
Jon Newman
Sept 6 2008
The following is an implementation of the multipoint shooting algorithm for continuos flows applied to the Rossler Flow. This
code is good for finding periodic orbits of that are 2-periodic or greater.

Function 1: CycleEstimateRossler
This function takes a set of initial guesses on a specified Poincaré section and runs each of them for one return to that section. It
simultaneously records the deformation of a sphere surrounding each initial guess during its time evolution. This provides the
MPS algorithm with an initial guess and information about how that a change to that guess will affect the resulting end point after
a single return.

In[289]:= cycleEstimateRossler@a_, b_, c_, guess_D :=

ModuleB8<,

H*state equations: Rossler Flow*L
dxdt = x'@tD � -y@tD - z@tD;
dydt = y'@tD � x@tD + a*y@tD;
dzdt = z'@tD � b + z@tD * Hx@tD - cL;

H*evolution operators of fundamental matrix: J
°

=AJ*L
dm11 = m11'@tD == -m21@tD - m31@tD;
dm12 = m12'@tD == -m22@tD - m32@tD;
dm13 = m13'@tD == -m23@tD - m33@tD;

dm21 = m21'@tD � m11@tD + a*m21@tD;
dm22 = m22'@tD � m12@tD + a*m22@tD;
dm23 = m23'@tD � m13@tD + a*m23@tD;

dm31 = m31'@tD == z@tD *m11@tD + Hx@tD - cL *m31@tD;
dm32 = m32'@tD == z@tD *m12@tD + Hx@tD - cL *m32@tD;
dm33 = m33'@tD == z@tD *m13@tD + Hx@tD - cL *m33@tD;

H*storage: points from the poincare section*L
sect = 8<;
H*storage: Fundemental matrix at time of poincare section crossing*L
Jmatrix = 8<;
H*Here we test the performance of the intial guesses by numerically

integrating each for a single return. This gives us a set of errors

that can be simultaneiously minimized in the MPSM newton routine.*L
Do@

8xinit, yinit, zinit< = j;

sol = NDSolve@H*RK4*L
8dxdt, dydt, dzdt,

dm11, dm12, dm13,

dm21, dm22, dm23,

dm31, dm32, dm33,

x@0D � xinit, y@0D � yinit, z@0D � zinit,

m11@0D � 1, m13@0D � 0, m12@0D � 0,

m21@0D � 0, m22@0D � 1, m23@0D � 0,

m31@0D � 0, m32@0D � 0, m33@0D � 1<,
8x, y, z, m11, m12, m13, m21, m22, m23, m31, m32, m33<,
8t, 0, 1000<,

,

In[289]:=

MaxSteps ® Infinity,

MaxStepSize ® 0.01,

H*EventLocator is Mathematica's event finding system for numerical integration*L
Method ® 8"EventLocator",

H*poincare section: x@tD=0*L
"Event" ® x@tD,
H*Orientation condition: only record section point for ¶tx>0 at crossing*L
Direction ® -1,

H*EvenAction says what to do when even criteria are met*L
EventAction ¦ Throw@8AppendTo@sect, 8x@tD, y@tD, z@tD<D<, "StopIntegration"D<D;

H*find the total time of the run up to the even*L
tOfRun = Hx �. sol@@1, 1DDL@@1, 1, 2DD;
H*find the total time of the run up to the even*L
AppendTo@Jmatrix, Flatten@88m11@tOfRunD, m12@tOfRunD, m13@tOfRunD<,

8m21@tOfRunD, m22@tOfRunD, m23@tOfRunD<,
8m31@tOfRunD, m32@tOfRunD, m33@tOfRunD<< �. sol, 1DD,

8j, guess<D; H*repeat one period of for every j Î initial guess*L
Return@8Jmatrix, sect<D;

F;

##
########
From here on code should be easily generalizable to any continuous flow
##
########

Function 2 : MConstructRossler
This function constructs a matrix, M, that essentially allows a single newton method to be run for each periodic portion of an n-
periodic cycle. The logic is this: the end point at the section after time evolution of a j1 Î 8initialguess< = j2, the end point of

j2 Î 8initialguess< = j3...the end point of jn Î 8initialguess< = j1. Each of these allows us to correct an error that is the dimen-

sion using a separate Newton routine. The amount of change to each initial guess is a function of the deformation matrices
calculated in the previous function.

2 MPSM for Rossler_verification.nb

In[290]:= H*Function to create M Matrix by constructing its four blocks and the concatinating*L
MConstructRossler@n_, JM_, guess_, aMat_, a_, b_, c_D :=

H*cycle-length,J, guess placement,A,a,b,c*L
Module@8<,
nullSeed = ConstantArray@0, 83, Hn - 2L *3<D;
upperleft = 8<;
Do@
piece = RotateRight@Join@-JM@@iDD, IdentityMatrix@3D, nullSeed, 2D, 80, H3*iL - 3<D;
AppendTo@upperleft, pieceD,
8i, 1, n - 1<D;
PrependTo@upperleft, Join@IdentityMatrix@3D, nullSeed, -JM@@nDD, 2DD;
UL = Flatten@upperleft, 1D;
lowerleft = 8<;
H*In the yellow text I create the lower left block that is a diagonal block of unit

vectors perpendular to the section so that a*Hx'-xL = 0 can be imposed*L
Do@
piece = RotateRight@Join@aMat, ConstantArray@0, Hn - 1L *3DD, H3*iL - 3D;
AppendTo@lowerleft, pieceD,
8i, 1, n<D;
LL = lowerleft;

upperright = 8<;
H*In the orange text, I create to upper right block of the matrix,

a diagonal block of instaneous velociites of the each 'guess' on the poincare section*L
Do@
piece = RotateRight@Join@88-guess@@i, 2DD - guess@@i, 3DD<,

8guess@@i, 1DD + a*guess@@i, 2DD<,
8b + guess@@i, 3DD * Hguess@@i, 1DD - cL<<,
ConstantArray@0, 83, Hn - 1L<D, 2D, 80, i - 1<D;

AppendTo@upperright, pieceD,
8i, 1, n<D;
UR = Flatten@upperright, 1D;
LR = ConstantArray@0, 8n, n<D;
M = Join@UL, UR, 2D~Join~Join@LL, LR, 2D;
Return@MD;

D;

Function 3 : FConstructRossler
This is a 1 X n*d matrix that calculates the error between the Poincaré crossing point of evolution of guess[i] and the location of
guess[i+1] for each of the d dimensions.

In[291]:= H*Function to create F matrix*L
FConstructRossler@guess_, sec_, n_D :=

H*array of guesses, the numerically calculated section, cycle-length*L
Module@8<,
F = 8guess@@1DD - sec@@nDD<;
Do@
diff = Hguess@@iDD - sec@@i - 1DDL;
AppendTo@F, diffD,
8i, 2, n<

D;
AppendTo@F, ConstantArray@0, nDD;
Return@F = Flatten@FDD;

D;

Function 4 : VarConstruct
Make an array of variables to solve for. Because this is Mathematica I can leave these variables in symbol form.

MPSM for Rossler_verification.nb 3

Function 4 : VarConstruct
Make an array of variables to solve for. Because this is Mathematica I can leave these variables in symbol form.

In[292]:= VarConstruct@n_D :=

Module@8<,
H*Here I create the variables to be solved for, notice the extra +

n accounting for the dummy dt's that allow us to solve n*d+n equations*L
DM = ToExpression@"d" <> ToString@ðDD & �� Range@3*n + nD;
Return@DMD;

D;

Function 5 : MPSA
This is the fully implemented algorithm for the Rossler flow:
1. create section from initial guesses. Record deformation under the flow of the initial guesses.
2. Construct M matrix
3.Construct F (error) matrix
4. Construct variable matrix
5. Create n*d equations
6. Solve for n*d variables to find the change in initial guess. Use guess+=change as your new guess and repeat until convergence.

In[293]:= H*Full Multipoint Shooting Algorithm*L
H*input is guess: initial guess, cl: cycle length, n: num interations*

*normvec: vector normal to section, a, b and c: parameters for Rossler flow*L
MPSA@guess_, cl_, n_, damp_, normvec_, a_, b_, c_D := H*guess, cycle length,

damping factorm,number of revisions,unit vector normal to the section,a,b,c*L
Module@8<,
g = guess;

Do@
8jm, section< = cycleEstimateRossler@a, b, c, gD;
Mmat = MConstructRossler@cl, jm, g, normvec, a, b, cD;
Fmat = FConstructRossler@g, section, clD;
Dmat = VarConstruct@clD;
dotProd = Mmat.Dmat;

eqs = Table@dotProd@@iDD � -Fmat@@iDD, 8i, Length@dotProdD<D;
deltaPos = Solve@eqs, DMD; H*this line is why Mathematica is nice. I have

used its symbolic capabilites to solve this set of equations. In matlab

one would have to due some actual inversions and stuff. see the book*L
g += damp*Partition@Drop@Flatten@DM �. deltaPosD, -clD, 3D;
Print@gD,
8n<D;

D;

4 MPSM for Rossler_verification.nb

