Chapter 8

Symbolic dynamics in special

limits

In some limit cases of billiard systems the symbolic dynamics is special and can be
found exact. Even if these cases are limits of the alphabets we can derive from a
pruning front, the symbolic dynamics of the limit may have very different number
theoretical properties than for the typical description. The limit we discuss in this
chapter is the integrable limit of the billiards where the orbits are stable and exist in
continuous families. The symbolic dynamics is in most cases mapped into a simple
rotation which is the description of how a straight line crosses a lattice. The sym-
bolic description of the rotation is a problem with old roots considered by Bernoulli
(1772), Markov (1882), Christoffel (1875) and Smith (1877) (for historical notes see
ref. [179]). The results as we use it was showed first by Morse and Hedlund [157].
Generalizations to higher dimensions can also be done [18].

Our simplest billiard, the 3 disk system, turns out to be slightly more compli-
cated than the 4 disk billiard and the wedge billiard, so we choose here to first
present the method for the later billiards.

In figure 8.1 a square lattice is drawn together with a line crossing the lattice.
Denote a crossing of the line with a vertical lattice line 0 and a crossing of the line
with a horizontal lattice line 1 . The symbol string ...l 5l 1lylil5 ... is the symbolic
representation of the different crossings of the line with the lattice lines. The line
in figure 8.1 is described by the symbolic string ...0100100100100010.... A given
infinite symbolic string define uniquely the slope of the line, but a periodic orbit has
an interval of starting points giving the same symbolic dynamics. The admissible
strings are not constructed from a finite alphabet or from a Markov graph as we
have done in other examples, but can be constructed from a Farey tree expansion.

The symbolic Farey tree is drawn in figure 8.3.
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Figure 8.1: The crossing of a straight Figure 8.2: The crossing of a straight
line with the lines of a square lattice. line with the lines of a triangular lattice.
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Figure 8.3: The construction of admissible symbolic sequences for the crossings in

figure 8.1 by a Farey tree.
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Figure 8.4: Two independent balls bouncing and crossing each others path. The
symbolic description of this orbit is ...00110110011011 .. ..

To apply this for the billiard examples we have to translate the symbols for

vertical and horizontal lines into the symbols in the different billiards.

8.1 Wedge billiard

In the limit where the angle in the wedge billiard goes to 45° the system is integrable
and corresponds to a simple rotation. The corresponding system with two bouncing
balls is when the two masses are equal m; = ms. In this two ball system it is easy to
see why a simple rotation is the correct dynamics of the system. An elastic collision
between two point particles with equal masses is identical to the system where the
two particles pass through each other without any interaction. We then have a
crossing of balls instead off bouncing between two balls. If the two balls bounce in
the floor independent of each other only the initial position and velocity matters
and there are two independent, never changing bouncing patterns. In figure 8.4 two
independent bouncing balls are drawn. One ball bounces with a time 7} between
each bounce and the second ball with time 75 > T;. The two times correspond to
the vertical and horizontal distances in figure 8.1 and determine the slope of the
line. We can associate the crossing of the straight line with a vertical lattice line
with the motion where the lower most ball is bouncing twice off the floor without
crossing (=bouncing) with the other ball. A symbol 0 in the lattice description
corresponds to a symbol 0 in the two ball symbols. The crossing of the straight

line with a horizontal line can be related to the sequence from one ball bouncing off
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the floor, the two balls cross and the the second ball bounces off the floor, then the
balls cross again and the first ball bounces off the floor. This symbol 1 in the lattice
symbols corresponds to the symbolic string 11 in the two ball symbols. Figure 8.4

shows that the two ball symbols always appears in pairs.

Interpreted this way the symbols 0 and 1 for crossing vertical and horizontal
lines are identical to the symbols 0 and 11 for the two ball system and therefore
also the wedge billiard. The strings in figure 8.3 can be translated into the wedge

symbols giving the symbols s;

11

01111111111
011111111
0111111011111111
0111111
0111101111110111111
011110111111
01111011110111111
01111
011011110111101111
0110111101111
0110111101101111011
01101111
0110110111101101111
01101101111
" 01101101101111 (8.1)
11011011011 '
0011011011 38118118012011011
0011011 001100110110011011
00110011011
0011 001100110011011
1100110011
00010011 o011
00011
000011 00001100011
0 0000011

This Farey tree is the description of admissible orbits in the integrable wedge in
terms of symbolic dynamics. In the well ordered symbols we have to take care of
the flipping process but this is simple since all symbol 1 which flip the ordering

always come in an even number so the only difference from the symbols above is
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that every second symbol 1 is turned into a symbol 0. This gives the symbols w;,
10

101010101
010101010 81818180?0?01010
0101010 0101001010100101010
1010010101
010100101010 510010100101010
01010 010010100101001010
10010100101
0100101001010 5, 501 0100100101001
01001010 0100100101001001010
01001001010
- 01001001001010 (8.2)
1001001001 '
0010010010 881881880?8020010
0010010 001000100100010010
00100010010
. 001000100010010
100010001
000100010 88818880288020
00010 00001000010
000010
o 0000010

and the symmetric ones with 0 and 1 interchanged.
We can show that in the symbol plane this gives as the limit of the pruning
front the straight line
1 1

Let a line go through one of the crossings between the horizontal and the vertical
lattice lines which corresponds to a singular orbit. The line will cross the vertical
and the horizontal lattice lines exactly the same way in both directions along the line
from the crossing point. The pruning front is given by the symbolic description of all
orbits having a double collision between the two balls and the floor simultaneously
an this is the point where the vertical and horizontal lattice lines crosses. All points

on the pruning front then has the form
o 3lalylglol ol -

The symbol string [jly describes the crossing of the line with the lattice cross and
the string is either 01 or 10. If we choose [jl; = 01 we get the two ball symbol string

describing the line
...55545830115354585
and the well ordered symbols

ce U]5U]4’U}30]_0’U}3’U}4’U}5
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Figure 8.5: The pruning front for the
wedge billiard in the integrable case § =
45°.
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Figure 8.7: The pruning front for the
wedge billiard for § = 45.01°.
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Figure 8.6: The symbolic values for a
number of orbits in the wedge billiard in
the integrable case # = 45°.
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Figure 8.8: The pruning front for the
wedge billiard for 6§ = 45.1°.
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which gives the symbolic values

o = 0.1011)3’[1]411}5 c.

Y= 0.01113’(1}41115 Ce

From these equations we get (8.3). The other choice of [y gives the symmetric line
y=46/2+1/2.

Figure 8.5 shows the numerical pruning front obtained for the wedge billiard at
45° and figure 8.6 shows the symbolic values of a number of different (not chaotic)
orbits in this wedge. Parameters close to 45° should give pruning fronts close to
this straight line and in figures 8.7 and 8.8 we find for wedge angles § = 45.01° and
6 = 45.1° many points on the pruning front are close to the line § = v/2 4 1/2 but
some points are far above this line and gives a staircase like curve with the line as

an envelope under the points.

8.2 4-disk

When the four disks are so close that the area of the domain where the particle
bounces goes to 0 the walls of the domain approaches straight lines and the system
becomes a particle in a square box. A particle bouncing inside a square is equiva-
lent to a particle moving freely on a square lattice and again we get the symbolic
description from the Farey tree construction. Here the translation from the rotation
to the symbol plane is slightly more complicated because the alphabet in the 4-disk

case is a four letter alphabet or a three letter alphabet.

We may choose to identify the four disk symbols s; € {1,2,3,4} with the lattice
such that the symbols 1 and 3 correspond to horizontal lattice lines and the sym-
bols 2 and 4 correspond to vertical lattice lines. Every second lattice line is then
1 and 3 (or 2 and 4) and every crossing of one of these lines gives these symbols
alternating. We also immediately see that a clockwise bounce followed by a num-
ber of bounces between opposite disks gives a clockwise or anticlockwise bounce

depending of whether the number of bounces was even or odd.

We can use the Farey tree in figure 8.3 to construct the symbolic strings for this
system. As the well ordered symbols are of grater interest than the symbols s, we

only give the symbols w;. Since the system is symmetric in the vertical and the
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Figure 8.9: The symbolic values for a
number of orbits in the overlapping 4-
disk billiard close to the integrable limit
with parameter r = 1.416 and the line
d=8/9—+/3.
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Figure 8.11:

the overlapping four disk billiard close

Corner pruning front for

to the integrable limit with parameter
r = 1.416.
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Figure 8.10: The symbolic values for
a number of orbits in the overlapping
4-disk billiard with distance r = 1.5
between the disk centers and the line
d=8/9— /3.
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Figure 8.12: Corner pruning front for
the overlapping four disk billiard with dis-
tance r = 1.5 between the disk centers.
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horizontal direction we only have to use half the Farey tree to get w;,

20
120202020
1202020 50901202020
12020
1201202012020
1201202010 119012020
120 (8.4)
1120120120
1120120
11201120120
1120
111201120
11120
111120

1

In addition to these we have the strings where symbols 0 and 2 are interchanged.
The pruning front from the tangent orbits only becomes a point in these limit as
there is no curvature left. As for the wedge the limit of the pruning front originating
from the orbits starting in the corners is a straight line. Since the construction of
well ordered symbols are different and have base 3 symbol values wee get a different

line. Following an argument as above we find the line

5= g - %7 (8.5)
to be the limit of the pruning front.

Figures 8.9 and 8.10 show the symbolic values of all bounces for chaotic orbits
close to the limit r = v/2 = 1.4142. . .. For the parameter 7 = 1.416 there is hardly
any point above this line while for » = 1.5 there is some points above it. The
figures 8.11 and 8.12 show the corner pruning fronts for the same parameter values.
Close to the limiting parameter value the points of the pruning front are almost all

very close to the line (8.5).

8.3 3-disk

In the limit when the three disks are so close that the domain turns into a trian-
gle the orbit is equivalent to the straight line in a triangular lattice as showed in
figure 8.2. The symbolic description of this can be found from the Farey tree in
the following way; The line is always crossing in an angle between 60° and 120°
to one of the three directions in the lattice. Every second crossing between the
line and the lattice lines is a lattice line which has this direction. The non trivial
dynamics is only the crossing between the line and the lattice lines in the other two
directions. If we call the crossing of the line with a lattice line in one direction 0

and the crossing with a lattice line in the other direction 1 and skip the crossings
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with the trivial lattice lines, then the Farey tree in figure 8.3 gives the grammar.
There is no mathematical work on this triangular lattice proving that this is the
correct procedure [192] but as it turns out to be very similar to the square lattice
we state the result as a conjecture.

In figure 8.13 the triangular lattice is drawn and the labeling [; is given as 1
for horizontal lines, 0 for lines going right-up and 2 for lines going right-down. In
the lattice we have drawn a line going from left-down to right-up. This line crosses
the lattice lines no 2 every second time it crosses a lattice line and analogous to
the square lattice we can construct the Farey tree with these lattice line symbols [;

assuming every second crossing is 2. This gives the following tree for [;

21
2021212121
20212121
20212120212121
202121
2021202121202121
2021202121 919021202121
2021 (8.6)
20202120212021
2020212021 90912020212021
202021 20202021202021
20202021
y 2020202021

The orbit in figure 8.13 has the labeling in symbols [; ...2120212120... and we
find that this is a substring of the string 2021202121202121 in the Farey tree (8.6).

The three symbols s; in the 3-disk system are not identical with the three direc-
tions of the lattice lines, but the disk symbols can be identified with the parts of the
lattice lines as showed in figure 8.14. This unfolding of the domain to the lattice
gives the new symbols and we obtain a Farey tree for the symbol s; which is rather
awkward to use because the symbols are not repeated the same way. Assuming we

first cross the line with symbol 2 as in the figures we obtain the tree for s,

21
231321321
23132132 221221?12?3213
231321 2313231321312132
2313231321
- 23132313231321 (8.7)
23123212321232 |
2312321232
2312321231213121
231232
23123121312313
23123121
y 2312312313

It is simpler to directly work with the well ordered symbols w;. In this alphabet
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Figure 8.13: The triangular lattice with Figure 8.14: The triangular lattice with
a symbol [; for each direction and a line the symbols s; for the 3-disk system
giving the sequence ...2120212120.. .. folded out in the lattice.

we obtain the tree for symbols w;

10
OO et i01010
011010 0110011010011010
0110011010 01100110011010
0110 01011001100110 (88)
0101100110 0101100101100110
010110 01010110010110
01010110
o1 0101010110

We can get the limit of the corner pruning front by observing the well ordered
symbols w; for a line going through a lattice cross. We choose the symbols for going

through the cross as three symbols for crossing close to the cross and obtain

= .011)2’[1]3’[1}4 c.

0 = 110(1 —w2)(1 — w3)(1 —wy) ...

which gives the line

7 1
5 8.9
T=37 1 (8.9)
In figure 8.15 this line is plotted together with a number of bounces in the 3-

disk billiard for the center-center distance » = 1.7325 which is close to the critical
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Figure 8.15: The symbolic values for a
number of orbits in the overlapping 3-
disk billiard close to the integrable limit
with parameter » = 1.7325 and the line
§=7/8 /4.
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Figure 8.17: Corner pruning front for
the overlapping 3-disk billiard close to
the integrable limit with parameter r =
1.7325.
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Figure 8.16: The symbolic values for
a number of orbits in the overlapping
3-disk billiard with distance r = 1.738
between the disk centers and the line
d="T7/8—~/4.
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Figure 8.18: Corner pruning front for the
overlapping 3-disk billiard with distance
r = 1.738 between the disk centers.
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distance r = /3 = 1.73205.... In this numerical experiment we do not get any
points above the line. A slightly larger parameter value r = 1.738 gives figure 8.16
where a few of the points are above the line. The corner pruning fronts for these two
parameter values are drawn in figures 8.17 and 8.18. The pruning front becomes
points on the line (8.9) in the limit r — /3.

8.4 Approaching the integrable limit from the

mixed chaos-order side

The limit of orbits organized in a Farey tree gives a signature which is a pruning
front that becomes a straight line. In a phase space plot of a chaotic orbit there is
no clear signature of this organization.

We can however in these cases approach the integrable limit tuning the param-
eter from the opposite side of the critical parameter value. We then have a system
with mixed chaos and stable islands. This is the dynamics for the wedge billiard
( the two ball system) for < 45° (m; < mg) and for the disc systems where the
walls are slightly convex instead of concave. We can to study a disc system as a
particle bouncing inside the convex domain limited by the focusing side of the disk
walls for the 3-disk system with center-center distance less than v/3.

The dynamics we observe in the wedge billiard and in the 3 disk system is
that all stable islands close to the limit of the critical parameter value are islands
surrounding each periodic orbit from the Farey tree construction. Approaching the
limit, the islands become squeezed out into horizontal lines in the phase space. In
the integrable system the orbits are degenerated and are lines instead of points in
the phase space.

Pictures of the island structure for the wedge billiard was drawn by Lehtihet
and Miller [131] and discussed in several articles [167, 197]. In figure 6.9 b) we find
that in the limit § — 45° there is a hierarchy of islands with an island surrounding
each periodic orbit from the Farey tree (8.1). For a 6 finitely smaller than 45°, the
smallest islands have disappeared in a chaotic sea. In smooth dynamical systems
like the standard map [134], the KAM theory gives that quasiperiodic orbits with
irrational winding number survive a perturbation depending on how irrational they
are in a Farey tree sense. The Last surviving KAM tory has the golden mean as
winding number. In these billiard systems it seems that the creation of chaotic
regions also follows a Farey organization but here we do not have the unstable
periodic orbit which give the chaotic regions and the mechanism of creating chaos

is different. It seems that the stable periodic orbits furthest down in the Farey
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tree disappear and create a chaotic region first. This imply that the orbits with
most irrational winding numbers first disappear in the chaotic sea. This is in a way
opposite to the KAM-scenario. The numerics indicate that the transition to chaos
is different in these discontinuous systems than in the smooth flows and maps.

As the value of the parameter # in the wedge billiard decreases the system
“forgets” the Farey tree organization, and in the limit of a very narrow wedge
f — 0 the dynamics is dominated by one stable orbit.

We may compare the wedge billiard scenario with a disk system to examine
how general the wedge billiard transition from integrability is. We know that the
dispersive 3 disc billiard is completely chaotic and in the integrable limit it has the
orbits organized in a Farey tree. The phase space picture of a number of different
orbits in the focusing 3-disk system is plotted in figure 8.19 for different parameter
values from close to the triangle shape, 7 = /3, to almost a circle, » = 1. In
figure 8.19 a) there are islands which are very narrow and hard to distinguish but
in figure 8.19 b) it is possible to distinguish a number of islands which surrounds
the shortest of the periodic orbits from the Farey tree. When r decreases as for
figure 8.19 c¢) we find that only the largest of the islands in figure 8.19 b) remain. As
the value of r decreases further we find that the picture changes into new structures
and only the stable period 3 orbit 575353 = 123 survive to r — 0 and is here
dominating the dynamics. This dynamics is qualitatively similar to the wedge
for & — 0° where the orbit bouncing back and fort between the two tilted walls
dominates and to the two ball system where the dominating orbit for m; << my is
when the down-most ball bounces off the floor and bounces in the upper most ball
every time.

We have not proven that the islands in figure 8.19 are surrounding the periodic
orbits of the Farey tree, but this seems to be a reasonable conjecture from the
numerical pictures. The different examples suggest that there is a number of systems
that have this kind of transition to chaos, and this may be generic for non-smooth
billiards.
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Figure 8.19: The phase space plot of orbits in the mixed stable-chaos 3 disk system.
a)r=1.73,b)r=1.72,¢) r=17,d) r=1.6,¢e) r=1.5,f) r=1.1,
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