Deterministic diffusion
— the sawtooth map

Christian Ingemann Mikkelsen

This is the term paper which makes up the final part of the exam for the
Fall "98 course on classical and novel approaches to non-equilibrium statistical
mechanics and kinetic theory. The sole reference for the paper is the chaos
web-book Classical and Quantum Chaos: A Cyclist Treatise by Cuvitanovié €
friends at http://www.nbi.dk/ChaosBook/. The project description is found
in appendix H.2 of the web-book.

1 Reproduction

One achievement of periodic orbit theory is the possibility to do non-equilibrium
statistical mechanics in a new way, without the need for approximations, stof-
zahlansatz or the like. It enables us in principle to relate the short term be-
haviour of a dynamical system to behaviour in the t+ — oo limit. The cookbook
recipe is simple; encode the dynamics in a suitable alphabet, calculate the great
oracle: the dynamical zeta function, query the oracle in the right way and you
will get the answers. However, the real world is a cruel place for theoretical
physicists. Finding a suitable alphabet for the dynamics of real world systems
is rarely easy and as with all great oracles you must approach them with respect
and know exactly how to pose the questions.

Realising that the main obstacle for a young aspiring physicist is finding
a sufficiently well-behaved real world problem to which he can apply newly
acquired textbook knowledge, let us turn to a toy problem that can be useful
for gaining insight. Let us look at something one-dimensional, linear, evolving
in discrete time  in short, a problem tractible to pen and pencil calculations!

What we want to look at is the following mapping of I = [0, 1] into R,

i aer. [ Ad, 2 €0,1/2]
fi(@) < { AE—1)+1, &e€1/2,1]. W

The function fI is constructed such that 0 — 0 and 1 — 1. It is the diffusion
properties of this map (and related ones to be defined below) we will investigate
as function of, or rather for various values of the parameter A. In the following
we will take this parameter to be greater than 2. We do not have the right
mapping to study yet because fI is only defined on the unit interval whereas it
takes values in R. The cure is very natural and simple; extend f, to all of R
by translating the function back to the unit interval, evaluating it there, and
sending it back to where it came from. In a less verbose and more mathematical
formulation this translates into
£y def. 7

f@) = fi@ - [2]) + [2], (2)



where |-] denotes the ‘floor’ function which returns the nearest integer smaller
than or equal to its argument. Obviously, Z—|Z| € I holds and 1 is still mapped
to 1 with the extended definition (2).

Until now we have been decorating our definitions with plenty of little ‘hats’
just to make the reader curious as to whether any ‘bald’ functions would show
up. Indeed they willl The convention we will follow here is to denote entities
relating to the whole space (i.e. R) with hats and let ‘bald’ symbols refer to
the elementary cell in casu the unit interval I. This notation is broadly that of
Cuvitanovié & friends, section 14.1. If the notation is useful for no other purpose
it at least makes the formulas look cool, so we will use it here.

In our aspiring physicist’s recipe for doing periodic orbit theory, we men-
tioned something about understanding and encoding the short term dynamics
in an alphabet and then using this to understand the ¢ — oo behaviour. This
is exactly what we are going to try now. We define a new function f : I — I
by translating f back to I by doing the calculations modulo unity. Likewise we
get rid of the integer part of f(f“) All we then have to do is to iterate f on
I and keep track of the ‘jumping’ i.e. the discarted integer part of f(T) More
precisely we define f as

fl@) = f(@) - |f(@)], (3)

where 2 = & — | ] is in I. We are now going to write down a symbolic dynamics
where the alphabet simply keeps track of the distance of the ‘jump’.

Since this is periodic orbit theory, it seems reasonable that we introduce
some notion of periodicity. The notation is that of A Cyclist Treatise where
p={z1,...,2p,} is called an elementary cell cycle (elementary cell = no hats)
if n, iterations sends x; back to itself, f"»(z;) = x;. We are also to keep track
of the length of the jumps so we will briefly return to the whole space, R. We
define (with hats now) n, € Z by i, = fre (z;) — x; as the jumping number of
the cycle. If nn, = 0 the cycle is said to be standing, otherwise it is said to be
TUNNING.

Now things are in place! The cycle weight for a cycle p is given in the project
description (H.2) as

(8.) = & (@
t,(B,z) = 2" .
3 Ayl
Our oracle will be the dynamical zeta function given by
1/6(8,2) = [T(1 = t,(8.2). (5)
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The quantity we want to compute is the diffusion constant D which periodic
orbit theory tells us is given by

1
2 (n)¢ ©)

The triangular brackets, (-)¢, denotes mean cycle quantities, so for example
(ﬁ%)c is the cycle mean of the square of the jumping number. We are dealing
with a problem in discrete time so the role of time is taken over by the mean



Figure 1: Tllustration of the mapping f for A = 5 (left) and A = 6 (right). The
jumping numbers for the intervals are indicated.

cycle length (ny)¢c. The mean square jumping number and the mean cycle length
are given by (querying the oracle)

2 = o nd v
p/¢ 9B* (B, 2) | 5=0, =1
0 1
<np>C = Z&m B=0, z=1 . (8)

Let’s get some real world numbers in! Out there natural numbers are very
popular and it will turn out that the dynamics will be particularly simple if we
choose A to take values in the natural numbers. We will have to consider two
cases: A odd and A even. Let us start out by considering the case where A is odd.

Sawteeth for A odd

We will now have to understand the short term dynamics of the system,
choose our alphabet, and then we can calculate the big D. The dynamics is
illustrated on figure 1 for the case of A = 5. The interval I is partitioned into
six subintervals {Mo4, M4, Mot, Ma_, My_, My_} corresponding to the six
different possible jumping numbers. In general for A odd we have {M; | i =
m—,...,m+} where m is given by (A — 1)/2.

We now need to choose our alphabet A. From the figure we see that
Moy, M1y, M1 and My_ are mapped onto the entire unit interval I. This
is easily generalised to arbitrary odd A, where Mo+, ..., M(;,_1)4+ are mapped
onto the entire interval. The subintervals Moy and Ms_ (M4 and M,
in the general case of A odd) are only mapped onto Mg U M4 U Moy and
My U M;_ UM, respectively. In the general case we get that M, is
mapped onto |J; M,y and similarly for m—.

We can write the general case out in the infinite alphabet

A= {(m+) 0+, (m+)* 14, (m—)*0—, (m—)*1 - | k=0,1,2,...} (9

in which the dynamics is unrestricted, i.e. all combinations of letters are possible
itineraries for points. Two possibilities are not accounted for, however. The



dynamics has not taken into account that it is possible for a point to be mapped
from M,,+ to M,,+ (and similarly for M,,,_) ad infinitum. This can be taken
care of rather simply by introducing factors of (1 — ¢,,4) and (1 — ¢,,—) in the
dynamical zetafunction as we will see below.

The dynamical zeta function, 1/{, can now be calculated,

¢ = JJa-t) (10)
= (1 - tm+)(1 - tmf)(l - i: Z(tm+)kta+ - i Z(tmf)ktaf)'
a=0 k=0 a=0 k=0

We have here used relations of the type t(,1)tay = (fms)¥taq which makes
the ‘curvature corrections’ of eq. (9.5) in A Cyclist Treatise vanish. The inner
summations are easily taken care of with the aid of,

00 t,
Z(tm+)kta+ = 1 = (11)
k=0 — s

and similar expressions for ¢, and ¢,_.
We can now plug into (10)

1/¢

(U= tm) (A=t ) = (U=t ) D tas = (1= tmy) > ta-

m—1 m—1 m—1 m—1
1- tm+ - tmf _Z ta+ _Z taf + tmfz ta+ + tm+z taf + tm+tm7
a=0 a=0 a=0 a=0

and obtain the oracle we want to query. We do this by applying the operations
zZ and 88—;2 to 1/¢(8,z) and evaluating at (8,z) = (0,1). The calculations
are simplified if we note that ¢, is an eigenfunction of the two operators with
eigenvalues n, and ﬁ% respectively. Furthermore, we will need that ¢,(0,1) =
1/A,.

Straightforward (albeit tedious) calculations and the formulas (7) and (8)
give

e (A-DA+1)(-A)

W) = - (12)
_(1=4A)

e = ——, (13)

where we have used the defining relation m = (A — 1)/2 to simplify the result.
The diffusion constant D now follows readily,
()¢ _ (A+1(A 1)

1
b=3 n)e 24 ' (14)

Voila!



Sawteeth for A even

Likewise and a bit simpler, we can deal with the case of even values of A. The
interval can be partitioned into A equal intervals { M} where m = A/2—1.
We encode the symbolic dynamics in the alphabet A = {0+, ... ,m+,m—,...,0—}.
Since f is an onto mapping of the M; onto the unit interval, f(M;) = I, the
symbolic dynamics is unrestricted in the alphabet A.

The zeta function now follows from the definition as

m+
1/¢=1- Z ti, (15)

i=m—

where we have used the fact that all higher terms in the sum vanish exactly:
in the lingo of periodic orbit theory all curvature correction vanish because the
shadowing is exact.

We now just have to crank the wheel and grind out the big D. The mean
cycle length is calculated as

m+
=Y 1= 2Dy (16)

~2 _ 7(ﬁ0+)2 - o (ﬁm+) - (ﬁmf) - (ﬁO—)z
2 ) m(m+1)(2m + 1) (A=1)(A-2)
— - _ — = — 1
o 3A 2 (18)
i=0
Plugging into the formula for the diffusion constant is trivial and gives
1(n? A-1)(A -2
10N (A-1(A-2) 19)
2 (n)¢ 24

Voila!

2 Sawtooth map, cut in (Markov) pieces

The preceding discussion was made simple because f mapped the M; subinter-
vals onto the entire unit interval I. This made the symbolic dynamics easy since
we did not have to keep track of what had happened in the preceding steps. We
could use the jumping numbers as alphabet and the dynamics was unrestricted.

However, we will now go a step further and consider situations where the
unit interval can be partitioned into a finite number of subintervals M; which
only has the weaker property that; loosely speaking, subintervals are mapped
onto unions of subintervals. This is more technically correct written as

fIM)NM; =0 or M; C f(M,) Vi, j (20)

Such a partition is called finite Markow.



Figure 2: Illustration of the mapping ffor A=2+22 (left) and A =3 + /5
(right). The jumping numbers for the intervals are indicated.

We will now consider something concrete, a map allowing a finite Markov
partition { Moy, M4, Moy, Mo, Mq1_, Mg_} where the (critical) point 1/2
is mapped onto the right end-point of the interval M;,. The map is illustrated
on figure 2.

First of all, we will determine the value of A that corresponds to this situ-
ation. What we know is that the critical point 1/2 is mapped onto the right
end-point of My, zg. However, we know that being the right end-point of
M4 zp solves the equation f(:vg) = 2, so that we have the following equations
to solve for A,

f(1/2) =z, or f(1/2) =z +2 together with f(zo) = 2. (21)

First solving the last equation for zq gives A/2 and substituting into the first
equation gives A = 2(1 + 1/2). The negative solution is obviously not the one
we are seeking and we have already limited our scope to maps with A > 2 so it
is discarted.

By inspecting figure 2 it is clear that f(M;) = I for i € {0+,1+,1—,0—1},
fMay) = Mor UMy and f(Ma) = Mo- U M;_, so we can choose an
alphabet 4 in which the symbolic dynamics is unrestricted, A = {0+, 1+,2 +
0+,24 14,2 —1—,2 - 0—,1—,0-1}.

And the zeta function is

1/¢ =1—tor —t14 —togor —toyiqy —ta_1— —ta_o— —t1— —to— (22)

We can now grind out the numbers,
1 2 4A+38

(n)¢ = 4K + 4F ECEE (23)
and 2 2 2 2 A
. 0 1 2 3 2A + 26
~9 _ o - £ 2
(n)C_QA-i—QA+2A2+2A2 VI (24)
and the diffusion constant is
1AM  A+13  15+42V2 26 11V2 (25)

2 (n)e  4A+8 16+ 82 16



Voilal!

The basic observation that made the previous calculation work was that we
could find a partition which was Markov. The point 1/2 was mapped to the end
of an interval and allowed a Markov partition to be found. We will now work
out a few more examples of this sort for values of A between 4 and 6. There
are 7 easy-to-find such examples, 1/2 mapped to the left end-points of Mgy
(A =4), Mqiy (A =2++6), My, (A =2+2/2), the right end-points of My
(A=5), My (A=3++5), Mi_ (A= (5++/41)/2) and Mq_ (A = 6).

Some of ‘rhe numbers we already have worked out. The integers are covered
by the results from the previous section. We find from the formulas that D = 1/4
for A=4,D=1for A=5and D =5/6 for A =6. The case A = 2 + 2v/2 was
calculated above and we quote the result D = (26 — 111/2)/16.

The case A = 2++/6 can be dealt with along lines similar to the A = 2+92v/2
case. The dynamics is unrestricted in the alphabet A = {0+,14,2+ 0+,2 —
0—,1—,0—1}, so we can write

1/(21—t0+—t]+—t2+0+—t2,0,—t],—t(), (26)
to calculate 5 g A+ 8
A = - = 2
(W) =% -5 =~ (27)

and 4 4 4A 4+ 4
<n>C:_X_F:_—A2 . (28)

This gives us immediately the diffusion constant

~2
oo L) _ A+d 6+ V6 :17@ (20)
2 (n)e  4A+4 12+ 46 4

The Duke of Cambridge

The two remaining cases are a little harder but with a little persistence we
will be able to deal with them. Let us first look at the case of A = 3 + /5.

The unit interval is naturally partitioned into 6 subintervals as in the pre-
ceding examples. The intervals with labels 04, 14, 1— and 0— are mapped onto
the entire unit interval. What gives a little trouble is the two middle intervals,
My and My _. The first of these two is mapped onto the intervals Mo, M4,
My and My, and the second is mapped onto Mg_, My_, Ms_ and M.
Writing down the alphabet corresponding to the dynamics is a bit tricky. It
will have to contain sequences of arbitrarily long combinations of 2+ and 2—
terminating with one of the four symbols which gives no restriction on the next
letter, 0+, 14, 1— and 0—. We will, however, have to make sure that the label
before the terminating label in the letter has the right sign, e.g. before 1— we
will have to have 2— and not 2+. On top of this it will have to have provisions
for itineraries which let the point bounce back and forth between My, and
M indefinitely.

However, we can avoid the problems of formulating the alphabet directly
and make use of the fact that the slope of the map is the constant A. The latter
gives rise to identities of the form 2.4 yk (9 yra(24)ks04 = (tog ) k1 ks (o Yh2tg,



etc. as can be seen directly from the definition of ¢,. These identities make
shadowing work and they will make life much easier in the following.

The sequences of labels which are supposed to make out the alphabet can
be of three forms. It can be one of 0+, 1+, 1— and 1— in which case there
are no problems what so ever. There can be a sequence possibly empty
of 24+s and 2—s preceding a 2 + 0+, 2 + 14, 2 — 1— or 2 — 0— as described
above. It is important to note that the order of the symbols matter when the
alphabet is written out but when the zeta function is calculated we can use
the identities noted above. The problem of ordering is thus reduced to one of
counting. Postponing the third case for a moment, we write

(1 — toy —tip —t —to_ (30)

(1) )ity

n

o0
~ (taptop +hastr it b +ty to )
n=0 i=0

We have here introduced the binominal coefficient (1) to count the number of
ways i plus-signs can be distributed over n symbols. The factor in front of the
sum takes care of the fact that the symbol sequences has to end with the correct
combinations of 2+ and 0+ /1+. Shadowing accounts for the fact that we don’t
get an infinite product to work out but only a sum.

We will now return to the third case we left out before. It is the case where
the sequences consists only of 2+. This is analogous to the case of A odd where
we had to include the two fixed points. We deal with it in rather much the same
way by introducing them into to the infinite product by hand. However, here
there are infinitely may possible sequences whereas the two fixed points just
gave two additional factors. Fear not, dear reader, yet again one can hear the
cavalary approaching — shadowing sets in and cancles the curvature corrections
exactly, leaving only the term

(1~ toy —t2). (31)

We can now write out the full dynamical zeta function, however, it pays of
to give it a bit of massage. The sums in (30) can easily be calculated by noting
that

YD) Ce) ) =D e A o) = . (32)
n=0i=0 < ! ) n=0 (1—ta —t2-)
The oracle can now be calculated,

(t2+t0+ + t2+t1+ + ot + tQ,tO,)

1/¢ = (1—toy—ty )(1—toy—t1 1 —ty —top— 0t =50
o — 1

).

(33)
Multiplying everything out and collecting terms gives us

1/¢ = 1=t —t1y —tog —ty —t1_ —to_+torto +torti +to tor+ta ti. (34)

Calculating the mean cycle square jumping number and mean cycle length is
now trivial,

(A*)e = —tiy —dtoy — 4ty — 1 +dtoyto + oyt + o tiy + 4ty tor



= 10—~ (35)
(n)e = —toy —tip—tay —to —ty —to_ +2boyto +2baty 42ty ty +2ts toy
6A — 8

The diffusion constant D follows,

(7% 5A—5 5++/5

1
D=-— = =
2 (n). G6A—8 8

(37)

The case A = (5 + v/41)/2 can be dealt with along similar lines. The main
difference is that now the intervals My, and Ms_ are mapped onto Mgy U
MizUMop UMy UM, and Mg UM _UMs_ UM UM, 4, respectively.
This makes only a small difference in the calculations since we only need to take
into account the fact that combinations of 24+ and 2— now also can terminate
with 2 + 1— and 2 — 1+4. This is done by introducing 5%, and t2_t;4 in the
factor in front the sums in eq. (30). Doing the maths analogous to what we did
before gives

]./C - ]. - t(]+ - t1+ - t2+ - t27 - t1, - t(], + t2+t0, + tQ,t(H_. (38)

It is interesting to notice the way terms with two ¢,-s cancel when we make the
image of My, overlap all but the last interval, Mq_. It is fairly obvious what
will happen when we let the interval overlap all the subinterval, i.e. we consider
the case of A = 6; we get exactly the simple form of the zeta function corre-
sponding to unrestricted dynamics in the alphabet {0+, 1+,2+,2—,1—,0—}. It
is reassuring to know that our methods are at least consistent!

Applying the operators z% and 88—;2 and evaluating at (8, z) = (0,1) gives

. 10A — 8 6A — 4
()¢ = ——z ad (n)¢=-—pH— (39)

The diffusion constant now follows readily,

(%)  5A—4 107 — V41
(nye 6A—4 124

D= % (40)

If we compare with table H.2 in the project description we see that the
results calculated here are different from those in the table for (a), (b) and (e).
The two first are readily explained as typos in the table(?) but it seem very
possible that a small error found its way into my calculations of the second last
entry in the table.

3 Numerics and some concluding remarks

When one has no other ideas one can always try to do some numerical calcula-
tions... We have now calculated a few diffusion constants, trusting that we have
derived the underlying theory correctly. If we can trust periodic orbit theory
then our calculations of diffusion constants have been exact. However, it is not
intuitively obvious that the numbers found so far are correct so we might want
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Figure 3: Diffusion constant calculated numerically for A = 5 with increasing
numbers of iterations. The value D = 1 found from periodic orbit theory is
indicated with a dashed line.

to use the dumb approach of brute force numerics. It is a quite obvious approach
since iterated mapping lend themselves to easy computer implementation.

However, contrary to popular belief, numerical calculations is a quite subtle
subject and the pitfalls are legio. We will here look at data for the case of
A =5 calculated for increasing numbers of iterations. Because we do not have
infinitely much computer-time, we will balance the number of iterations with
the number of start-points we look at. Figure 3 shows the diffusion constants
as a function of the number of iterations in a simulation where the number of
iterations times the number of input points has been kept at 10%. (This takes
about 70 s per data-point on a fast computer with an extremely inelegant C-
program using double precision arithmetics.) The result, D = 1, from periodic
orbit theory is also indicated on the figure. It is obvious that the result from
periodic orbit theory is of the right order of magnitude but something is clearly
going wrong.

From the figure we see that up to a few thousand iterations the points look
as if they are converging but the they seem to be tossed around more or less at
random for more iterations. What seems to be happening is that the sequence
of points gets caught by an attractor for the dynamical system consisting of
both the iterated mapping and non-linearities caused by round-off errors. This
gives rise to apparently extreme diffusion constants.
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A diffusion constant

1
1 I 0.25

2+v6 | 1-Y8 | ~0.388

2422 | 2=1V2 | 4 .653

5 1 1

3+v5 | 5 | x0.905
5+;/H 107T\/H ~ 0811

124

6 5 ~ 0.833

Where did we end up, and where do we go from here?

But what about the exact results, then? Can we interpret them? We can see
that the largest value of D is found for A = 5. Comparing figure 1 this might
be possible to understand. First of all, we would expect as a general trend that
higher values of A would lead to faster diffusion. It is true that diffusion gets
faster with higher values of A. The expressions for A even and odd also shows
that: for large values D goes as A%. This is, however, not the only effect so can
we understand why A = 5 gives the highest value of D.

Every time the sequence enters the Mo, interval it will not only be sent
far in one direction, it will also be sent in the same direction in the next time
step as can be seen from the figure (by symmetry this is also true for 2—). If
we increase A to 3 4+ v/5 we get the possibility that the ‘fast running’ points of
Mo, get mapped to the My_ interval and thus kicked in the other direction.
If we then increase A one step more we get a further possibilities to get sent in
the opposite direction when we make a long jump and thus a lower value of the
diffusion constant even though A goes up. If we go to A = 6, points in Ms can
now be mapped to M _ also but that just means standing still for one iteration
so we would expect this to affect the diffusion constant in a less negative way
and indeed it even does go up a bit.

These are of course just hand-waving arguments but they seem to explain
the behaviour seen in the calculated values of the diffusion constant. What one
should be able to work out is whether there is a general trend of D growing
roughly as A? and then eliminate that effect and somehow study the ‘bare’
effect of letting the ‘fastest running’ intervals, M,,+, overlap more or less with
the other intervals. It also seems possible that the effects of the overlaps of
the M+ intervals and the other intervals will diminish as we go to higher
values of A. Tt might happen that there exists a point from which the diffusion
constant grows ‘monotonically’ with A increasing in steps that match Markov
partitions of the simple form we have studied here (e.g. finite Markov partitions
labeled by jumping numbers). If this actually happens one can study whether
something similar will happen if we make even finer partitions (a possibility not
even mentioned here), and one can maybe investigate whether from some finite
value onwards D becomes a monotonic function of A (my guess is that no such
value exists). All these are possibilities which can be investigated, possibly with
techniques used in this term paper.

11



