Jon Newman

Sept 6 2008

The following is an implementation of the multipoint shooting algorithm for continuos flows applied to the Rossler Flow. This
codeis good for finding periodic orbits of that are 2-periodic or greater.

Function 1: CycleEstimateRossler

This function takes a set of initial guesses on a specified Poincaré section and runs each of them for one return to that section. It
simultaneously records the deformation of a sphere surrounding each initial guess during its time evolution. This provides the
MPS a gorithm with an initial guess and information about how that a change to that guess will affect the resulting end point after
asinglereturn.

inj289:= cycl eEsti mateRossler[a_, b_, c_, guess_]:=
Modul e[{},

(»state equations: Rossler Flows)
dxdt =x' [t]=-y[t]-z[t];

dydt =y' [t] =x[t]+a=xy[t];

dzdt =z' [t] =b+z[t]* (X[t] -C);

(xevol ution operators of fundanental natrix: 3=AJ*)
dmll =mll' [t] == -nR1[t] -nB1[t];
dml2 =ml2' [t] == -nmR2[t] -nB2[t];
dml3 =ml3' [t] == -nm23[t] -nB3[t];

dnmRl =nR1' [t] =ml1[t] +a*nR1[t];
dnR2 = nmR2' [t] =ml2[t] +a*nR22[t];
dn®3 = mP3' [t] = mi3[t] +a+n23[t];

dnBl =nB1' [t] ==z [t]*ml1[t] + (X[t] -c) *nB1[t];
dmB2 =nmB2' [t] ==z [t] *ml2[t] + (X[t] -C) *»nB2[t];
dnB3 =nB3"' [t] ==z [t] *ml3[t] + (X[t] -c) *nB3[t];

(xstorage: points fromthe poincare sectionx)
sect = {};
(#storage: Fundermental matrix at time of poincare section crossings)
Jmatrix = {};
(xHere we test the performance of the intial guesses by nunerically
integrating each for a single return. This gives us a set of errors
that can be sinultaneiously mnimzed in the MPSM newt on routine. %)
Do
{Xxinit, yinit, zinit} =j;
sol = NDSol ve[(*RK4x)
{dxdt, dydt, dzdt,
dnill, dnil2, dnil3,
dn21, dnR2, dnR3,
dn81, dnB2, dnB3,
X[0] ==xinit, y[0] ==yinit, z[0] ==zinit,
mL1[0] ==1, m3[0] ==0, ml2[0] == 0O,
n21[0] == 0, n22[0] =1, n23[0] == O,
n81[0] == 0, nB2[0] == 0, nB3[0] == 1},
{x, y, z, ml, m2, m3, nR1, n22, n23, nBl, nB2, nB3},
{t, 0, 1000},

2 | MPSM for Rossler_verification.nb

MaxSteps » Infinity,
MaxSt epSi ze » 0. 01,
(xEvent Locator is Mathematica' s event finding systemfor nunerical integrations)
Met hod -» {"Event Locat or",
(xpoi ncare section: x[t]=0x)
"Event" »x[t],
(*Orientation condition: only record section point for x>0 at crossings)
Direction- -1,
(xEvenAction says what to do when even criteria are net)
Event Acti on = Thr ow[{AppendTo[sect, {x[t], y[t], z[t]}]}, "Stoplntegration'1}1;
(»find the total tine of the run up to the evenx)
tOfRun= (x /. sol [[1, 111)[I2, 1, 211;
(»find the total tine of the run up to the evenx)
AppendTo[Jmatrix, Flatten[{{ml1[tOf Run], nl2[t Of Run], ml3[t Of Run]},
{m21[t Of Run], n22[t Of Run], n23[tOf Run]},
{mMB1[tOf Run], nB2[t O Run], nB3[tOFRun]}} /. sol, 111,
{j, guess}]; (xrepeat one period of for every j e initial guessx)
Return[{Jmatrix, sect}];

]:

HHHHHHH
From here on code should be easily generalizable to any continuous flow

R

Function 2 : M ConstructRossler

This function constructs a matrix, M, that essentially allows a single newton method to be run for each periodic portion of an n-
periodic cycle. Thelogic is this: the end point at the section after time evolution of a j; € {initial guess} = j,, the end point of
j2 € {initial guess} = js...the end point of j, € {initialguess} = j;. Each of these allows us to correct an error that is the dimen-
sion using a separate Newton routine. The amount of change to each initial guess is a function of the deformation matrices
calculated in the previous function.

MPSM for Rossler_verification.nb | 3

in2oo]:= (*Function to create M Matrix by constructing its four blocks and the concatinatingx)
MConstruct Rossl er[n_, JM, guess_, avat _, a_, b_, c_]:=
(xcycl e-l ength, J, guess placenent, A a, b, cx)
Modul e[{},
nul | Seed = Constant Array[0, {3, (n-2) %*3}];
upperleft = {};
Do
pi ece = Rot at eRi ght [Joi n[-JM[[i 11, ldentityMatrix[3], null Seed, 2], {0, (3%i) -3}1;
AppendTo [upperl eft, piece],
(i, 1, n-13];
PrependTo[upperleft, Join[ldentityMatrix[3], null Seed, -IJM[[n]], 211;
UL = Fl atten[upperleft, 17;
lowerleft = {};
(*In the yellowtext | create the lower left block that is a diagonal block of unit
vectors perpendular to the section so that ax(x' -x) = 0 can be i nposedx)
Do
pi ece = Rot at eRi ght [Joi n[aMat, Constant Array[0, (n-1) *3]], (3=*i) -3];
AppendTo[l ower | eft, piece],
{i, 1, n}l;
LL =l owerl eft;
upperright = {};
(xIn the orange text, | create to upper right block of the matrix,
a di agonal bl ock of instaneous velociites of the each 'guess' on the poincare sectionx)

UR = Fl atten[upperright, 17;

LR = Constant Array[0, {n, n}];

M= Joi n[UL, UR, 2]~Join~Join[LL, LR, 27;
Return[M;

1;

Function 3 : FConstructRossler
This isal1l X n*d matrix that calculates the error between the Poincaré crossing point of evolution of guesg[i] and the location of
guesg[i+1] for each of the d dimensions.

in2o1]:= (*Function to create F matrixx)
FConstruct Rossl er [guess_, sec_, n_]: =
(»array of guesses, the nunerically cal cul ated section, cycle-lengthx)
Modul e[{},
F={guess[[1]] -sec[[n]]};
Do
di ff = (quess[[i]]-sec[[i -111);
AppendTo[F, diff],
{i, 2, n}
1
AppendTo[F, ConstantArray[0O, n]];
Return[F=Flatten[F]1;

1

4 | MPSM for Rossler_verification.nb

Function 4 : Var Construct
Make an array of variablesto solvefor. Becausethisis Mathematical can leavethese variablesin symbol form.

in[2921:= Var Construct [n_] : =
Modul e[{},
(xHere | create the variables to be solved for, notice the extra +
n accounting for the dunmy dt's that allow us to solve nxd+n equati onsx)
DM = ToExpr essi on["d" <>ToString[#]] &/@Range[3*n +Nn];
Ret ur n[DM];
I

Function 5: MPSA

Thisisthe fully implemented algorithm for the Rossler flow:

1. create section from initial guesses. Record deformation under the flow of theinitial guesses.

2. Construct M matrix

3.Construct F (error) matrix

4, Construct variable matrix

5. Create n*d equations

6. Solvefor n*d variablesto find the change in initial guess. Use guess+=change as your new guess and repeat until convergence.

in2o3):= (*Full Ml tipoint Shooting Al gorithmk)
(#input is guess: initial guess, cl: cycle length, n: numinterations*
*nornvec: vector normal to section, a, b and c: paranmeters for Rossler flowk)
MPSA[guess_, cl _, n_, danp_, normvec_, a_, b_, c_]:= (xguess, cycle |ength,
danpi ng factorm nunber of revisions,unit vector normal to the section,a,b,cx)
Modul e[{},
g = guess;
Do[
{i m section} =cycl eEsti mat eRossl er[a, b, ¢, g];
Mrmat = MConstruct Rossl er [cl, jm g, normvec, a, b, cl;
Fmat = FConstruct Rossl er [g, section, cl];
Dmat = Var Construct [cl];
dot Prod = Mmat . Dmat ;

eqs = Tabl e[dot Prod[[i]] == -Fmat [[i 1], {i, Length[dotProd]}];
del t aPos = Sol ve[eqs, DM]; (xthis line is why Mathematica is nice. | have
used its synbolic capabilites to solve this set of equations. |In natlab

one woul d have to due sone actual inversions and stuff. see the bookx)
g +=danpxPartition[Drop[Fl atten[DM/. del taPos], -cl 1, 31;

Print[g],

{n}l;

