Chapter 9
Bifurcation in billiards

Chapter 5 described bifurcations and forbidden orbits in billiard systems by intro-
ducing a pruning front. An orbit was forbidden if its symbolic value was in the
forbidden region and the orbit bifurcated if its symbolic value was on the pruning
front. We will in this chapter investigate the bifurcation process in billiard systems;
the structure in the phase space and how the bifurcations are organized in families.
This will enable us to connect bifurcations in a hard billiard system with the bifur-
cations in a soft Hamiltonian system even if it is difficult to obtain a pruning front
for a smooth potential.

The bifurcations in billiard systems have received very little attention in the
literature. It has even been claimed that there are no bifurcation structure in
billiards; “...the E-7 plots [phase space as function of parameter| for this problem
[anisotropic Kepler| has no interesting structure and shows no branching. The same
is true of the various ‘Billiards’ problems.” [23]. I disagrees with the statement on
the billiard systems. The lack of interest in bifurcations in billiards should not be
because these billiards are too artificial, because the billiards are very popular to
use in e.g. quantum chaos calculations. It may be that the problems with symbolic
dynamics have discouraged studies of bifurcations in billiards, but that is unlikely
since bifurcations in the more complicated smooth potentials are much studied.

Anyway I find these problems an interesting and a not too complicated exercise.

9.1 Tent map revisited

The best way to understand bifurcations in billiards is first to study the one di-
mensional tent map. In chapter 1 we made some remarks on bifurcations in the
tent map. In the one parameter tent map a family of orbits is born at one critical

parameter value. In the one dimensional phase space = the orbit at the bifurcation

263



264 CHAPTER 9. BIFURCATION IN BILLIARDS

0.9 0.9

0.8} 0.8} 4
0.7¢ 0.7} 1
0.6} 0.6} 4

X X
0.5 N S —— <
0.4} 0.4} ]
0.3} 0.3} ——
0'21 1.2 1.4 1.6 1.8 2 0'21 1.2 1.4 1:6 1:8 2
a a

)
o

1 - 1
J—
0.8} 0
0.6} 4 0
X peememmmeemmmmeeeeee o ——EZT X
0.4} . 0
0.2} E 0.2
—
0 0
1 1.2 1.4 1.6 1.8 2 1 1.2 1.4 1.6 1.8 2
a a
c) d)

Figure 9.1: Bifurcation of families of periodic orbits in the tent map. a) 1, b) 100, ¢)
1000, d) TOT111.

has one point at z, = 1/2 and moves away as the parameter a increases. Some
examples of bifurcating orbits are given in figure 9.1. We define the bifurcation

family of orbits to be the period doubling family. This is all orbits of the form

S(1 —e€)

Se

SeS(1 —€) ©.1)
SeS(1 —€)SeSe '

SeS(1 —€)SeSeSeS(1 —€)SeS(1 —¢)

with S = s15283...5,1 and s; € {0,1}, ¢ € {0,1}, the number of symbol 1’s in
Se is odd, Se can not be written as S’(1 — €)S’e and finally Se has to be the cyclic
permutation giving 7. This corresponds to all harmonics of an orbit in the MSS
terminology [147].

With this definition is it only the critical parameter r. = 1 in eq. (1.3) that gives
a bifurcation of only one family. This is the family of the fixed point 1 where the
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Figure 9.2: The position of one point of the orbits 123132, 12131312 and 1231312
as a function of the parameter 7 close to the bifurcation in the non-symmetric 3 disk

system.

string S consists of no symbols (here S(1 — ¢) = 0 does not bifurcate together with
the family). All the other critical parameter values give the bifurcation of several
families. The topological entropy increases linearly with the parameter and the
map is called not full since not all kneading sequences can be obtained. In a more
general map with a none-smooth critical point and no stable orbits, the different
families may split up and bifurcate at different parameter values, while the different
orbits belonging to the same family (9.1) always bifurcate at the same parameter
value. The different families bifurcate in the MSS order but with critical parameter
values where many orbits are created simultaneously.

In the tent map we find that the period 3 orbit family Se = 100 bifurcates
together with all other families with 7(101) < 7(S") < 7(100101) = 0.111010
which is all orbits in the resonance of the logistic map. In general the orbits S’
which bifurcate together with the primary family Se have 7(S(1 —¢€)) < 7(5") <
7(SeS(1 — ¢))

The shortest orbits in the families 1, 100, 1000 and 101111 are drawn in figure 9.1

as a function of the parameter a.

9.2 Dispersing billiards

The bifurcation of a whole family of orbits at one parameter value is also happen-

ing in the billiards, but an important difference is that the billiards have a one
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Figure 9.3: The orbits: a) and b) 123132, c) 12131312 and d) 1213132 for the param-
eter values: a), c) and d) 7 = 2.5 and b) 7. =4.212. ...

dimensional family of critical orbits while the tent map only has one critical orbit.

9.2.1 The bifurcation family

Figure 9.2 shows a point in some orbits as a function of the parameter 7 in a 3 disk
system with the center-center distances dio = di3 = 2.5, dog = 7, and with radius

equal to 1. These orbits are the orbits in the family
... 3135.12125¢3135121259313 . .. (9.2)

with s; either empty or the symbol 1. An equivalent definition of this family is that
it consists of the orbits constructed by using the alphabet

§; € {313,3131,212,2121} (9.3)

We see that this family has more members than the period doubling family of the
one dimensional map.

The reason why this is the correct symbolic description of the family is un-
derstood by the description of the singular orbits in figure 9.3. We know that an
orbit in a dispersing billiard without corners bifurcates; that is changes between

admissible and not admissible, because either
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1) a free flight of the particle becomes tangential to the border
or

2) a bounce off the wall has the outgoing angle ¢ = 7 /2.

In the configuration space at the bifurcation parameter r., these two cases look
the same. From the figure 9.3 b) it is not possible to tell if the straight line between
disk 2 and 3 is case 1) or 2). The parameter value r. therefore has to be the
bifurcation value of both the orbit where this straight line does not bounce and
have no symbol, and for the orbit where it bounces and has the symbol 1. The
orbit is infinite in future and in past and each time it passes the tangent point
it may have a bounce or not. The descriptions (9.2) and (9.3) are exactly the
descriptions of these orbits using symbols.

If we study an orbit which is tangent at one point but never returns to this point
tangentially, there are only two orbits that bifurcate together for this parameter
value. This is the case for hetroclinic orbits.

The argument for why the orbits bifurcate at the same parameter value does
not depend on the details of how the billiard changes with a parameter. The only
necessary knowledge is which straight line that becomes tangential to the wall, or
which angle that becomes 7/2. Figure 9.4 shows the same orbits in a 3-disk system

as a function of a parameter 7 when we choose different radiuses of the disks
radius(disk 1) = 2, radius(disk 2) =1/2, radius(disk 3) =1

with the center-center distances
dig=di3 =dy =7

The positions and the parameter change from the previous example but the same
orbits (9.2) belong to the bifurcation family. The ordering along 7 for when the
different families bifurcate may however change. This ordering is not fixed here as
it is for the unimodal map (the MSS ordering).

An other example of a dispersing billiard is the symmetric 4 disk system and in
figure 9.5 the position of one bounce of some long orbits is drawn as a function of
the parameter r. The orbits are drawn in figure 9.6 and this family of orbits are

described by the string
o 1s1(32)_14t(23) 5151 (32)"1415(23) s, . . . (9.4)

with s; either 2 or no symbol, and ¢; either 3 or no symbol. Because of the symmetry
of this family there is a bifurcation two places in the orbit simultaneously. The
critical parameter value is r. = 2.0312.. ..

We will return to this example later when we discuss the smooth potentials.
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Figure 9.4: Bifurcation of the orbit 123132 and its family in a not symmetric 3-disk

system. The position of the bounce on disk 3 as a function of 7.
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Figure 9.5: Bifurcation of the orbit 1(32)%4(23)* and its family in the 4-disk system.
The position of the bounce on disk 1 as a function of r.
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Figure 9.6: The orbits a) 1(32)44(23)%, b) 12(32)*343(23)%2, c) 1(32)*34(23)*2 and
d) 1(32)*343(23)* in the 4 disk system for r = 2.5.

9.2.2 The parameter space

In the tent map each bifurcating orbit has one point equal to the critical point z. =
1/2. In the dispersing billiards the critical points are a function of one parameter
x which is the position of the tangent bounce. We call the orbit tangential to the
border at z for x.(z) if this orbit is in the non-wandering set of the system. If the
dispersing billiard is closed then z.(z) is continuous in the phase space. In an open
billiard z.(x) is a point set, possibly a Cantor set, or it is empty.

The different families bifurcate at different positions on z.(z) and if we choose
two different ways to parameterize the billiard with two parameters r; and ry then
the different families with different z.(x) are not necessarily ordered the same way
in contrast to the unimodal map. The only ordering between the families follows
from the requirement that the pruning front is monotone.

The number of parameters necessary for describing all possible ways the system
may bifurcate is infinite. We can deform a small part of the wall without destroying
the dispersive properties. This will change the orbits that bounce in this part of
the wall but not the other orbits. By making this deformation we can change the

bifurcation point of one orbit without changing the bifurcation point of another.
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Figure 9.7: The angle of a bounce in the orbits 111333 and 012032 as a function of a
for the stadium billiard.

These different local deformations may be considered as the different parameters
in the system. Another point of view on the parameters is to understand each
point of the pruning front as one parameter. This also gives an infinite number of
parameters equivalent to the discussion above. In the folding maps of the Hénon
type the pruning front has large steps, and we found a natural hierarchic structure
of the infinite parameter space which gave a good way of describing the bifurcations
of the map. We have not been able to find a similar ordering into more and less
important parameters for the billiards because the pruning front does not have any

large steps but is rather smooth.

9.3 Stadium billiard

The focusing stadium billiard also has the same kind of singular bifurcations of
families as the dispersing billiards. Figure 7.26 shows some orbits for different
parameter values. The outgoing angle ¢ of one bounce of the orbits as a function of
the half length of the straight line, a, is plotted in figure 9.7. The structure of the
singular bifurcations is similar to the dispersive billiards where all orbits belonging
to one bifurcation family bifurcate at one parameter point. The family for the

example in figures 7.26 and 9.7 is given by the symbol strings in symbols s*

ce Co]_d0€03f001]_d1613f1 C (95)
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with
¢ € {07 1}7 dz € {172}7 €; € {273} and fz € {073}

An orbit in the stadium billiard becomes not admissible because either

1) The point where the particle bounces in the semi-circle moves to the end of
the semi-circle
or

2) The point where the particle bounces in the straight line moves to the end of
the straight line.

Assume an orbit bounces exactly off the singular point on the border where the
straight line and the semi-circle join. In the configuration space is it not possible to
decide whether this orbit is bouncing in the semi-circle or in the straight line. The
symbol of this bounce is then given by either the semi-circle symbol or the symbol
for the straight line. If the orbit is periodic then the orbit bounces off the singular
point every n-th bounce and therefore a whole family bifurcates at this parameter

value. The family of orbits is described by an alphabet
S; = Se (96)

where S is a fixed symbol string and € is either a semi-circle or a straight line
symbol. If there are symmetries of the orbit such that it bounces several times in a
singular point before it closes, then the alphabet may be more complicated as the

example above shows.

9.4 Corner bifurcations

We have a corner bifurcation in the wedge billiard where the singularity is the tip
between the planes and in the corners of the overlapping disk systems. An orbit
becomes illegal because a bouncing point on the wall moves from bouncing legally
outside the corner until until it hits the corner at the bifurcation parameter. The
only other orbit with a point that hits the corner for the same parameter value is
the orbit which bounces off the other wall in a symmetric system. Because of the
symmetry this is the orbit that is a mirror image of the first orbit or it is the same
orbit if this orbit also is symmetric. In a fundamental domain is it only one orbit
bifurcating. The bifurcation family is only the trivial family consisting of the orbit,
its reflection and the time reversed orbit.

One exception is the orbits bifurcating for § = 60° in the wedge billiard. As

observed by Smilansky [185, 189] there are several orbits bifurcation simultaneously



272 CHAPTER 9. BIFURCATION IN BILLIARDS

for this parameter value. One may expect this for some special parameter values
but generically it does not seem to be true. Typically will the size of the family

depend crucially on the smoothness of the singularity in the system.



