retain only the quadratic terms,

Any such trajectory in plane and most of trajectories in 3d will eventually hit the core

region. Owing to steep potential curve the motion may be approximated by an instantaneous

re�ection.

3.2.2 Zero magnetic �eld: Integrable limit

If a singular limit of magnetic �eld B = 0 in Eq. (3.1), the dynamics changes drastically.

The Hamiltonian looks similar,

The Stark Hamiltonian describes motion of a particle in coupled Coulomb potential and

linear homogeneous �elds. It is a zero magnetic �eld limit of Crossed Fields Hamiltonian

H =
1
2
(
y2

1 + y2
2 + y2

3

)− 1
r

+
x1

s2
= − 2

µ
. (3.19)

This Hamiltonian has only one length scale, which means that the only relevant parameter

is a ratio of length scales s and µ.

λ = s/µ (3.20)

Bounded solutions are only possible if energy is negative, which translates to µ > 0.

The semi-parabolic coordinates (ξ, η, φ) are introduced as a contact transformation,

x = (ξ2 − η2)/2, y = ξη cos(φ), z = ξη sin(φ)

x1 = x, X1 = px,

x2 = y, X2 = py,

x3 = z, X3 = pz.

and

y1 = η, Y1 = pη,

y2 = ξ, Y2 = pξ,

y3 = φ, Y3 = pφ,
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or, equivalently, via a generating function

W = p1(ξ2 − η2)/2 + pyξη cos(φ) + pzξη sin(φ) ,

leading to

Y1 =
∂W

∂y1
= X1y2 +X2y1 cos(y3) +X2y2 sin(y3)

Y2 =
∂W

∂y2
= −X1y1 +X2y1 cos(y3) +X2y2 sin(y3) (3.21)

Y3 =
∂W

∂y3
= X1y2 +X2y1 cos(y3) +X2y2 sin(y3) .

In this section we investigate limit when E = −2/µ and F = 1/s2 are held �xed and

B increases from zero to one. Limit when B = 0 describes separable Hamiltonian. We

investigate resonance conditions in the integrable limit and apply Poincaré theorem and its

generalizations [75, 76] to determine which D dimensional tori frequency lock in correspond-

ing resonance conditions and survive as D − 1 dimensional tori. We shall attempt to �nd

(numerical) solutions for nonzero magnetic �eld by continuation of unperturbed tori. Our

goal is to continue solutions to B = 1 limit.

3.2.3 Separating transformation, complete solution

Hamiltonian of Eq. (3.1) is separable in modi�ed parabolic coordinates

x1 = (ξ2
1 − ξ2

2)/2, x2 = ξ1ξ2 cos ξ3, x3 = ξ1ξ2 sin ξ3 . (3.22)

The system has Liouville form and its integration is standard, leading to equations

H̃ = 2r (H + 2/µ) + 2 = h1(ξ1, η1, η3) + h2(ξ2, η2, η3)

dt = (ξ2
1 + ξ2

2) dτ = 2r dτ ,

where

h1(ξ1, η1, η3) = η2
1
2 + η2

3

ξ21
+ 2ξ21

µ + ξ41
2s2

(3.23)

h2(ξ2, η2, η3) = η2
2
2 + η2

3

ξ22
+ 2ξ22

µ −
ξ42
2s2

, (3.24)

with constraint h1 + h2 = 2. Moreover, by requiring that η2
i ξ

2
i ≥ 0, we �nd additional

constraints h1 > 0, and h2 > 0. Hence 0 < hi < 2, but sharper constraints will be imposed
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as we examine the form of Eq. (3.23) and Eq. (3.24) more closely. We �nd it convenient to

introduce parameter −1 ≤ a ≤ 1.

1 + a = 2p1 = h1, 1− a = 2p2 = h2 .

The cyclic momentum η3 = const and we note that degree of freedom associated with

ξ3, η3 is rotational and doubly degenerate. The remaining degrees of freedom are oscillator-

like.

1
2

(
dξ1

dτ

)2

= h1 − η2
3

ξ2
1

− 2ξ2
1

µ
− ξ4

1

2s2
(3.25)

1
2

(
dξ2

dτ

)2

= h2 − η2
3

ξ2
2

− 2ξ2
2

µ
+

ξ4
2

2s2
. (3.26)

In particular, multiplying both sides of Eq. (3.25) by ξ2
1 and examining the right hand side,

one concludes that (ξ1, η1) is describe libration for all parameter values, whereas multipli-

cation of equation Eq. (3.26) by ξ2
2 and examination of its right hand side con�rms that

librational or rotational modes can be realized, much like in an inverted quartic potential.

To integrate Eq. (3.25), Eq. (3.26) we make the ansatz

ξ2
1 = P1 +A1x

2
1 , ξ2

2 = P2 +A2x
2
2 , (3.27)

and require that both x1(τ) and x2(τ) satisfy(
dxi
dτ

)2

= Ω2
i (1− (1 + k2

i )x
2
i + k2

i x
4
i ) (3.28)

Given form of equations motion in this form is standard form of Jacobi functions, hence the

solutions are

xi(τ) = cn(Ωi(τ − τi)|ki) (3.29)

(see [88] for a discussion of Jacobi elliptic functions from a dynamical systems point of view).

It is of interest to locate the separatrix of this system. The Hamiltonian h2(ξ2, η2) has two

heteroclinic points. In original cartesian coordinates there is only one homoclinic critical

point which is an image of the parabolic transformation of the two heteroclinic points of

h2(ξ2, η2). The transformation maps two points and their manifolds onto each other, which

is done by folding through a horizontal symmetry axis and twisting by π the (ξ2, η2) plane.
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The heteroclinic point can be detected by solving for ki = 1. Note that if ki = 1, then

x′i = Ωi|1 − x2
i |, and if x = 1 + ε, then ε′ = 2Ωi|ε|, which shows exponential convergence

from the left and exponential divergence from the right of critical point ε = 0. Another way

to look at it is to note that cn(t|1) = tanh t. Only k2 = 1 can be solved consistently with

other requirements.

Consistency conditions are then

P 3
1

2s2
+

2P 2
1

µ
− h1P1 + η2

3 = 0 ,
3P 2

1

s2
+

8P1

µ
− 2h1 = −A1Ω2

1

3P1

s2
+

4
µ

= Ω2
1(1 + k2

1) , A1 = −s2Ω2
1k

2
1 (3.30)

P 3
2

2s2
− 2P 2

2

µ
+ h2P2 − η2

3 = 0 ,
3P 2

2

s2
− 8P2

µ
+ 2h2 = A2Ω2

2

−3P2

s2
+

4
µ

= Ω2
2(1 + k2

2) , A2 = s2Ω2
2k

2
2 (3.31)

3.2.4 De�nition of hi and η3 in general case

The range of allowed free parameters will be determined. The parameters at our disposition

are h1, h2, η3, which so far are constrained only by trivial requirements, h1 > 0, h2 > 0,

h1 + h2 = 2. We will �nd sharper boundaries of parameter ranges. De�ne parameters

p1 = h1/2, p2 = h2/2, a = s/µ .

Two basic inequalities have to be considered.

The �rst inequality is

−η2
3 + h1x− 2x2/µ− x3/(2s2) > 0, x > 0 .

We �nd that there is one critical point,

xc1 =
4s2

3µ
(r+ − 1), r+ =

√
1 +

3p1

4a2
,

and substituting value of xc1 into inequality, we obtain the condition for η3,

0 ≤ η2
3 ≤

43s4

33µ3

(
1
2
− 3r2

+

2
+ r3

+

)
.
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The second inequality reads

−η2
3 + h2x− 2x2/µ+ x3/(2s2) > 0, x > 0 .

In this case we must enforce that two critical points exist,

xc± =
4s2

3µ
(1± r−), r− =

√
1− 3p2

4a2
,

which requires that r2
− > 0, that is,

p2 < 4a2/3 ,

and we �nd that

η2
3 ≤

43s4

33µ3

(
1
2
− 3r2

−
2

+ r3
−

)
, η2

3 ≥
43s4

33µ3

(
1
2
− 3r2

−
2
− r3
−

)
.

Combine them all to �nd that

32s4

27µ3
max (0, 1− 3r2

− − 2r3
−) ≤ η2

3 ≤
32s4

27µ3
min (1− 3r2

+ + 2r3
+, 1− 3r2

− + 2r3
−) .

The space of solutions for a �xed energy has two independent parameters. It is convenient

to take p1 and η3. The domain of de�nition is a simply connected, energy-dependent area

in the (p1, η3) plane.

3.2.5 Planar limit

Limiting case of η3 = 0 corresponds to planar problem, such that x3 = y3 ≡ 0.

x1 = (ξ2
1 − ξ2

2)/2, x2 = σx2ξ1ξ2 . (3.32)

We notice, that if we take only absolute value of x2, then parabolic transformation takes

care of a symmetry x2 → −x2. This symmetry is only exact in the integrable limit. When

B 6= 0, it is no longer a symmetry. The exact symmetry for B 6= 0 will be discussed below.

In the integrable limit usual time reversal symmetry is also present. Hence the symmetry

reduced domain is de�ned by (ξ1, |η1|, ξ2, |η2|).
The dynamics is de�ned by two separate Hamiltonians h1 and h2, which are of the form
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hi(ξi, ηi) =
η2
i

2
+ Vi(ξi)

where V1(ξ1) = 2ξ21
µ + ξ41

2s2
, V2(ξ2) = 2ξ22

µ −
ξ42
2s2

(see Figure 3.2.5). We also have that h1 = 1+a,

h2 = 1− a.
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Figure 3.2: Plots of potential in the planar limit, with s = 1, µ = 2.

In this situation both ξ1 ≥ 0 and ξ2 ≥ 0, can reach zero. Since A1 < 0, one is lead to

conclude that P1 > 0 and A1 = −P1. Similarly, A2 > 0, hence P2 = 0. From (3.30) with

de�nitions of (3.25) one �nds

P1 = 2sλ
(√

1 + p1/λ2 − 1
)
, Ω2

1 =
2P1

s2
+

4
µ
, k2

1 =
1
2

1
1 + 2sλ/P1

.

Introduce shorthand notation Γ1 =
√

1 + p1/λ2, then simpli�es to

P1 = 2sλ(Γ1 − 1), Ω2
1 =

4Γ1

µ
, k2

1 =
Γ1 − 1

2Γ1
. (3.33)

In the second case one has to solve equations

2h2

s2
= Ω4

2k
2
2,

4
µ

= Ω2
2(1 + k2

2) ,

which can be written in terms of

Γ2 =
√

1− p2/λ2

as

Ω2
2 =

2(1 + Γ2)
µ

, A2
2 = 2sλ(1− Γ2), k2

2 =
1− Γ2

1 + Γ2
. (3.34)
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A torus with frequency ratio r(a) = Ω2(a)/Ω1(a) can be found by solving r2(a) =

(1 + Γ2)/(2Γ1), which is an equation in interaction parameter λ and a only:

r2(a) =
√

2λ+
√

2λ2 + a− 1
2
√

2λ2 + a+ 1
. (3.35)

From this equation we obtain tight bounds for parameter a: a ≥ max (−1, 1− 2λ2), a ≤ 1,

i.e.

amin =

 1− 2λ2, λ ≤ 1

−1, λ ≥ 1
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Figure 3.3: Plots of frequency ratio r(a) = Ω2(a)/Ω1(a) versus a for an integrable limit of
planar crossed-�elds.

The border between the two regions is marked by parameters for which the systems

transitions from closed to open, s = µ, therefore it can be interpreted that higher energies

and more open system doesn't create new frequencies. We note that r2(amax) = λ/
√
λ2 + 1

and

r2(amin) =

 λ/2, λ ≤ 1

(1 +
√
λ2 − 1/λ )/2, λ ≥ 1

In particular we �nd that r(a) = γ only for 0.4133 < λ < 0.7639, where γ is golden

mean. We also �nd that limλ→∞ r(a) = 1.

Using this information we can select parameter values for which invariant torus is exactly

resonant.
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If λ = s/µ is large, system is closed and centered in the vicinity of the origin; in�uence

of the electric �eld is small and motion experiences predominantly forces arising from the

Coulomb potential. The motion in Coulomb potential is globally closed and degenerate,

therefore frequency ratio approaches r(a) = 1 for all parameter a values (see Figure 3.3).

The much richer dynamical picture can be expected to emerge when λ < 1 as frequency

ratio range is larger. In particular, golden mean torus exists only if 0.4133 < λ < 0.7639.

Value of λ = 1/2 is a good candidate for study. This problem has scaling invariance, such

that only the ratio of s/µ is relevant. Frequency ratios range between 1/2 ≤ Ω2(a)/Ω1(a) ≤
5−1/4 ≈ 0.66874.

3.2.6 Levi-Civita regularization

The Levi-Civita regularization procedure eliminates the singular behavior of Coulomb po-

tential by rescaling both time and coordinates (so-called �square root� transformation. See

Kustaanheimo-Stiefel transformation [72, 111] for generalizations to 3-dof and [6] for a spinor

formalism of Kustaanheimo-Stiefel transform).

If we rewrite the Hamiltonian of Eq. (3.1), with z ≡ 0, pz ≡ 0, and rede�ned y1 ≡ x,

y2 ≡ y, Y1 ≡ px, Y2 ≡ py, y ≡ [y1, y2]T, and �nally set B ≡ ε, we obtain

H =
1
2
(
(Y1 − εy2)2 + (Y2 + εy1)2

)− 1√
y2

1 + y2
2

+
y1

s2

=
1
2

(Y + εσy)2 − 1√
y2

1 + y2
2

+
y1

s2
(3.36)

where

σ =

 0 1

−1 0


A contact transformation

y =
1
2

Λ(z)z, Y = z−2Λ(z)Z, Λ(z) =

z1 −z2

z2 z1

 (3.37)

is called Levi-Civita transformation. The transformations Eq. (3.37) have the following nice
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properties:

dy = Λ(z)dz

Ydy = Zdz

Λ(z)ΛT (z) = z2

The reduction comprises change of variables by Eq. (3.37) and reparametrization of time

variable t 7→ τ by

dt = z2dτ . (3.38)

The regularized Hamiltonian is obtained using the usual procedure bring the Hamiltonian

into a regularized form

K(z,Z) = z2 (H + 2/µ) + 2 =
Z2

2
+

2z2

µ
+
z4

1 − z4
2

2s2
+
εz2(zσZ)

8
+
ε2z6

32
(3.39)

= K+(z1, Z1) +K−(z2, Z2) + εK1(z,Z) +O(ε2) . (3.40)

We have introduced new integrable HamiltoniansK± which can be parameterized by a single

parameter χ, measuring distance to the heteroclinic manifold of K−. Interior of the cavity,

bounded by the zero-velocity curve (see Figure 3.1.4, corresponds to χ > 0. Heteroclinic

motion corresponds to χ = 0.

K+(z1, Z1) =
Z2

1

2
+

2
µ
z2

1 +
z4

1

2s2
= 2(1− s2

µ2
(1− χ2)) (3.41)

K−(z2, Z2) =
Z2

2

2
+

2
µ
z2

2 −
z4

2

2s2
=

2s2

µ2
(1− χ2) (3.42)

z
(0)
1 = A1 cn (Ω1τ + c1|m1);

z
(0)
2 = A2 sn (Ω2τ + c2|m2), 0 < χ < 1,

z
(0)
2 = A′2/ sn (Ω2τ + c′2|m2), χ > 1.

where

A1 =

√
2s2

µ

(√
µ2

s2
+ χ2 − 1

)
, Ω1 =

√
2
µ

(√
µ2

s2
+ χ2 + 1

)
, m1 =

q
µ2

s2
+χ2−1q

µ2

s2
+χ2+1

A2 =
√

2s2(1−χ)
µ , Ω2 =

√
2(1+χ)
µ , m2 = 1−χ

1+χ

A′2 =
√

2s2(1+χ)
µ

(3.43)
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The perturbed equations of motion are

Ż1 = − 2z3
1

s2
− 4z1

µ
− ε(2z1(Zσz) + z2Z2)

2
− 6ε2z4z1

8
(3.44)

ż1 = Z1 − εz2z2

2
(3.45)

Ż2 =
2z3

2

s2
− 4z2

µ
− ε(2z2(Zσz)− z2Z1)

2
− 6ε2z4z2

8
(3.46)

ż2 = Z1 +
εz2z1

2
(3.47)

(3.48)

3.2.7 The perturbation of heteroclinic connection

The two equilibria are connected via invariant manifolds, forming the so-called heteroclinic

connection. The perturbation in the form of terms with pre-factor ε, destroy the connection.

The stable and unstable manifolds are structurally stable in the sense, that they persist the

perturbation. Their invariant character dictates, that if two such manifolds have a (trans-

verse) intersection point, they necessarily have an in�nity of them. The heteroclinic tangle

arising from this topological necessity, gives rise to the chaotic layer in the neighborhood of

manifolds. For small perturbations, the size of this layer maybe estimated, and the inter-

pretation in terms of the splitting of the separatrices maybe given. Such approach is called

a geometric perturbation theory, or the Melnikov method.

I shall treat the Hamiltonian H̃ perturbatively, disregarding the O(ε2) term completely

and assuming that initially 0 < χ � 1. The procedure will be equivalent to considering

motion on a projection of a phase space to (z2, Z2) and regarding K1 as a periodic forcing.

This method is in essence a reduction method. Expand Z = Z(0) +εZ(1) + . . . and substitute

into Hamilton equations, to obtain the equations of motion for Z(1). Looking only at a

subspace Z2 the resulting equations are equivalent to those obtained from one degree of

freedom Hamiltonian K− plus a Hamiltonian perturbation εK1. In this case rigorous proof

exist that a Z(0)
2 + εZ(1)

2 approximate the true solution uniformly during the time interval of

one traverse between heteroclinic points, which increases to in�nity as the initial parameters

approach the heteroclinic manifold. I exploit this fact and compute the change in K− during
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one traversal, i.e.

∆K−(Z(0))− =
∫ ∞
−∞

dK−(Z(0)(τ))
dτ

dτ (3.49)

Computation shows that

dK−
dτ

= ε[K−,K1] (3.50)

and therefore ∆K− ∼M(t, 0) whereM(t, 0) is a Melnikov function, a measure of splitting

of stable and unstable manifolds after perturbation. Relevant results of the Melnikov theory

carry onto this case, i.e. if M(t, 0) has only simple zeros for su�ciently small ε then stable

and unstable manifolds intersect transversally.

I parameterize the heteroclinic trajectory by θ re-scale the time once again Ω1dτ = dθ

introduce shorthand notation W = Ω2/Ω1 and introduce a free parameter φ = c2 − c1/W

(the second free parameter is �xed by choosing z2(θ = 0) to be a point in the middle between

the two equilibrium points).

z
(0)
1 (Ω1τ + c1) ≈ ζ1(θ) = A1 cn (θ + φ|m)

z
(0)
2 (Ω2τ + c2) ≈ ζ2(θ) = A2

(
(1 +

χ

2
) tanhWθ − χWθ

2
sech2Wθ

)

cn (u) =
2π√
mK

∞∑
n=1

qn−
1
2

1 + q2n−1
cos(2n− 1)

πu

2K

≡ 2π√
mK

∞∑
n=1

Cn cos(2n− 1)
πu

2K

cn3 (u) =
8π3

m
3
2K3

∞∑
n=1

Tn cos(2n− 1)
πu

2K

where q = exp (−πK′

K ), K andK ′ are complete elliptic integrals of �rst kind of arguments

m and 1−m respectively.

Then I substitute ζ1(θ) and ζ2(θ) in the [K−,K1] , and compute ∆K−. The result can

be put in a form

∆K−(φ) = a
∑∞

n=1Cn(δ) sin ((2n− 1)ω(δ)φ)(
−12xn(δ)

π + csch (πxn(δ)
2 )((x2

n(δ)− 2)(x2
n(δ) + 6)− 8π2(2+δ)

K2( δ
2+δ

)

Tn(δ)
Cn(δ)(x2

n(δ) + 6))
)
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Where δ = µ/s−1 > 0, xn(δ) = (2n−1)π
2K(δ/(2+δ)) , Tn, Cn(δ) = Tn,Cn(K(δ/(2+δ)),K ′(δ/(2+

δ))).

The fact that ∆K− was calculated in Z coordinates is not essential, by virtue of invari-

ance of Poisson brackets under canonical transformations. Therefore the same character of

splitting is expected in cartesian coordinates. The main di�erence is in terminology, namely

heteroclinic equilibria are by the coordinate transformation identi�ed, and heteroclinic man-

ifolds in Z is a homoclinic tangle in Y.

Analysis of terms in ∆K− shows that for a large range of values of δ zeros of ∆K− are only

those where sin (ω(δ)φ) = 0 and thatM ′φ 6= 0 at these points. Therefore stable and unstable

manifolds intersect transversally for su�ciently small ε. Since the system possesses scaling

property, discussed in the �rst chapter, I conclude that homoclinic tangle is transversal for

arbitrary values of ε. Numerical integration of stable and unstable manifolds backs up this

conclusion.

The action is

I+ =
∮
Zdz = 4s2a2

1b1

∫ K

0
sn2dn2du (3.51)

Since ∫ K

0
sn2 dn2 du =

(2k2 − 1)E + (1− k2)K
3k2

(3.52)

by substituting this expression and k1 = a1
b1
, we obtain

I+ = 4s2a2
1b1

(2k2
1 − 1)E1 + (1− k2

1)K1

3k2
1

(3.53)

For K− the solution splits according to the values of α2
−:

If U2 > 4/s2 which corresponds to energies below the equilibrium point energy, then for

4/s2 < α2
− < U2 we have two solutions. Solution, corresponding to the bound motion,

z(τ) = sa2 sn(b2τ + c2b|a2

b2
) (3.54)

along with conjugate momentum

Z2 = sa2b2 cn(b2τ + c2) dn(b2τ + c2) (3.55)
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a2 = s

√√√√√ 2
µ

1 +

√
1− α2

−µ
2

4



b2 = s

√√√√√ 2
µ

1−
√

1− α2
−µ

2

4



Which is seen to be periodic, with period

T− =
4K(a2

b2
)

b2
(3.56)

and solution, corresponding to the unbound motion

z(τ) =
sb2

sn(b2τ + c2u|a2
b2

)
(3.57)

If α2
− > U2, then the solution is .

If α2
− < 0 then .

The action is

I− =
∮
Zdz = 4s2a2

2b2

∫ K

0
cn2 dn2 du (3.58)

Since ∫ K

0
sn2 dn2 du =

(1 + k2)E − (1− k2)K
3k2

(3.59)

by substituting this expression and k2 = a2
b2
, we obtain

I− =
8s2U

3
b2

(
E − (U2 − α2

−)1/2

U
K
)

(3.60)

3.2.7.1 Perturbation analysis for orbits near homoclinic manifold

Let us investigate case of close to homoclinic trajectories. In connection with this introduce

the parameter χ, such that

1− α2
−µ

2

4
= χ2 (3.61)
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According to this de�nition the following parameters have values

1 +
α2

+µ
2

4
=
µ2

s2
+ χ2 (3.62)

a1 =

√√√√2s2

µ

(√
µ2

s2
+ χ2 − 1

)
(3.63)

b1 =

√√√√2s2

µ

(√
µ2

s2
+ χ2 + 1

)
(3.64)

a1

a2
=

µ− s
µ+ s

+ χ2 · ... (3.65)

a2 =

√
2s2(1− χ)

µ
(3.66)

b2 =

√
2s2(1 + χ)

µ
(3.67)

a2

b2
= 1− 2χ+ χ2 · ... (3.68)

(3.69)

In the light of the above expressions I will approximate functions z1(τ) and z2(τ) as

z1(τ) ∼
√√√√2s2

µ

(√
µ2

s2
+ χ2 − 1

)
cn


√√√√2s2

µ

(√
µ2

s2
+ χ2 + 1

)
τ + c1|µ− s

µ+ s


= A1 cn(Ω1τ + c1) (3.70)

dI−
dt

= − µ2

4s2χ

dI−
dχ

dK−
dτ

= −4µ
3χ

(
2s2

µ

)1/2
d

dχ

(√
1 + χ(E − χK)

) dK−
dτ

= 2µ
(

2s2

µ

)1/2
K√

1 + χ

dK−
dτ

(3.71)

dK−
dτ = ε

2

(
Z1Z2(z2

1 + 3z2
2)− 2Z2

2z1z2 + 4z31z2
µ + 4z1z32

µ − 2z31z
3
2

s2
− 2z1z52

s2

)
+ 6

8ε
2(z2

1 + z2
2)2z2Z2

= ε
2

(
1
3(z3

1z
′
2)′ + (z3

2z
′
1)′ + 16

µ (z1z
3
2 + 1

3z
3
1z2)− 2

3s2
z3

1z
3
2 − 4

s2
z1z

5
2 − 8s2(1−χ2)

µ2 z1z2

)
+6

8ε
2(z2

1 + z2
2)2z2Z2 (3.72)
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∫
1
3

(z3
1(τ)z′2(τ))′dτ = 0 (3.73)

∫
(z3

2(τ)z′1)′dτ = 2A1A
3
2Ω1(1 +

χ

2
)3 cn′(φ) (3.74)

Further integrations will be more convenient if there is a change of variables

Ω1dτ = dθ (3.75)

Ω1τ = θ − c2
Ω1

Ω2
(3.76)

ζ1(θ) = A1 cn(θ + φ) (3.77)

ζ2(θ) = A2

((
1 +

χ

2

)
tanh(Wθ)− χ

2
Wθ sech2(Wθ)

)
(3.78)

Here

W =

√√√√ 1 + χ√
µ2

s2
+ χ2 + 1

(3.79)

φ = c1 − c2

W
(3.80)

∫
dK−
dτ

dτ =
1

Ω1

∫
dK−
dτ

dθ =
ε

2Ω1

∫
dθζ1

(
−8s2ζ2

µ2
+

16ζ3
2

µ
− 4ζ5

2

s2

)
+

ε

2Ω1

∫
dθζ3

1

(
16ζ2

3µ
− 2ζ3

2

3s2

)
(3.81)

Let's integrate

∆I− =
∫

Γτ

dI−
dτ

dτ ∼ 2µK√√
µ2

s2
+ χ2 + 1

√
1 + χ

∫
Γθ

dK−
dτ

(θ)dθ (3.82)

The expression for dK−
dτ contains terms proportional to ε and terms proportional to

ε2. Consider the former group of terms. Among these, there are secular terms, terms

proportional to z1 and terms proportional to z3
1 .

For the terms proportional to z1 use the expansion of cosine amplitude cn in terms of

trigonometric cosines.
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cn(u) =
2π√
mK

∞∑
n=1

qn−
1
2

1 + q2n−1
cos(2n− 1)

πu

2K
(3.83)

Note that denominator of expansion is proportional to
√
mK, where m = µ−s

µ+s in the

case of consideration. Therefore K in the denominator of cn cancels K in the numerator of

dI−
dτ , leading to the �rst part of the integral

I1 =
2πµε

√
µ+s
µ−s√√

µ2

s2
+ χ2 + 1

√
1 + χ

∞∑
n=1

qn−
1
2

1 + q2n−1

∫
Γθ

dθ
∑
i

cos(ωn(θ + φ))fi(Wθ)

2πµε
√

µ+s
µ−s√√

µ2

s2
+ χ2 + 1

√
1 + χ

∞∑
n=1

qn−
1
2

1 + q2n−1

πs3
√
µ2 − s2

3µ3
sin(ωnφ) csch

πMn

2

(
−48 + 16M2

n + 4M4
n + χ(−45 + 16M2

n + 8M4
n)− πMnχ

2
coth

πMn

2
(−45 + 8M2

n + 2M4
n

))
(3.84)

πεs
7
2
√
µ+ s

3µ2

∞∑
n=1

qn−
1
2

1 + q2n−1
sin(ωnφ) csch

πMn

2
(−96 + 32M2

n + 8M4
n+

χ(−42 + 16M2
n + 12M4

n)− πMnχ coth
πMn

2
(−45 + 8M2

n + 2M4
n

))
(3.85)

(3.86)

Mn =
(2n− 1)π

2KW
(3.87)

z1(τ) ∼
√√√√2s2

µ

(√
µ2

s2
+ χ2 − 1

)
cn


√√√√2s2

µ

(√
µ2

s2
+ χ2 + 1

)
τ + c1|µ− s

µ+ s
+

χ2s

µ
(µ
s + 1

)2


= A1 cn(Ω1τ + c1)(3.88)

z2(τ) ∼
(

2s2(1− χ)
µ

)1/2

sn

((
2(1 + χ)

µ

)1/2

τ + c2|1− 2χ

)

∼
(

2s2(1− χ)
µ

)1/2 (
tanh(Θ) +

χ

2
(sinh(Θ) cosh(Θ)−Θ) sech2(Θ)

)
= A2

(
(1 +

χ

2
) tanh(Ω2τ + c2)− χ

2
(Ω2τ + c2) sech2(Ω2τ + c2)

)
(3.89)
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I1 =
∫
z1z2dτ ∼ 1

Ω1

∫ 4K−φ

−φ
ζ1(θ)ζ2(θ)dθ =

A1A2

Ω1

(
1 +

χ

2

)∫ 4K−φ

−φ
cn(θ + φ) tanh(Wθ)dθ

−A1A2Wχ

2Ω1

∫ 4K−φ

−φ
cn(θ + φ) sech2(Wθ) θ dθ(3.90)

Use the expansion for cn(u),

cn(u) =
2π
kK

∞∑
n=1

qn−
1
2

1 + q2n−1
cos(2n− 1)

πu

2K
(3.91)

And set

ωn =
(2n− 1)π

2K
(3.92)

Assume that φ ∼ K, then the following approximations hold:∫ ∞
−∞

cos(ωn(θ + φ)) tanh(Wθ) dθ = − π

W
csch

πωn
2W

sinωnφ (3.93)∫ ∞
−∞

cos(ωn(θ + φ)) sech(Wθ) θ dθ = − π

W 3

sin(ωnφ)
(
2W sinh πωn

2W − πωn cosh πωn
2W

)
cosh(πωnW )− 1

(3.94)

(3.95)

∆K− =
2
√

2επs
7
2 (µ+ s)

1
2

3K1µ
5
2

∞∑
n=1

sin(ωnφ) (

−3xnCn
2

+ π csch(
πxn

2
)
(
Cn(x2

n − 2)(x2
n + 6)− 8π2(1 + µ

s )
K2

1

Tn(x2
n + 6)

))
(3.96)

and solution, corresponding to the unbound motion

z(τ) =
sb2

sn(b2τ + c2u|a2
b2

)
(3.97)

3.3 Boundaries and nodes

We'll try to use a combination of manifolds, symmetry lines and �xed points to invent

invariant cells in the phase space, which are su�cient to cover the desired sub-domain of

the phase space, and which does not su�er from the discontinuity problem introduced by

tangencies.
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3.3.1 Symmetry lines

Since all Hamiltonian systems are time reversible in the sense, described in Section 3.1.2,

union of points in phase space, symmetric to themselves are called symmetry lines. They

play a role.

The symmetry lines as sections are not a good idea. The reason is that, the trajectories

don't have to respect the symmetry. And so there is no guarantee that all the relevant

trajectories will be captured. This thinking fails in most apparent way in the example of

stable and unstable manifolds of hyperbolic �xed points. In fact none of the manifolds can

be properly computed using symmetry line as a section condition.

3.3.2 Stable and unstable manifolds

Manifolds play a role of invariant lines, that cut across the phase space.

Manifolds are special in their predictive quality. We can them as guides to predict loca-

tions of �xed points. In fact our numerical procedures show that when using this information

can enhance convergence greatly.

3.4 Poincaré section(s)

The surface of section was designed in such a way, that this orbit should only intersect it

once, i.e. it is a primitive orbit of the Poincaré map. Orbit projections are called cycles. An

n-cycle has n intersections with the surface of section.

In order to capture details of trajectories, we need to capture each cyclotron oscillation

of the orbit. For that purpose we use use y component of velocity as section parameter. The

suitable canonical transformation is



x1 = 1√
2

(−x/2− py)− d0

p1
x = 1√

2
(−y + 3px/2)

y1 = 1√
2

(−3x/2 + py)

p1
y = 1√

2
(−y − px/2)

z1 = zs

p1
z = psz

(3.98)
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Figure 3.4: Tangecy and symmetry lines in planar crossed-�elds Hamiltonian.

Section is chosen

S : x1 = 0 (3.99)

and p1
x is eliminated using energy condition. Periodic orbits in 2d are important for under-

standing of 3d orbits. Periodic orbits in 2d can be derived from two (in�nite) prime series

of periodic orbits. Both series are σy symmetric. We'll de�ne each series by their in-plane

stability type: Even series - with hyperbolic, odd series - with elliptic in-plane stability.
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CHAPTER IV

PERIODIC ORBIT PARTITION OF THE PHASE SPACE OF THE

PLANAR CROSSED-FIELDS PROBLEM

In this chapter we discuss in detail the crossed-�elds Hamiltonian dynamics in 2-dof, which

is obtained by setting z(t = 0) = 0 and pz(t = 0) = 0 in Eq. (3.1) and Eq. (3.2). It

follows from Eq. (3.2) that ż = 0 and ṗz = 0, therefore z(t) ≡ 0 and pz(t) ≡ 0. The

trajectories are con�ned to move �in the plane� and we call this system the planar crossed-

�elds. One can drop from consideration both variables in Eq. (3.1), reducing the system to a

2-dof Hamiltonian. The surface of constant energy induces nontrivial topology, as described

in Section 3.1. Signi�cance of this problem was discussed in Section 1.1. A trace of a typical

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1
x

y

Figure 4.1: A chaotic trajectory in the crossed-�elds Hamiltonian. It enters the picture
from the top left corner and leaves it in the bottom left corner. Along its path transitions
between asymptotic and capture regimes are clearly visible.

�hypothetical particle�, in (x, y) projection, is shown in Figure 4.1. The particle enters the

region from the top left corner and leaves it in the bottom left corner of the plot. As its

evolution proceeds, various stages and �eld in�uences can be identi�ed. In the t→ ±∞ limit
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in�uence of the Coulomb potential vanishes, and dynamics is described by the magnetic �eld

limit, discussed in Chapter 3.

Once the particle approaches the (x = y = 0), in�uence of the Coulomb potential

increases, temporarily outbalances all the other �elds, gravitates the particle towards a

cavity-like opening in the phase space and forces it to make one full revolution around the

origin. At this point sensitivity to the initial conditions is so strong that a slight variation

in the initial conditions at the entrance may easily result in the particle making two or

more revolutions around the origin. Eventually the Coriolis force takes over, but before

leaving into asymptotic regime, there is an interesting long-lasting ��t� near (x, y) = (−2, 0)

(see Figure 4.1).

This example describes general phenomena of chaotic systems, which under various cir-

cumstances and context have di�erent physical interpretation, such as ionization in atoms (if

only half of the trajectory is considered), scattering, chemical reactions, capture of asteroids

etc.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-2.5 -2 -1.5 -1 -0.5  0

x

px

Figure 4.2: Stable and unstable manifold of a hyperbolic �xed point p(O0) (solid dot).
The other �xed point p(O1) is indicated by a hollow dot. Unstable manifold in red, stable
in blue. The discontinuities are caused by non-transversality of the surface of section.

The salient points are: a) The asymptote of the trajectory backward in time (t→ −∞)
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tends to (is attracted to) unstable manifold, while the asymptote of the trajectory forward

in time (t → ∞) is attracted to the unstable manifold of a periodic orbit O0. In between

the two asymptotic regimes, the path of the trajectory may look completely unpredictable,

and c) trajectories may get captured by hyperbolic (i.e. unstable) periodic orbits (the ��t�

just before the exit.)

The principal object, governing the asymptotic behavior, turns out to be a hyperbolic

periodic orbit O0 and its stable W s(O0) and unstable W u(O0) manifolds; it is also the same

orbit that traps the trajectory in the boundary of reactive region. The projections of stable

and unstable manifolds of O0 are shown in Figure 4.2. We will use the method of surface of

section to project and study the manifolds.

4.1 Dynamical modes in terms of periodic orbits

-2

-1

 0

 1

 2

-3 -2 -1  0  1
x

y

O0 O1

p(O0)

p(O1)

-2

-1

 0

 1

 2

-3 -2 -1  0  1
x

px

O0

O1

p(O0)
p(O1)

Figure 4.3: Projections of the two principal periodic orbits (O0 and O1), describing main
dynamical modes of reactive trajectories in the planar crossed-�elds problem. Points where
orbits intersect the surface of section S (Eq. (??)) are shown as p(O0) and p(O1). Note
that, the (x, px) projection of the zero velocity curve (black) does not form a boundary for
the trajectories.

The stable and unstable manifolds of p(O0) are shown in Figure 4.2. From this pic-

ture one can see that there should be another �xed point in between the two branches of

manifolds. And indeed there is a second periodic orbit O1 (corresponding �xed point p(O1)).
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p(O0)

p(O1)

pPIP

Wu(p(O0))

W s(p(O0))

p(O0)

p(O1)

pPIP

Wu(p(O0))

W s(p(O0))

Figure 4.4: A cartoon of the homoclinic tangle generated by the orbit O0. Shown are
half-branches of W s and W u which are relevant for the description of symbolic dynamics in
the tangle. As a �rst approximation to the strange attractor, we use the area S0 (shaded
area, right panel) between two branches of W s and W u, joining at the primary intersection
point pPIP. The strange attractor is contained within S0. p(O1) indicates location of the
second �xed point.

The hyperbolic orbit O0 can be interpreted as orbit, undecided between the repulsion of

electric and attraction of Coulomb forces. It is situated on top of a saddle point, originating

from an equilibrium point at the critical energy E = −2/s. More sophisticated partition

will be developed starting from these two orbits.

The intricate web formed by the manifolds W s and W u is called the homoclinic tangle.

The region of the phase space, a�ected by the intersections of W s and W u, is sometimes

called the �chaotic layer�. The size of the chaotic layer depends on the parameters of the

problem. It turns out that for our parameters, this layer is large, and therefore the impor-

tance of chaotic layer is relatively signi�cant (see Figure 4.2).

A simpli�ed cartoon of the homoclinic tangle is shown in the left panel of Figure 4.4.

It illustrates some basic ideas about the structure of the invariant set, which we are going

to construct using periodic orbits. As shown in the right panel of Figure 4.4, the starting

approximation to the invariant set is the entire domain bounded by branches ofW s andW u

between the �xed point p(O0) and the primary intersection point pPIP. Indeed, as shown

in the �rst image of this area in the left panel of Figure 4.5 there is resemblance with the
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p(O0)

p(O1)
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Wu(p(O0))
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Wu(p(O0))

W s(p(O0))

Figure 4.5: A cartoon, showing development of S0 (see Figure 4.4). In the left panel
superposed are S0 (cyan) and FS(S0) (brown). We can notice that the left corner of S0

starts to stretch, and the top right corner starts to fold. We can conclude that dynamics
of S0 displays �stretch-and-fold� dynamics, which are most salient features of the Smale
horseshoe. The right panel shows FS2(S0) (dark gray) superposed with FS(S0) and S0. We
can see that more complex structures emerge, suggesting that the actual orbital dynamics
is much more complicated that the Smale horseshoe. In fact we can identify regions in the
new lobe that will generate a complete Smale horseshoe (see left panel of Figure 4.6).

Smale horseshoe dynamics. We can identify regions of stretching along W u close to the

point p(O0) and region of folding, close to the point p(O1) and pPIP.

It is tempting to assume that a binary sequence could describe all trajectories. This

is not so. As we can see in the right panel of Figure 4.5, the second iterate introduces

another stretch-and-fold region, and complicate the structure of the invariant set. To prove

that binary symbolic dynamics is not su�cient to completely describe of the invariant set

I will demonstrate how to construct embedded, non-overlapping invariant sub-sets, each

corresponding to a binary symbolic dynamics.

In the left panel of Figure 4.6 the shaded square S maps to a dark strip by FS4. The

pre-images of the two strips, obtained by S ∩ FS4(S), intersect the dark strip. It can be

shown, that this is a generic mechanism of a Smale horseshoe. The entire attractor can be

obtained as an intersection of all images and all pre-images of the square S. In particular two

�xed points of FS4 exist and are located in the intersections of FS−4(S)∪S and FS4(S)∪S.
Our approach to constructing the attractor consists of tiling it with enough periodic
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p(O0)

pPIP

Wu(p(O0))

W s(p(O0))

Figure 4.6: Construction of an embedded Smale horseshoe usingW s andW u of p(O0). Left
panel shows cartoon, explaining the mechanism by which intersections ofW s andW u can be
used to identify location of the attractor. This information is very important from practical
point of view, when we need to supply initial conditions for periodic orbit search algorithm.
In the right panel, have shown calculation in the planar crossed-�elds problem, Dotted lines
are manifolds of p(O0) (W u red, W s blue) and two �elementary� orbits corresponding to
�stretching� (or �0�) and �folding� (or �1�) dynamical modes of the attractor.

orbits. If we can �nd all prime periodic orbits (�xed points) up to a given number of

repeats. While �nding simple orbits, such as the two aforementioned �xed points of FS4

is usually very easy in such low-dimensional systems, situation becomes signi�cantly more

complicated as longer and longer orbits have to be computed.

Together with two elementary �xed points (p0 and p1) we will use information about

their stable and unstable manifoldsW s orW u. Information about their linearization is con-

tained in eigenvalues of corresponding Jacobians DFS4(pi). We have found this information

su�cient to construct attractors to a high precision. Together with coordinates of �xed

points pi, we keep two vectors for each, vsi and v
u
i . Given two �primitive� �xed points and

two vectors for each p0 and p1, v
s
0, v

u
0 , v

s
1, v

u
1 , we construct approximation to p10 primitive

orbit by solving for the intersections W u(p0)∩W s(p1) and W u(p1)∩W s(p0) approximately.
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Figure 4.7: The imbedded strange attractor of the planar crossed-�elds problem, repre-
sented by its �xed points. All orbits with topological length have been found numerically.

Consider a set of equations for t0, t1, t
′
0, t
′
1.

p0 + t0v
u
0 = p1 + t1v

s
1

p0 + t′0v
s
0 = p1 + t′1v

u
1

(4.1)

They have a unique solution if vu0 ∧ vs1 6= 0 and vu0 ∧ vs1 6= 0 (i.e. they are not parallel.) The

two new points p′ = p0 + t0v
u
0 and p′′ = p0 + t′0v

s
0 can be used as input for the Newton's

method of iterations (see Eq. (2.29)) and as linking coordinates for longer orbits. Consider

an orbit

pi0i1...iN−1 ,

and construct a series of coordinates {qi0 , . . . , qiN−1} by the following prescription: For each

(cyclically continued if necessary) pair of adjacent im and im+1 do: if im = im+1, then

qim = pim . If im 6= im+1, then qim = pim + timv
u
im
, where tim solves Eq. (4.1).
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The results of a calculation are displayed in the right panel of Figure 4.7, where we have

zoomed in on a region of Figure 4.2, and isolated the two elementary �xed points, belonging

to one such (complete) horseshoe. All periodic orbits in this attractor with length of up to

10 intersections with the surface of section have been calculated. The intersection points

are displayed as dots in the Figure 4.7.

Figure 4.8: Embedded strange attractor with six symbol symbolic dynamics. Left panel:
primitive orbits. Right panel: all prime orbits with up to six intersections with S.

By the same argument, any lobe of a manifold, has in�nitely many intersections with

the branch of another manifold, and therefore, it is possible to construct an in�nity of such

horseshoes. The union of such sets, however, would strongly underestimate the size of the

chaotic attractor.

Therefore, we must consider, at least at this stage a union of all the domains. The

easy way is to simply gather all the prime periodic orbits, and assume that they generate

a n-nary horseshoe. The issue arises where to truncate such expansion, because we have

demonstrated, in principle, how to generate an in�nity of primitive �xed points.

As a test of these considerations, we have assembled a complex of six periodic orbits,

obtained from three horseshoes, generated following the above procedure. The orbits are

shown in the left panel of Figure 4.8. The left panel shows the new elementary orbits. The
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assumption is to describe a three-fold horseshoe-type attractor by means of periodic orbits

(�xed points). The result of such computation is shown on the right panel of Figure 4.8,

where all prime orbits with up to 6 symbols have been plotted. Our computations hint that

this set is also complete. We have found all NNN prime orbits with up to 6 symbols. Nor-

mally we would expect, that the denser the coverage, the better we can control information

about the phase space. Looking at the Figure 4.8, it is evident, that only a relatively small

fraction of phase space that we expect to partake in transport is covered by �xed point

�mesh�.

A0

A1

Figure 4.9: Focusing on attractor near elliptic orbit O1. The �gure covers the area marked
by a square in Figure 4.2. First we identify primitive orbits A0 and A1 (�xed points of
FS4) and use their manifolds to identify boundaries of this attractor and the elementary
cell (left panel, where �rst image and pre-image of the boundaries). Using methodology
discussed in this Chapter and Chapter 2, we compute all prime orbits up to 10 intersections
with S. Some orbits are pruned, which can be inferred by noticing, that image/pre-image
of manifolds does not completely subdivide the entire region (right panel).

A much better resolution can be achieved if a larger number of primitive �xed points is

included. Our method does not require to use any speci�c number of primitive �xed points,

and in this respect, it is universal. Results of a calculation, using 15 primitive �xed points,

is displayed in Figure 4.11.
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A0

A1

B0

B1

Figure 4.10: Focusing on attractor near elliptic orbit O1. Here, we build on results,
explained in Figure 4.9 by adding two more primitive orbits B0 and B1 (�xed points of
FS5. The e�ectiveness of methodology discussed in this Chapter and Chapter 2 is quite
apparent, because computing orbits of this, more complex attractor does not pose additional
complications.
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Figure 4.11: Finally, we combine all the orbits, that we consider primary, such as 15 orbits
shown in the bottom panel, together with boundaries of corresponding strange attractors into
one attractor (see the bottom panel), and compute periodic orbits with up to 3 intersections
with S, shown in the top panel.
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CHAPTER V

NORMALLY HYPERBOLIC INVARIANT MANIFOLDS

In Chapter 4, a physical problem of ionization in atoms motivated a study of periodic orbits

and how the �ne details of trajectories in phase spaceM can be described by partitioning it

in terms of periodic orbits. In this sense, periodic orbits were considered as building blocks,

or nonlinear modes for qualitative and quantitative description of the physical problem.

Motivated by extension of this problem to the 3-dof setting, we have noticed, that these

concepts may be extended to include description of higher dimensional Hamiltonian systems,

but the dynamical invariants, building the core of dynamics are no longer periodic orbits,

but higher dimensional normally hyperbolic structures.

We will present some general and original remarks, and in Section 5.3 we present a

detailed method to compute a particular family of invariant curves, corresponding to 2-

dimensional tori in 3-dof Hamiltonian systems. The results were applied to study of trapping

in molecules, presented in Chapter 7.

As it was shown, the typical scattering and ionizing trajectories are attracted to the un-

stable manifold (W u) of this periodic orbit. It was shown that stable (W s(p)) and unstable

(W u(p)) manifolds of a particular hyperbolic periodic orbit (p) intersect, and their inter-

sections generate the strange attractor, and strange attractors are dense with �xed points

(periodic orbits). Such periodic orbits can be used to quantitatively predict statistical av-

erages of resonant, i.e. dissipative states via usage of formalism, outlined in Chapter 1.

In this way, we have outlined our main guidelines of studying chaotic systems: funda-

mental orbits describe coarse features of dynamics, generate relevant attractors, lastly, the

attractors are described by (derivative) periodic orbits.

It was of paramount importance, that the manifolds intersect,

W u(p) ∩W s(p) 6= ∅

In Chapter 4 we studied problems re�ect general situation in 2-dof Hamiltonian systems
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(constrained to energy shell), where hyperbolic periodic orbits generate stable and unstable

manifolds, with dimW s = 2 and dimW u = 2. Since the �ow is constrained to the 3

dimensional energy shellME , locally the dimension of intersection is 1 (one), by formula:

dim (W s ∪W u) = dimW s + dimW u − dimME (5.1)

In addition, the periodic orbit is a closed curve, the �ow is continuous, therefore the in-

tersection is a closed curve as well. Indeed, topological identity of intersection is a very

important criterion in determining some very basic features of attractors. In a sense, if

the manifolds of an invariant structure (e.g. periodic orbit) intersection is the structure of

the same topology, we can expect, that there is a strange attractor, �lled densely with the

structures of the same dimension. In other words, in order to generate new periodic orbits,

it is necessary that intersection of stable and unstable manifolds has the same dimension as

the orbit.

The same argument is valid for projection of the �ow on the surface of section, the

periodic orbit replaced by a �xed point.

in fact what we need is

dim (W u(p) ∩W s(p)) = dim(p) (5.2)

for it to be able to generate chaotic attractors.

A question arises naturally, what happens when the system hasN ≥ 3 degrees of freedom.

We study some aspects of this problem, restricting to N = 3 and to dynamics, generated

by saddle points of speci�c type. This study is motivated by multiple applications, and is

directly related to extension of the crossed-�elds problem into full three degrees of freedom,

and apply the results to a problem of trapping in molecules in Chapter 7.

The general issue of symbolic dynamics in high dimensional dynamical systems is no-

toriously complicated, even more so when the dynamical system is Hamiltonian, and way

exceeds time limits assigned to this work.

One interesting issue is the metric dimension of the attractor. Usually the rule of thumb

is used, that the metric dimension is equal to dimW u + 1. In practice, quite often the
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shortest chaotic orbits, dimW u is one or a very small number even in in�nite dimensional

systems, such as ones studied in the context of turbulence [48]. Whenever dimW u = 1, it is

considered that topological structure of an attractor is a set of embedded Smale horseshoes.

We are already familiar with this situation from Chapter 4.

5.1 Normal hyperbolicity

Let K be a compact set, invariant under a map FS , i.e.

FSK = K. (5.3)

We say that K is a hyperbolic set for FS if there is a continuous splitting TKS = V + + V −

of the tangent bundle restricted to K such that

(TFS)V − ⊂ V −, (TFS)V + = V + (invariance), (5.4)

where TFS |V ± is invertible and there are C > 0, θ > 1 with

max
x∈K
||TFS±n|V ±|| ≤ Cθ−n forn ≥ 0.

Analogous mathematical de�nitions exist for �ows and semi-�ows [62].

The set K is also allowed to contain isolated �xed points p1, . . . , pN ; we require that

each �xed point satisfy a hyperbolicity condition.

Unstable and stable manifolds of K are de�ned as forward and backward attractors in

the neighborhood of K:

V−x = {y ∈ S : d(FSny,FSnx) < R forn ≥ 0},

V+
x = {y0 ∈ S : ∃(yk)k≤0 withFSyk−1 = yk, and d(yk,FSkx) < R for k ≤ 0}

The manifolds V± are tangent at x to V ±x .

If F̃S is C1 close to FS , there is a unique map h : K 7→ S, such that F̃S ◦ h = h ◦ FS on

K. If F̃S is injective on K̃ = hK, then h is a homeomorphism and K̃ is a hyperbolic set for

F̃S . The stable and unstable manifolds of K̃ depend continuously on F̃S [62].

The above claim implies that V± depend continuously on x and V± depend continuously

on FS [99].

65



5.2 Normally hyperbolic manifolds

The �rst and simplest example of hyperbolic sets is provided by K comprising of a single

point � a hyperbolic �xed point p ∈ S � or a corresponding hyperbolic periodic orbit, when

S corresponds to a surface of section. Such orbits were studied in Chapter 4.

A di�erent example, to continue with the Hamiltonian setting, is provided by the nor-

mally hyperbolic invariant tori, informally also called lower dimensional tori. In d-dof Hamil-

tonian systems, invariant tori KH are of dimension dim (TH) ≤ d. The tori with maximal

allowed dimension d (called Lagrangian tori) cannot have hyperbolic normal stability; this

property is enforced by the global symplectic symmetry. Tori TH with dim (TH) < d, how-

ever, can. Such tori in d = 2 systems are trivially identical to periodic orbits. The �rst

nontrivial examples can be found in practice when d = 3 (see Chapter 7).

Both these examples have in common that for any x ∈ K, FSnx for n ≥ 0 will cover

entire K. Whenever the internal dynamics on K is continuous, we can construct methods to

compute K numerically, similar to the Newton method used to search for periodic orbits; a

somewhat more complicated issue of invariant curves is discussed in Section 5.3. The essence

of the former method is in �tting the parametrization of the curve so that the internal

dynamics on K becomes a rigid rotation r on the circle. This is achieved by requiring that

the following invariance condition holds:

FSK = K ◦ r (5.5)

More complicated situation arises when discussing complex saddle in Chapter 6.

Particular cases, of a known internal dynamics have been used previously. We have

implemented, and used this method extensively in this work, to compute projections of two

dimensional tori. However, this method is much too restrictive. The point of the matter is

that as far as dynamics on the manifold K is concerned, there is no reason to expect global

structural stability, or knowledge-ability of internal dynamics of a given �ow and given phase

space.

However, the manifold as a set can be expected to be robust, and what is especially im-

portant, it's stable and unstable manifolds are like that, too, as was mentioned in Section 5.1.
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I am not aware of constructive methods to solve (numerically) for K in general Eq. (5.3).

The following section provides some ideas, but they are still on the conceptual level. They

have not been tested or even implemented in this work.

The less complicated, than Eq. (5.3), is the situation that we will study in great detail

in this chapter. It is concerned with properties of a normally hyperbolic set K satisfying

the equation

The problem with the above approach is that internal dynamics on invariant surfaces

is structurally unstable, and internal invariant structures are subject to metamorphoses as

described by the KAM theory. The structural fragility is manifested in our work through

problems of convergence of loops, and consequentially gaps in bifurcation diagrams. We may

expect that the surface, produced by the union of all tori we have found, and some kind of

interpolated surface in the gaps is an invariant surface in itself. Only because we have a

wrong expectations for the parameterization of the curve (= internal dynamics), there are

gaps. Therefore a method, not relying on internal parameterization is desirable.

The loop has a well de�ned tangent vector at each point. The tangent space is one

dimensional, it is spanned by the tangent vector. The tangent vector of an invariant loop is

mapped by the dynamics into a tangent vector (up to a normalization factor). This can be

easily shown by considering tangent vector as di�erence limit (derivative of the coordinate

with respect to the arc length along the loop).

Mappings of tangent vector and the loop are governed by the equation

x 7→ FS(x) (5.6)

τ(x) 7→ DFS(x)τ (5.7)

When a discretization of the loop is considered, the loop is represented by an ordered

set of phase space points, assuming cyclic order:

{xi, i = 0, . . . , N − 1} (5.8)

The loop is assumed smooth, so that interpolation between points is e�ective. For the sake
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of interpolation it can be considered that

x0 = xN (5.9)

The normalized tangent at each point is a nonlinear function of the loop

τi = τ(xi) = D({x}; i) (5.10)

For an example, we can use forward or symmetric approximations,

τ(xi) =
xi+1 − xi
|xi+1 − xi| (5.11)

τ(xi) =
xi+1 − xi−1

|xi+1 − xi−1| (5.12)

The equation we are going to consider can be interpreted that: tangent space must map

correctly, i.e. map of the tangent space is �parallel� to the tangent space of the map. The

resulting equation for a one dimensional loop reads as:

τ(FS(x))− λ(x)DFS(x)τ(x) = 0 (5.13)

The Jacobian in general does not preserve the length of the vector, therefore a normalization

factor λ is required.

5.3 Invariant curves

We describe a method to compute two dimensional tori of the �ow, by computing numerically

closed invariant curves (loops) on the corresponding surface of section. This method for maps

was described in [66].

We compute the invariant curves and their spectrum. Furthermore, the corresponding

eigendirections are the �rst order approximation to the invariant manifolds (stable, unstable

and central) near the curve.

This method is a concrete implementation of Eq. (5.5), namely computation of embedded

invariant curves, for which the internal dynamics (dynamics on the surface) is known. When

a �ow is reduced to the Poincaré map FS on the surface of section M, and the derivative

of the map is obtained using formulas in Chapter 2, this method allows to compute 2-

dimensional invariant tori in a 3-dof Hamiltonian system. Note that normally hyperbolic
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tori can also be computed, the structure which is omnipresent in high-dimensional chaotic

Hamiltonian �ows, but whose detailed study has been hindered by technical di�culties [104].

We guess the type of internal dynamics to be a rotation, and attempt to parameterize

the curve, respecting the internal dynamics. The curve will be parameterized as a mapping

x : T1 7→ S. In the numerical implementation we take torus to have length l(T1) = 2 (yes,

two); this value was chosen in order to optimize formulas of our numerical method.

Let FS be a di�eomorphism of a domain S ⊂ Rn (n ≥ 2) into itself. Consider a dynamical

system

x̄ = FS(x) (5.14)

We will assume that this system has an invariant curve with an irrational rotation number

ω, and that there exists a (at least continuous) map x : T1 7→ Rn such that

FS(x(θ)) = x(θ + ω) for all θ ∈ T1. (5.15)

Denjoy's theorem [69, Chapter 12] states that a rotation number ω can be de�ned and that

γ can be parameterized so that r is a constant shift.

In what follows we will assume that we know the rotation number ω /∈ Q of the invariant

curve. Let C(T1,Rn) be the space of continuous functions from T1 in Rn, and let us de�ne

the linear map Tω : C(T1,Rn) 7→ C(T1,Rn) as the translation by ω, (Tωx)(θ) = x(θ + ω).

Let us de�ne F : C(T1,Rn) 7→ C(T1,Rn) as

F (x)(θ) = FS(x(θ))− (Tωx)(θ) ∀x ∈ C(T1,Rn) (5.16)

It is clear that zeros of F in C(T1,Rn) correspond to (continuous) invariant curves of rotation

number ω.

We de�ne the operator Tω : ψ(θ) ∈ C(T1,Rn) 7→ ψ(θ+ω) ∈ C(T1,Rn) and let us consider

now the following generalized eigenvalue problem: to look for pairs (λ, ψ) ∈ C × (C(T1,Rn)

{0}) such that

DFS(x)(θ)ψ(θ) = λTωψ(θ), (5.17)

where DFS(x) is a di�erential of the map FS at point x ∈ S. In what follows we will assume,

without explicit mention, that ω /∈ Q (the case when ω ∈ Q can be reduced to constant
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coe�cients by iterating the system a suitable number of times), and we will denote by ′ the
derivative with respect to θ.

Let FS be independent on θ explicitly in the generalized eigenvalue problem of Eq. (5.17).

Then, 1 is an eigenvalue of Eq. (5.17); the corresponding eigenfunction is x′(θ). This is shown
by di�erentiation of Eq. (5.15) with respect to θ.

Suppose that λ is an eigenvalue of Eq. (5.17). Then for any k ∈ Z, λ exp (ιkω) is also

an eigenvalue of Eq. (5.17). De�ne ψ̂(θ) = exp (−ιkθ)ψ(θ), then

A(θ)ψ̂(θ) = exp(−ιkθ)A(θ)ψ(θ) = λ exp (−ιkθ)ψ(θ + ω) = λ exp (ιkω)Tωψ̂(θ).

In particular, this shows that the closure of the set of eigenvalues of Eq. (5.17) is a union

of circles with the center at the origin. If the systems is autonomous, we have shown that

the closure of eigenvalues must contain the unit circle.

In dynamical systems literature, the eigenvalue problem Eq. (5.17) is frequently studied

under a guise of a dynamical system, called a skew product:
x̄ = A(θ)x

θ̄ = θ + ω

(5.18)

The skew product Eq. (5.18) is called reducible if there exists a (complex) change of variables

x = C(θ)y such that Eq. (5.18) becomes
ȳ = By

θ̄ = θ + ω

(5.19)

where B ≡ C−1(θ + ω)A(θ)C(θ) does not depend on θ. The dynamics of Eq. (5.19) can be

easily described by computing the eigenvalues of B. The reducibility of quasi-periodic linear

systems is a well known problem in dynamical systems [10, 32, 68, 33, 34, 67, 15].

Assume that Eq. (5.18) can be reduced to Eq. (5.19) by means of transformation x =

C(θ)y. One can prove then, that

(a) if λ is an eigenvalue of B, then λ is an eigenvalue of Eq. (5.18);

(b) if λ is an eigenvalue of Eq. (5.18), then there exists k ∈ Z such that λ exp (ιkω) is an

eigenvalue of B.
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Let us assume that λ is an eigenvalue of B, and let v be the corresponding eigenvector. Let

ψ(θ) = C(θ)v. Then

A(θ)ψ(θ) = A(θ)C(θ)v = C(θ + ω)Bv = λC(θ + ω)v = λψ(θ + ω) = λTωψ(θ)

Assume that λ is an eigenvalue of Eq. (5.17). Let ψ(θ) be the corresponding eigenfunction

and let us de�ne ϕ(θ) = C−1(θ)ψ(θ). Then,

Bϕ(θ) = BC−1(θ)ψ(θ) = C−1(θ+ω)A(θ)ψ(θ) = λC−1(θ+ω)ψ(θ+ω) = λC−1(θ)ψ(θ+ω) = λϕ(θ+ω).

Without loss of generality, we can suppose that B is diagonal, B = diag (λ1, . . . , λn). The

Jordan form case can be treated in a similar way. Let us expand ϕ(θ) in Fourier series,

ϕ(θ) =
∑
k∈Z

ϕ(k) exp (ιkθ) ϕ(k) ∈ Rn

One obtains

Bϕ(k) = λϕ(k) exp (ιkω)

As ϕ is not the zero function, there exists at least an index k0 such that ϕ(k0) 6= 0. Let

j0(1 ≤ j ≤ n) be a component of ϕ(k0) that is nonzero. Then, taking this component and

simplifying the values ϕ
(k0)
j0

one obtains

λj0 = λ exp (ιk0ω)

that implies that λ must be of form λj0 exp (−ιk0ω).

Two eigenvalues λ1 and λ2 are said to be ω-unrelated if and only if λ1 6= exp (ιkω)λ2,

∀k ∈ Z. Otherwise two such eigenvalues are called ω-related. In what follows, as the concrete

value of ω will be very clear from the context, we will simply use the words �unrelated� or

�related� to refer to ω-unrelated or ω-related eigenvalues.

Assume that there exist n unrelated eigenvalues λ1, . . . , λn for the eigenproblem Eq. (5.15).

Then equation Eq. (5.18) can be reduced to Eq. (5.19), where B = diag (λ1, . . . , λ2).

Let us call ψ1, . . . , ψn the corresponding (continuous) eigenfunctions, and let us de�ne n×
n matrix C(θ) = (ψ1, . . . , ψn)(θ). It can be shown that C(θ) de�nes a regular transformation

that casts Eq. (5.18) into Eq. (5.19) [66].
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From the above it follows that the generalized eigenvalue problem Eq. (5.17) cannot have

more than n unrelated eigenvalues.

The existence of at least n unrelated eigenvalues ensures the reducibility of the system,

and a reducible system cannot have more than n unrelated eigenvalues.

Therefore, for each set of n unrelated eigenvalues λ1, . . . , λn of Eq. (5.17), there ex-

its a linear transformation that brings the original system Eq. (5.18) into the reduced

form Eq. (5.19), where B = diag (λ1, . . . , λn). The modulus of these eigenvalues mea-

sures the hyperbolicity of the system and in can be immediately seen that the quantities

log |λj |, j = 1, . . . , n are the Lyapunov exponents of Eq. (5.15), so they are also the Lyapunov

exponents of Eq. (5.15). The argument of the eigenvalues measures the rotation around the

invariant curve and its value is de�ned except for multiples of ω.

5.4 Numerical implementation

We will summarize the method to solve numerically Eq. (5.15) for F = 0. Expand x(θ) in

real Fourier series,

x(θ) = a0 +
∑
k>0

(ak cosπkθ + bk sinπkθ) ak, bk ∈ Rn k ∈ N, (5.20)

with x(θ) a 2-periodic function, i.e., x(θ + 2) = x(θ).

Truncate the series Eq. (5.20) at a �xed value of N , and and try to determine (an

approximation to) the 2N + 1 unknown coe�cients a0, ak, and bk, 1 ≤ k ≤ N .

We construct the discretized version of the Eq. (5.15) as follows: �rst, select the mesh

of 2N + 1 points on T1 (throughout we assume that the length of T1is2)

θj =
2j

2N + 1
0 ≤ j ≤ 2N

Given Fourier coe�cients ak, bk, coordinates x(θj) can be expressed as linear functions of

the coe�cients ak, bk, i.e. x(θj) ≡ x({ak}, {bk}, j), given by the Eq. (5.20). Accordingly,

the FS(x(θj)), and the Eq. (5.15) can be considered a function of the coe�cients ak, bk:

Fj({ak}, {bk}, ω) = FS(x({ak}, {bk}, j))− x({ak}, {bk}, j + i(ω)) = 0 0 ≤ j ≤ N , (5.21)
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where i(ω) = (2N + 1)ω/2. The coe�cients ak, bk will be unknowns. They are obtained by

a discrete Fourier transform (DFT ), de�ned by

x̂k =
N∑
j=0

zj exp
(
−ιπjk

N

)
0 ≤ k ≤ 2N . (5.22)

The inverse DFT is de�ned by

zk =
1

2N + 1

2N∑
j=0

ŷj exp
(

+ι
πjk

N

)
0 ≤ k ≤ 2N (5.23)

The Fourier coe�cients are given by

a0 =
∫ 2

0
x(θ)dθ, aj =

∫ 2

0
x(θ) cos(πjθ)dθ, bj =

∫ 2

0
x(θ) sin(πjθ)dθ, j ≥ 1 . (5.24)

If only �rst N + 1 aj 's and N bj 's are non zero then discrete Fourier transform is equal

to the trigonometric expansion. Suppose we discretized the integrals in 2N + 1 points, by

taking θk = k/N , dθ = 1/N , xk = x(θk), then the coe�cients go to

a0 → 1
N

2N∑
k=0

xk, aj ± ιbj → 1
N

2N∑
k=0

xk exp
(
±ιπjk

N

)
, j ≥ 1

hence

a0 =
1
N
x̂0, aj = +

1
N
<(x̂j), bj = − 1

N
=(x̂j), j ≥ 1 (5.25)

where x̂j is the DFTof xk.

Each step of the Newton iteration provides corrections in terms of δak, δbk. Form

DFTcoe�cients

δx̂k =
√
n

2
(δak − ιδbk)

and perform inverse DFT . The result yk should be added to original xk.

To apply the Newton method to solve the equation FN = 0, we also need to compute

explicitly the di�erential of FN . This can be done by applying the chain rule to the process

used to compute FN .

Examining the spectrum of DFN , it is evident that in many cases, the union of all

eigenvalues comprises a set of circles. This is related to the reducibility of the curve.

To implement numerically results of the last section we need a procedure to approximate

the solutions of the generalized eigenvalue problem Eq. (5.17). To this end, we will derive
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a discrete version of this equation that will be represented by a large matrix. Then, we will

compute the eigenvalues and eigenvectors of this matrix by a standard numerical procedure.

Note that while an in�nite-dimensional operator does not need to have eigenvalues, a

�nite-dimensional matrix always has the same number of eigenvalues (counted with their

eigenvalues with their multiplicity) as the dimension. Then, in principle, it would be possible

for the approximate eigenvalues to have nothing to do with the true spectrum of the original

operator; this will be discussed in sections 3.2 and 5.

We approximate the solution by

Fj(a, b, ν) +
∂Fj
∂ak

δak +
∂Fj
∂bk

δbk +
∂Fj
∂ν

δν = 0 ,

where a, b, ν are some values, which are close to the solution, a+ δa, b+ δb, ν + δν.

5.4.1 Approximation of the linear operators

The idea is to derive �nite-dimensional approximations for the operators T−ω and A(θ), and

then to multiply the corresponding matrices.

5.4.1.1 Discretization of A(θ)

We recall that the matrix A(θ) is de�ned DFS(x(θ)), where x(θ) is a parameterization of the

invariant curve. For any φ(θ) ∈ C(T1,Rn), de�ne ψ(θ), to produce the Fourier coe�cients

of ψ(θ). As is usual in this context, we will compute and use a truncation of this matrix,

according to the truncation used for the Fourier series (see section 1.1).

The computation of the di�erential of the map Eq. (5.17) can be obtained by means of

the chain rule: if we denote by ak one of the Fourier coe�cients on xN , we have

∂[FS(x(θj))]
∂ak

= DFS(x(θ))
∂x(θ)
∂ak

(θj)

where DFS(p) is the Jacobian of FS at given point p ∈ Rn. Note that that DFS can be

easily computed and (we recall that ak corresponds to a cosine)

∂x(θ)
∂ak

(θj) = In cos (kθj)

where In is an identity n × n matrix. Similar formulae just with sin replacing cos for

coe�cients bk. From these formulae one can assemble the full derivative matrix of Eq. (5.17),
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the constituents are (2N + 1)2 blocks of n × n real matrices, which in turn are assembled

using formulae like just above.

The di�erential Eq. (5.20) is trivial, since the Fourier coe�cients depend linearly on the

values of the function. Finally, these two matrices are multiplied to produce the discretized

approximation to A(θ).

5.4.1.2 Discretization of Tω

The rotation θ 7→ θ+ω, when applied to real Fourier series, can be seen as rotations of angle

kω in each subspace {cos(kθ), sin(kθ)}. The matrix in this representation is block-diagonal,

with 2× 2 blocks of matrices of rotation by an angle kω.

De�ne

cij = cosπiθj = cos(πij/N), 0 ≤ i ≤ 2N, 1 ≤ j ≤ N

sij = sinπiθj = sin(πij/N), 0 ≤ i ≤ 2N, 1 ≤ j ≤ N

c̃ij = cosπi(θj + ω) = cos(πij/N + πiω), 0 ≤ i ≤ 2N, 1 ≤ j ≤ N

s̃ij = sinπi(θj + ω) = sin(πij/N + πiω), 0 ≤ i ≤ 2N, 1 ≤ j ≤ N

(5.26)

Note that c0k = c̃0k = 1 and s0k = s̃0k = 0. With this notation the structure of the

derivative matrix

DF =
(

(Ji − 1)/2, Jici1 − 1c̃i1, Jisi1 − 1s̃i1, . . . JiciN − 1c̃iN , JisiN − 1s̃iN

)
,

(5.27)

In order to be able to vary the rotation number ν, we need derivative ∂F (xi)
∂ν .

∂F (xi)
∂ν

= −∂x(θi + ν)
∂θ

= −π
n−1∑
j=1

(jbj cosπj(θi + ν)− jaj sinπj(θi + ν)) (5.28)

5.5 Accuracy of the eigenvalues

Let {λj}mj=1 be the eigenvalues of the m-dimensional discretization of T−ω ◦ A(θ), and

let {vj}mj=1 be the corresponding eigenvectors. To simplify the discussion, let us assume

that Eq. (5.17) is reducible, and let µ0 be one of the eigenvalues of the reduced matrix B.

Then, the operator T−ω ◦ A(θ) must have all the values µk ≡ exp (ιkω)(k ∈ Z) as eigenval-

ues. Of course, the discretized version of the operator only contains a �nite number of those
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values and, as is usual in these situations, not all of them have the same accuracy. The

reasons for these di�erences in precision will be made clear later on. Hence, the output of

the eigenvalue computation is a (�nite) sequence of approximated eigenvalues, with di�erent

errors, and without a priori knowledge of which eigenvalues are the most accurate. Let us

assume that ψ(θ) is an eigenfunction of eigenvalue λ. In the proof of proposition 2.2 we

have seen that exp (−ιkθ)ψ(θ) is also an eigenfunction of eigenvalue λ exp (ιkω). Moreover,

if ψ(θ) =
∑

j ψj exp (ιjθ), let us also assume that the norm

||ψ||(p) =
∑
j

|ψj ||j|p

is well de�ned form some p ∈ N. Norms like this are associated with function spaces with

di�erent degree of di�erentiability. The important point here is that these norms are easy

to compute if we know the Fourier coe�cients of ψ, and that they are unbounded when |k|
goes to in�nity. We will use this last property to detect the most accurate eigenfunctions.

The basic idea is the following: as we are truncating the Fourier series at a given order, say

N , the truncation error can be measured by

TE(ψ,N) =
∑
|j|>N

|ψj ||j|p. (5.29)

It is clear that if we consider an eigenfunction such as exp (−ιkθ)ψ(θ), expressions, such

as Eq. (5.29) can only be small for a reduced set of values of |k|. So , these eigenfunctions

can be better approximated by our discretization. Note that the eigenfunction that make

small TE(ψ,N), also make ||ψ||(p) small. Therefore, after computing the eigenvectors for

the discretized problem, we can compute the norms || · ||(p) for each of them and select those

with the smallest norm, since they should be the more accurate ones. In practice, we found

that norms with p = 1 are adequate for our purposes.

5.5.1 Hyperbolic directions

The hyperbolicity is easily seen since then eigenvalues of norm di�erent from 1 appear. Let

us focus �rst on the case in which there are eigenvalues with zero imaginary part. In this

situation, only one of the eigenvalues of each equivalence class is real. The corresponding
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(real) eigenfunctions span linear subspaces that are the stable or unstable manifolds of the

origin for the system Eq. (5.16). These subspaces are also the �rst-order approximation

to the invariant manifolds of the invariant curve whose normal behavior is represented by

Eq. (5.17).

The case in which system is hyperbolic but without real eigenvalues is a situation that

can appear in Hamiltonian systems with a complex saddle point. In this case the reduced

matrix has four distinct complex eigenvalues, λ, λ−1, λ̄, λ̄−1. So we have to pick out a

suitable value λ and test that the remaining three are also eigenvalues.

5.6 Notes concerning the implementation

With the previous de�nitions it is clear that if x(θ) is a Fourier series corresponding to

an invariant curve then, for any ϕ ∈ T1, y(θ) ≡ x(θ + ϕ) is a di�erent Fourier series

corresponding to the same invariant curve as x(θ). This implies that the di�erential of the

function F around the invariant curve will have, at least, a one-dimensional kernel. This

introduces numerical di�culties when solving the linear system that appears in the Newton

method. To solve this problem we use the Singular Value Decomposition.

A singularity appears as our approximation draws very close to a correct solution. There,

it doesn't matter that oscillation frequency was �xed. If all points on the loop were shifted

by the same (arbitrary) angular value, which induces (opposite) shift in Fourier coe�cient

pairs (ai, bi) - we would still have a perfectly valid solution. So it is important that the

matrix we're inverting approaches singularity. There is a cure, however - prescription called

SVD (Singular Value Decomposition.)

LAPACK SVD and C++ implementation SVD takes matrix A and (In LAPACK notation)

computes U , Σ and V , such that A = UΣV T, where (in case of square A) U and V

are orthogonal matrices, Σ is diagonal. Solution of linear set of equations Ax = b very

conveniently can be written as x = V Σ−1(UT · b).
Since C++ is our programming language of choice whereas LAPACK and BLAS libraries

are implemented in Fortran language, we have to take into account di�erences in matrix

storage: matrices in C++ column index runs �rst which is the opposite from Fortran - so if
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we give A to SVD solver in written in Fortran LAPACK, it will calculate SVD of AT and

return matrices,say Ũ , Ṽ and Σ. By quick inspection we can write the solution to the same

equation Ax = b in terms of what Fortran gave us: x = ŨTΣ−1(Ṽ · b).
We note that LAPACK software package [2, 90] has open source routines for solving

generalized eigenproblem Eq. (5.17). A few useful routines are listed in the table below

Routine Description

dgesv Generalized eigenvalue problem using LU decomposition

dgesdd Generalized eigenvalue problem using SVD

dgemv BLAS level 2, matrix-vector multiplication

5.7 Initial conditions

In Hamiltonian systems, tori come in families. If we de�ne γi(θ; p) = pvLi exp(ιθ) + z0, then

FS(γi(θ; p)) = γ(θ + ωi; p) +R(γ(θ; p)− z0) (5.30)

Existence of solutions in the full system is considered by the KAM theory.

Transport in nearly integrable Hamiltonian systems is believed to proceed along resonant

zones, or �Arnold web� [3, 113, 19, 77, 119]. Two-tori seem to be good candidates to form

a �backbone� of resonant zones, and two-tori with elliptic normal linear stability may be

sticky, following arguments along the same general lines as in the two-dimensional case.

Linear stability analysis implies the existence of two unit eigenvalues in the spectrum of

the loop: One eigenvalue is oriented along the tangent of the loop, and the second is the

symplectic conjugate of the �rst. Its existence implies continuous family of tori. More

detailed analysis shows that loops can be continued but only from one irrational rotation

number to another irrational. Each rational value of rotation number should destroy the

invariant curve. In many instances these details are minute and we are unable to resolve

them due to numerical errors. We have investigated the destruction of tori approaching

some rational numbers.

By construction the Jacobian matrix has two pairs of complex uni-modular eigenvalues,

(exp±ιω1,exp±ιω2). The inertial manifold is four dimensional, and each pair of the eigen-

values de�nes two invariant symplectic vector subspaces in the manifold, each of dimension
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two. They are skew orthogonal with respect to each other. The action of the Jacobian

induces rotations in these subspaces, with rotation numbers ω1, and ω2. We shall consider

action of the Jacobian matrix on a two dimensional symplectic (area preserving) vector

space. Action of the Jacobian is isomorphic to that of the rotation matrix

Rω =

cosω − sinω

sinω cosω

 , (5.31)

which has circles centered at the origin as invariant surfaces. The representation of the

Jacobian in particular coordinate system maps the circle into an ellipse. In general, a two

dimensional matrix J with determinant one, and eigenvalues exp±ιω in coordinates can be

written as

J =

cosω + q sinω −Q(1 + q2) sinω

sinω/Q cosω − q sinω

 (5.32)

As is it maps real plane into real plane, J : R2 7→ R2, but we can make it act on complex

vector space C , by identifying R2 with C . Any vector x can be written in arbitrary basis

{vi} as x =
∑

m vixm, where xm = 〈vm,x〉, where {vi} is a set of dual vector basis,

de�ned by 〈vi,vj〉 = δij . Suppose that {Vi} is a set of the right eigenvectors of J, and

{Vi} is a set of the left eigenvectors of J. Then, in general J =
∑

m λmVmVm, but we

apply it to R2, in which case we obtain J =
∑

mn RωmnVmVn. Assume that we have

a transformation, x 7→ ξ =
∑

iV
i〈Vi,x〉. We have, that ξi = 〈Vi,x〉. We also �nd that

ξ′i = 〈Vi,x′〉, and we �nd that ξ′i = Rωijξj , namely, that this is the transformation, that maps

the ellipse in the original coordinates into the �circle� coordinates, namely, we can �nd that

J induces a map on ξ, such that ξ 7→ Rωξ. The geometry of the ellipse can be determined as

follows. Find eigenvector of matrix J: V = λ[ι+ q,Q]T, where λ is arbitrary normalization

factor. The real and imaginary parts of V are by de�nition on the invariant ellipse. Take

λ = exp ιs, and de�ne V′(s) + ιV′′(s) = V(s), where V′(s) = [q cos s− sin s,Q cos s]T,

V′′(s) = [cos s+ q sin s,Q sin s]T, and look for extrema of these vectors with respect to s.

We �nd f(s) = |V′′|2 = (Q2 + q2) cos2 s + sin2 s + 2q sin s cos s, and |V′|2 = f(s + π/2),

and f(s + π) = f(s). We �nd fs(s) = (Q2 + q2 − 1) sin 2s + 2q cos 2s = 0, and tan 2s =

2q/[1−(Q2+q2)]. The major axes are found by substituting this solution into the expression
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for f(s).

In this way we can �nd good approximations to surface of section of an invariant 2-tori

and the rotation number can be estimated by calculating minimum of minω |FS(γ)(s) −
γ(s+ ω)|.

Consider a point x anywhere on the loop γ, and a point y on γ, close to x. The map

FS , maps them to points on the loop, x 7→ x′, y 7→ y′. Since y − x is assumed small,

y approximately maps to y′ ≈ x′ + J(x)(y − x), where J(x) = ∂FS(x)/∂x is the Jacobian

matrix at point x. By taking the limit y → x along the loop we conclude that tangent vector

τ(s) = dγ(s)/ds maps to τ(s) 7→ τ ′φs(s), and τ ′ = τ ◦ φ(s). The symplectic symmetry has

the property that there is a row vector, [τTI], that maps τ ′TIJ(x(s)) = (1/φs)τTI.

5.8 Constraints

To get rid of the explicit coordinate dependence, we'll implement invariant constraint, none

other than the action,
∮

p dq. In our considerations, phase space vector is stored in format

as x = (x0, x1, x2, x3, . . .) = (q0,p0,q1,p1, . . .), hence the invariance condition is

I =
∫ 2

0

f−1∑
α=0

x2α+1ẋ2αdθ = I0

We expand the variables in Fourier basis (see Eq. (5.20)) x(θ) =
∑
Aifi(θ), and ẋ(θ) =∑

Bifi(θ), where 〈fifj〉 = δijdj . Our choice of basis functions is,

f(θ) = (1/2, cos(πθ), sin(πθ), cos(2πθ), sin(2πθ), . . .)

, where A = (a0, a1, b1, a2, b2, . . .) and B = (0, b1π,−a1π, 2b2π,−2a2π, . . .), moreover d0 =

1/2 and d>0 = 1, and therefore

I =
∑
j

f−1∑
α=0

djA
2α+1
j B2α

j =
∑
j>0

f−1∑
α=0

πj
(
a2α+1
j b2αj − b2α+1

j a2α
j

)
If we wish to write down a mathematically sound formula, we can proceed by de�ning

a vector array αβ
j : αβ

j = (aβj , b
β
j ), or αj = (aj ,bj). Then the outer product of αα ∧ αβ is

what we need: αα
j ∧αβ

j = aαj b
β
j − bβj aαj . and we can write

I =
∑
j>0

f−1∑
α=0

πjα2α+1
j ∧α2α

j
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Something more ad-hoc can be used. For example, require the �rst �oscillatory pair�

(a1, b1) to have a prescribed value, namely E1(a, b) = (|a1|2 + |b1|2)/2 ≡ E. In this case

additional constraint is:

a1δa1 + b1δb1 + (|a1|2 + |b1|2)/2 = E

If we de�ne

āk = ak
√
n/2 = <(x̂k), b̄k = bk

√
n/2 = −=(x̂k)

and multiply the equation,

√
n

2
Fj(a, b, ν) +

∂Fj
∂ak

δāk +
∂Fj
∂bk

δb̄k +
√
n

2
∂Fj
∂ν

δν = 0

The Newton iteration is performed with a modi�cations in Jacobian

ā1δā1 + b̄1δb̄1 + (|ā1|2 + |b̄1|2)/2 = 4E/n

and

∂x(θi + ν)
∂θ

=
2π√
n

n−1∑
j=1

(
jb̄j cosπj(θi + ν)− jāj sinπj(θi + ν)

)
.
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CHAPTER VI

DYNAMICAL SKELETON OF A SADDLE IN CROSSED-FIELDS

PROBLEM

6.1 Transformations by Lie series and structure of the linearization

Perturbation analysis is done by through a generating function G(q, p), by applying

H ′ = exp [·, G]H = H + [H,G] +
1
2

[H, [H,G]] + . . . (6.1)

And to obtain the inverse transformation it's the same formula with −G instead of G.

To obtain analytic �rst correction to periodic point, we shift coordinate origin to saddle

point (−s, 0, 0, s/2, 0, 0) and expand Hamiltonian to third order:

H = −2/s+
(p1 − q2/2)2 + (p2 + q1/2)2 + p2

3

2

−3q2
1 − r2

2s2
− q1(5q2

1 − 3r2)
2s4

+ . . . (6.2)

There is one isolated equilibrium point, for E = −2/s, i.e. µ = s. This energy is called

�Stark� saddle point energy. This is the energy at which classical ionization becomes possible.

x = −s, y = z = px = 0, py = sB/2, pz = 0 (6.3)

If energy exceeds �Stark� saddle point energy (µ > s), the system becomes open, making it

possible for the escape from nuclear to external region through a channel in a neighborhood

of a saddle point. Dynamics in this area is especially sensitive to initial conditions and

hyperbolic. In the context of atomic physics this phenomenon models (chaotic) ionization.

In a more general setting this system is a suitable model to investigate problems of abso-

lutely di�erent origins: chemical reactions and astrodynamics for it is a minimalist model

to capture complicated dynamics of three degrees of freedom systems near partial saddle

points.

Eigenvalues of linearization Eq. (3.3) of Eq. (3.2) around the saddle point (6.3) show

that there is one pair of hyperbolic eigenvalues, ±λh (hence the name: saddle point), and
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two pairs of elliptic eigenvalues λL = ±ιωV , λL = ±ιωL). In the linearization, vertical

oscillations are decoupled from the horizontal oscillations. We obtain frequency of vertical

oscillations

ωV = s−3/2 (6.4)

For the remaining eigenvalues we solve eigenvalue equation, U1 (−B/2)1

(B/2)1 U2


 v

w

 = λ

 v

w

 (6.5)

Where

Ui =

 0 1

ui 0

 , u1 = 2ω2
V −B2/4, u2 = −ω2

V −B2/4. (6.6)

We have equations  U1v − (B/2)w = λv

U2w + (B/2)w = λw

Substituting second of these into the �rst, we obtain

(
U2U1 + (λ2 + (B2/4))1− λ(U1 + U2)

)
v = 0

which yields equation

(λ2 + 2ω2
V )(λ2 − ω2

V )− λ2(2ω2
V −B2) = 0

which expands into

λ4 + λ2(B2 − ω2
V )− 2ω2

V = 0 (6.7)

which yield two conjugate pairs of solutions. We �nd

ωL =


√

(B2 − ω2
V )2 + 8ω4

V +B2 − ω2
V

2


1/2

(6.8)

λh =


√

(B2 − ω2
V )2 + 8ω4

V − (B2 − ω2
V )

2


1/2

(6.9)

If magnetic �eld dominates, B/ωV � 1, frequencies are

ωL ∼
√
B2 − ω2

V , λh ∼
√

2ω2
V
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In the opposite limit, B → 0, we have

ωe ∼
√

2ω2
V , λh ∼

√
2ω2

V

The equilibrium is isolated, therefore generically crossed �elds Hamiltonian does not have

an equilibrium. The Stark equilibrium gives rise to a set of periodic orbits and normally

hyperbolic two dimensional tori.

6.2 The foliation of a saddle by invariant curves

In suitable coordinates, the Eq. (6.2) can be cast into form

H = H0 + λ0q0p0 +
ω1

2
(q2

1 + p2
1) +

ω2

2
(q2

2 + p2
2) + . . . (6.10)

Note, that the surface, de�ned by

ω1

2
(q2

1 + p2
1) +

ω2

2
(q2

2 + p2
2) = H −H0 (6.11)

is invariant (disregarding the higher terms in the expansion) under the dynamics. However,

any given point will not explore the entire surface. It is foliated by other dynamically

invariant structures � two dimensional tori: q2
i + p2

i = αi, and α1 + α2 = H −H0. �Poles�

at α1 = 0 or α2 = 0.

Such manifold is normally hypebolic. Its stable and unstable manifolds intersect and

branches of these manifolds form boundaries in phase space. It would be interesting to

investigate possibility to use such manifolds to partition the phase space, in analogy with the

periodic orbit partition, studied in Chapter 4. The role of periodic orbits would be replaced,

perhaps, by such structures, de�ned by Eq. (6.11). This remains a formidable task. We

have numerically investigated the foliation of this structure in invariant two dimensional

tori. For initial conditions, we have used high order (10 in action) numerical normal forms

using the Lie bracket formalism and and power series expansion of Hamiltonian of Eq. (3.1).

Then, to compute the actual tori, we have utilized methods to solve Eq. (5.5), described

in Chapter 5.
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Figure 6.1: Projections to the surface of section S of two dimensional tori of crossed-�elds
Hamiltonian in 3-dof setting. The projections of two dimensional tori are one dimensional
closed loops. Left panel: initial conditions, generated using high order normal forms via Lie
series. Right panel: results of application of methods, described in Chapter 5. Large gaps
are where the Newton method did not converge.
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CHAPTER VII

CHAOS IN THE OCS MOLECULE

Figure 7.1: Space �lling model of OCS molecule. In molecules, such as OCS energy �ows
unevenly, repeatedly going back and forth between trapping and roaming. We identify
bottlenecks between di�usive and chaotic behavior, and describe generic mechanisms of
these transitions, taking the carbonyl carb-sulph as a case study. The bottlenecks are found
to be lower-dimensional tori; their bifurcations and unstable manifolds govern the transition
mechanisms.

In this chapter we study capture of trajectories, associated to problems of anomalous

di�usion, and deviations of reaction rates from predictions of statistical (RRKM) theories

of uni-molecular reactions (see Section 1.2). The model of OCS molecule was chosen as

a Hamiltonian that displays generic properties of 3-dof Hamiltonian systems. As such it

displays features that can be found in atomic physics, molecular reactions, even dynamics

of solar system or galaxies.

After introducing the Hamiltonian, its symmetries and the surface of section, we will

study short periodic orbits. We will see that in order to explain the phenomenon of capture

(see Figure 7.3, Figure 7.3) we have to use concepts and methods of Chapter 5. We will

related this phenomenon to capture of trajectory in crossed-�elds problem, as displayed

in Figure 4.1, where a trajectory was captured by an unstable (hyperbolic) periodic orbit

O0. Here, in OCS molecule, we will show the relevant phase space structures are unstable

(normally hyperbolic) 2-dimensional invariant tori. Such tori are a new, little explored

concept in physics.
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7.1 The Hamiltonian model

The classical model of the planar (rotation-less) carbonyl sul�de OCS molecule has been

studied in details in Refs. [17, 25, 28, 26, 86]. The coordinates of this system are two inter-

atomic distances R1 = d(C, S), R2 = d(C,O), the bending angle of the molecule α = ÔCS,

and three momenta P1, P2, Pα which are canonically conjugate to R1, R2 and α, respectively

(see Figure 7.2). We note that the third inter-atomic distance R3 = d(O,S) is expressed

as a function of R1, R2 and α:

R3 =
(
R2

1 +R2
2 − 2R1R2 cosα

)1/2
.

The Hamiltonian for this system is

H(R1, R2, α, P1, P2, Pα) = T (R1, R2, α, P1, P2, Pα) + V (R1, R2, α), (7.1)

where T and V are kinetic and potential energies, respectively. The kinetic energy T has

the standard form of
P pi−→

2µi
. In intrinsic coordinates it is

T (R1, R2, α, P1, P2, Pα) =
µ1P

2
1

2
+
µ2P

2
2

2
+ P 2

α

(
µ1

2R2
1

+
µ2

2R2
2

− µ3 cosα
R1R2

)
+ µ3P1P2 cosα− µ3Pα sinα

(
P1

R2
+
P2

R1

)
(7.2)

where µi are the reduced masses. The analytic expression of the potential has been proposed

based on existing experimental data [39] and can be summarized as:

V (R1, R2, α) =
3∑
i=1

Vi(Ri) + VI(R1, R2, R3). (7.3)

where Vi(Ri) can be expressed in terms of Morse potentials

V M(R;β,R0) = (1− exp [−β(R−R0)])2 (7.4)

Vi(Ri) = DiV
M(Ri;βi, R0

i ) (7.5)

VI = P (R1, R2, R3)
3∏
i=1

(
1− tanh γi(Ri −R0

i )
)
, (7.6)
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Figure 7.2: Cartoon of the OCS and equipotential surfaces of the potential V given by
Eq (Eq. (7.3)) in the (R1, R2) plane.

The interaction potential VI is called the Sorbie-Murrell potential, and P (R1, R2, R3) is a

quartic polynomial in each of its variables. All the coe�cients of the potential are provided

in [17]. In particular, R0
i are the equilibrium distances of OCS in collinear (α = π) con-

�guration: R0
1 = 2.9508, R0

2 = 2.2030, R0
3 = R0

1 + R0
2 (in atomic units). Contours of the

potential V in collinear con�guration are shown in Figure 7.2.

As a dynamical system, we �rst de�ne the phase space,M⊂ R5×T,H(R1, P1, R2, P2, α, Pα)−
E = 0 parameterized by intrinsic coordinates x = (R1, P1, R2, P2, α, Pα) ∈M, (R1, P1, R2, P2, Pα) ∈
R5, α ∈ T. The dynamical evolution law is de�ned by the di�erential equations, that

the coordinates x satisfy. They are obtained using the standard Hamiltonian formalism

from Eq. (7.1)

dRi/dt = ∂H/∂Pi

dα/dt = ∂H/∂Pα

i = 1, 2,

dPi/dt = −∂H/∂Ri

dPα/dt = −∂H/∂α

Their explicit form is very complex and we will not write them out.

7.2 Discrete symmetries

The Hamiltonian of Eq. (7.1) has exact and approximate discrete symmetries. They can be

used to facilitate the analysis of the dynamics, in particular clarify the multiplicity numbers
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of orbits. The OCS Hamiltonian (Eq. (7.1)) is, quite simply �velocity square plus potential�,

and therefore it has high degree of symmetry, induced by the �time-reversibility�. We describe

the symmetry structure, exact and approximate, discussing separately angular and radial

components.

Periodic orbits that are related by any of the above symmetry operations or their com-

binations are physically indistinguishable because their projections onto con�guration space

are identical. It is important to account for only one periodic orbit per family of symmetries.

Its multiplicity is either 2 if the orbit is symmetric with respect to time reversal symmetry,

or 4 if it is not. In order not to over-count orbits it is important to work in an energy depen-

dent symmetry reduced cell of the surface of section, Ω(E) which guarantees, for instance,

that if two �xed points in the cell are distinct, they correspond to physically distinguishable

periodic orbits.

7.2.1 Angular symmetries

Time reversal symmetry, which in this case is triple (one in each degree of freedom), induces

point group C2v (�pmm� in crystallographic classi�cation) on intrinsic coordinates, which

act only on coordinates P1, P2, α and Pα, while R1 and R2 are left invariant. Elements of

C2v are e,σ1,σ2 and i, where elements of C2v are usually referred to as identity e, re�ection

σ1, re�ection σ2, inversion (rotation by 180 deg) i,

e(P1, P2, α, Pα) = (P1, P2, α, Pα) (7.7)

σ1(P1, P2, α, Pα) = (P1, P2, 2π − α,−Pα) (7.8)

σ2(P1, P2, α, Pα) = (−P1,−P2, 2π − α, Pα) (7.9)

i(P1, P2, α, Pα) = (−P1,−P2, α,−Pα) (7.10)

The group C2v has four elements: dim(C2v) = 4. The cyclic of its elements properties are:

e2 = i2 = σ2
1 = σ2

2 = e (7.11)

σ1σ2 = σ2σ1 = i. (7.12)
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We exploit the C2v symmetry group to count multiplicities of trajectories and to simplify

the dynamics by reducing it to a generating cell of the symmetry group.

7.2.2 Approximate radial symmetry

We discuss approximate symmetry arising from the form of potential energy, Eq. (7.3) gives

rise to approximate two-fold symmetry. Eq. (7.3) can be written in the form of

U = D1V
M(R1;β1, R

0
1) +D2V

M(R2;β2, R
0
2) + VI(R1, R2), (7.13)

Using D̄ = (D1 +D2)/2, and δD = (D2 −D1)/2, we can rewrite the potential as

U(R1, R2) = U0(R1, R2) + UI(R1, R2), (7.14)

U0(R1, R2) = D̄V M(R1;β1, R
0
1) (7.15)

where

U(R1, R2) = δD
(
V M(R2;β2, R

0
2)− V M(R1;β1, R

0
1)
)

+ VI(R1, R2), (7.16)

This partition is seemingly arti�cial, but there is something behind the scenes that it helps

capture: approximate symmetry. The non-vanishing di�erence δD = (D2 −D1)/2 and the

interaction potential VI destroys the exact symmetry, produced by the identical V M terms

in the �unperturbed� potential. We discuss this symmetry.

With respect to linear transformations

L(a, b)R = aR+ b, (7.17)

Morse potentials transform as

V M(L(a, b)R;α,R0) = V M(R; aα, (R0 − b)/α) (7.18)

Considering a transformation on the potentials of the form

T (R1, R2) = (L(a1, b1)R2, L(a2, b2)R1) (7.19)

We require that

U0(T (R1, R2)) = U0(R1, R2) (7.20)
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The requirement translates to a set of conditions on parameters

a2β2 = β1
R0

2−b2
a2

= R0
1

a1β1 = β2
R0

1−b1
a1

= R0
2

Proof of the consistency of the set of equations is the solution itself:

a1 = β2/β1 b1 = β1R0
1−β2R0

2
/β1

(7.21)

a2 = β1/β2 b2 = β2R0
2−β1R0

1
/β2

(7.22)

Using a single parameter p = β2/β1, the solution can be written as

a1 = p b1 = R0
1 − pR0

2 (7.23)

a2 = p−1 b2 = R0
2 − p−1R0

1 (7.24)

Two symmetry lines are obtained by solving L(a1, b1)R2 = R1 and L(a2, b2)R1 = R2. Two

equations describe the same line, the consistency is assured by the solution 7.23. In partic-

ular, we obtain the equation for this line

R2 =
β1

β2
(R1 −R0

1) +R0
2 (7.25)

In case of exact symmetry, the symmetry line would be a natural boundary of the

elementary cell of dynamics. All orbits could be classi�ed with respect to this symmetry as

having a symmetric partner, or being self symmetric, as usually. When we don't have the

exact symmetry the cell boundary argument is no longer valid, however, the orbits can still

be classi�ed in this way, in particular, with regards to their degeneracy.

7.2.3 Surface of section

A Poincaré (�rst return) map can be constructed as a map FS : S 7→ S, of the surface

of section manifold S ⊂ M which is a codimension-one sub-manifold of M . The choice of

surface of section is not unique, and the best choices should �capture all the features of the

dynamical system�, meaning that any trajectory should intersect the S.
Intuition tells us, that molecule in the energy range of interest oscillates about the

(α = π, Pα = 0) subspace. This subspace is an invariant 2-degree of freedom subspace.
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This case was studied elsewhere [28] and will be ignored in this work. Hence we can assume

that it is never satis�ed. Since the molecular motion in the (α, Pα) degree of freedom is

libration, all trajectories pass through the in�ection point (in the (α, Pα) projection), and

taking Pα = 0 will capture all the dynamics, except in the collinear sub-manifold.

We de�ned the Poincaré surface of section by Pα = 0, Ṗα > 0. The important case of

collinear OCS was studied elsewhere [28], therefore in this chapter we focus on three degrees

of freedom dynamics.

The projection of a generating cell onto surface of section can be de�ned by α ∈ (0, π],

P1 ≥ 0,P2 ∈ R, Pα = 0, Ṗα ≥ 0.

The method of surface of section transforms continuous time structures in six dimen-

sional phase space into lower dimensional structures. Apart from the collinear con�guration,

bending motion is oscillatory and any trajectory generically crosses zero bending velocity.

Therefore, by choosing Pα = 0 for a section condition we capture all the features of dynam-

ics. The angle of the section is a multi-valued function of the four remaining coordinates

and energy, α = α(R1, P1, R2, P2, Pα = 0, E). This multivaluedness can be eliminated by

�xing the elementary cell Ω(E). Thus we are left with a domain Ω(E) in a four dimensional

phase space.

In order to visualize what is happening in phase space, we consider two dimensional

projections of the Poincaré sections of the above trajectories, with a particular attention on

the transition region.

The surface of section S is de�ned as a codimension one section of the energy manifold,

such that the �ow is nowhere tangent to the section. In the case of planar OCS, this section

is four dimensional. A Poincaré (�rst return) map can be constructed as a map FS : S 7→ S.
The choice of surface of section is not unique, and the best choices should �capture all the

features of the dynamical system�, meaning that any trajectory should intersect S. Here,

intuition tells us that the molecule in the energy range of interest oscillates about the

(α = π, Pα = 0) subspace. In addition, we notice that this subspace is invariant [as well as

the subspace (α = 0, Pα = 0)]. The dynamics on this sub-manifold, called collinear OCS

(which entails a dynamics with two degrees of freedom), was extensively studied in Refs. [28].
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Since the molecular motion in the (α, Pα) degree of freedom is libration, all trajectories pass

through the in�ection point (in the (α, Pα) projection), and taking Pα = 0 will capture

all the dynamics, except in the collinear submanifold. We de�ned the Poincaré surface of

section by Pα = 0 with Ṗα > 0.

We choose a four dimensional parameterization of the surface of section S which consists

of R1, P1, R2 and P2. Since Pα = 0 on S, α = f(R1, P1, R2, P2, 0;E) is a solution of

H(R1, R2, α, P1, P2, 0)− E = 0, (7.26)

such that Ṗα > 0. We solve Eq. (7.26) numerically using a Newton's method. It should be

noted that if the Newton's map converges, it might not converge to a point on S. It remains

to be checked that Ṗα > 0 at this speci�c point. Due to the symmetries, if α is a solution

−α is a solution (on the surface Pα = 0). Then if the Newton's iteration ended on a point

α for which Ṗα < 0, then the correct point on S is the same one with −α instead.

7.3 Observations of trapping and transitions

The �stickiness� phenomenon in dynamical systems can only be caused by marginally stable

structures. In the context of this problem such structures are periodic orbits with completely

elliptic linear stability. If the state of a system corresponds to a trajectory, initiated exactly

on (very close to) a periodic orbit, the system will take forever (extremely long) to reach

equilibrium, since the energy will remain con�ned on (close to) the periodic orbit. Further

away, though, it is expected that, at least for a short time, the trajectory will mimic the

dynamics of the periodic orbit by continuity. After this trapping time, the trajectory might

explore a larger domain in phase space, turning chaotic. We focus on such trajectories.

The numerical experiment is conducted as follows: First, two short periodic orbits Oa and

Ob were selected , which satisfy the stability requirement in a given energy range. They

are displayed in Figure 7.9 and Figure 7.9. Then initial conditions are sampled from the

neighborhood of these orbits and trajectories that display trapping are investigated. The

neighborhoods were chosen large enough, so that the majority of trajectories were chaotic

from the start. Each trajectory was integrated for an interval of time, corresponding to

512 to 1024 intersections with the surface of section. For example if trajectory is initially
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near a �xed point corresponding to Oa at energy E = 0.09 and is integrated for 1042

intersections, the total integration time can be estimated, assuming that it takes about

T0 = 2622.68 a. u. = 0.0634 ps between consecutive points of intersection. Then we have

Ttotal ≈≈ 64 ps.
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Figure 7.3: Upper panel: Time-series of one component P1(t) of a trajectory which is
initially close to the periodic orbit Oa. The energy is E = 0.09 a. u.. Time t is plotted
in units of T0, the period of Oa (T0 = 0.063 ps = 2843.88 a. u.). The integration time is
approximately 512T0 = 34 ps. Lower panel: Ridges of the time-frequency decomposition of
P1(t). The frequencies of P1(t) are denoted ξP1 , and are represented in units of T−1

0 . The
gray band locates the transition region.

A �nite segment of any in�nite trajectory can be represented mapping its coordinates at

speci�ed instances of time ti. We found four methods of data representation useful. First

three are stroboscopic representations, the fourth is surface of section representation. We

assume that

Every representation contain the same information, but naturally emphasize

di�erent features of a given segment of trajectory.

The stroboscopic representations are useful to see the instantaneous frequencies of trajecto-

ries (see time-frequency method below) and are concerned with representing trajectory data
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Figure 7.4: Upper panel: Time-series of one component P1(t) of a trajectory which is
initially close to the periodic orbit Oa. The energy is E = 0.1 a. u.. Time t is plotted
in units of T0, the period of Oa (T0 = 0.063 ps = 2843.88 a. u.). The integration time is
approximately 512T0 = 34 ps. Lower panel: Ridges of the time-frequency decomposition of
P1(t). The frequencies of P1(t) are denoted ξP1 , and are represented in units of T−1

0 . The
gray band locates the transition region.

taken at �xed intervals of time

x(ti) = (R1(ti), P1(ti), R2(ti), P2(ti), α(ti), Pα(ti)), 0 ≤ i < N, ti+1 − ti = ∆

Since we are mostly interested in low frequencies, it is adequate to take ∆ = T/4, where T

is the period of an appropriate periodic orbit. We make an assumption that

The dynamical features of any segment of trajectory are distributed among all

degrees of freedom

Based on this assumption we claim that for the purpose of frequency analysis, it is su�cient

to study one arbitrary coordinate.

The surface of section representation is useful to investigate localization and phase space

structures (tori) and are concerned with representing intersections of trajectory with the

surface of section

x(ti) = (R1(ti), P1(ti), R2(ti), P2(ti)) ∈ S, 0 ≤ i < N, x(ti+1) = FS(x(ti))
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Figure 7.5: Upper panel: Time-series of one component P1(t) of a trajectory which is
initially close to the periodic orbit Oe. The energy is E = 0.09 a. u.. Time t is plotted
in units of T0, the period of Oa (T0 = 0.063 ps = 2843.88 a. u.). The integration time is
approximately 512T0 = 34 ps. Lower panel: Ridges of the time-frequency decomposition of
P1(t). The frequencies of P1(t) are denoted ξP1 , and are represented in units of T−1

0 . The
gray band locates the transition region.

We display sections as a pair of two dimensional plots of canonically conjugate variable

pairs (R1,P1) and (R2,P2), for instance Figure 7.16. Following our assumptions we use the

following representations

Time-frequency analysis of one coordinate

The time series of one coordinate

(R1,R2) plot of time series

Either one or both of (R1,P1) and (R2,P2) plots of section data.

Time-frequency analysis (described below) is a very useful tool to visualize and de-

tect segments of trajectory that undergo transitions between trapping and chaos by look-

ing at their (appropriately de�ned) instantaneous frequencies. See Figure 7.3, Figure 7.3,

Figure 7.3, Figure 7.3.
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Figure 7.6: Upper panel: Time-series of one component P1(t) of a trajectory which is
initially close to the periodic orbit Oe. The energy is E = 0.09 a. u.. Time t is plotted
in units of T0, the period of Oa (T0 = 0.063 ps = 2843.88 a. u.). The integration time is
approximately 512T0 = 34 ps. Lower panel: Ridges of the time-frequency decomposition of
P1(t). The frequencies of P1(t) are denoted ξP1 , and are represented in units of T−1

0 . The
gray band locates the transition region.

7.3.1 Time-frequency analysis

Each trajectory is decomposed into the time-frequency plane by recording the ridges in

the scalogram obtained using a wavelet decomposition [18]. More precisely, the continuous

wavelet transform of an observable f(t) (like for instance a coordinate of the trajectory)

gives a time-scale representation of the trajectory and is given by

Wf(u, s) =
1√
s

∫ +∞

−∞
f(t)ψ∗

(
t− u
s

)
dt, (7.27)

where the mother wavelet ψ is chosen to be a Gabor (modulated Gaussian) wavelet, also

called Morlet-Grossman wavelet: ψ(t) = eiηte−t
2/2σ2

/(σ2π)1/4. The time-frequency repre-

sentation is obtained by the relation between the scale s and the frequency ξ:

ξ =
η

s
. (7.28)

We will consider the normalized scalogram

PW f(u, ξ = η/s) =
1
s
|Wf(u, s)|2,
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which can be interpreted as the energy density in the time-frequency plane. The ridges of PW

can be interpreted as instantaneous frequencies, or more rigorously, the set of frequencies for

a given time interval. Some striking results applying this method are displayed in Figure 7.3,

7.3, 7.3 and Figure 7.3, where P1(t) has been selected for a signal f(t). From the analysis,

we notice that each of these trajectories have a transition point, which has been marked by

a shaded band. An interesting example is displayed in Figure 7.3, where we can observe a

recapture by di�erent structures.

7.4 Periodic orbit choreography in OCS

Many interesting features of this dynamical system can be inferred by analyzing properties

of its periodic orbits. A few periodic orbits have been identi�ed for di�erent energy regimes

in [103]. In particular, one periodic orbit (Oa, see Figure 7.9) was singled out as important

in capture processes.

We shall characterize position of the orbits by coordinates on the surface of section S.
The orbit (cycle) is characterized by k ∈ Z+, the number of times it intersects the surface

of section, i.e. the smallest such k, that

z = FSk(z),

and its linear stability type. For the latter, we need two real numbers s = (s1, s2), and a

symbol describing the type of orbit. Our notation for the periodic orbits is summarized in

the following:

(ee) , θ1, θ2 Orbits are of elliptic-elliptic linear stability, two complex eigenvalues λi =

exp (±ιθi), i = 1, 2

(eh) , θ,Λ Orbits are of hyperbolic-elliptic linear stability, and have a pair of real eigen-

values Λ,Λ−1 and a pair of complex eigenvalues exp±ιθ

(hh) , Λ1,Λ2 Orbits are of doubly-hyperbolic linear stability and have two pairs of real

eigenvalues Λi,Λi−1, i = 1, 2

(h∗) , Λ, θ Orbits are a co-called complex saddle, i.e. all four eigenvalues are complex

and 6= 1 in modulus, Λ1,2 = Λ exp (±ιθ),Λ3,4 = Λ−1 exp (±ιθ)
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Moreover, to characterize the overall degree of hyperbolicity of orbit we de�ne a param-

eter S as a product of its eigenvalues with modulus > 1, i.e.

S =
∏

i:|λi|≥1

Λi (7.29)

We proceed to description of short periodic orbits. At low energies, we have found two

k = 1 orbits, displayed in Figure 7.4. From the lowest energies studied, up to about E = 0.8,

both these orbits have (ee) type.
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Figure 7.7: Elementary (k = 1) periodic orbits Ob (red) and Oe (black) at E = 0.01 in
various projections. Together with orbit projections, �xed points of the Poincaré map are
shown as thick dots. In the left panel (R1, R2 projection) the zero velocity curve (T = 0)
of collinear con�guration (α = π) shown as blue curve.

Further metamorphoses of orbit Ob are displayed in Figure 7.4. Close to E = 0.08 In

this bifurcation, it turns (eh) , and Oa emerges with (ee) stability. At higher energies Oa
changes stability type several times, likely bifurcating again, however the emergent orbits

have k > 1.

Periodic orbits play an important role by being indicators for local qualitative features

of the trajectories, and they are central in understanding features of capture. In particular,

the ones with shortest periods play the role of organizing centers determining qualitative

features of the dynamics in their vicinity. Because of their generating properties they are

referred to as �primitive� orbits.

In addition, these structures turn out to be important for the determination of other in-

variant structures such as higher period periodic orbits, two and three dimensional invariant

tori. The period determines the local recurrence time, and the normal stability determines
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Figure 7.8: Bifurcation and stability diagram of periodic orbit Ob. At the pitchfork bifur-
cation one pair of eigenvalues of Ob leave the unit circle along the real axis, turning Ob (eh) .
At the bifurcation, orbit Oa is born with (ee) stability. This orbit has approximately double
the period of Ob, but because it has k = 1, it is a prime orbit of FS (see also Figure 7.9.)
Inset: (R1,R2) projection at E = 0.08.

whether the dynamics in the neighborhood is rotational (elliptic stability), hyperbolic (real

eigenvalues), mixed (mixtures of two previous), or complex hyperbolic (complex eigenvalues,

with moduli di�erent from one).

Periodic orbits are �xed points of the Poincaré map. Consider a �xed point equation

Solutions of this equation correspond to periodic orbits that makes k cycles in the (α, Pα)

plane. Orbits with k = 1 will be referred to as �elementary� periodic orbits.

Add periodic orbits for low energies, E = 0.01, then discuss their metamorphoses as

the energy of E = 0.10 is reached. How other orbits can be obtained using properties of
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Figure 7.9: Plots of periodic orbitOa, at E = 0.10. Projections plotted (From left to right):
(R1, R2), (R1,P1), (R2, P2), (α/π, Pα). Together with orbit projections, �xed point of the
Poincaré map is shown as black dots. In the (R1, R2) the potential curve, corresponding to
α = π and kinetic energy T = 0 is plotted as a blue line (see also Figure 7.4.)

 2

 2.5

 2.5  3  3.5  4
R1

R2

-60
-40
-20

 0
 20
 40
 60

 2.5 3 3.5 4
R1

 2  2.5
R2

 0.7  1  1.3
α/π

Figure 7.10: Plots of periodic orbit Ob, at E = 0.10. Projections plotted (From left to
right): (R1, R2), (R1,P1), (R2, P2), (α/π, Pα). Together with orbit projections, �xed point of
the Poincaré map is shown as black dots. In the (R1, R2) the potential curve, corresponding
to α = π and kinetic energy T = 0 is plotted as a blue line (see also Figure 7.4.)

elementary orbits.

Th number and properties of these orbits depend on a problem.

The �rst type of structure we identify are periodic orbits which constitutes the backbone

of the dynamics [24].

Periodic orbit bifurcations happen as energy is varied. Usually these are (Hamiltonian)

pitchfork bifurcations, resulting in �doubling� of orbit. In the section, however this does not

necessarily lead to �period� doubling. In particular, the focal orbit of this chapter, Oa is a

result of a pitchfork bifurcation of orbit Ob, shown in Figure 7.4, however, both orbits Oa,
and Ob are one-return orbits in the surface of section.
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Figure 7.11: Bifurcation and stability diagram for orbits Oc, Od, Oe. All the eigenvalues
are represented in this plot. If only one curve represents an orbit, then two eigenvalues are
complex, and have the same argument. Otherwise, when an orbit is represented by two
distinct curves, it is of type (hh) .
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Figure 7.12: Projections of an orbit Oc and intersection point with the surface of section
p(Oc) for the E = 0.10. In the left panel ( (R1, R2 projection)) also shown the zero velocity
curve (T = 0) of the collinear con�guration
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Figure 7.13: Projections of an orbit Od and intersection point with the surface of section
p(Od) for the E = 0.10. In the left panel ( (R1, R2 projection)) also shown the zero velocity
curve (T = 0) of the collinear con�guration
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Figure 7.14: Projections of an orbit Oe and intersection point with the surface of section
p(Oe) for the E = 0.10. In the left panel ( (R1, R2 projection)) also shown the zero velocity
curve (T = 0) of the collinear con�guration

7.5 Trappings and transitions: bottlenecks and mechanisms

Investigating chaotic transport in phase space amounts to studying various structures which

a�ect the dynamics. For example, rapid di�usion through phase space takes place through
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the so-called accelerator modes [97]. In contrast, sticky structures like resonant islands or

tori in�uence the dynamics by strongly slowing down the trajectories passing nearby. All

these structures are responsible for anomalous di�usion and fractal kinetics in the system

(for recent surveys, see Refs. [124, 123] and references therein). Identifying these structures

and the mechanisms behind trapping, escape and roaming is essential for understanding

the transport properties of a given system. Given that there are many such structures in a

realistic system, the only realistic hope for forming a generally valid picture of transport is

to locate invariant structures which are responsible for the main changes in the transport

properties. In chemistry, such structures are referred as transition states or bottlenecks.

The speci�c question we address is: What are the structures in the phase space of OCS

which is a fully three degree-of-freedom system that act as partial barriers to the di�usion

of chaotic trajectories and what are their linear and nonlinear stability properties? What

are these structures allowing transitions to other parts of phase space? In three dimensions,

these invariant structures can be invariant tori with dimensions one (i.e. periodic orbits),

two or three [74, 44, 20]. These structures can also include the stable/unstable manifolds.

Before going to the identi�cation of such structures and the mechanisms for transitions,

we provide details of these transitions by studying some observables and some adequate

decomposition in the time-frequency plane. These decompositions allow us to identify ac-

curately the transition region. A relevant Poincaré section of the dynamics reveal that in

the region, the transition accumulate around particular curves. These curves are associated

with invariant tori.

Using a combination of trajectory diagnostic tools like Lyapunov maps [103, 45], time-

frequency analysis [18], and methods from the theory of dynamical systems like periodic

and quasiperiodic orbit computations [104, 66], we relate the phenomenon of trapping to

invariant structures in phase space and to lower-dimensional invariant tori (with a relation

to their normal stability properties) in particular. It is commonly assumed that in �typical�

Hamiltonian systems with a large number of degrees of freedom N , the relative measure of

N -dimensional invariant tori (N local integrals) is either zero or one [43]. The implication is

that chaotic systems with large N approach conditions of the stochastic ansatz, and hence,
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the trapping phenomenon described above is insigni�cant. On the other hand, it has been

established recently that high order resonances form robust islands of secondary structures

with positive measure [59].

7.5.1 Calculations: Initial conditions

We have used two approaches to construct the initial loop. One could use data from the

trajectory and select the segment containing the slow phase. Alternatively, one could make

use of Eq. (Eq. (5.30)). The short time dynamics close to the �xed point is described well

within the linear approximation. One could use eigenvectors of the DFS to construct an

approximate initial loop γ0. The rotation number ω is a free parameter. We typically choose

a parameter which minimizes the residual |FS(γ0) − γ0 ◦ φω|. This completes the selection

process. Then we run a Newton optimizer on γ0, which converges or fails. Even if the

optimizer has converged, we cannot with certainty claim that a smooth two dimensional

torus was found. We have noticed that crude discretization can wash out the details of non-

smooth curves. In particular, sometimes doubling the number of points in the discretization

makes convergent data diverge. In most cases the reliability of solutions is almost certain can

be ascertained by testing the spectrum of the solution: a smooth solution should contain unit

eigenvalue. Once a solution with a speci�c ω is found, we simply increment the frequency

parameter ω → ω + δω and restart the search.

To describe the phenomenon we can introduce two time scales. We de�ne the capture

time as a time interval during which the trajectory is distinctly regular. We will abstain

from de�ning exactly what are the boundaries of capture interval in acknowledgment of the

fact that when trajectory loses regularity it does so gradually. To quantify this �escape� we

introduce the escape time, tesc. Geometrically the two di�erent timescales describe in�uence

of di�erent invariant phase space structures on a trajectory. Either of the characteristic

times can be extracted from the stroboscopic data or surface of section data. The two time

scales usually satisfy

ttrap � tesc (7.30)

We de�ne the interval of regularity as the interval of time whose the segment of trajectory is
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approximately quasiperiodic. This interval can be identi�ed from various modes of represen-

tation. In the ridge plot, it is the interval which comprises of a small amount of persistent

throughout the interval principal ridges with small average variation. It is allowed to have

short lived ridges close to the principal ridges. Another indication of this interval is salient

beating pattern in the time series plot.

To investigate the existence of lower dimensional invariant tori, we consider a �xed

point with fully elliptic linear stability (surface of section of a (ee) periodic orbit). We will

approximate the inertial manifold in the neighborhood of the �xed point by the tangent

space at the �xed point, and dynamics in the inertial manifold by the linearization of the

map at the �xed point, as described in Chapter 5. Such a loop has twofold degeneracy. One

of them can be related to the arbitrariness of choice of the initial point, the second can be

related to arbitrariness of the radius of the circle. Since the nonlinear corrections modify

the rotation angle, one of the degeneracies can be lifted by specifying a �xed rotation angle

ω. It implies that this way the family of tori, parameterized by ω can be obtained. Indeed,

our search routine converges for a range of rotation numbers. Starting with ω, that is close

to eigenfrequency of the Jacobian matrix, it is possible to obtain new invariant tori.

We have explored a large number of plots obtained by time�frequency analysis such as

Figs. 7.3, 7.3, 7.3, 7.3. One distinguishing feature of regular segments in all of them is pres-

ence of two leading frequencies. One of them can be related to period of a relevant periodic

orbit. To make the connection obvious we have plotted the relative frequency (relative fre-

quency of the periodic orbit is 1). Having investigated the projection of trajectories on the

surface of section, we found that the segment with the regular trajectory is approximately

uniformly distributed in the neighborhood of a closed curve. Taking into consideration these

circumstances we have come to the conclusion that segments of trajectories with regular dy-

namics �shadow� quasiperiodic two frequency solutions, in other words, 2-tori.

In order to approximate such torus, two approaches have been found useful. The con-

tinuation in parameter space was described earlier in Chapter 5. Here we describe a more

direct and an e�cient way to attack the problem. In the surface of section we are look-

ing for a single frequency, the rotation number ω. It can be extracted using, for example,
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Frequency map analysis of Laskar [31]. On the section of data, used in Figure 7.3, cor-

responding to 0 < t < ttrap ≈ 300T0, we found approximate rotation number equal to

ωcap ≈ 0.605558 ≈ 3/5. In this case, every 5-th iteration of the surface of section map will

cover the curve uniformly and with the right parameterization, and the result, after inter-

polation and smoothing if required can be used a �rst approximation. Using this approach

we have found tori, responsible for the near-regular dynamics.
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Figure 7.15: Projections of the trajectory near a periodic orbit Oa (with period T0),
analyzed in Figure 7.3. The trajectory is represented in (R1, R2) plots, broken down into
segments, corresponding to the trapping stage (left panel) and chaotic stage (center panel).
The bottleneck of transition from di�usion to hyperbolicity can be identi�ed as a two-
dimensional invariant torus (right panel.) The trajectory is sampled at �xed time intervals
T0/2. The orbit Oa is shown as a solid curve in the center.

In order to identify bottlenecks of transition from di�usion to chaos, we monitor the

progress of invariant phase space structures along the transition channel using rotation

numbers. The results are summarized in Figure 7.17, which is central to understanding

this transition. In a trapping region around the elliptic periodic orbit Oa (left panel of

Figure 7.5.1), the rotation numbers are obtained from the frequency map analysis [73] on

the surface of section. It can be characterized by a single ωtrap ≈ 0.60556, implying that

a two-dimensional torus is the relevant invariant structure in the trapping process. Having

computed a family of two-dimensional tori, parameterized by rotation numbers ω, it is

evident that ωtrap places the torus on the hyperbolic branch of the bifurcation diagram

represented in Figure 7.17. This implies that the escape is mediated by manifolds of a torus

with hyperbolic normal stability. The duration of the trapping stage is approximately 150

returns on Σ, and is consistent with the maximal Lyapunov exponent λ < 0.05. Processes
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associated with the escape from the trapping region can be better understood by analyzing

the tangent space of the elliptic periodic orbit Oa that locally has the structure of a direct

product (center + center) T× I1×T× I2, with the periodic orbit at the origin. The elements

of the two intervals Ii ⊂ R are rotation numbers ωi, which are not unique in general: The

choice is �xed by requiring limµ→0 ωi = ω0
i , where µ is a measure of the torus and ω0

i are

stability angles of the elliptic periodic orbit Oa (ω0
1 = 0.24500633 and ω0

2 = 0.37046872).

The Poincaré map induces rotations on T, rω1 × 1 × rω2 × 1, where rω is a rotation on

T with the rotation number ω. Partial (or complete) resonances are determined by one

(or two) resonance conditions nω1 + mω2 + k = 0, where (n,m, k) are integers such that

|n|+ |m|+ |k| > 0. The most striking trapping e�ects are observed for partial resonances of

the type T× I1 × {0} × {0}, and {0} × {0} × T× I2. Choosing either of the two situations,

a resonance channel has been constructed by �nding the two-dimensional invariant tori for

ωi ∈ Ii. In order to �nd these tori we consider the Poincaré map FΣ : Σ 7→ Σ. Tori may

have hyperbolic normal linear stability, therefore a search for them cannot rely on methods

exploiting �stickiness� properties. The sections of two-dimensional invariant tori are one-

dimensional closed curves (called hereafter �loops�). We consider loops as discretizations of

γ : T 7→ Σ (with periodic boundary condition γ(s) = γ(s+1)) and require that the Poincaré

map FΣ, restricted to the loop is equivalent to a rigid rotation rω. This translates into an

invariance condition:

FΣ(γ(s)) = γ(s+ ω). (7.31)

Equation (7.31) is solved using damped Newton iterations for the Fourier coe�cients of

γ(s). The linear stability properties of the loop are determined by (Λ, ψ), solutions of the

generalized eigenvalue problem:

DFΣ(s)ψ(s) = Λψ(s+ ω). (7.32)

Equation (7.32) has a one-dimensional kernel, which we eliminate using singular value de-

composition. The initial data for the Newton iterations γ0(s) and ω were obtained using one

of the following two methods : The �rst method uses the trapping region of the trajectory

(see Figure 7.3). We estimate ω using Fourier-like methods [73], and truncate the continued
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ω value Cont. frac.

ωcA 0.240711317575 [4, 6, 2, 11, 5, 5. . . ]
ωcB 0.215852976389 [4, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1. . . ]
ωcC 0.608654398762 [1, 1, 1, 1, 4, 45, 1, 1, 1, 1. . . ]
ωcD 0.605804087926 [1, 1, 1, 1, 6, 3, 2, 2, 1. . . ]

Table 7.1: Rotation numbers of the two-dimensional invariant tori at the bifurcation points
A, B, C, D shown in Fig. 4.

fraction expansion of ω = [a1, a2, . . .] before the �rst large ai so that ω0 = P/Q. Then we

take sequences of trapping region data every Q iterations and combine them to obtain γ0(s).

A re�ned value of ω can be estimated by minimizing |FΣ ◦γ0−γ0 ◦ rω|. The second method

combines continuation in ω with the direct product structure in the neighborhood of the

periodic orbit. The surface of section derivative DFΣ at the periodic orbit has two pairs of

complex eigenvalues exp [±ιω0
i ], i = 1, 2. The eigenvectors de�ne mutually skew orthogo-

nal symplectic vector spaces Vi = R2. It is assumed here that the linear approximation is

e�ective in the neighborhood of the periodic orbit.

The set of two-dimensional tori is found to be discontinuous at the gaps in Figure 7.17

due to complete resonances (periodic orbits) and secondary invariant structures. Normal

stability is typically elliptic for small |ω − ω0
i |. We identify the two-dimensional invariant

torus at the period doubling bifurcation point as a bottleneck of a given resonance channel.

The rationale follows from the theory of dynamical systems: Beyond the bifurcation point at

ω = ωc, the normal stability changes to hyperbolic. This change a�ects trajectories passing

by its neighborhood. One recurrent observation is that the continued fraction expansion of

bifurcation rotation numbers has a tail composed of small integers (see Tab. 7.1). This fea-

ture is reminiscent of the observation that the continued fraction expansion of the frequency

of the last invariant torus in generic Hamiltonian systems with two degrees of freedom is

noble (with a tail of ones) in many situations [26].

The reliability of the numerical solution can be tested by examining its Floquet multi-

pliers, given by Eq. (7.32). An exact solution consists of a set of complex numbers with up

to three di�erent absolute values: 1, Λ, 1/Λ. Signi�cant variation from these values signals

an unreliable solution.
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Figure 7.16: Poincaré section of the trajectory near a periodic orbit Oa, analyzed in
Figs. 7.3 and Figure 7.5.1. The bottleneck (a two-dimensional torus) is a loop (blue) at the
bifurcation point (�D� in Figure 7.17). The trajectory is trapped in the vicinity of a loop
(which is clearly seen from the inset). The escape stage is shown as two �tentacles,� which
extend along the unstable manifolds of a resonant periodic orbit (the �ve red dots around
the center).

In conclusion, our �ndings indicate that trapping and escape are mediated by the same

sequence of events, and an approximate boundary, which separates trapped and chaotic

behavior, can be found in analogy with the boundaries that separate reactants from products

in Transition State Theory [91], where sharply de�ned phase space structures [93, 79, 80, 117]

play this role.

In a broader context, our work forms yet another stimulus to reconsider the relevance of

local integrals and partial resonances in realistic, chaotic Hamiltonian systems with many

degrees of freedom. Here, we have explained a paradoxical situation, namely that integral

surfaces with positive Lyapunov exponents (i.e., not �sticky�) can trap chaotic trajectories.

Widespread observations of repeated trapping-escape-chaotic processes in short trajectory

segments provide evidence that these e�ects are generic and occurring frequently in many

settings ranging from plasmas to celestial mechanics.
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Figure 7.17: Fine structure of invariant tori, scanned along the transition channel. The
plot shows how Lyapunov exponents depend on the rotation number ω. The points of
frequency halving bifurcations (�A�� �D�) can be interpreted as bottlenecks of transition
from di�usion to hyperbolicity. Red dots: family of loops arising from the periodic orbit
Oa. Black dots: frequency halved loop, emerging at the bifurcation point �A�. Insets display
(R1,P1) projections of loops near the bifurcation point �A�. Red: loop with elliptic normal
stability and ω = ω1 ≈ 0.24067. Black: loop with hyperbolic normal stability and ω = ω2 =
(ω1 + 1)/2 ≈ 0.62033.
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CHAPTER VIII

CONCLUSIONS

We investigate chaotic ionization of highly excited hydrogen atom in crossed electric and

magnetic �elds (Rydberg atom) and anomalies in vibrational energy relaxation of carbonyl

sul�de (OCS) molecule. Both systems are modeled by Hamiltonians with three degree of

freedom. It is now commonly accepted that trajectories, simulating Rydberg atoms and

molecules in highly excited states exhibit some degree of chaos. Classical statistical meth-

ods to determine reaction rates (Transition State Theory) are based on the assumption

that energy redistribution is exponentially fast and uniform throughout the phase space.

Evidence, accumulated over the past several decades, shows a very complex nonuniform

dynamics in such systems, leading to chaotic transport, stickiness and intermittency phe-

nomena. We investigate various aspects of transport in 2- and 3-degree of freedom (dof)

Hamiltonian systems in the conditions of hard chaos and uncover phase space structures,

that a) cause chaotic transport, and b) slow it down.

Our main achievements are

Developing general methods to partition the phase space of complex 2-dof Hamiltonian

system in terms of periodic orbits. We have applied our methods to describe, and

compute a large number of periodic orbits of the planar crossed-�elds problem.

Developing methods to compute unstable invariant tori in general 3-dof Hamiltonian sys-

tems and

Successfully applying these methods to explain the phenomenon of trapping in molecules.

This phenomenon is relevant in chemistry because it leads to slower that predicted by

RRKM theories energy �ow.

Results we obtain are general in their nature and have implications for chaotic high-dimensional

Hamiltonian systems beyond the particular systems discussed in this work.
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I would like to stress several possible directions of research in area, related to my thesis:

To develop methods for partitioning high dimensional Hamiltonian systems. Our work has

indicated how this may be possible using normally hyperbolic invariant manifolds.

Further develop periodic orbit approach using our periodic orbit partition.

The problem of nontransversal intersections is a huge impediment of e�cient calculations.

Possibly using multiple surfaces of section, or devising clever algorithms to avoid these

intersections would provide valuable tools for calculations similar to ours.
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APPENDIX A

CROSSED-FIELDS RELATED MATERIAL

A.1 Hamiltonian and scaling: Atomic to scaled units

In SI units, the Lagrangian of the crossed-�elds problems is written as

L =
meẋ

2

2
+

e

2mec
A · v +

e

4πε0|r| + F · r (A.1)

Where it is customary to take the vector potential in symmetric gauge A = B × r. Here,

r = (x, y, z), |r| =
√
x2 + y2 + z2, B = (0, 0, B), F = (F, 0, 0). To minimize the number of

constants, one can introduce two scaling factors. Atomic units are obtained by scaling the

length to the Bohr radius aB and Lagrangian (action) to the Planck's constant ~ or, equiv-

alently, momentum to ~/aB. A few relevant physical constants are listed in the Table A.1

Table A.1: Physical constants, relevant for scaling to atomic units in the crossed-�elds
problem. The bottom line shows scaling factor of the magnetic �eld.

Description Symbol Value

Bohr radius aB 0.5291772108× 10−10 m
Planck's constant ~ 1.054571× 10−34 J
Speed of light c 2.99792458× 108 m/s
Charge of electron e 1.60217653× 10−19 C
Mass of electron me 9.1093826× 10−31 kg
Magnetic Field mea

3
Be/~2c 2.25× 105 T

In atomic units the Hamiltonian reads as

Ha.u. =
p2

2
+
B

2
Lz +

B2

8
(x2 + y2)− 1/|r|+ Fx (A.2)

The �scaled� coordinates in the crossed-�elds problem usually refer to the coordinates,

scaled using the following procedure. The Hamiltonian Eq. (3.1) apparently has three pa-

rameters: the �eld strengths B and F and the total energy E. By scaling distance and

time units once more, the so-called scaled units are obtained, and Hamiltonian explicitly
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depends only on two parameters. Using this scaling, one of the parameters can be set to

arbitrary numerical value, to unit, for example. Momenta scale as [P ] = LT−1, magnetic

�eld [B] = T−1, electric �eld [F ] = L−2, energy (Hamiltonian) [H] = L−1. It is useful

to introduce �eld and energy �sizes� which have length dimensions. RF : F = R−2
F and

RH : H = −2R−1
H . Most popular scaling is to eliminate magnetic �eld by scaling B to

unity.

This scaling can be viewed as scaling of time to Larmor period (inverse of a Larmor

frequency) B−1.

The two relevant scale factors are time scale tM = ΩtN and length scale, QM = Ω2/3QN .

H = Ω2/3E; T = Ω−1t

P = Ω1/3p; Q = Ω−2/3q
(A.3)

Electric �eld elimination can be viewed as time scaling to cyclic period of electric periodic

orbit R3/2
F and of energy to that of the (negative of) saddle point potential R−1

F . Thus the

two scaling factors are tE = R−3/2
F tN and QE = R−1

F QN . Namely

E = R−1
F E; T = R3/2

F t

P = R−1/2
F p; Q = RFq

(A.4)

Converting from one scaling to a di�erent is easy. Just assume that initial coordinates

are not scaled and apply a particular scaling. For example, to go from magnetic scaling to

electric, the appropriate transformation is (A.4) with Ω = 1, and the resulting Hamiltonian

is

HF =
[
(px −R3/2

F y/2)2 + (py +R3/2
F x/2)2 + p2

z

]
/2− 1/r + x

A.2 Values of �eld parameters, used in experiment or ab-initio calcula-
tions

In [84, 85] ab-initio calculations used F = 5140 V/cm, B = 6, 12.5, 21 T.

In [41], experimental photoabsorption spectrum B = 6.002 T, F = 750...1000 V/cm

In [120], experiments were done on B = 6 T, F = 2000, 3000, 4000 V/cm.

A.3 Periodic orbits in the homoclinic tangle
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Table A.2: Periodic points of S4

Symbol N Coordinates T Λ

A0 4 -1.868233200938 0.091472869325 0.182945738649 0.446847460817 32.4086359138 4.7313666090e+00

A1 4 -1.988269334707 -0.000000000001 -0.000000000001 0.517166286449 32.6953422695 -3.3628816852e+00

B0 5 -1.886017172669 0.141723056272 0.283446112544 0.465509887597 40.9930457776 1.7099138034e+01

B1 5 -2.035249538414 -0.000000000000 -0.000000000000 0.544663154238 41.3146606919 -2.9580478590e+01

A0A1 8 -1.971311243789 0.042481530008 0.084963060015 0.507949063780 65.2796106882 -7.8429379174e+00

A0B0 9 -1.919335868072 0.109651882815 0.219303765631 0.481750633406 73.4523315227 8.7358606814e+01

A0B1 9 � � � � � �

A1B0 9 -2.010459030851 0.000000000000 0.000000000000 0.530291746133 73.7119382177 -1.0859611906e+02

A1B1 9 � � � � � �

B0B1 10 -1.916001123206 0.136250876262 0.272501752525 0.483472404143 82.2861286305 -5.3066823455e+02

A0A0A1 12 -1.948350593921 0.076302000715 0.152604001430 0.496180978751 97.7020371882 -3.9197016035e+01

A0A0B0 13 -1.924720156784 0.103942454578 0.207884909156 0.484403448070 105.8826262248 4.1790384467e+02

A0A0B1 13 � � � � � �

A0A1A1 12 -1.962693975199 0.044909883075 0.089819766151 0.502836017133 97.9485804644 3.9662351252e+01

A0A1B0 13 � � � � � �

A0A1B1 13 � � � � � �

A0B0A1 13 -1.909258450661 0.105945358723 0.211890717446 0.474957632635 106.1512596395 -5.0372110083e+02

A0B0B0 14 -1.921885983013 0.110589765936 0.221179531873 0.483461540635 114.4497610257 1.5103058282e+03

A0B0B1 14 -1.943305742148 0.112143821019 0.224287642039 0.496883366438 114.7418478353 -2.2187975398e+03

A0B1A1 13 � � � � � �

A0B1B0 14 � � � � � �

A0B1B1 14 � � � � � �

A1A1B0 13 � � � � � �

A1A1B1 13 � � � � � �

A1B0B0 14 -2.011597798884 0.000000000000 0.000000000000 0.530958617046 114.7092264881 -1.9212148594e+03

A1B0B1 14 -2.020873328792 0.024111661224 0.048223322449 0.536663399208 115.0044423532 2.8320699050e+03

A1B1B0 14 � � � � � �

A1B1B1 14 � � � � � �

B0B0B1 15 -1.904772603906 0.145647714756 0.291295429511 0.478020217142 123.2717517105 -8.9319555809e+03

B0B1B1 15 -1.915216004062 0.136410737519 0.272821475037 0.483009537988 123.6043523179 1.5861824667e+04
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