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Quantum Chaos and Zeta

Functions
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An important application of the theory of symbolic dynamics and pruning dis-
cussed in the chapters above is the semi-classical quantization of classical chaotic
systems. A control of the geometrical structure of the classical system is essential
for controlling the convergence of the semi-classical expansions, as showed in several
examples by Cvitanovi¢ [42, 43, 46, 48], Artuso, Aurell and Cvitanovi¢ [10, 11, 14],
Ezra, Richter, Tanner and Wintgen [70] and others. Gutzwiller [103] states: “Find-
ing the appropriate code seems the most important task when facing a dynamical

system with hard chaos”.
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Chapter 11

Quantum Chaos

11.1 Semi-classical methods

The semi-classical Bohr-Sommerfeld theory, or the first quantum theory described
successfully the quantum spectrum of hydrogen. However, this method failed in
describing even the ground level of the helium atom, the calculation which was
the first triumph triumph of the new quantum mechanics [120]. Before the intro-
duction of the quantum mechanics of Heisenberg, Born, Jordan, Dirac, Pauli and
Schrodinger, Einstein noticed that the Bohr-Sommerfeld quantization rested on the
construction of action-angle variables and would fail for systems which are not inte-
grable [69]. Understanding of the geometrical phase factors Morse [156] and Maslov
indices [145, 6, 37] came much later and the ground level of helium was calculated
with semi-classical methods by Percival and Leopold as late as 1980 [132].

Lately there has been much interest in applying semi-classical methods to de-
termine spectra of systems whose classical dynamics is chaotic, both because semi-
classical methods are a useful tool for obtaining numerical results, and because they
offer a classical intuitive picture of the quantum system. Fundamental work was
done by Gutzwiller around 1970 [102, 103], with the Gutzwiller trace formula which
connects a sum over periodic orbits in a completely chaotic classical system to the

eigenvalues of the corresponding quantum mechanical system

1 T i ,
gc(E) P eESp(E‘)—umpﬂ (11_1)
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where g¢.(E) is the trace of the semi-classical Green’s function. M, is the mon-

odromy matrix, 7}, the time of the primitive periodic orbit p, S, the classical action
along the periodic orbit and o the Maslov index for the orbit. The poles in g.(F)
give eigenvalues of the quantum system; energy levels, resonances, decay times,

correlations, etc. There are several different ways to formulate this result; the
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zeta-function formulation from thermodynamic theory, see below, gives a slightly
different formula.

The classical dynamical zeta function in thermodynamics was introduced by
Ruelle [170, 171, 172] and applied to chaotic quantum systems by Cvitanovié¢ [42]

and others. The classical dynamical zeta function is given by

1¢=TI=t,) ; ty=%5 (11.2)

and the corresponding quantum zeta function can be written as

1/¢ = 1—¢ A LG, (E)+iroy/2
/< l;[( p) 5 th= e (11.3)

where A the leading eigenvalue of the Jacobian matrix. The zeros of the zeta
functions corresponds to the semiclassical eigenvalues of the system. (11.3) is a

truncation of the Gutzwiller-Voros zeta function [196, 195]

p H ﬁ . e%Sp(E)+i7rap/2 (11 4)
R Ayl 124 |

or the recently introduced “quantum Fredholm determinant” of Cvitanovi¢ and
Rosenqvist [55]

50 i 5p(B)imay /2|
Fm =1L (1 AR ) "
and even more recent determinants constructed suggested by Vattay et.al. [194].

These different formulations are expected to give the same leading eigenvalues,
but they differs in the domain of analyticity and the speed of convergence. Formally
the sums or products in such formulas are divergent, and only a “clever” expansion
will yield a good result. The trace formula (11.1) will usually give very few eigen-
values, while the quantum Fredholm determinant is claimed to have the largest
domain of analyticity, and yelds most eigenvalues [55, 56]. The classical Fredholm
determinant is entire for an axiom A system [173, 16, 17], and this fact motivates
the belief that quantum Fredholm also has good analytic properties.

A fast convergence for these formulas depends on a good expansion, usually
ordered according to the length of the periodic orbits. If we have a complete bi-
nary symbolic description the expansion can be done according to the symbolic
description.

The dynamical zeta function is formally given by the sum

1/¢= H(l - tp) =1- Z oy +pat-pi
P P1P2--D; (11.6)
tpripototpe = (= 1)yt o,
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where the product and sum is over all distinct non-repeating combinations of prime
periodic orbits. If the orbits are given by a complete binary symbolic description,

we can reorder of the terms as follows:

1/¢ = (1 =t)(1 —=to)(1 = t10)(L — t100) (L — t101) (1 — t1000)
(1 — t1001) (1 — t1011) (1 — t10000) (1 — %10001)
(1 = t10010) (1 = t10011) (1 — t10101)(1 — t1o111) - - -
(11.7)
= 1—t; =ty — [to — tito] — [(ti00 — tioto) + tio1 — tiot1]
—[(t1000 — t100to) + (ti110 — tit110)
+(t1001 — troot1 — tiorto + trotots)] . ..

The terms in square brackets are called the n-th curvature correction ¢, by Cvi-
tanovié [43], and the first part of the expansion is called the fundamental part. If
all orbits with the same symbolic description have approximately the same weight
the terms in the curvatures almost cancel each other, and the convergeness of the
expansion is fast. This near cancelationcan be understood as a shadowing effect,
as shown numerically for 1-dimensional repellors and the well-separated 3-disk sys-
tem [50].

The weight of the term t, may be different for some orbits and the simple

shadowing might fail. One example is the unimodal Farey map

_ Ja/l—x) if z<1)/2
- { (1—=)/z if >1/2 (11.8)

discussed by Artuso, Aurell and Cvitanovié [10]. Here the fixed point 0 is marginally
stable while all other orbits are unstable. The term ¢3 cannot shadow any of the
other orbits but Artuso et.al. found that one can resum the unstable terms in such
a way that different infinite sums shadow each other, with the fundamental part of

the zeta-function given by a geometrical series

1/¢ = 1—(t; + tw + tioo + tio0o + - +)
—[(t110 + t1100 + t11000 + - - -) — t1(t10 + t100 + t1000 + - - *)]
—[(t1110 + t11100 + - - ) — t1(t110 + 1100 + - - *)] (11.9)
—[(t10100 + 101000 + * * *) — t10(t100 + 1000 + - )]
this sum can be written as [10]

1/¢=1—1, — [tyg — tity] — [t11o — t1t1a] — [tog — tots] — - - - (11.10)

where the index of t; for k > 1 denotes a string 10*~! and tiim. n is the infinite

sum starting with ..., and increasing the number of 0’s in the end of the symbol
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String; tem..n = thim..n + tkim...n+1) T thim..(n+2) + -... We then have to evaluate
an infinite sum to obtain the fundamental part of the zeta function. The terms
in this sum will in typical examples converge as a power law, and the sum can be
estimated from just a few terms.

This kind of orbits seems to be common in chaotic systems. In the stadium
billiard an orbit bouncing infinitely many times successively in one semi-circle does
not exist, but the whispering gallery orbits bouncing an arbitrary number of times
do. The length of these orbits converges to a finite length as the number of bounces
goes to infinity, and the fundamental part of a zeta function has to include at
least one such infinite sum. In the wedge billiard there are the orbits bouncing
n times successively on one tilted plane, denoted 0". The length (and action) of
these orbits with increasing n converges to a finite length (action), but the fixed
point 0 orbit does not exist. In smooth Hamiltonian systems with stable islands
we expect this type of orbits to be generic. The orbits inside islands are stable,
but there always exist unstable orbits wandering arbitrarily close to the outermost
KAM torus. These orbits have to be included in the zeta function expansions as

infinite sums.

11.2 Markov diagrams

Given a finite Markov diagram for the admissible orbits, one can easily read off the
terms in the fundamental part of the zeta function. As we did when finding the
topological entropy in section 1.3 we fidentify all non-self-intersecting loops and non-
intersecting combinations of these loops. We record the symbol string corresponding
to each such loop in the diagram and this is the index for each fundamental term
tr. Combinations of loops with no common node give products of terms t;- - - t,,,
with the indices corresponding to the different loops. The self-intersecting loops,
combinations of these, and intersecting combinations of non-intersecting loops give
the curvature terms of the zeta-function. A few examples of getting the terms from
a diagram illustrate the procedure.

The loops in the binary graph 1.11 gives ¢, and ¢, no combination of loops, and

the zeta function is
1/¢ =1—ty — t; + (curvatures).

The graph in figure 1.17 b) describing the repellor when the period 3 orbit of

the unimodal map is stable gives the loops ¢; and %y

1/¢ =1—1t; — t1o + (curvatures). (11.11)
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An example of the zeta function from a graph describing the bimodal map is

given in figure 2.12. The zeta function has the fundamental orbits

{1}, {01}, {20}, {200} (11.12)

and in addition the combination of the orbits 1 and 200 is not a shadow of any orbit

in the expansion of the (—function. The (—function is now expanded and gives

1/¢ = 1—ty —tyg — tog — togg + tilong (11.13)
—[taor — tapts] — [taor — tioti]
[t 2010 t20t10] [ 1011 — tﬁtﬂ - [tm - tﬁtﬂ
[t1 — trorrt 1] [tm - tmtm] (11-14)
[t 20020 t200t20] [tm - tﬁtﬁ]
[tz

30107 T too110 — tmorter — taetott — taotiio t+ tmtioti) — - -

where for smooth flows the shadowing terms become small compared with the fun-
damental orbits.

If a loop in the Markov diagram corresponds to a forbidden orbit or an orbit
isolated from all other orbits then we can find a fundamental part of the zeta
function with infinite sums as in the above Farey map example of Artuso, Aurell
and Cvitanovi¢ [10, 11]. Instead of the forbidden orbit in the diagram we choose
the series of non-selfintersection loops in the diagram running n times through the
loop of the forbidden orbit. Examples of this are the stadium billiard and the wedge
billiard.

In the billiard systems we have made an approximation of the pruning front to
obtain the Markov graphs. The zeta functions we obtain from these graphs will then
be an approximation, but we expect this zeta function to have good convergence
properties since we have an approximation both to the fundamental parts and the

shadowing parts of the expansion.
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