
Deterministi
 di�usion| the sawtooth mapChristian Ingemann MikkelsenThis is the term paper whi
h makes up the �nal part of the exam for theFall '98 
ourse on 
lassi
al and novel approa
hes to non-equilibrium statisti
alme
hani
s and kineti
 theory. The sole referen
e for the paper is the 
haosweb-book Classi
al and Quantum Chaos: A Cy
list Treatise by Cvitanovi�
 &friends at http://www.nbi.dk/ChaosBook/. The proje
t des
ription is foundin appendix H.2 of the web-book.1 Reprodu
tionOne a
hievement of periodi
 orbit theory is the possibility to do non-equilibriumstatisti
al me
hani
s in a new way, without the need for approximations, sto�-zahlansatz or the like. It enables us in prin
iple to relate the short term be-haviour of a dynami
al system to behaviour in the t!1 limit. The 
ookbookre
ipe is simple; en
ode the dynami
s in a suitable alphabet, 
al
ulate the greatora
le: the dynami
al zeta fun
tion, query the ora
le in the right way and youwill get the answers. However, the real world is a 
ruel pla
e for theoreti
alphysi
ists. Finding a suitable alphabet for the dynami
s of real world systemsis rarely easy and as with all great ora
les you must approa
h them with respe
tand know exa
tly how to pose the questions.Realising that the main obsta
le for a young aspiring physi
ist is �ndinga suÆ
iently well-behaved real world problem to whi
h he 
an apply newlya
quired textbook knowledge, let us turn to a toy problem that 
an be usefulfor gaining insight. Let us look at something one-dimensional, linear, evolvingin dis
rete time | in short, a problem tra
tible to pen and pen
il 
al
ulations!What we want to look at is the following mapping of I = [0; 1℄ into R,f̂I(x̂) def:= � �x̂; x̂ 2 [0; 1=2[�(x̂� 1) + 1; x̂ 2℄1=2; 1℄: (1)The fun
tion f̂I is 
onstru
ted su
h that 0 7! 0 and 1 7! 1. It is the di�usionproperties of this map (and related ones to be de�ned below) we will investigateas fun
tion of, or rather for various values of the parameter �. In the followingwe will take this parameter to be greater than 2. We do not have the rightmapping to study yet be
ause f̂I is only de�ned on the unit interval whereas ittakes values in R. The 
ure is very natural and simple; extend f̂I to all of Rby translating the fun
tion ba
k to the unit interval, evaluating it there, andsending it ba
k to where it 
ame from. In a less verbose and more mathemati
alformulation this translates intof̂(x̂) def:= f̂I(x̂� bx̂
) + bx̂
; (2)1



where b�
 denotes the `
oor' fun
tion whi
h returns the nearest integer smallerthan or equal to its argument. Obviously, x̂�bx̂
 2 I holds and 1 is still mappedto 1 with the extended de�nition (2).Until now we have been de
orating our de�nitions with plenty of little `hats'just to make the reader 
urious as to whether any `bald' fun
tions would showup. Indeed they will! The 
onvention we will follow here is to denote entitiesrelating to the whole spa
e (i.e. R) with hats and let `bald' symbols refer tothe elementary 
ell in 
asu the unit interval I . This notation is broadly that ofCvitanovi�
 & friends, se
tion 14.1. If the notation is useful for no other purposeit at least makes the formulas look 
ool, so we will use it here.In our aspiring physi
ist's re
ipe for doing periodi
 orbit theory, we men-tioned something about understanding and en
oding the short term dynami
sin an alphabet and then using this to understand the t ! 1 behaviour. Thisis exa
tly what we are going to try now. We de�ne a new fun
tion f : I ! Iby translating f̂ ba
k to I by doing the 
al
ulations modulo unity. Likewise weget rid of the integer part of f̂(x̂). All we then have to do is to iterate f onI and keep tra
k of the `jumping' i.e. the dis
arted integer part of f̂(x). Morepre
isely we de�ne f as f(x) def:= f̂(x̂)� bf̂(x̂)
; (3)where x = x̂�bx̂
 is in I . We are now going to write down a symboli
 dynami
swhere the alphabet simply keeps tra
k of the distan
e of the `jump'.Sin
e this is periodi
 orbit theory, it seems reasonable that we introdu
esome notion of periodi
ity. The notation is that of A Cy
list Treatise wherep = fx1; : : : ; xnpg is 
alled an elementary 
ell 
y
le (elementary 
ell = no hats)if np iterations sends xj ba
k to itself, fnp(xj) = xj . We are also to keep tra
kof the length of the jumps so we will brie
y return to the whole spa
e, R. Wede�ne (with hats now) n̂p 2 Z by n̂p = f̂np(xj) � xj as the jumping number ofthe 
y
le. If n̂p = 0 the 
y
le is said to be standing, otherwise it is said to berunning.Now things are in pla
e! The 
y
le weight for a 
y
le p is given in the proje
tdes
ription (H.2) as tp(�; z) = znp e�n̂pj�pj : (4)Our ora
le will be the dynami
al zeta fun
tion given by1=�(�; z) =Yp (1� tp(�; z)): (5)The quantity we want to 
ompute is the di�usion 
onstant D whi
h periodi
orbit theory tells us is given by D = 12 hn̂2pi�hni� : (6)The triangular bra
kets, h�i� , denotes mean 
y
le quantities, so for examplehn̂2pi� is the 
y
le mean of the square of the jumping number. We are dealingwith a problem in dis
rete time so the rôle of time is taken over by the mean2



0+ 1+ 2+ 2- 1- 0- 0+ 1+ 2+ 2- 1- 0-Figure 1: Illustration of the mapping f for � = 5 (left) and � = 6 (right). Thejumping numbers for the intervals are indi
ated.
y
le length hnpi� . The mean square jumping number and the mean 
y
le lengthare given by (querying the ora
le)hn̂2pi� = �2��2 1�(�; z) �����=0; z=1 and (7)hnpi� = z ��z 1�(�; z) �����=0; z=1 : (8)Let's get some real world numbers in! Out there natural numbers are verypopular and it will turn out that the dynami
s will be parti
ularly simple if we
hoose � to take values in the natural numbers. We will have to 
onsider two
ases: � odd and � even. Let us start out by 
onsidering the 
ase where � is odd.Sawteeth for � oddWe will now have to understand the short term dynami
s of the system,
hoose our alphabet, and then we 
an 
al
ulate the big D. The dynami
s isillustrated on �gure 1 for the 
ase of � = 5. The interval I is partitioned intosix subintervals fM0+;M1+;M2+;M2�;M1�;M0�g 
orresponding to the sixdi�erent possible jumping numbers. In general for � odd we have fMi j i =m�; : : : ;m+g where m is given by (�� 1)=2.We now need to 
hoose our alphabet A. From the �gure we see thatM0+;M1+;M1� and M0� are mapped onto the entire unit interval I . Thisis easily generalised to arbitrary odd �, where M0�; : : : ;M(m�1)� are mappedonto the entire interval. The subintervals M2+ and M2� (Mm+ and Mm�in the general 
ase of � odd) are only mapped onto M0+ [M1+ [M2+ andM0� [ M1� [ M2� respe
tively. In the general 
ase we get that Mm+ ismapped onto SiMi+ and similarly for m�.We 
an write the general 
ase out in the in�nite alphabetA = f(m+)k0+; (m+)k1+; (m�)k0�; (m�)k1� j k = 0; 1; 2; : : :g (9)in whi
h the dynami
s is unrestri
ted, i.e. all 
ombinations of letters are possibleitineraries for points. Two possibilities are not a

ounted for, however. The3



dynami
s has not taken into a

ount that it is possible for a point to be mappedfrom Mm+ to Mm+ (and similarly for Mm�) ad in�nitum. This 
an be taken
are of rather simply by introdu
ing fa
tors of (1� tm+) and (1� tm�) in thedynami
al zetafun
tion as we will see below.The dynami
al zeta fun
tion, 1=�, 
an now be 
al
ulated,1=� = Yp (1� tp) (10)= (1� tm+)(1� tm�)(1� m�1Xa=0 1Xk=0(tm+)kta+ � m�1Xa=0 1Xk=0(tm�)kta�):We have here used relations of the type t(m+)ka+ = (tm+)kta+ whi
h makesthe `
urvature 
orre
tions' of eq. (9.5) in A Cy
list Treatise vanish. The innersummations are easily taken 
are of with the aid of,1Xk=0(tm+)kta+ = ta+1� tm+ (11)and similar expressions for tm� and ta�.We 
an now plug into (10)1=� = (1� tm+)(1� tm�)� (1� tm�)m�1Xa=0 ta+ � (1� tm+)m�1Xa=0 ta�= 1� tm+ � tm� �m�1Xa=0 ta+ �m�1Xa=0 ta� + tm�m�1Xa=0 ta+ + tm+m�1Xa=0 ta� + tm+tm�and obtain the ora
le we want to query. We do this by applying the operationsz ��z and �2��2 to 1=�(�; z) and evaluating at (�; z) = (0; 1). The 
al
ulationsare simpli�ed if we note that tp is an eigenfun
tion of the two operators witheigenvalues np and n̂2p respe
tively. Furthermore, we will need that tp(0; 1) =1=�p.Straightforward (albeit tedious) 
al
ulations and the formulas (7) and (8)give hn̂2i� = (�� 1)(� + 1)(1� �)12� (12)hni� = (1� �)� ; (13)where we have used the de�ning relation m = (�� 1)=2 to simplify the result.The di�usion 
onstant D now follows readily,D = 12 hn̂2i�hni� = (� + 1)(�� 1)24 : (14)Voila!
4



Sawteeth for � evenLikewise and a bit simpler, we 
an deal with the 
ase of even values of �. Theinterval 
an be partitioned into � equal intervals fMgm+i=m� where m = �=2�1.We en
ode the symboli
 dynami
s in the alphabetA = f0+; : : : ;m+;m�; : : : ; 0�g.Sin
e f is an onto mapping of the Mi onto the unit interval, f(Mi) = I , thesymboli
 dynami
s is unrestri
ted in the alphabet A.The zeta fun
tion now follows from the de�nition as1=� = 1� m+Xi=m� ti; (15)where we have used the fa
t that all higher terms in the sum vanish exa
tly:in the lingo of periodi
 orbit theory all 
urvature 
orre
tion vanish be
ause theshadowing is exa
t.We now just have to 
rank the wheel and grind out the big D. The mean
y
le length is 
al
ulated ashni� = � m+Xi=m� 1� = �2(m+ 1)� = �1: (16)Likewise for the mean 
y
le squared jumping number,hn̂2i� = � (n̂0+)2� � � � � � (n̂m+)2� � (n̂m�)2� � � � � � (n̂0�)2� (17)= � 2� mXi=0 i2 = �m(m+ 1)(2m+ 1)3� = � (�� 1)(�� 2)12 : (18)Plugging into the formula for the di�usion 
onstant is trivial and givesD = 12 hn̂2i�hni� = (�� 1)(�� 2)24 (19)Voila!2 Sawtooth map, 
ut in (Markov) pie
esThe pre
eding dis
ussion was made simple be
ause f̂ mapped the Mi subinter-vals onto the entire unit interval I . This made the symboli
 dynami
s easy sin
ewe did not have to keep tra
k of what had happened in the pre
eding steps. We
ould use the jumping numbers as alphabet and the dynami
s was unrestri
ted.However, we will now go a step further and 
onsider situations where theunit interval 
an be partitioned into a �nite number of subintervals Mi whi
honly has the weaker property that; loosely speaking, subintervals are mappedonto unions of subintervals. This is more te
hni
ally 
orre
t written asf(Mi) \Mj = ; or Mj � f(Mi) 8i; j (20)Su
h a partition is 
alled �nite Markov.5



0+ 1+ 2+ 2- 1- 0-
x0

0+ 1+ 2+ 2- 1- 0-Figure 2: Illustration of the mapping f̂ for � = 2 + 2p2 (left) and � = 3 +p5(right). The jumping numbers for the intervals are indi
ated.We will now 
onsider something 
on
rete, a map allowing a �nite Markovpartition fM0+;M1+;M2+;M2�;M1�;M0�g where the (
riti
al) point 1=2is mapped onto the right end-point of the intervalM1+. The map is illustratedon �gure 2.First of all, we will determine the value of � that 
orresponds to this situ-ation. What we know is that the 
riti
al point 1=2 is mapped onto the rightend-point of M1+, x0. However, we know that being the right end-point ofM1+ x0 solves the equation f̂(x0) = 2, so that we have the following equationsto solve for �,f(1=2) = x0, or f̂(1=2) = x0 + 2 together with f̂(x0) = 2: (21)First solving the last equation for x0 gives �=2 and substituting into the �rstequation gives � = 2(1 �p2). The negative solution is obviously not the onewe are seeking and we have already limited our s
ope to maps with � > 2 so itis dis
arted.By inspe
ting �gure 2 it is 
lear that f(Mi) = I for i 2 f0+; 1+; 1�; 0�g,f(M2+) = M0+ [ M1+ and f(M2�) = M0� [ M1�, so we 
an 
hoose analphabet A in whi
h the symboli
 dynami
s is unrestri
ted, A = f0+; 1+; 2 +0+; 2 + 1+; 2� 1�; 2� 0�; 1�; 0�g.And the zeta fun
tion is1=� = 1� t0+ � t1+ � t2+0+ � t2+1+ � t2�1� � t2�0� � t1� � t0� (22)We 
an now grind out the numbers,hni� = 4 1� + 4 2�2 = 4�+ 8�2 (23)and hn̂2i� = 202� + 212� + 2 22�2 + 2 32�2 = 2�+ 26�2 ; (24)and the di�usion 
onstant isD = 12 hn̂2i�hni� = �+ 134� + 8 = 15 + 2p216 + 8p2 = 26� 11p216 : (25)6



Voila!The basi
 observation that made the previous 
al
ulation work was that we
ould �nd a partition whi
h was Markov. The point 1=2 was mapped to the endof an interval and allowed a Markov partition to be found. We will now workout a few more examples of this sort for values of � between 4 and 6. Thereare 7 easy-to-�nd su
h examples, 1=2 mapped to the left end-points of M0+(� = 4), M1+ (� = 2+p6), M2+ (� = 2+2p2), the right end-points of M2+(� = 5), M2� (� = 3 +p5), M1� (� = (5 +p41)=2) and M0� (� = 6).Some of the numbers we already have worked out. The integers are 
overedby the results from the previous se
tion. We �nd from the formulas thatD = 1=4for � = 4, D = 1 for � = 5 and D = 5=6 for � = 6. The 
ase � = 2 + 2p2 was
al
ulated above and we quote the result D = (26� 11p2)=16.The 
ase � = 2+p6 
an be dealt with along lines similar to the � = 2+2p2
ase. The dynami
s is unrestri
ted in the alphabet A = f0+; 1+; 2 + 0+; 2 �0�; 1�; 0�g, so we 
an write1=� = 1� t0+ � t1+ � t2+0+ � t2�0� � t1� � t0� (26)to 
al
ulate hn̂2i� = � 2� � 8�2 = �2�+ 8�2 (27)and hni� = � 4� � 4�2 = �4� + 4�2 : (28)This gives us immediately the di�usion 
onstantD = 12 hn̂2i�hni� = �+ 44� + 4 = 6 +p612 + 4p6 = 1� p64 (29)The Duke of CambridgeThe two remaining 
ases are a little harder but with a little persisten
e wewill be able to deal with them. Let us �rst look at the 
ase of � = 3 +p5.The unit interval is naturally partitioned into 6 subintervals as in the pre-
eding examples. The intervals with labels 0+, 1+, 1� and 0� are mapped ontothe entire unit interval. What gives a little trouble is the two middle intervals,M2+ andM2�. The �rst of these two is mapped onto the intervalsM0+,M1+,M2+ and M2�, and the se
ond is mapped onto M0�, M1�, M2� and M2+.Writing down the alphabet 
orresponding to the dynami
s is a bit tri
ky. Itwill have to 
ontain sequen
es of arbitrarily long 
ombinations of 2+ and 2�terminating with one of the four symbols whi
h gives no restri
tion on the nextletter, 0+, 1+, 1� and 0�. We will, however, have to make sure that the labelbefore the terminating label in the letter has the right sign, e.g. before 1� wewill have to have 2� and not 2+. On top of this it will have to have provisionsfor itineraries whi
h let the point boun
e ba
k and forth between M2+ andM2� inde�nitely.However, we 
an avoid the problems of formulating the alphabet dire
tlyand make use of the fa
t that the slope of the map is the 
onstant �. The lattergives rise to identities of the form t(2+)k1 (2�)k2 (2+)k30+ = (t2+)k1+k3(t2�)k2 t0+7



et
. as 
an be seen dire
tly from the de�nition of tp. These identities makeshadowing work and they will make life mu
h easier in the following.The sequen
es of labels whi
h are supposed to make out the alphabet 
anbe of three forms. It 
an be one of 0+, 1+, 1� and 1� in whi
h 
ase thereare no problems what so ever. There 
an be a sequen
e | possibly empty |of 2+s and 2�s pre
eding a 2 + 0+, 2 + 1+, 2 � 1� or 2 � 0� as des
ribedabove. It is important to note that the order of the symbols matter when thealphabet is written out but when the zeta fun
tion is 
al
ulated we 
an usethe identities noted above. The problem of ordering is thus redu
ed to one of
ounting. Postponing the third 
ase for a moment, we write(1 � t0+ � t1+ � t1� � t0� (30)� (t2+t0+ + t2+t1� + t2�t1� + t2�t0�) 1Xn=0 nXi=0 �ni � (t2+)i(t2�)n�i):We have here introdu
ed the binominal 
oeÆ
ient ( ni ) to 
ount the number ofways i plus-signs 
an be distributed over n symbols. The fa
tor in front of thesum takes 
are of the fa
t that the symbol sequen
es has to end with the 
orre
t
ombinations of 2� and 0�=1�. Shadowing a

ounts for the fa
t that we don'tget an in�nite produ
t to work out but only a sum.We will now return to the third 
ase we left out before. It is the 
ase wherethe sequen
es 
onsists only of 2�. This is analogous to the 
ase of � odd wherewe had to in
lude the two �xed points. We deal with it in rather mu
h the sameway by introdu
ing them into to the in�nite produ
t by hand. However, herethere are in�nitely may possible sequen
es whereas the two �xed points justgave two additional fa
tors. Fear not, dear reader, yet again one 
an hear the
avalary approa
hing | shadowing sets in and 
an
les the 
urvature 
orre
tionsexa
tly, leaving only the term (1� t2+ � t2�): (31)We 
an now write out the full dynami
al zeta fun
tion, however, it pays ofto give it a bit of massage. The sums in (30) 
an easily be 
al
ulated by notingthat 1Xn=0 nXi=0 �ni � (t2+)i(t2�)n�i = 1Xn=0(t2+ + t2�)n = 1(1� t2+ � t2�) : (32)The ora
le 
an now be 
al
ulated,1=� = (1�t2+�t2�)(1�t0+�t1+�t1��t0+� (t2+t0+ + t2+t1+ + t2�t1� + t2�t0�)(1� t2+ � t2�) ):(33)Multiplying everything out and 
olle
ting terms gives us1=� = 1�t0+�t1+�t2+�t2��t1��t0�+t2+t0�+t2+t1�+t2�t0++t2�t1+: (34)Cal
ulating the mean 
y
le square jumping number and mean 
y
le length isnow trivial,hn̂2i� = �t1+ � 4t2+ � 4t2� � t1� + 4t2+t0� + t2+t1� + t2�t1+ + 4t2�t0+8



= �10�� 1�2 (35)hni� = �t0+�t1+�t2+�t2��t1��t0�+2t2+t0�+2t2+t1�+2t2�t1++2t2�t0+= �6�� 8�2 : (36)The di�usion 
onstant D follows,D = 12 hn̂2i�hni� = 5�� 56�� 8 = 5 +p58 : (37)The 
ase � = (5 +p41)=2 
an be dealt with along similar lines. The maindi�eren
e is that now the intervals M2+ and M2� are mapped onto M0+ [M1+[M2+[M2�[M1� andM0�[M1�[M2�[M2+[M1+, respe
tively.This makes only a small di�eren
e in the 
al
ulations sin
e we only need to takeinto a

ount the fa
t that 
ombinations of 2+ and 2� now also 
an terminatewith 2 + 1� and 2� 1+. This is done by introdu
ing t2+t1� and t2�t1+ in thefa
tor in front the sums in eq. (30). Doing the maths analogous to what we didbefore gives1=� = 1� t0+ � t1+ � t2+ � t2� � t1� � t0� + t2+t0� + t2�t0+: (38)It is interesting to noti
e the way terms with two tp-s 
an
el when we make theimage of M2+ overlap all but the last interval, M0�. It is fairly obvious whatwill happen when we let the interval overlap all the subinterval, i.e. we 
onsiderthe 
ase of � = 6; we get exa
tly the simple form of the zeta fun
tion 
orre-sponding to unrestri
ted dynami
s in the alphabet f0+; 1+; 2+; 2�; 1�; 0�g. Itis reassuring to know that our methods are at least 
onsistent!Applying the operators z ��z and �2��2 and evaluating at (�; z) = (0; 1) giveshn̂2i� = �10�� 8�2 and hni� = �6�� 4�2 : (39)The di�usion 
onstant now follows readily,D = 12 hn̂2i�hni� = 5�� 46�� 4 = 107�p41124 : (40)If we 
ompare with table H.2 in the proje
t des
ription we see that theresults 
al
ulated here are di�erent from those in the table for (a), (b) and (e).The two �rst are readily explained as typos in the table(?) but it seem verypossible that a small error found its way into my 
al
ulations of the se
ond lastentry in the table.3 Numeri
s and some 
on
luding remarksWhen one has no other ideas one 
an always try to do some numeri
al 
al
ula-tions. . . We have now 
al
ulated a few di�usion 
onstants, trusting that we havederived the underlying theory 
orre
tly. If we 
an trust periodi
 orbit theorythen our 
al
ulations of di�usion 
onstants have been exa
t. However, it is notintuitively obvious that the numbers found so far are 
orre
t so we might want9
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onstant 
al
ulated numeri
ally for � = 5 with in
reasingnumbers of iterations. The value D = 1 found from periodi
 orbit theory isindi
ated with a dashed line.to use the dumb approa
h of brute for
e numeri
s. It is a quite obvious approa
hsin
e iterated mapping lend themselves to easy 
omputer implementation.However, 
ontrary to popular belief, numeri
al 
al
ulations is a quite subtlesubje
t and the pitfalls are legio. We will here look at data for the 
ase of� = 5 
al
ulated for in
reasing numbers of iterations. Be
ause we do not havein�nitely mu
h 
omputer-time, we will balan
e the number of iterations withthe number of start-points we look at. Figure 3 shows the di�usion 
onstantsas a fun
tion of the number of iterations in a simulation where the number ofiterations times the number of input points has been kept at 108. (This takesabout 70 s per data-point on a fast 
omputer with an extremely inelegant C-program using double pre
ision arithmeti
s.) The result, D = 1, from periodi
orbit theory is also indi
ated on the �gure. It is obvious that the result fromperiodi
 orbit theory is of the right order of magnitude but something is 
learlygoing wrong.From the �gure we see that up to a few thousand iterations the points lookas if they are 
onverging but the they seem to be tossed around more or less atrandom for more iterations. What seems to be happening is that the sequen
eof points gets 
aught by an attra
tor for the dynami
al system 
onsisting ofboth the iterated mapping and non-linearities 
aused by round-o� errors. Thisgives rise to apparently extreme di�usion 
onstants.
10



� di�usion 
onstant4 14 0:252 +p6 1� p64 � 0:3882 + 2p2 26�11p216 � 0:6535 1 13 +p5 5+p58 � 0:9055+p412 107�p41124 � 0:8116 56 � 0:833Where did we end up, and where do we go from here?But what about the exa
t results, then? Can we interpret them? We 
an seethat the largest value of D is found for � = 5. Comparing �gure 1 this mightbe possible to understand. First of all, we would expe
t as a general trend thathigher values of � would lead to faster di�usion. It is true that di�usion getsfaster with higher values of �. The expressions for � even and odd also showsthat: for large values D goes as �2. This is, however, not the only e�e
t so 
anwe understand why � = 5 gives the highest value of D.Every time the sequen
e enters the M2+ interval it will not only be sentfar in one dire
tion, it will also be sent in the same dire
tion in the next timestep as 
an be seen from the �gure (by symmetry this is also true for 2�). Ifwe in
rease � to 3 +p5 we get the possibility that the `fast running' points ofM2+ get mapped to the M2� interval and thus ki
ked in the other dire
tion.If we then in
rease � one step more we get a further possibilities to get sent inthe opposite dire
tion when we make a long jump and thus a lower value of thedi�usion 
onstant even though � goes up. If we go to � = 6, points inM2+ 
annow be mapped toM0� also but that just means standing still for one iterationso we would expe
t this to a�e
t the di�usion 
onstant in a less negative wayand indeed it even does go up a bit.These are of 
ourse just hand-waving arguments but they seem to explainthe behaviour seen in the 
al
ulated values of the di�usion 
onstant. What oneshould be able to work out is whether there is a general trend of D growingroughly as �2 and then eliminate that e�e
t and somehow study the `bare'e�e
t of letting the `fastest running' intervals, Mm�, overlap more or less withthe other intervals. It also seems possible that the e�e
ts of the overlaps ofthe Mm� intervals and the other intervals will diminish as we go to highervalues of �. It might happen that there exists a point from whi
h the di�usion
onstant grows `monotoni
ally' with � in
reasing in steps that mat
h Markovpartitions of the simple form we have studied here (e.g. �nite Markov partitionslabeled by jumping numbers). If this a
tually happens one 
an study whethersomething similar will happen if we make even �ner partitions (a possibility noteven mentioned here), and one 
an maybe investigate whether from some �nitevalue onwards D be
omes a monotoni
 fun
tion of � (my guess is that no su
hvalue exists). All these are possibilities whi
h 
an be investigated, possibly withte
hniques used in this term paper. 11


