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Chapter 4

Analyze this: John Elton land

1

The latest entry at the top for this blog

4.1 More stagnation point arguments

JRE July 26, 2008: Looking at the way the plane Couette symmetries act on velocity
fields

σ1 [u, v, w](x, y, z) = [u, v,−w](x, y,−z)
σ2 [u, v, w](x, y, z) = [−u,−v, w](−x,−y, z) (4.1)

τ(dx, dz)[u, v, w](x, y, z) = [u, v, w](x+ dx, y, z + dz) .

we see that, since τ does not affect the velocity components, the stagnation points
argument will work only for the combinations of these elements which contain both
σ1 and σ2 an odd number of times. Let us restrict ourselves to the plane Couette
symmetries σ1, σ2, τx = τ(Lx/2, 0), τz = τ(0, Lz/2) which generate a group of
order 16. In this simplified Abelian case the requirement that permits the argument
is just to have a σ1σ2 term. For this case we can write down exactly which elements
permit the arguments, and the stagnation points they produce.

There are four elements of this group that contain a σ1σ2 term. These are g1 =
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CHAPTER 4. ANALYZE THIS: JOHN ELTON LAND

σ1σ2, g2 = σ1σ2τx, g3 = σ1σ2τz , and g4 = σ1σ2τxτz . 2

g1 [u, v, w](x, y, z) = [−u,−v,−w](−x,−y,−z) (4.2)
g2 [u, v, w](x, y, z) = [−u,−v,−w](−x+ Lx/2,−y,−z) (4.3)
g3 [u, v, w](x, y, z) = [−u,−v,−w](−x,−y,−z + Lz/2) (4.4)
g2 [u, v, w](x, y, z) = [−u,−v,−w](−x+ Lx/2,−y,−z + Lz/2) (4.5)

Each g in turn produces four symmetrically located stagnation points in the y = 0
plane. Note that g2 and g3 are the ones which have already been discussed in sect. 4.12
and sect. 4.2.

g1 symmetry implies that there are stagnation points at (0, 0, 0), (Lx/2, 0, 0), (0, 0, Lz/2),
and (Lx/2, 0, Lz/2). g2 symmetry implies that there are stagnation points at (Lx/4, 0, 0),
(3Lx/4, 0, 0), (Lx/4, 0, Lz/2), and (3Lx/4, 0, Lz/2). g3 symmetry implies that there
are stagnation points at (Lx/2, 0, Lz/4), (Lx/2, 0, 3Lz/4), (0, 0, Lz/4), and (0, 0, 3Lz/4).
Finally g4 symmetry implies that there are stagnation points at (Lx/4, 0, Lz/4), (Lx/4, 0, 3Lz/4),
(3Lx/4, 0, Lz/4), and (3Lx/4, 0, 3Lz/4). These sets of points are shown in figure 4.1.

So the question of stagnation points for a given equilibrium is, which of the g
symmetries do you possess? This is a question related to invariance under the isotropy
subgroups. Remember, this doesn’t address the question of whether other stagnation
points may exist, simply that these do or do not. For the known equilibria EQ1 - EQ11
all of them have g3 symmetry and EQ7, EQ8 additionally have g2 symmetry and that’s
it. Presumably this is just because searches for equilibria were done in a symmetric
subspace which contained the g3 element (the S-symmetric subspace as it was called
earlier). If equilibria are found in other subspaces that contain more g’s they will have
the corresponding stagnation points.

4.2 Equilibria EQ7 and EQ8

JFG July 26, 2008: n00bs.tex shows a couple equilibria in the HKW box with quarter-
box shifts. It’s not too deep; you just take a solution with periodicity Lx and embed
it in a box of length 2Lx. It would be better if we could devise a good notation in
which the symmetries of a solution didn’t depend on the box it was embedded in (i.e.
were locked to the periodicity of the solution rather than the box). Maybe it would be
sufficient to drop the τ1/2x shorthand in favor of the longhand τ(`x, 0).

I think that for a function of fundamental wave number α (Fourier expansion∑
n un exp(iαnx) with at least one odd un nonzero), the shifts in symmetry must

be limited to `x = π/α. Smaller shifts are not possible (for non-constant functions)
and bigger ones must be integer multiples, which are equivalent to `x = π/α due to
periodicity. Right? I’ll put pencil to paper and check.

JRE July 26, 2008 Question: "There are equilibria with other symmetries that fix x, z
phase but have other translations than the half-cell shifts."

2JRE: I don’t mean to try and introduce this as any kind of permanent notation, I just needed some way
to write them down for now
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CHAPTER 4. ANALYZE THIS: JOHN ELTON LAND

Figure 4.1: Sets of possible stagnation points. If one of the g symmetries is possessed,
the velocity field will have stagnation points of the color corresponding to that g.

Other than EQ1 - EQ11? Could you tell me what these translations are, or where
to look? It could help to understand the nontrivial stagnation points of EQ2.

JFG July 21, 2008: A couple comments to things stretching back a few weeks: (1)
Schmiegel I group is {1, s3, τz, s3τz} in our notation. (2) Why are most of the equi-
libria symmetric in the S symmetries? In a nutshell, we know that EQBs 1-8 are
symmetric in S = {1, s1, s2, s3 = s1s2} because they satisfy those symmetries nu-
merically. There is no a priori reason that eqbs should be S-symmetric, other than S
symmetry fixes x, z phase and so rules out relative equilibria. But s3 symmetry alone
does the same, and we have a few eqbs that have s3 symmetry but neither s1 nor s2
symmetry. There are equilibria with other symmetries that fix x, z phase but have other
translations than the half-cell shifts. In a rough sense, the half-cell shifts allow for the
most gentle curvature in the solutions, so these will generally have lower dissipation
rates, be more stable, and consequently more dynamically important than other shifts.

A bit of history will clarify. Nagata discovered the UB and LB EQBs in 1990 by
continuing a known solution from Taylor-Couette flow to plane Couette. He doesn’t
say anything about the symmetries, but Waleffe calculated the same solutions a differ-
ent way and noted that they satisfy ’shift-rotate’ and ’shift-reflect’ symmetry (our s1
and s2). We started our explorations of plane Couette dynamics around those EQBs,
noted that S = {1, s1, s2, s3 = s1s2} is a group and that the S-symmetric subspace
was invariant under Navier-Stokes. We focused our searches for new equilibria on
this subspace, since it fixes the x, z phase of solutions and since the symmetry restric-
tion reduces the dimensionality of the eqbs’ unstable manifolds. So we have found
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CHAPTER 4. ANALYZE THIS: JOHN ELTON LAND

S-symmetric eqbs primarily because we initiated our guesses within that invariant sub-
space. However, the subspace is unstable, and numerical simulations will creep away
from it after a long time. Some of our initial guesses had sufficient deviation from the
S-symmetric subspace that the Newton search was able to detect eqbs that lied close
to but were not actually within that subspace. That gave us EQBs 9, 10, and 11, which
are s3 symmetric but not s1 or s2.

We would probably do well to look for solutions with other symmetries. Where
that stands in terms of priorities, I’m not sure. It might be wise to listen to Predrag
(no, I’m not kidding) and factor out the continuous symmetries beforehand, so that we
don’t have to conduct N different searches for N different invariant subspaces.

PC Aug 4, 2008: I need to deconstruct the si notation for ref. [86]. The translation
table for Elton’s invariance group of EQ7 and EQ8 is

{s1, · · · , s7} = {σzτx, σxyτxz, σxyzτz, , σzτz, σxyzτxτxz, σxy}.

Using spanwise quarter-shift along z we get rid of some half-shifts

s3 → σxyz, s1 → σzτxz, s4 → σz, s5 = σxyzτxz,

so a “canonical” form of the isotropy group is

Axz = {e, σxy, σz, σxyz, τxz, σxyτxz, σzτxz, σxyzτxz}
= {e, σxy, σz, σxyz} × {e, τxz} . (4.6)

According to Halcrow doctrine, factor {e, τxz} means that the state lives on diamond
1/2 [Lx, Lz] area, tiles the cell twice.

JRE July 17, 2008: We now have the remaining two symmetries to complete the group.
JFG comment: "The EQ7 and EQ8 are unique among the equilibria discussed here in
that they are also symmetric under τxz as well as s ∈ S." Indeed, that is one of them,
τ(Lx/2, Lz/2). The other turns out to be σ2. Defining these to be s6 = τ(Lx/2, Lz/2)
and s7 = σ2 we have that S = {e, s1, s2, s3, s4, s5, s6, s7} and, as PC comments allude
to, S is now a group of order 8, isomorphic to D4.

sisi = e for each element of S (4.7)
s1s2 = s3, s1s3 = s2, s1s4 = s6, s1s5 = s7, s1s6 = s4, s1s7 = s5 (4.8)
s2s3 = s1, s2s4 = s5, s2s5 = s4, s2s6 = s7, s2s7 = s6 (4.9)
s3s4 = s7, s3s5 = s6, s3s6 = s5, s3s7 = s4 (4.10)
s4s5 = s2, s4s6 = s1, s4s7 = s3 (4.11)
s5s6 = s3, s5s7 = s1 (4.12)
s6s7 = s2 (4.13)

(4.14)

PC July 16, 2008: Very nice! The perspective view of figure 4.2 is very interesting.
This volume-preserving flow (area preserving in Poincaré sections) probably has in-
variant tori - you might be onto something there. Being quasiperiodic, they would
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not be detected by your equilibria searching routines. Finding a stagnation point with
purely imaginary eigenvalue would be a strong indication. So far your eigenvalues are
all over the place (their inverses set dynamical time-scales, at least in neighborhoods if
stagnation points), so it is hard to tell. Real part of (4.18) seems small, though.

JRE July 16, 2008: EQ7 and EQ8 possess two new symmetries that are not included
in the subgroup S from sect. 4.12. These are s4 = τ(0, Lz/2)σ1 and s5 = s4s2, where
s2 is the same as it was previously. These new symmetries act on velocity fields as

s4 [u, v, w](x, y, z) = [u, v,−w](x, y, −z + Lz/2)

s2 [u, v, w](x, y, z) = [−u,−v, w](−x+ Lx/2, −y, z + Lz/2) (4.15)
s5 [u, v, w](x, y, z) = [−u,−v,−w](−x+ Lx/2, −y, −z) .

It can be checked that, similar to before, the set {e, s4, s2, s5} forms an Abelian group.
It is not true, however, that the set {e, s1, s2, s3, s4, s5} which contains all of the sym-
metries forms a group.

PC July 16, 2008: {e, s1, s2, s3, s4, s5} is probably a subset of elements of a group of
order 8. PresumablyD4, the product of fourD1 groups, two for refections, and two for
spanwise, streamwise 1/2-cell translations, if I remember correctly. Keep multiplying,
it should close. There might be equilibria hiding in this invariant subspace.

Please check JFG May 23, 2008 discussion of Schmiegel’s symmetry groups, cur-
rently section 8.22 of Halcrow blog. You might have run into a yet another symmetry
subgroup, like Schmiegel’s I group, but different. In halcrow/n00bsie [86] JFG writes:
“EQ7 and EQ8 are S symmetric (...). They appear to be equivalent to the σ solutions
from [87], where they appear to be the outer envelope in the D versus Re bifurcation
diagram. (...). The EQ7 and EQ8 are unique among the equilibria discussed here in
that they are also symmetric under τxz as well as s ∈ S.”

JRE July 16, 2008: From (4.15) we also see that for EQ7 and EQ8 these symmetries
imply that we will have additional stagnation points at locations where (x, y, z) =
(−x+ Lx/2, −y, −z). This provides us with the 4 new stagnation points

xSP5 = (Lx/4, 0, 0)

xSP6 = (3Lx/4, 0, 0)

xSP7 = (Lx/4, 0, Lz/2) (4.16)
xSP8 = (3Lx/4, 0, Lz/2) .

Note that these stagnation points occur in pairs that are symmetric about the old stagna-
tion points SP1-SP4, as they must by the discussion in sect. 4.3. I actually came about
this in the opposite order. A Newton search on EQ8 revealed that (Lx/4, 0, Lz/2) and
(3Lx/4, 0, Lz/2) are stagnation points. From this one may deduce that symmetry s5
must hold, and it can then be checked that at any position the velocity field is indeed
invariant under s4 and s5. I have checked all 11 of the equilibrium velocity fields, and
curiously only EQ7 and EQ8 are invariant under these additional symmetries. Stability
analysis of the new set for EQ8 gives the following.
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SP5: There is one real, positive eigenvalue and a complex pair with negative real
part.

λ(1) = 0.03109 , e(1) =

 0.85275
0.41774
−0.31355

 (4.17)

{λ(2), λ(3)} = µ(2) ± i ω(2) = −0.01555± i 0.59385 (4.18)

e(2) =

 0.24762
−0.31442
0.69906

 , e(3) =

−0.20793
0.55489

0

 . (4.19)

We have a 1D unstable manifold and a 2D in-spiral stable manifold. All four of the new
points have the same eigenvalues. SP5 and SP8 have the same eigenvectors, as do SP6
and SP7 whose eigenvectors differ from SP5 only by the sign of the third component
for e(1) and by the sign of the first and second components for e(2) and e(3).

Another interesting although not necessarily useful result of numerically search-
ing for stagnation points is the figures produced by plotting gridpoints where velocity
squared is small. For a cutoff value of u2 which is too large to be useful for finding
stagnation points we get a plot of points which has interesting and intricate patterns.
figure 4.2 shows a 3D perspective view of these points, and figure 4.3 and figure 4.4
show the projection of figure 4.2 onto the xz and yz planes, respectively. Again, this is
probably just more visually amusing than useful but I was surprised to see the patterns
especially in figure 4.3.

PC July 11, 2008: Factorization of EQ8 SP1 and SP1 stability eigenspaces is presum-
ably due to symmetry (4.70); spanwise z direction is 1D flow-invariant subspace at the
stagnation points. That ensures the simplicity of the heteroclinic connection.
JRE August 12, 2008: After going through the usual techniques for EQ7 it appears
that it’s features are largely resemblant of EQ8. We were already aware of the eight
stagnation points, and the heteroclinic connection between SP1 and SP2 appears as
well. The one qualitative difference I spot is that for SP1 in the plane perpendicular to
the direction of the heteroclinic connection the eigenvalues are complex, whereas for
EQ8 all three were real.
JRE July 9, 2008: We will perform a similar analysis of EQ8 and EQ1 to that of the
Upper Branch (EQ2). We start here with EQ8, which is a more turbulent flow with Re
270.

Begin once again with a cleverly chosen grid of initial trajectories to get a feel for
the significant structures in the flow (this time it was clever, last time it was lucky).
The grid is in a plane at x = Lx/2. The result, after a short integration time, is
shown in figure 4.5. This perspective view already shows us quite a bit of information.
Once again we have symmetries abound, as expected. The points (Lx/2, 0, Lz/4) and
(Lx/2, 0, 3Lz/4) are stagnation points of this velocity field as well (as confirmed nu-
merically). A shifted plot where the grid lies on the plane x = 0 reveals the same
picture, rotated. This is to be expected (see sect. 4.2.1 below for discussion about this).
Another interesting part of this plot is the four vortical structures on the left half. It
may be that there are more stagnation points centered here, in any case they obviously
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Figure 4.2: A plot of points whose value of velocity squared falls below an arbitrary
cutoff of 5× 10−7. Perspective view.

contribute to the interesting dynamics. One final point of interest from this plot is the
perfect line segment connecting the points that I was previously calling SP1 and SP2.
Note that because of the finite grid size the line segment does not originate right on SP1,
however other more fine plots and rotational views (not shown) make it clear that this
is so. This basically already implies a heteroclinic connection between these two stag-
nation points. To confirm this I have computed the eigenvalues and eigenvectors of the
velocity gradients matrix. For SP1 (I realize we need a different naming convention),
there is indeed a real, unstable eigenvector pointing along (0,0,1) and for SP2 there is
a real, stable eigenvector pointing along (0,0,1). This, together with the plot, essen-
tially numerically proves the conjecture beyond reasonable doubt. The same result of
course holds for the shifted pair at x = 0. The rest of the eigenvalues/eigenvectors are
given below. It is interesting that for EQ8 there is a heteroclinic connection which is a
perfectly horizontal line connecting the pair of trivial stagnation points in the spanwise
direction, whereas for EQ2 the connection was some funny curve in the streamwise
direction connected to a nontrivial stagnation point.

EQ8, SP1: There are two real, positive eigenvalues and one real, negative eigen-
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Figure 4.3: A plot of points whose value of velocity squared falls below an arbitrary
cutoff of 5× 10−7. Projection onto the xz plane.

value. 3 (
λ(1), λ(2), λ(3)

)
= (0.363557, 0.227831,−0.591389) (4.20)

(
e(1), e(2), e(3)

)
=

0
0
1

 ,

−0.733415
−0.679780

0

 ,

0.991005
0.133824

0

 .

EQ8, SP2: There are two real, positive eigenvalues and one real, negative eigen-
value. (

λ(1), λ(2), λ(3)
)

= (0.992857, 0.255973,−1.248830) (4.21)

(
e(1), e(2), e(3)

)
=

 0.116961
−0.993136

0

 ,

0.957795
0.287450

0

 ,

0
0
1

 .

3Predrag: reordered eigenvalues by their magnitude
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Figure 4.4: A plot of points whose value of velocity squared falls below an arbitrary
cutoff of 5× 10−7. Projection onto the yz plane.

4.2.1 Question on symmetries

I have confirmed for myself that the Navier-Stokes equations are invariant for any
symmetry in the group generated by σ1, σ2, τ . What I’m not clear on is the follow-
ing: In sect. 4.12 it is stated that "Most of the Eulerian equilibria that we know of
so far are invariant under the ‘shift-reflect’ symmetry s1 = τ(Lx/2, 0)σ1 and the
‘shift-rotate’ symmetry s2 = τ(Lx/z, Lz/2)σ2. These symmetries form a subgroup
S = {1, s1, s2, s3}, s3 = s1s2, which is isomorphic to the Abelian dihedral group
D2". First, I would like to ask how this is known. Is there a theoretical argument for
it, or is it simply known empirically? From my numerical work it is certainly seen to
be true, ii is just not yet clear to me why, from first principles, that this is so. Also,
I should ask to confirm that it is known to be true for EQ1 and EQ8, although I have
already basically shown it for EQ8.
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Figure 4.5: A grid of initial trajectories in the plane x = Lx/2 integrated for short
time.

4.3 Proof that any new stagnation point must have a
partner lying on a line through an oldie (SP1-SP4),
equidistant.

JRE June 10, 2008: This basically follows from the action of s3 ∈ S on velocity fields
(sect. 4.12),

s3 [u, v, w](x, y, z) = [−u,−v,−w](−x, −y, −z + Lz/2) .
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If (xSP, ySP, zSP) is a stagnation point, [u, v, w](xSP, ySP, zSP) = [0, 0, 0], then

s3 [u, v, w](xSP, ySP, zSP) = [−u,−v,−w](−xSP, −ySP, −zSP + Lz/2)

= [0, 0, 0](−xSP, −ySP, −zSP + Lz/2). (4.22)

So xSP’ = (−xSP, −ySP, −zSP + Lz/2) is also a stagnation point.
We may parameterize a line passing through two points x1, x2 as

x = x1 + (x2 − x1)t (4.23)
y = y1 + (y2 − y1)t (4.24)
z = z1 + (z2 − z1)t (4.25)
t ∈ (−∞,∞) (4.26)

For the case above this becomes

x = xSP(1− 2t) (4.27)
y = ySP(1− 2t) (4.28)

z = zSP(1− 2t) +
Lz
2
t (4.29)

When t = 1/2 this system returns (x, y, z) = (0, 0, Lz/4), showing that SP3 lies on
the line between these two stagnation points and is halfway in between them.

If we invoke the box periodicities: x = x+ Lx, z = z + Lz , we can show that the
pair of fixed points is symmetric about any of the other SP1-SP4.

x = x + Lx:
(xSP, ySP, zSP) a stagnation point⇒ (−xSP +Lx,−ySP, zSP +Lz/2) a stagnation point.

x = xSP(1− 2t) + Lxt (4.30)
y = ySP(1− 2t) (4.31)

z = zSP(1− 2t) +
Lz
2
t (4.32)

When t = 1/2 this returns (x, y, z) = (Lx/2, 0, Lz/4) so that the points lie symmetri-
cally on a line passing through SP1.

z = z + Lz:
(xSP, ySP, zSP) a stagnation point⇒ (−xSP,−ySP, zSP + 3Lz/2) a stagnation point.

x = xSP(1− 2t) (4.33)
y = ySP(1− 2t) (4.34)

z = zSP(1− 2t) + 3
Lz
2
t (4.35)

When t = 1/2 this returns (x, y, z) = (0, 0, 3Lz/4) so that the points lie symmetri-
cally on a line passing through SP4. And finally,
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z = z + Lz,x = x + Lx:
(xSP, ySP, zSP) a stagnation point⇒ (−xSP+Lx,−ySP, zSP+3Lz/2) a stagnation point.

x = xSP(1− 2t) + Lxt (4.36)
y = ySP(1− 2t) (4.37)

z = zSP(1− 2t) + 3
Lz
2
t (4.38)

When t = 1/2 this returns (x, y, z) = (Lx/2, 0, 3Lz/4) so that the points lie symmet-
rically on a line passing through SP2.

This pairwise symmetric requirement for stagnation points is nice, but still there is
the deeper question of, should any exist at all? I haven’t been able to answer this yet,
but a possible line of reasoning is the following: Any stagnation point occurs at the
intersection of the three surfaces u = 0, v = 0, w = 0. We know these three surfaces
intersect at the four points SP1-SP4. Given that they are smooth, we might be able to
come up with some kind of argument that shows that in fact these surfaces then must
intersect somewhere else. It’s a thought anyway.

4.4 A colorful physical space portrait of the Upper Branch
JRE June 04, 2008: With a much faster interpolater and some improved plotting tech-
niques, I have produced a picture of the dynamical behavior between our known stag-
nation points.

First, in figure 4.6, I have attempted to give a clear label of where these points lie
within one periodic interval. SP1 through SP4 lie in the plane y = 0. SP5 and SP6 are
symmetric about SP1. Note that a translation of SP6 would also lie in this box as well,
situated below SP4, but I have chosen to omit it from this picture. At certain times it
will be convenient to picture slightly different translations of these points than as they
appear in figure 4.6.

The interesting dynamics and connections between the different stagnation points
occur along the x direction. To understand what is happening one needs to look only
at a subset of these stagnation points that lies in the right or left half of the box, that is,
in the interval [0, Lz/2] or the interval [Lz/2, Lz]. I have chosen to give results for the
points lying in the interval [0, Lz/2]. In the x direction the most convenient interval is
not actually [0, Lx]. I have chosen to look at the stagnation points in the open interval
(−Lx/2, Lx), open so as to ignore the repeated translations on the boundary. Thus the
domain of investigation is

Ω = (−Lx/2, Lx)× [−1, 1]× [0, Lz/2] (4.39)

Within this domain there are four stagnation points. They are SP1, SP3, SP5, and SP6.
In figure 4.7 I show these four points in Ω. Note that SP6 is a translated version from
the way it was viewed in figure 4.6. The reason for this will soon be clear.

I will start by discussing the most interesting result, the heteroclinic connections
between SP5 and SP3, and similarly between SP6 and SP3. The picture is figure 4.8.
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These surfaces have kind of an eerie beauty. The red curves are the 1D unstable man-
ifolds of SP5 and SP6, or equivalently the stable manifold of SP3. Their thick appear-
ance is simply so that they can be seen within the blue surface. They are actually just
a single trajectory. The blue surface, the unstable manifold of SP3, is found in the
following way. A large number of initial conditions very close to SP3 (in the plane of
it’s unstable eigenvectors) are evolved forward in time. Because the integration always
breaks down as these trajectories get near to SP5 and SP6, in practice I also plot the
stable manifolds of SP5 and SP6 and connect them with the unstable manifold of SP3
in the middle region, where they are both accurate.

We now bring SP1 into the picture. SP1 has a 2D unstable manifold and a 1D
stable manifold. The result of all of these manifolds plotted together is figure 4.9. The
relation of the stable manifold (yellow curve) and unstable manifold (green surface)
of SP1 to the blue surface is quite interesting. These trajectories tightly hug the blue
surface as they spiral around it.

One merely translates the image in figure 4.9 in the x direction by an amount Lx to
give a complete picture in any periodic cell. The same picture will also occur symmet-
rically (translated by Lx/2 and Lz/2) in the left half of the box.

Figure 4.6: The 6 known unique stagnation points within one periodic box, SP1
through SP6. The pair SP1 and SP4 are related through a symmetry, and similarly
for the pairs SP2 with SP3, and SP5 with SP6.
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Figure 4.7: The 4 stagnation points that occur within the domain Ω.

4.5 The Navier-Stokes equations
JRE May 27, 2008: The underlying equations that govern the motion of plane Cou-
ette flow are of course the Navier-Stokes equations, along with boundary conditions.
The boundary conditions in the x and z directions are periodic, u(x, y, z) = u(x +
Lx, y, z) = u(x, y, z + Lz). In the y direction, u = (1, 0, 0) at x = (0, 1, 0) and
u = (−1, 0, 0) at x = (0,−1, 0).

The fluid is taken to be incompressible, so in this case the Navier-Stokes equations
are

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u , ∇ · u = 0 . (4.40)

As far as I know these are all of the conditions and assumptions that are made. I would
first like to confirm that this is correct, that (4.40) is the exact form of the Navier-Stokes
equations that are being used for plane Couette flow.

The starting point for everything that I have been doing so far is to load the spectral
coefficients, ûmx,my,mz

, from (7.1). From my perspective these coefficients are kind
of a magical data set that allows me to correctly compute velocities, but of course I
know they came from a DNS integration of (4.40), namely through Channelflow.

For the Upper Branch equilibrium that I have been working with, (4.40) simplifies
to

(u · ∇)u = −∇p+ ν∇2u , (4.41)
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Figure 4.8: Heteroclinic pairs.

and the only other thing I know about it is that Re = 400. I would prefer to know the
exact value of ν since it is the fundamental parameter in (4.41). Since

Re =
uL

ν
(4.42)

where u is the average fluid velocity and L is the characteristic length, this amounts to
asking what values are taken for u and L? Or maybe someone already knows and can
tell me what ν is for this particular box at Re = 400. Interestingly, since I can compute
u,∇u, and∇2u, as a crosscheck I could compute ν directly by taking the curl of both
sides of (4.41).

At a stagnation point of an equilibrium velocity field the Navier-Stokes equations
(4.41) simplify further. At a point where u = 0, it is certainly true that

ν∇2u = −∇p, (4.43)

and I think that this is probably a sufficient condition to specify a stagnation point, for
the following reason.

When (u · ∇)u is written out in component form we see that it is the vector u∂u∂x + v ∂u∂y + w ∂u
∂z

u ∂v∂x + v ∂v∂y + w ∂v
∂z

u∂w∂x + v ∂w∂y + w ∂w
∂z

 =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z


uv
w

 = Au (4.44)
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Figure 4.9: Full physical space relations between the stagnation points.

where A is the velocity gradients matrix. So if (4.43) holds then Au = 0 and this
implies we are at a stagnation point unless the nullspace of A is nontrivial. This can
only happen if the three velocity gradients in A are co-planar. This seems unlikely, and
there may be a physical reason that proves it can’t ever happen. So that’s why I say I
think (4.43) is a sufficient condition for specifying a stagnation point. It’s simplified
form may give insight into solutions or symmetries for stagnation points.

JFG May 29, 2008: In most of our work (and in channelflow) u represents the differ-
ence from the laminar flow. I’ll get to that in a minute, but first I’ll do the nondimen-
sionalization to address the ν vs Re issue. Start with Navier-Stokes on the total fluid
velocity field utot

∂utot

∂t
+ utot · ∇utot = −∇p+ ν∇2utot , ∇ · utot = 0 (4.45)

and boundary conditions utot = ±U at y = ±L. Rescale variables: y → y/L, (same
for x, z), u→ u/U , t→ (U/L) t, and p→ U2p. That gives

∂utot

∂t
+ utot · ∇utot = −∇p+

1

Re
∇2utot , ∇ · utot = 0, (4.46)

where Re = UL/ν, and boundary conditions utot = ±1x̂ at y = ±1. This is the
nondimensionalized Navier-Stokes equation. You can think of the nondimensionalized
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equations as having length scale L = 1, velocity scale U = 1, and viscosity ν = 1/Re,
or better, the nondimensional parameter 1/Re replacing viscosity.

Now break up the total velocity field into two components: utot = yx̂ + u. Here
yx̂ is the laminar velocity field and u is the difference between the total velocity and
laminar. Substitute yx̂+u for utot in the nondimensionalized Navier-Stokes equations
to get

∂u

∂t
+ y

∂u

∂x
+ v x̂ + u · ∇u = −∇p+

1

Re
∇2u , ∇ · u = 0 (4.47)

and boundary conditions u = 0 at y ± 1.
The equilibrium fields such as EQ2 satisfy (4.47). 4 This equation is a little more

complicated than (4.46), but having Dirichlet boundary conditions on u makes analysis
much easier, since the set of allowable u form a vector space. The set of allowable utot

doesn’t, since the sum of two allowable utot generally does not satisfy the boundary
condition utot = ±1 at y ± 1. By “allowable” I mean those fields that satisfy incom-
pressibility and boundary conditions.

So, in a nutshell, (1) the equilibrium fields satisfy (4.47), and (2) you don’t need ν,
you need 1/Re.

Ok, that is just an explanation of our conventions, so that we’re all on the same
page. Your larger issues stand, keeping in mind that they apply to what we call utot.
But note how these issues play out for the laminar solution. For utot = yx̂, each of
the terms 1/Re∇2utot, ∇p, and utot · ∇utot is identically zero throughout the flow
domain (in fact we obtain∇p = 0 from the other two identities.) But stagnation points
are limited to the plane y = 0. So there are situations in which the null space of utot ·∇
is nontrivial, and 1/Re∇2utot = −∇p, does not imply stagnation.

JRE May 29, 2008: Laminar example is a nice proof that it can in fact happen that
1/Re∇2utot = −∇p does not imply stagnation, in this case because two of the ve-
locity gradients in A are identically zero. It still seems that in general for a typical
velocity field there is no reason to expect that the three velocity gradients would lie in
the same plane, so maybe we could say that 1/Re∇2utot = −∇p implies stagnation,
almost always?

4.6 New stagnation points

JRE May 23, 2008: Starting from the gridpoint value (4.55) with smallest velocity
in the suspicious region, x0 = (2.33476, 0.40952, 0.64577), and its reflection through
xSP1, x′0 = 2xSP1 − x0, the Newton iteration

xk+1 = xk −A−1(xk)u(xk) (4.48)

4JRE: Just to be completely clear, should we say the equilibrium fields such as EQ2 satisfy (4.47), but
with the ∂u

∂t
term set to 0?
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converged rapidly to the new pair of stagnation points, accurate to ≈ 10−16: 5

xSP5 = (2.35105561774981, 0.42293662349708, 0.65200166068573) (4.49)
xSP6 = (3.16051044117966,−0.42293662349708, 0.60463540075018) . (4.50)

We see the symmetry in the y-component of this pair, as was expected looking at fig-
ure 4.13. These points are symmetric about the point SP1 in all three dimensions,

(xSP5 + xSP6)/2 = xSP1 . (4.51)

It would be nice if we could think of a symmetry argument for their existence. How-
ever, unlike (4.73) their components have no rational relation to Lx, Lz , so these are
nontrivial stagnation points.

Stagnation points SP5, SP6: There is one real, positive eigenvalue and a complex
pair with negative real part. 6

λ(1) = 0.1453207 , e(1) =

0.9307982
0.3502306
0.1046576

 (4.52)

{λ(2), λ(3)} = µ(2) ± i ω(2) = −0.0726603± i 0.3733478

e(2) =

 0.5226203
−0.6703938
0.2065610

 , e(3) =

 0.3779843
0

−0.3031510

 . (4.53)

The velocity gradients matrix is

A =

 0.0225166 0.0985763 0.7623083
0.1714566 −0.1275193 −0.6118476
−0.0615378 0.1755954 0.1050028

 . (4.54)

We have this time a 1D unstable manifold and a 2D in-spiral stable manifold.
I have been labeling stagnation points to include all of the points which are inside

a single periodic cell. However even within this cell there is a redundancy in labeling
all of these points as distinct. There are really three distinct stagnation points in the
fundamental domain and the rest result from invariance under S and should really be
quotiented out. The dynamics between these three stagnation points and there translates
is quite interesting. I began discussing possible heteroclinic connections in sect. 4.7,
and looking at figure 4.10 it is now strongly suggestive that there exists a SP5 → SP4
heteroclinic connection. The red curve is the stable manifold of SP4. The blue curve
is the unstable manifold of the new SP5. I suspect that with a perfect integration these
are one in the same.

A complete phase space portrait (ignoring periodic orbits for the moment) should
be coming soon. It looks like we have all of the stagnation points, and short of some

5Predrag: experimenting with upper case vs lower case for SP1. Will settle on preferred notation later.
6Predrag: always write eigenvectors. I replaced these:

e(2) =

0.5226203− 0.3779843i
−0.6703938

0.2065610 + 0.3031510i

 , e(3) =

0.5226203 + 0.3779843i
−0.6703938

0.2065610− 0.3031510i

 .
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numerical difficulties with plotting the stable and unstable manifolds we have a pretty
good understanding of the interesting heteroclinic ménage à trois that is occurring be-
tween our three distinct stagnation points. 7

Figure 4.10: Stable manifold of SP4 (red curve) and unstable manifold of SP5 (blue
curve). These are presumably the same and form a SP5 → SP4 heteroclinic connect-
ion.

4.7 Possible heteroclinic connections and evidence of a
new pair of stagnation points

JRE May 21, 2008: Of the four known stagnation points it appears that there may be
a heteroclinic connection between the two pairs of qualitatively different points.

Possibly heteroclinically connected pairs are SP1 → SP3 and SP2 → SP4, and
the behavior for each pair is the same except that one pair is shifted by Lx/2 from
the other pair, so really there is only pair of points to consider and the behavior of the
other pair will mimic the first. The pairing occurs streamwise rather than spanwise.
As in sect. 4.8, local stability analysis shows that SP1 has all real eigenvalues with
a 1D stable manifold, and a 2D unstable manifold which is locally a plane. SP3 has
a 2D unstable manifold with complex eigenvalues which spiral out in a plane and a
1D stable manifold. Computing these manifolds numerically beyond the linear regime

7Predrag: In all figures: can you add a subroutine that plots all stagnation points, labeled
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Figure 4.11: Stable manifold of SP4 (red curve) and unstable manifold of SP2 (blue
surface)

shows that there ‘might’ exist heteroclinic connection between this pair (and likewise
the other pair SP2 and SP4). Unfortunately I do not yet see an analytical argument
for why this should or should not exist. Since the pairing is between stagnation points
of a qualitatively different nature (not just eigenvalues sign-flipped) a time reversal
argument does not imply the connection. It is still certainly possible that there are
other symmetries of plane Couette flow which I have not considered that might imply
a connection.

To be more specific about “there ‘might’ exist heteroclinic connections,” refer to
figure 4.11. We see the stable manifold of SP4 (red curve) and the unstable manifold
of SP2 (blue surface). The stable manifold of SP4 is computed by starting a trajectory
along the stable eigenvector very close to the stagnation point and integrating back-
wards in time. The unstable manifold of SP2 is computed by starting many trajectories
in the plane spanned by the real and imaginary parts of the unstable complex eigenvec-
tors and integrating them forward in time. I am using the exact sum to give the velocity
field at each step rather than the interpolation method in order to assure greatest accu-
racy. We see that as the unstable manifold evolves the initial plane begins to tilt and
trajectories eventually start to spread out along paths which appear to mimic the stable
manifold of SP4. This suggests that there may in fact be a single trajectory originating
form SP2 that connects exactly with SP4. Of course, because the unstable manifold is
2D it is very difficult to numerically find the single curve which makes this connection.
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Figure 4.12: Stable manifold of SP2 (black curve) and unstable manifold of SP4
(green surface)

Also, one must question the accuracy of the integration method once these manifolds
are evolved far outside of the linear neighborhood.

In the other direction, referring to figure 4.12, we see this time the stable manifold
of SP2 (black curve) and the unstable manifold of SP4 (green surface). The black
curve appears to "almost" connect with SP4. Again, it could be a numerical issue since
close to SP4 the unstable directions will cause rapid stretching of nearby trajectories.
However since the green surface is entirely shuffled off in the positive x-direction it
looks like something else may be happening.

The loop-de-loop region shared by the stable and unstable manifolds in figure 4.12
suggests the possible existence of another pair of stagnation points (pair because it
is symmetric on the lower half). It looks like this point would have a pair of complex
eigenvalues with negative real part and a single positive, real eigenvalue. To investigate
I have created a more refined grid of velocities which is 144× 105× 144. This is three
times the 48 × 35 × 48 grid in each dimension and contains about 2.2 million points.
At each point |u|2 is then calculated and at every point that satisfies |u|2 < ε for some
arbitrarily chosen ε, the point is plotted. figure 4.13 shows the result for ε = 10−4.
The blue blobs are the points which satisfy this condition and they have been plotted
along with the same manifolds from figure 4.12. It appears that we have isolated the
regions with the already known stagnation points as well as the two regions containing
the potential new ones. With a more stringent requirement on ε the point in this new
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region with smallest value for |u|2 is found to be (see (4.50) for the precise value)

x ' (2.33476, 0.40952, 0.64577) , |u|2 = 2.75× 10−6 (4.55)

In figure 4.14 this single point (a barely visible red dot) is plotted along with the stable
manifold of SP3. This figure looks suggestive not only that this is a stagnation point,
but there may also be a heteroclinic connection from this point to SP3.

Clearly the point (4.55) is not the exact stagnation point or |u| would be 0 to within
machine precision. However, the smallest gridpoint value of |u|2 in the regions where
we know stagnation points exist is only about 10−7, in the same range. As outlined in
sect. 5.1, the next step will be to interpolate recursively until the exact point is found. In
addition, no other regions appeared to within these tolerances, so we may have found
all of the stagnation points.

Figure 4.13: Blue points are where velocity squared is very near zero. Shown along
with the stable manifold of SP3 and the unstable manifold of SP1.

[PC May 26, 2008: moved “local Reynolds number Re(x)” musings to sect. 5.4]
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Figure 4.14: Shows a single red point within the tangled region of the stable manifold
of SP3. This point has a velocity close to zero and is expected to be very near a
stagnation point.

4.8 Matrix of velocity gradients and its eigenvalues

JRE May 15, 2008: For a perturbation δx the change in the velocity field is given
by δu = Aδx where A is the nine component velocity gradients matrix defined by
Aij = ∂ui

∂xj
. Since u is given by (7.1), it is a relatively simple extension of this formula

to evaluate these partials. To find ∂u/∂y, one needs to use the relation ∂
∂yTn(y) =

nUn−1(y) where Tn is the nth Chebyshev polynomial of the first kind and Un is the
nth Chebyshev polynomial of the second kind. Everything else is straightforward.

The eigenvalues of A, evaluated at a stagnation point , give local stability and re-
veal the qualitative nature of the motions nearby the stagnation point. For the four
stagnation points we have so far the eigenvalues, eigenvectors, and velocity gradients
matrices are as follows.

xSP1 = (Lx/2, 0, Lz/4): There are 3 real eigenvalues, two positive and one nega-
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tive.

λ(1) = −0.4652099 , e(1) =

0.9844417
0.1743315
0.0219779

 (4.56)

λ(2) = 0.4008961 , e(2) =

 0.5704000
−0.7666749
0.2947091

 (4.57)

λ(3) = 0.0643139 , e(3) =

0.4082166
0.7525949
0.5166819

 (4.58)

The velocity gradients matrix is

A =

−0.4305385 −0.3002042 0.8282447
−0.1221356 0.2456107 −0.1675796
0.0001651 −0.0828951 0.1849278

 (4.59)

The point is a saddle; It has 1 stable dimension and a 2D plane of instability spanned
by v2 and v3. The eigenvalues sum to 0, as is required by volume conservation (If
you add the values shown here to check this by hand, note that I have rounded them.
When they are added on the computer it comes out to be 0 within machine precision,
∼ 10−16). The stagnation point at (0, 0, 3Lz/4) has the same eigenvalues as this point.
It’s eigenvectors and velocity gradients matrix differ by a minus sign in the third com-
ponent (except for A33 where the two minuses cancel).

xSP2 = (Lx/2, 0, 3Lz/4): There is one real, negative eigenvalue and a complex pair
with positive real part. 8

λ(1) = −0.0352362 , e(1) =

−0.9452459
−0.1893368
−0.2658228

 (4.60)

µ(2) ± i ω(2) = 0.0176181± i 0.0862176 (4.61)

e(2) =

0.3737950 + 0.0544113i
0.2098940− 0.4925773i

0.7554000

 , e(3) =

0.3737950− 0.0544113i
0.2098940 + 0.4925773i

0.7554000

 .

The velocity gradients matrix is

A =

−0.0316935 −0.0708737 0.0378835
−0.0250579 −0.0218884 0.0795969
0.0014742 −0.1320575 0.0535818

 (4.62)

This stagnation point spirals out in a plane given by the complex pair of eigenvec-
tors. It is stable in one dimension that is dominantly along the x direction. As with

8Predrag: rewrite eigenvectors in their real form
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the first pair of points, the stagnation point at (0, 0, Lz/4) has the same eigenvalues
and again, the velocity gradients matrix is the same except for sign changes in the third
component. This follows from the symmetry arguments. We now want to understand
the connections between the manifolds.

4.9 Rough sketch of topics
JRE May 12, 2008: After using the sum formula discussed in sect. 7.1 to compute u
at every point along a trajectory, I have switched to an interpolation method because of
run-time issues. Using the previous method, I create an arbitrarily fine set of gridpoint
values for u and then use a bilinear(trilinear?) interpolation method. (Note: To the
eye it looks like this works pretty well but I need to look at the numerical values more
closely and check the accuracy of the interpolation. How fine should I make the grid?
Always need to be careful about approximations in the chaotic regime).

The starting point is clear because we already have four stagnation points predicted
from translational symmetries of plane Couette flow. Starting a small sphere of initial
conditions around the stagnation points and evolving them forward and backward in
time gives a good estimate of the stable and unstable manifolds. Results are shown in
figure 4.15. From these we begin to get a feel for the dynamics. Also, I can create
movies to show the evolution of a ball of little ink droplets moving through the fluid,
but I need to get these from .mat format to mp3’s before I can post them anywhere.
Being able to visualize the stretching and folding of these material lines and surfaces
will be a key point.

This rough visualization of the manifolds is nice, but much better can be done.
Since we have a sum formula for computing velocities at any point, by differentiating
under the sum it should be a simple matter to compute the [3×3] velocity gradients
matrix at any point. Eigenvalues / eigenvectors of this matrix will give linear stability
and allow for exact computation of the stable and unstable manifolds. There are several
expectations/predictions of what we’ll find: (1) Will have one real eigenvalue and one
complex pair. Judging from figure 4.15 I’m not sure about this one yet. It certainly
looks true for the black/blue stagnation point, but for the other one it seems unclear
what is going on. The stretching is strong around this point so it may be that the plane
is quickly dominated in one direction and appears to collapse to a line, or it may be that
all the eigenvalues are real. (Prepare to edit this section as soon as I have the answer.)
(2) The eigenvalues for the two points should be the same but with signs reversed
resulting from translational symmetry, and this amounts to time reversal invariance.
I’m a little confused on this one, I would appreciate a comment from anyone with an
explanation. (3) There is a heteroclinic connection between the stagnation points. Will
find out soon, this would be great for using chaos. Apparently the time reversal would
force this connection.

After exhausting these four points we will want to find other stagnation points,
either by using other symmetries or numerically. The numerical task would involve
computing u2 all along the grid and spotting regions where it is below a given threshold.
Then using an interpolation in the small regions the stagnation points can be pinned
down. The same eval/evec stable/unstable manifold analysis can then be done for any
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other stagnation point.
The long term goal after all of this is of course to compute mixing and diffusion

properties; Lyapunov exponents, material stretching, striation thickness, time to mix
etc... Most investigations like this tend to be in two dimensional closed systems, but if
we find we have good Lagrangian chaos, there is no reason not to do it here.

Figure 4.15: Stable and unstable manifolds of the stagnation points xSP1 =
(Lx/2, 0, Lz/4) and xSP2 = (Lx/2, 0, 3Lz/4). Black and green are unstable.

4.10 Notes on mixing
General discussion and notes about mixing in fluids, largely taken from the book by
J.M. Ottino (see reading assignments).

Coming soon.

4.11 Mixing and stagnation points for EQ2
JRE April 29, 2008: Our starting point is the data set computed by Gibson [88] of
the Nagata/Walleffe “upper branch” equilibrium EQ2, for Re = 400, the Waleffe [89]
small-aspect cell

ΩW03 = [Lx, 2, Lz] = [2π/1.14, 2, 4π/5] = [5.511566, 2, 2.513274] . (4.63)
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To begin looking at the evolution of Lagrangian tracers in the equilibrium EQ2,
I have first integrated a grid of initial points. The grid is chosen to lie in the [y, z]
plane, centered at x = Lx/2. The initial points are equally spaced, and offset by
one position from the edge of the box. If the number of points is chosen to be one
less than a multiple of 4, there will be points starting at xSP1 = (Lx/2, 0, Lz/4) and
xSP2 = (Lx/2, 0, 3Lz/4). Similarly, if we make the grid be centered at x = 0, we will
have points starting at (0, 0, Lz/4) and (0, 0, 3Lz/4). The trajectories are run for 15
seconds, and the results of this are shown in figure 4.16 (a) and figure 4.17 (a). 9

Invariance under the symmetry group S, explained by JH in sect. 4.12, implies
the existence of 4 stagnation points (4.73). In figure 4.16(b) and figure 4.17(b) the
figures from part (a) have been rotated to almost a y-z projection in order to reveal
these stagnation points. The behavior of trajectories near these fixed points seems to
reveal "what kind" of fixed points they are. The point at 3Lz/4 in figure 4.16(b) appears
to be an unstable out-spiral, whereas the point at Lz/4 is probably hyperbolic. There is
also some other interesting behavior going on near the point at Lz/4. The next step is
probably to look at eigenvalues and stable/unstable manifold of these stagnation points.

JFG April 30, 2008 The plots of tracers and the derivation of stagnation points
from symmetries are very interesting.

I see from figure 4.17 and figure 4.16 that you’re plotting tracers for the difference
from laminar flow. (You can see u→ 0 as y → ±1.) I don’t know if this is intentional.
If it’s not, sorry, we haven’t been sufficiently clear on the definitions of data we gave
you. We usually work with u defined as the difference from laminar flow, so that the
total velocity field utot = u + yx̂. So you might want to add the laminar flow yx̂ on
to u before computing tracers. That’ll produce u → ±1 as y → ±1. The stagnation
points are all at y = 0, so they will not change.

JRE May 02, 2008 No, that was not intentional. I had forgotten that the velocity
fields were computed from laminar. From now on all plots are of utot.

4.12 Symmetry and stagnation points
Plane Couette flow is invariant under two reflections σ1, σ2 and a continuous two-
parameter group of translations τ(dx, dz):

σ1 [u, v, w](x, y, z) = [u, v,−w](x, y,−z)
σ2 [u, v, w](x, y, z) = [−u,−v, w](−x,−y, z) (4.64)

τ(dx, dz)[u, v, w](x, y, z) = [u, v, w](x+ dx, y, z + dz) .

The Navier-Stokes equations and boundary conditions are invariant for any symmetry
s in the group generated by these elements: ∂(su)/∂t = s(∂u/∂t).

The plane Couette symmetries can be interpreted geometrically in the space of fluid
velocity fields. Let U be the space of square-integrable, real-valued velocity fields that

9JRE: The figures need some editing. It’s almost impossible to read the axis labels. Also, they won’t go
where I want them to!
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satisfy the kinematic conditions of plane Couette flow:

U = {u ∈ L2(Ω) | ∇ · u = 0, u(x,±1, z) = 0,

u(x, y, z) = u(x+ Lx, y, z) = u(x, y, z + Lz)} . (4.65)

10 The continuous symmetry τ(dx, dz) maps each state u ∈ U to a 2d torus of states
with identical dynamic behavior. This torus in turn is mapped to four equivalent tori
by the subgroup {1, σ1, σ2, σ1σ2}. In general a given state in U has four 2d tori of
dynamically equivalent states.

Most of the Eulerian equilibria that we know of so far are invariant under the
‘shift-reflect’ symmetry s1 = τ(Lx/2, 0)σ1 and the ‘shift-rotate’ symmetry s2 =
τ(Lx/2, Lz/2)σ2. These symmetries form a subgroup S = {1, s1, s2, s3}, s3 = s1s2,
which is isomorphic to the Abelian dihedral group D2. The group acts on velocity
fields as:

s1 [u, v, w](x, y, z) = [u, v,−w](x+ Lx/2, y, −z)
s2 [u, v, w](x, y, z) = [−u,−v, w](−x+ Lx/2, −y, z + Lz/2) (4.66)
s3 [u, v, w](x, y, z) = [−u,−v,−w](−x, −y, −z + Lz/2) .

Consider next the subgroup S3 = {1, s3} ⊂ S (isomorphic to dihedral group D1).
The s3 operation flips both the streamwise x and the spanwise z, thus eliminating
invariance under both x and z continuous translations. 11

Let U be the space of square-integrable, real-valued velocity fields that satisfy the
kinematic conditions of plane Couette flow:

U = {u ∈ L2(Ω) | ∇ · u = 0, u(x,±1, z) = 0,

u(x, y, z) = u(x+ Lx, y, z) = u(x, y, z + Lz)} . (4.67)

We denote the S-invariant subspace of states invariant under symmetries (4.66) by

Uc = {u ∈ U | sju = u , sj ∈ S} , (4.68)

and the S3-invariant subspace by

Us3 = {u ∈ U | s3u = u , s1u 6= u , s2u 6= u} , (4.69)

where Uc ⊂ Us3 ⊂ U. Uc and Us3 are flow-invariant subspaces: states initiated in
either remain within it under the Navier-Stokes dynamics.

Idempotency of s3 leads to projection operators

P+ =
1

2
(1 + s3) , P− =

1

2
(1− s3) . (4.70)

10JRE: Shouldn’t we say u = ±1 at the walls for consistency?
11Predrag: do we need this in this paper?:

“s3u = u implies [u, v, w](x, y, z) = [−u,−v,−w](−x,−y,−z + Lz/2), which requires u = 0 at
four points (x, y, z) = (0, 0, Lz/4); (0, 0, 3Lz/4); (Lx/2, 0, Lz/4); (Lx/2, 0, 3Lz/4). ”
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Translations of half the cell length in the spanwise and/or streamwise directions
commute with S. These operators generate a discrete subgroup of the continuous trans-
lational symmetry group SO(2)× SO(2) :

T = {e, τx, τz, τxz} , τx = τ(Lx/2, 0) , τz = τ(0, Lz/2) , τxz = τxτz . (4.71)

Since the action of T commutes with that of S, the three half-cell translations τxu, τzu,
and τxzu of u ∈ Uc are also in Uc. Similarly, τxz commutes with S3, so S3-invariant
solutions appear in eight copies. 12

JH April 28, 2008: From the form of s3, we can see that any Eulerian equilibrium
that is invariant under has 4 Lagrangian stagnation points which satisfy the condition:

(x, y, z) = (−x,−y,−z + Lz/2) (4.72)

There are 4 points which satisfy this constraint:

xSP1 = (Lx/2, 0, Lz/4)

xSP2 = (Lx/2, 0, 3Lz/4)

xSP3 = (0, 0, Lz/4) (4.73)
xSP4 = (0, 0, 3Lz/4) .

Due to the periodic boundary conditions (Lx, 0, Lz/4) = SP3 and (Lx, 0, 3Lz/4) =
SP4. Also of note is the fact that there can exist no s3-invariant relative equilibria,
since s3 operation flips both the x and z axes.
PC May 25, 2008: moved sect. 7.1 to chapter 7.

4.13 Notational conventions

Predrag, May 12, 2008: In Lagrangian mixing we need to distinguish between 3D
physical fluid flow (for a given invariant solution) and the dynamical ∞-dimensional
state space flow.

We distinguish the two by using physically motivated nomenclature for 3D physi-
cal fluid flow: We shall refer to the 3D point x for which u(xeq) = 0 as the stagnation
point xeq, and the moving point x(t) for which u(xtw(t)) = 0, xtw(t) − ct = xtw(0) as
the traveling stagnation point xtw(t).

(to be continued: velocity gradients matrix, etc..)
Predrag to Jonathan, Oct 13, 2007: Relative equilibria are not periodic, they are sta-
tionary in the velocity c co-moving frame. Rather than using “period of T " description
(such as “x traveling with a period of T = 169.62747092815"), state that TW±1 has
velocity cx = Lx/T ?

12Predrag: incorporate halcrow blog JFG comment for the the S3-invariant claim, please: if you agree,
comment out this footnote.
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4.14 Integrating velocity fields
Predrag Nov 2, 2007 to Kai Schneider:
John Elton is planning to use some of the exact plane Couette flow solutions computed
by Waleffe, Viswanath, Gibson and Halcrow (data sets are on channelfow.org) and
study Lagrangian tracer trajectories for such solutions. Marie Farge (farge@lmd.ens.fr)
tells me that many people do this inaccurately, but you know how to do it right. Let us
know what we should read not to waste time on not doing it right?
Kai Schneider: (kschneid@cmi.univ-mrs.fr)
Concerning Lagrangian particles: it is important to use the right techniques for time
integration and for interpolation of the velocity (and acceleration) for computing them
accurately.

For time integration we are using a second order Runge-Kutta scheme and for space
interpolation a bicubic (in 2d) scheme.

There is a nice recent paper by Homann, Dreher and Grauer [79] and an older one
by P.K. Yeung and Pope [80] (you have the specialist on that just next 10 buildings
away).

4.15 Passive scalar advection?
PC Nov 2, 2007: The other thing we might try is passive scalar transport using these
velocity fields (but that I really have barely started thinking about).

Very sketchy:
Given a velocity field, densities (passive scalars?) are advected by th Fokker-Planck

equation
∂tρ+ ∂i(ρvi) = D∂2ρ. (4.74)

The left hand side, dρ/dt = ∂tρ+∂ ·(ρv), is deterministic, with the continuity equation
recovered in the weak noise limit D → 0. The right hand side describes the diffusive
transport in or out of the material particle volume. If the density is lower than in the im-
mediate neighborhood, the local curvature is positive, ∂2ρ > 0, and the density grows.
Conversely, for negative curvature diffusion lowers the local density, thus smoothing
the variability of ρ.

Not sure that this is the thing we want to investigate, and sure do not know how to
think about the diffusive part D∂2ρ. Easier to try playing with tracer particles first...
JFG 2008-04-29: If we want to do this, it would not be hard to integrate the Fokker-
Planck equation using channelflow, at least with an explicit time-stepping method. Ex-
press the probability density as a 1d FlowField, compute the ∂i(ρvi) and D∂2ρ terms
using differential operators, and add them together using Adams-Bashforth, Runge-
Kutta, or similar formulae to get an update equation for the density. It would not take
many lines of code.
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(a)

(b)

Figure 4.16: (a) Grid of 19×19 initial points in the [y, z] plane, centered at x = Lx/2;
integrated for 15 time units. (b) Rotated to show the 2 stagnation points.
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(a)

(b)

Figure 4.17: (a) Grid of 19 × 19 initial points in the [y, z] plane, centered at x = 0;
integrated for 15 time units. (b) Rotated to show the other 2 stagnation points.
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Chapter 7

Channelflow

1

7.1 Lagrangian streamlines
JRE April 25, 2008: In order to integrate streamlines of plane Couette flow and follow
the paths of tracer particles, it is first necessary to have a numerically accurate equilib-
rium 3D-velocity field.

The starting point for this task is to obtain the previously computed FlowField
data for a given equilibrium, e.g. upper branch, lower branch, etc... These are made
available at the website Channelflow.org as is most of the information I am about
to summarize about FlowFields. Essentially, the FlowField data contains a long array
of numbers which are the spectral coefficients of the expansion of a velocity field u(x).
The form of the expansion is

u(x) =

My−1∑
my=0

Mx−1∑
mx=0

Mz−1∑
mz=0

ûmx,my,mz
T̄my

(y)e2πi(kxx/Lx+kzz/Lz) + (c.c.) (7.1)

The û’s are the spectral coefficients - the information stored in a FlowField. The
T̄ (y)’s are Chebyshev polynomials defined on the interval [a,b] (in most cases [-1,1]).
The order of the summations, although mathematically irrelevant, reflects the order in
which the spectral coefficients are stored as a data array. z is the innermost loop, then
x, then y, and finally the vector component of u(x) is the outermost loop. For a given
FlowField the upper bounds on the sums are known from the geometry, and the k’s are
related to the m’s through the following relations:

kx =

{
mx 0 ≤ mx ≤Mx/2
mx −Mx Mx < mx < Mx

(7.2)

kz = mz 0 ≤ mz < Mz . (7.3)
1elton/blog/channelflow.tex, rev. 176: last edit by Predrag Cvitanović, 12/29/2013
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Hence, with a knowledge of the spectral coefficients we can compute u(x) by evaluat-
ing this sum at a particular x = (x, y, z).

Various internal functions within Channelflow.org have been written to com-
pute u on a set of gridpoints. It is possible, by interpolation of the velocity fields on
these gridpoint values, to integrate a trajectory with great computational speed. How-
ever this will not be nearly as accurate as evaluating the sum (7.1), and currently we
don’t really know whether the first method would give a reasonable approximation at
all. For this reason the current strategy is to evaluate (7.1) to give the exact velocity field
at every point along a trajectory. Summing over 105 coefficients at every step sounds
slow and inefficient, and it surely is compared to the interpolation method. But luckily
it doesn’t seem to be too slow. I have written a function in Matlab that performs this
computation for a single point in about 0.01 seconds. It is certainly possible that this
could be made faster. The code has been checked to be correct by picking an (x, y, z)
coordinate that happens to lie on a gridpoint value and then comparing the result to
the value given by the internal Channelflow.org functions. If, for example, we
wanted to compute trajectories for 50 initial points for 500 time steps each this would
still only take less than 5 minutes (ignoring the time needed to perform a Runge-Kutta
step, or whatever).

7.1.1 Specifics
The new Channelflow.org function "field2ascii-spectral.cpp" converts the spec-
tral coefficients to ascii format, which is readable by Matlab. The command
./field2ascii-spectral.x u u-whatev
takes in the FlowField u.ff and produces the files u-whatev.asc and u-whatev-geom.asc.
In Matlab, the commands load(’u-whatev.asc’) and load(’u-whatev-geom.asc’) create
vectors containing all of the necessary data. The newly written Matlab script "trajec-
tory.m" takes this information and performs the sum (7.1). (Note that all of the hyphens
in these file names should actually be underscores, I just don’t know how to display un-
derscores in LaTEX). So I am now basically ready to start playing with tracers.

7.1.2 OpenMP-parallelize channelflow

7.1.3 Benchmark channelflow against similar codes

7.1.4 Get channelflow running on cluster (as is)
Aug 2007: DONE now runs on PACE cluster
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[4] M. Budišić and I. Mezić. Geometry of the ergodic quotient reveals coherent
structures in flows. Physica D, 241:1255–1269, 2012. arXiv:1204.2050.
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[23] P. Cvitanović and Y. Lan. Turbulent fields and their recurrences. In N. Antoniou,
editor, Proceedings of 10th International Workshop on Multiparticle Produc-
tion: Correlations and Fluctuations in QCD, Singapore, 2003. World Scientific.
arXiv:nlin.CD/0308006.
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mensional data. Sankhyā: Indian J. Statistics, Ser. A, pages 429–452, 2002.
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